JP5655020B2 - Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube - Google Patents

Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube Download PDF

Info

Publication number
JP5655020B2
JP5655020B2 JP2012041500A JP2012041500A JP5655020B2 JP 5655020 B2 JP5655020 B2 JP 5655020B2 JP 2012041500 A JP2012041500 A JP 2012041500A JP 2012041500 A JP2012041500 A JP 2012041500A JP 5655020 B2 JP5655020 B2 JP 5655020B2
Authority
JP
Japan
Prior art keywords
tube
resin layer
manufacturing
thin
walled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041500A
Other languages
Japanese (ja)
Other versions
JP2013176872A (en
Inventor
伊藤 広敏
広敏 伊藤
拓也 照沼
拓也 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirakawa Hewtech Corp
Original Assignee
Hirakawa Hewtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirakawa Hewtech Corp filed Critical Hirakawa Hewtech Corp
Priority to JP2012041500A priority Critical patent/JP5655020B2/en
Publication of JP2013176872A publication Critical patent/JP2013176872A/en
Application granted granted Critical
Publication of JP5655020B2 publication Critical patent/JP5655020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、薄肉チューブの製造方法、その製造方法により製造されたチューブ、及び、多層構造チューブに関する。 The present invention relates to a method for manufacturing a thin-walled tube, a tube manufactured by the manufacturing method, and a multilayer structure tube.

従来、熱可塑性樹脂チューブの製造においては、主に、中空成形方法と芯材引抜きによるチューブ製造方法の2つの方法がとられていた。   Conventionally, in the production of a thermoplastic resin tube, two methods were mainly employed: a hollow molding method and a tube production method by drawing a core material.

中空成形方法は、ダイスから出た溶融樹脂チューブを中空形状で成形する方法であるが、ダイスから出た直後の高温の溶融樹脂チューブは極めて変形しやすく、成形するチューブの肉厚が薄い場合には成形品が冷却水槽内で浮いてしまう、或いは水圧でつぶれてしまう等の理由により変形しやすかった。これを解消する方法として、例えば、真空サイジング法や内圧法が用いられていた(特許文献1参照)。しかし、真空サイジング法は、厚肉チューブや比較的硬質樹脂を使用したチューブの成形には適しているが、例えば肉厚が0.1mm以下の薄肉チューブを成形する場合には、真空冷却水槽入口でチューブが伸びてしまい、成形が困難であった。また、内圧法においては、押出し直後のチューブ内に空気を吹き込んで内圧をかけるため、チューブの肉厚が薄い場合には、冷却水槽に入る前にチューブが膨脹しすぎたり或いは破裂してしまうか、水槽内で水圧に負けて潰れてしまうなど、安定して成形することができなかった。更には、中空成形方法では、特に外径が大きく薄肉のチューブはキンクしやすいため、大きな曲げ半径で取扱う必要があり、生産設備のガイドロール部や巻取部の半径を大きくする必要があるなど、取扱いも困難であった。   The hollow molding method is a method in which the molten resin tube that has come out of the die is molded in a hollow shape, but the high-temperature molten resin tube immediately after coming out of the die is extremely deformable, and the tube to be molded is thin. Was easily deformed because the molded product floated in the cooling water tank or was crushed by water pressure. As a method for solving this problem, for example, a vacuum sizing method or an internal pressure method has been used (see Patent Document 1). However, the vacuum sizing method is suitable for forming a thick tube or a tube using a relatively hard resin. For example, when forming a thin tube having a wall thickness of 0.1 mm or less, the inlet of the vacuum cooling water tank is used. As a result, the tube stretched, making it difficult to mold. Also, in the internal pressure method, air is blown into the tube immediately after extrusion to apply internal pressure, so if the tube is thin, does the tube expand or burst before entering the cooling water tank? The mold could not be stably formed because it was crushed due to water pressure in the water tank. Furthermore, in the hollow molding method, a thin tube having a large outer diameter is easy to kink, so it is necessary to handle it with a large bending radius, and it is necessary to increase the radius of the guide roll part and the winding part of the production equipment. The handling was also difficult.

一方、芯材引抜きによるチューブ製造方法は、上記の問題を解消して、薄肉で細径のチューブを製造する方法として、例えば、銅線を芯材とし、その芯材の外周に押出しあるいは塗布によって樹脂の被覆層を形成し、その後、芯材を引き抜いてチューブを製造する方法が従来から知られている(特許文献2、特許文献3参照)。この方法でチューブを製造するのに使用される芯材は、従来、銀メッキあるいは錫メッキした銅線が一般的であった。銅線は、柔らかく、低荷重で伸びて縮径するため、引き抜き易く、人力による引き抜きも容易であり、また、柔らかいので真直性も出しやすく、チューブ製造用芯材として好適である。但し、銅は不安定で酸化しやすく、また酸化した銅は剥落し易いため、そのまま芯材としたのでは、引き抜く時に樹脂である被覆層の内面に酸化した銅が付着する恐れがある。これを防止するために銀メッキあるいは錫メッキが施される。しかし、次のような問題を持っている。この芯材は、チューブを構成する樹脂が被覆されるのでその際の温度よりも高い耐熱性をもつ樹脂又は金属とする必要があり、また、太い内径チューブを得るためにはそれに見合った太径の芯材を用意する必要がありコスト高となっていた。また、芯材が太いために、引き抜くための縮径が容易でなく作業性が落ちる。更に、太径の芯材を取り扱う芯材送出機(サプライ)等も専用化が必要であった。   On the other hand, the tube manufacturing method by drawing the core material is a method for solving the above-mentioned problems and manufacturing a thin and thin tube, for example, by using a copper wire as the core material and extruding or coating the outer periphery of the core material. A method of forming a resin coating layer and then pulling out a core material to manufacture a tube has been conventionally known (see Patent Document 2 and Patent Document 3). Conventionally, the core material used for manufacturing a tube by this method has been generally a silver-plated or tin-plated copper wire. The copper wire is soft and stretches with a low load and has a reduced diameter. Therefore, the copper wire is easy to pull out and easily pulled out by manpower. Also, since the copper wire is soft, it is easy to produce straightness and is suitable as a core material for manufacturing a tube. However, since copper is unstable and easily oxidized, and oxidized copper is easily peeled off, if the core material is used as it is, oxidized copper may adhere to the inner surface of the coating layer that is a resin. In order to prevent this, silver plating or tin plating is performed. However, it has the following problems. This core material is coated with the resin that makes up the tube, so it is necessary to use a resin or metal that has a heat resistance higher than the temperature at that time. It was necessary to prepare a core material, and the cost was high. Further, since the core material is thick, the diameter for pulling out is not easy and the workability is lowered. Furthermore, a core material feeder (supply) that handles a thick core material needs to be specialized.

実開平7−33624号公報Japanese Utility Model Publication No. 7-33624 特開平5−15601号公報Japanese Patent Laid-Open No. 5-15601 特開平9−285545号公報JP-A-9-285545

しかし、このような従来の芯材引抜きによるチューブ製造方法は、薄肉で細径のチューブに適した製造方法であって、薄肉で太径のチューブの製造に際しては、芯材が高価であることによる単価の上昇、芯材が太いために、引き抜くための縮径が容易でなく作業性が低下するという問題があった。また、太い芯材に適合した芯材送出機(サプライ)や引き取り機等が必要となるために、コスト高になるという問題があった。   However, the conventional tube manufacturing method by drawing the core material is a manufacturing method suitable for a thin and thin tube, and the core material is expensive when manufacturing a thin and large tube. Due to the increase in unit price and the thick core material, there is a problem that the diameter for pulling out is not easy and the workability is lowered. In addition, a core material feeder (supply), a take-up machine, and the like suitable for a thick core material are required, resulting in a problem of high costs.

従って、本発明の目的は、寸法精度のよい安価な薄肉で太径チューブの製造が可能な薄肉チューブの製造方法、その製造方法により製造されたチューブ、及び、多層構造チューブを提供することにある。 Accordingly, an object of the present invention is to provide a method of manufacturing a thin-walled tube capable of manufacturing an inexpensive thin-walled and large-diameter tube with good dimensional accuracy, a tube manufactured by the manufacturing method, and a multilayer structure tube. .

[1]本発明は、上記の目的を達成するために、熱可塑性樹脂からなる中空状又は棒状の内層樹脂層と、前記内層樹脂層の外周に配置され、前記内層樹脂層と密着しない熱可塑性樹脂からなる外層樹脂層と、で構成されるチューブ中間体を同時に押出成形する押出成形工程と、前記押出成形工程により形成された前記チューブ中間体を押出成形の方向に切断し、切断されたチューブ中間体から内層樹脂層を引き抜いて外層樹脂層を分離することにより前記外層樹脂層の肉厚が0.1mm以下の薄肉のチューブを形成する引抜工程と、を有することを特徴とする薄肉チューブの製造方法を提供する。 [1] In order to achieve the above object, the present invention provides a hollow or rod-shaped inner resin layer made of a thermoplastic resin and a thermoplastic resin that is disposed on the outer periphery of the inner resin layer and does not adhere to the inner resin layer. An extrusion process for simultaneously extruding a tube intermediate composed of an outer resin layer made of resin, and the tube intermediate formed by the extrusion molding process in the direction of extrusion molding, and the cut tube A drawing step of drawing a thin tube having a thickness of the outer resin layer of 0.1 mm or less by pulling out the inner resin layer from the intermediate and separating the outer resin layer . A manufacturing method is provided.

[2]前記外層樹脂層は、前記内層樹脂層と密着しない熱可塑性樹脂からなる中間層樹脂層と、前記中間層樹脂層の外周に密着する熱可塑性樹脂からなる最外層樹脂層とからなることを特徴とする上記[1]に記載の薄肉チューブの製造方法であってもよい。 [2] The outer resin layer is composed of an intermediate resin layer made of a thermoplastic resin that is not in close contact with the inner resin layer and an outermost resin layer made of a thermoplastic resin that is in close contact with the outer periphery of the intermediate resin layer. The method for producing a thin-walled tube according to the above [1], characterized in that

[3]また、上記[1]に記載した薄肉チューブの製造方法により製造されたことを特徴とするチューブであってもよい。 [3] A tube manufactured by the method for manufacturing a thin-walled tube described in [1] above may be used.

[4]また、上記[2]に記載した薄肉チューブの製造方法により製造されたことを特徴とする多層構造チューブであってもよい。 [4] A multilayer tube manufactured by the method for manufacturing a thin tube described in [2] may be used.

本発明によれば、寸法精度のよい安価な薄肉で太径チューブの製造が可能な薄肉チューブの製造方法、その製造方法により製造されたチューブ、及び、多層構造チューブを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thin wall tube which can manufacture a thin tube with a thin dimensional with good dimensional accuracy, the tube manufactured by the manufacturing method, and a multilayer structure tube can be provided.

図1は、本発明の実施例1に係るチューブ中間体の断面図である。FIG. 1 is a cross-sectional view of a tube intermediate according to the first embodiment of the present invention. 図2は、本発明の実施例2に係るチューブ中間体の断面図である。FIG. 2 is a cross-sectional view of the tube intermediate according to the second embodiment of the present invention. 図3は、本発明の実施例3に係る多層構造チューブ中間体の断面図である。FIG. 3 is a cross-sectional view of the multilayer tube intermediate according to the third embodiment of the present invention. 図4は、比較例1に係るチューブの断面図である。4 is a cross-sectional view of a tube according to Comparative Example 1. FIG. 図5は、比較例2に係るチューブの断面図である。FIG. 5 is a cross-sectional view of a tube according to Comparative Example 2. 図6は、実施例1、2,3と比較例1、2の各項目の優劣を示す一覧を示す図である。FIG. 6 is a diagram showing a list showing superiority or inferiority of each item in Examples 1, 2, and 3 and Comparative Examples 1 and 2. 図7(a)、(b)は、応用例1を示し、図7(c)、(d)は、応用例2を示す図である。7A and 7B show application example 1, and FIGS. 7C and 7D show application example 2. FIG.

[本発明の実施の形態]
(第1の実施の形態)
本発明の第1の実施の形態に係る薄肉チューブ(以下、単に「チューブ」という。)の製造方法は、熱可塑性樹脂からなる中空状又は棒状の内層樹脂層100と、内層樹脂層100の外周に配置され、内層樹脂層100と密着しない熱可塑性樹脂からなる外層樹脂層200とで構成されるチューブ中間体300を同時に押出成形する押出成形工程と、この押出成形工程により形成されたチューブ中間体300を押出成形の方向に切断し、切断されたチューブ中間体300から内層樹脂層100を引き抜いて外層樹脂層200を分離することによりチューブ200Aを形成する引抜工程と、を有して構成されている。
[Embodiments of the present invention]
(First embodiment)
A method for manufacturing a thin-walled tube (hereinafter simply referred to as “tube”) according to the first embodiment of the present invention includes a hollow or rod-shaped inner resin layer 100 made of a thermoplastic resin, and an outer periphery of the inner resin layer 100. An extrusion process for simultaneously extruding a tube intermediate body 300 composed of an outer resin layer 200 made of a thermoplastic resin that is disposed on the inner resin layer 100 and is not in close contact with the inner resin layer 100, and a tube intermediate formed by this extrusion process A drawing step of cutting the tube 300 in the direction of extrusion and drawing the inner resin layer 100 from the cut tube intermediate 300 to separate the outer resin layer 200 to form the tube 200A. Yes.

このチューブの製造方法により製造された、すなわち、チューブ中間体300から内層樹脂層100を引き抜いて分離された外層樹脂層200は、チューブ200Aである。なお、押出成形の方向に切断とは、長尺状に押出成形されたチューブ中間体300から所定のチューブ長さに短尺に切断して仕上げること以外に、チューブ中間体300から内層樹脂層100を引き抜いて分離することが可能な長さに切断する場合も含む。すなわち、チューブ中間体300から内層樹脂層100を引き抜いて外層樹脂層200を分離し、この外層樹脂層200を所定のチューブ長さに切断してチューブ200Aを形成することも可能である。   The outer resin layer 200 manufactured by this tube manufacturing method, that is, separated by pulling out the inner resin layer 100 from the tube intermediate 300 is a tube 200A. In addition, cutting in the direction of extrusion molding means cutting the inner resin layer 100 from the tube intermediate 300 in addition to cutting the tube intermediate 300 extruded into a long shape into a predetermined tube length and finishing it. It includes the case of cutting to a length that can be pulled out and separated. That is, it is possible to separate the outer resin layer 200 by pulling out the inner resin layer 100 from the tube intermediate 300 and cut the outer resin layer 200 into a predetermined tube length to form the tube 200A.

上記のチューブの製造方法において、内層樹脂層100が中空状の場合は、内径の確保のために、チューブ中間体300の成形時にヘッドから加圧空気をチューブ中間体300内に導入し成形することが好ましい。   In the above-described tube manufacturing method, when the inner resin layer 100 is hollow, pressurized air is introduced into the tube intermediate 300 from the head during the formation of the tube intermediate 300 in order to secure an inner diameter. Is preferred.

(第2の実施の形態)
第1の実施の形態は、単層のチューブの製造方法であったが、本発明の第2の実施の形態に係るチューブの製造方法は、多層構造チューブの製造方法である。
(Second Embodiment)
Although the first embodiment is a method for manufacturing a single-layer tube, the method for manufacturing a tube according to the second embodiment of the present invention is a method for manufacturing a multilayer structure tube.

外層樹脂層400は、内層樹脂層100と密着しない熱可塑性樹脂からなる中間層樹脂層410と、中間層樹脂層410の外周に密着する熱可塑性樹脂からなる最外層樹脂層420とからなる。   The outer resin layer 400 includes an intermediate resin layer 410 made of a thermoplastic resin that does not adhere to the inner resin layer 100 and an outermost resin layer 420 made of a thermoplastic resin that adheres to the outer periphery of the intermediate resin layer 410.

第2の実施の形態では、押出成形工程において、熱可塑性樹脂からなる中空状又は棒状の内層樹脂層100と、内層樹脂層100の外周に配置され、内層樹脂層100と密着しない熱可塑性樹脂からなる中間層樹脂層410と、その中間層樹脂層410の外周に密着する熱可塑性樹脂からなる最外層樹脂層420とで構成されるチューブ中間体500を同時に押出成形する。   In the second embodiment, a hollow or rod-shaped inner resin layer 100 made of a thermoplastic resin and a thermoplastic resin that is arranged on the outer periphery of the inner resin layer 100 and does not adhere to the inner resin layer 100 in the extrusion process. A tube intermediate body 500 composed of an intermediate resin layer 410 and an outermost resin layer 420 made of a thermoplastic resin that is in close contact with the outer periphery of the intermediate resin layer 410 is simultaneously extruded.

引抜工程は、第1の実施の形態と同様であり、押出成形工程により形成されたチューブ中間体500を押出成形の方向に切断し、切断されたチューブ中間体500から内層樹脂層100を引き抜いて多層に形成された外層樹脂層400を分離することにより多層構造チューブ400Aを形成する。   The drawing process is the same as that of the first embodiment, and the tube intermediate body 500 formed by the extrusion molding process is cut in the direction of extrusion molding, and the inner resin layer 100 is drawn from the cut tube intermediate body 500. A multilayer structure tube 400A is formed by separating the outer resin layer 400 formed in multiple layers.

第2の実施の形態においても、チューブの製造方法において、内層樹脂層100が中空状の場合は、内径の確保のために、チューブ中間体500の成形時にヘッドから加圧空気をチューブ中間体500内に導入し成形することが好ましい。   Also in the second embodiment, in the tube manufacturing method, when the inner resin layer 100 is hollow, in order to secure an inner diameter, compressed air is supplied from the head to the tube intermediate 500 when the tube intermediate 500 is formed. It is preferable to introduce into the mold.

(実施例1)
図1は、本発明の実施例1に係るチューブ中間体300の断面図である。30mm/20mmのクロスヘッド型同時2層押出成形機を用いて30mm側を内層樹脂層100、20mm側を外層樹脂層200として中空一体成形した。内径5.0mm、外径7mmの内層樹脂層100にはLDPE(ノバテックYF30(登録商標))を用い、その外周には肉厚0.07mmのポリウレタン(ペレセン2363―90AE(登録商標))を外層樹脂層200とした。内層樹脂層100はLDPEに限らず、熱溶融により外層樹脂層200と密着しない樹脂であれば良く、例えばEVA・PP・HDPE等でも良い。内層樹脂層100、外層樹脂層200の肉厚はそれぞれ30mm、20mmの押出機のスクリュー回転数により制御した。内径の確保はチューブ中間体の成形時にヘッドから加圧空気(例えば、ゲージ圧で15kPa)をチューブに導入し成形した。押出成形後、チューブ中間体300を500mmの長さで切断し、両端末の外層樹脂層200をケーブルストリッパーで除去し、内層樹脂層100を延伸後に引抜いて、内径7mm、肉厚0.07mm(外径7.14mm)のポリウレタンチューブ(チューブ200A)を得た。
Example 1
FIG. 1 is a cross-sectional view of a tube intermediate 300 according to the first embodiment of the present invention. Using a 30 mm / 20 mm crosshead type simultaneous two-layer extrusion molding machine, hollow integral molding was performed with the 30 mm side as the inner resin layer 100 and the 20 mm side as the outer resin layer 200. LDPE (Novatec YF30 (registered trademark)) is used for the inner resin layer 100 having an inner diameter of 5.0 mm and an outer diameter of 7 mm, and outer layer of 0.07 mm thick polyurethane (Pelecene 2363-90AE (registered trademark)) is used on the outer periphery. A resin layer 200 was obtained. The inner resin layer 100 is not limited to LDPE, and may be any resin that does not adhere to the outer resin layer 200 due to heat melting, and may be EVA, PP, HDPE, or the like. The wall thicknesses of the inner resin layer 100 and the outer resin layer 200 were controlled by the screw speed of an extruder of 30 mm and 20 mm, respectively. The inner diameter was ensured by introducing pressurized air (for example, 15 kPa as a gauge pressure) from the head into the tube when the tube intermediate was formed. After the extrusion molding, the tube intermediate 300 is cut to a length of 500 mm, the outer resin layer 200 at both ends is removed with a cable stripper, and the inner resin layer 100 is drawn after being stretched to have an inner diameter of 7 mm and a wall thickness of 0.07 mm ( A polyurethane tube (tube 200A) having an outer diameter of 7.14 mm was obtained.

(実施例2)
図2は、本発明の実施例2に係るチューブ中間体300の断面図である。30mm/20mmのクロスヘッド型同時2層押出成形機を用いて30mm側を内層樹脂層100、20mm側を外層樹脂層200として中空一体成形した。内径3.0mm、外径4.8mmの内層樹脂層100には低密度ポリエチレンLDPE(UBEC150)を用い、その外周には肉厚0.1mmのナイロンエラストマー(ペバックス7033(登録商標))を外層樹脂層200とした。内層樹脂層100はLDPEに限らず、熱溶融により外層樹脂層200と密着しない樹脂であれば良く、例えばPVC・PP・HDPE等でも良い。内層樹脂層100、外層樹脂層200の肉厚はそれぞれ30mm、20mmの押出機のスクリュー回転数により制御した。内径の確保はチューブ中間体の成形時にヘッドから加圧空気(例えば、ゲージ圧で10kPa)をチューブに導入し成形した。押出成形後、チューブ中間体300を1000mmの長さで切断し両端末の外層樹脂層200をケーブルストリッパーで除去し、内層樹脂層100を延伸後に引抜いて、内径4.8mm、肉厚0.1mm(外径5.0mm)のナイロンエラストマーチューブ(チューブ200A)を得た。
(Example 2)
FIG. 2 is a cross-sectional view of the tube intermediate 300 according to the second embodiment of the present invention. Using a 30 mm / 20 mm crosshead type simultaneous two-layer extrusion molding machine, hollow integral molding was performed with the 30 mm side as the inner resin layer 100 and the 20 mm side as the outer resin layer 200. Low density polyethylene LDPE (UBEC150) is used for the inner resin layer 100 having an inner diameter of 3.0 mm and an outer diameter of 4.8 mm, and a nylon elastomer (Pebax 7033 (registered trademark)) having a wall thickness of 0.1 mm is used as the outer resin. Layer 200 was designated. The inner resin layer 100 is not limited to LDPE, but may be any resin that does not adhere to the outer resin layer 200 due to heat melting, and may be PVC, PP, HDPE, or the like. The wall thicknesses of the inner resin layer 100 and the outer resin layer 200 were controlled by the screw speed of an extruder of 30 mm and 20 mm, respectively. The inner diameter was ensured by introducing pressurized air (for example, 10 kPa by gauge pressure) from the head into the tube when the tube intermediate was formed. After extrusion molding, the tube intermediate 300 is cut to a length of 1000 mm, the outer resin layer 200 at both ends is removed with a cable stripper, and the inner resin layer 100 is drawn after being stretched to have an inner diameter of 4.8 mm and a wall thickness of 0.1 mm. A nylon elastomer tube (tube 200A) having an outer diameter of 5.0 mm was obtained.

(実施例3)
図3は、本発明の実施例3に係る多層構造チューブ中間体500の断面図である。30mm/20mm/20mmのクロスヘッド型同時3層押出成形機を用いて30mm側を内層樹脂層100、20mm/20mm側を外層樹脂層400として中空一体成形した内径3.0mm、外径4.8mmの内層樹脂層100にはLDPE(UBEC150)を用い、その外周には肉厚0.04mmのナイロンエラストマー(ペバックス7033)を中間層樹脂層410とし、更にその外側に肉厚0.06mmのナイロンエラストマー(ペバックス5533)を最外層樹脂層420とした。内層樹脂層100はLDPEに限らず、熱溶融により中間層樹脂層410と密着しない樹脂であれば良く、例えばPVC・PP・HDPE等でも良い。内層樹脂層100、外層樹脂層400(中間層樹脂層410及び最外層樹脂層420)の肉厚はそれぞれの押出機のスクリュー回転数により制御した。内径の確保はチューブ中間体の成形時にヘッドから加圧空気(例えば、ゲージ圧で10kPa)をチューブに導入し成形した。押出成形後、チューブ中間体500を長さ1000mmで切断し、両端末の外層樹脂層400をケーブルストリッパーで除去し、内層樹脂層100を延伸後に引抜いて内径4.8mm、肉厚0.1mm(外径4.0mm)のナイロンエラストマー2層チューブ(多層構造チューブ400A)を得た。
Example 3
FIG. 3 is a cross-sectional view of the multilayer tube intermediate 500 according to the third embodiment of the present invention. Using a 30 mm / 20 mm / 20 mm crosshead type simultaneous three-layer extruder, the inner resin layer 100 is formed on the 30 mm side and the outer resin layer 400 is formed on the 20 mm / 20 mm side, and the inner diameter is 3.0 mm and the outer diameter is 4.8 mm. The inner resin layer 100 is made of LDPE (UBEC150), and the outer periphery thereof is made of a 0.04 mm thick nylon elastomer (Pebax 7033) as an intermediate resin layer 410, and the outer side is a 0.06 mm thick nylon elastomer. (Pebax 5533) was used as the outermost resin layer 420. The inner resin layer 100 is not limited to LDPE, and may be any resin that does not adhere to the intermediate resin layer 410 due to heat melting, and may be PVC, PP, HDPE, or the like. The thicknesses of the inner resin layer 100 and the outer resin layer 400 (the intermediate resin layer 410 and the outermost resin layer 420) were controlled by the screw speed of each extruder. The inner diameter was ensured by introducing pressurized air (for example, 10 kPa by gauge pressure) from the head into the tube when the tube intermediate was formed. After the extrusion molding, the tube intermediate 500 is cut to a length of 1000 mm, the outer resin layer 400 at both ends is removed with a cable stripper, and the inner resin layer 100 is drawn after being stretched to have an inner diameter of 4.8 mm and a wall thickness of 0.1 mm ( A nylon elastomer two-layer tube (multilayer structure tube 400A) having an outer diameter of 4.0 mm was obtained.

(比較例1)
図4は、比較例1に係るチューブの断面図である。内径7.0mm、肉厚0.07mmのポリウレタン600(ペレセン2363―90AE)を30mmクロスヘッド型押出機でチュービングした。肉厚は押出機のスクリュー回転数により制御した。内径の確保はチューブ成形時にヘッドから加圧空気(例えば、ゲージ圧で2kPa)をチューブに導入し成形した。成形後(R250mm程度の曲げ半径)に座屈しチューブ内圧が変動したり、或いは冷却水槽内で水圧により潰れてしまいチューブ内圧が変動したことにより安定した構造が得られなかった。
(Comparative Example 1)
4 is a cross-sectional view of a tube according to Comparative Example 1. FIG. Polyurethane 600 (Pelecene 2363-90AE) having an inner diameter of 7.0 mm and a wall thickness of 0.07 mm was tubing with a 30 mm crosshead type extruder. The wall thickness was controlled by the screw speed of the extruder. The inner diameter was secured by forming the tube by introducing pressurized air (for example, 2 kPa as a gauge pressure) from the head when the tube was formed. After forming (bending radius of about R250 mm), the tube internal pressure fluctuated, or the tube internal pressure fluctuated due to water pressure collapse in the cooling water tank, so that a stable structure could not be obtained.

(比較例2)
図5は、比較例2に係るチューブの断面図である。直径4.8mmの錫メッキ軟銅線610に上に、肉厚0.1mmのナイロンエラストマー620(ペバックス7033)を30mmクロスヘッド型押出機で充実成形した。押出成形後、チューブを1000mmで切断し、両端末のナイロンエラストマー620をケーブルストリッパーで除去し、芯体である錫メッキ軟銅線610を延伸後に引抜いて内径4.8mm、肉厚0.1m(外径5.0mm)のナイロンエラストマーチューブ620Aを得た。
(Comparative Example 2)
FIG. 5 is a cross-sectional view of a tube according to Comparative Example 2. A nylon elastomer 620 (Pebax 7033) having a thickness of 0.1 mm was formed on a tin-plated annealed copper wire 610 having a diameter of 4.8 mm by using a 30 mm crosshead extruder. After extrusion, the tube is cut at 1000 mm, the nylon elastomer 620 at both ends is removed with a cable stripper, and the tin-plated annealed copper wire 610 as the core is drawn and then drawn to an inner diameter of 4.8 mm and a wall thickness of 0.1 m (outside A nylon elastomer tube 620A having a diameter of 5.0 mm was obtained.

(本実施の実施の形態の効果)
図6は、実施例1、2、3と比較例1、2の各項目の優劣を示す一覧を示す図である。実施例1、2、3、比較例1、2に対して、項目(成形精度、押出速度、コスト、後処理)ごとに、非常に優れている(3点)、優れている(2点)、劣っている(1点)、非常に劣っている(0点)で採点し、その合計を総合評価としたものである。この比較結果から、比較例1、2は、いくつかの項目において、非常に劣っている(0点)評価があるのに対して、実施例1、2,3は、すべての項目において、非常に劣っている(0点)評価がない。また、実施例1、2,3は、比較例1、2に対して総合評価で大きく優位である。
(Effects of the present embodiment)
FIG. 6 is a diagram showing a list showing superiority or inferiority of each item in Examples 1, 2, and 3 and Comparative Examples 1 and 2. Compared to Examples 1, 2, 3 and Comparative Examples 1 and 2, each item (molding accuracy, extrusion speed, cost, post-treatment) is excellent (3 points) and excellent (2 points). The score is evaluated as being inferior (1 point) or very inferior (0 point), and the total is the total evaluation. From these comparison results, Comparative Examples 1 and 2 have a very poor evaluation (0 points) in some items, whereas Examples 1, 2, and 3 are very good in all items. There is no evaluation which is inferior to (0 points). In addition, Examples 1, 2, and 3 are largely superior to Comparative Examples 1 and 2 in comprehensive evaluation.

本実施の実施の形態によれば、以下のような効果を有する。
(1)中空成形することで、大径芯体用の大がかりな付帯設備を使用せず、従来のチューブ成形ラインにより成形可能である。
(2)上記の中空成形において、内層樹脂層100を中空状とし、チューブ中間体300(チューブ中間体500)の成形時にヘッドから加圧空気をチューブ中間体300(チューブ中間体500)内に導入し成形することにより、内径の確保をより確実にすることが可能となる。
(3)芯材引抜きによるチューブ製造方法のように芯材を必要とせず、安価に製造可能できる。例えば、上記の芯材引抜きによるチューブ製造方法に使用する芯材は、コスト比較でもφ4.8錫メッキ軟銅線よりLDPEの費用のほうが格段に安い。
(4)芯材となる内層樹脂層100と一体で成形することで、肉厚が確保されるためキンクしにくく取扱いも容易であり、抗張力も増加することによりサイジング等も適用可能である。
(5)芯材となる内層樹脂層100の外周に同時に複数の樹脂層を成形して外層樹脂層400(例えば、中間層樹脂層410と最外層樹脂層420)とすることで、薄肉で多層構造をもつチューブの成形が可能となり、単層チューブでは達成し得なかった特性を実現することができる。
According to the present embodiment, the following effects are obtained.
(1) By hollow forming, it can be formed by a conventional tube forming line without using a large incidental facility for a large-diameter core.
(2) In the above hollow molding, the inner resin layer 100 is made hollow, and pressurized air is introduced from the head into the tube intermediate 300 (tube intermediate 500) when the tube intermediate 300 (tube intermediate 500) is molded. By molding, it is possible to ensure the inner diameter more reliably.
(3) Unlike the tube manufacturing method by drawing the core material, the core material is not required and can be manufactured at low cost. For example, the cost of LDPE is much cheaper than that of φ4.8 tinned annealed copper wire in the core material used in the tube manufacturing method by drawing the core material.
(4) By integrally molding with the inner resin layer 100 as the core material, the thickness is secured, so that it is difficult to kink and is easy to handle, and sizing can also be applied by increasing the tensile strength.
(5) A plurality of resin layers are simultaneously formed on the outer periphery of the inner resin layer 100 serving as a core material to form an outer resin layer 400 (for example, the intermediate resin layer 410 and the outermost resin layer 420), whereby a thin and multilayer structure is obtained. A tube having a structure can be formed, and characteristics that cannot be achieved by a single-layer tube can be realized.

以上、本発明の実施の形態を説明したが、これらの実施の形態は、一例に過ぎず、特許請求の範囲に係る発明を限定するものではない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施の形態は、発明の範囲及び要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, these embodiment is only an example and does not limit the invention which concerns on a claim. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. In addition, not all the combinations of features described in these embodiments are essential to the means for solving the problems of the invention. Furthermore, these embodiments are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図7(a)、(b)は、応用例1を示し、図7(c)、(d)は、応用例2を示す図である。図7(a)において、内層樹脂層710をストランド形状にし、その上に、外層樹脂層720を形成する。内層樹脂層710を除去することにより、図7(b)に示すような薄肉で太径のチューブが形成され、薄肉で太径のチューブの製造方法、その製造方法により製造されたチューブ、及び、多層構造チューブに応用することができる。   7A and 7B show application example 1, and FIGS. 7C and 7D show application example 2. FIG. In FIG. 7A, the inner resin layer 710 is formed into a strand shape, and the outer resin layer 720 is formed thereon. By removing the inner resin layer 710, a thin-walled and large-diameter tube as shown in FIG. 7 (b) is formed, a thin-walled and thick-tube manufacturing method, a tube manufactured by the manufacturing method, and It can be applied to multilayer structure tubes.

また、図7(c)において、中空状の内層樹脂層730の上に、異なる樹脂741、742で押出成形された色や硬さの異なるストライプ状の外層樹脂層740を形成し、内層樹脂層730を除去することにより、図7(d)に示すような薄肉で太径のチューブが形成される。上記示すようなストライプ押出や2層、3層構造の多層のスキン層としての押出技術は、公知の技術として使用されており、これらの押出技術を本願発明に応用することにより、種々の薄肉で太径のチューブの製造方法、その製造方法により製造されたチューブ、及び、多層構造チューブに応用することができる。   Further, in FIG. 7C, on the hollow inner resin layer 730, an outer resin layer 740 having a stripe shape with different colors and hardness extruded with different resins 741 and 742 is formed. By removing 730, a thin and thick tube as shown in FIG. 7 (d) is formed. Stripe extrusion as described above and extrusion technology as a multilayer skin layer having a two-layer or three-layer structure are used as known technologies. By applying these extrusion technologies to the present invention, various thin walls can be obtained. The present invention can be applied to a method for producing a large-diameter tube, a tube produced by the production method, and a multilayer structure tube.

100…内層樹脂層
200…外層樹脂層
200A…チューブ
300…チューブ中間体
400…外層樹脂層
400A…多層構造チューブ
410…中間層樹脂層
420…最外層樹脂層
500…チューブ中間体
600…ポリウレタン
610…錫メッキ軟銅線
620…ナイロンエラストマー
620A…ナイロンエラストマーチューブ
DESCRIPTION OF SYMBOLS 100 ... Inner layer resin layer 200 ... Outer layer resin layer 200A ... Tube 300 ... Tube intermediate body 400 ... Outer layer resin layer 400A ... Multilayer structure tube 410 ... Intermediate layer resin layer 420 ... Outermost layer resin layer 500 ... Tube intermediate member 600 ... Polyurethane 610 ... Tin-plated annealed copper wire 620 ... nylon elastomer 620A ... nylon elastomer tube

Claims (4)

熱可塑性樹脂からなる中空状又は棒状の内層樹脂層と、前記内層樹脂層の外周に配置され、前記内層樹脂層と密着しない熱可塑性樹脂からなる外層樹脂層と、で構成されるチューブ中間体を同時に押出成形する押出成形工程と、
前記押出成形工程により形成された前記チューブ中間体を押出成形の方向に切断し、切断されたチューブ中間体から内層樹脂層を引き抜いて外層樹脂層を分離することにより前記外層樹脂層の肉厚が0.1mm以下の薄肉のチューブを形成する引抜工程と、
を有することを特徴とする薄肉チューブの製造方法。
A tube intermediate composed of a hollow or rod-shaped inner resin layer made of a thermoplastic resin and an outer resin layer made of a thermoplastic resin that is disposed on the outer periphery of the inner resin layer and does not adhere to the inner resin layer. An extrusion process to extrude at the same time;
The tube intermediate formed by the extrusion molding process is cut in the direction of extrusion, the inner resin layer is pulled out of the cut tube intermediate, and the outer resin layer is separated to thereby increase the thickness of the outer resin layer. A drawing step of forming a thin tube of 0.1 mm or less ;
A method for producing a thin-walled tube, comprising:
前記外層樹脂層は、前記内層樹脂層と密着しない熱可塑性樹脂からなる中間層樹脂層と、前記中間層樹脂層の外周に密着する熱可塑性樹脂からなる最外層樹脂層とからなることを特徴とする請求項1に記載の薄肉チューブの製造方法。 The outer resin layer comprises an intermediate resin layer made of a thermoplastic resin that does not adhere to the inner resin layer, and an outermost resin layer made of a thermoplastic resin that adheres to the outer periphery of the intermediate resin layer. The method for producing a thin-walled tube according to claim 1. 請求項1に記載した薄肉チューブの製造方法により製造されたことを特徴とするチューブ。 A tube manufactured by the method for manufacturing a thin-walled tube according to claim 1. 請求項2に記載した薄肉チューブの製造方法により製造されたことを特徴とする多層構造チューブ。 A multi-layered tube manufactured by the method for manufacturing a thin-walled tube according to claim 2.
JP2012041500A 2012-02-28 2012-02-28 Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube Active JP5655020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041500A JP5655020B2 (en) 2012-02-28 2012-02-28 Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041500A JP5655020B2 (en) 2012-02-28 2012-02-28 Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube

Publications (2)

Publication Number Publication Date
JP2013176872A JP2013176872A (en) 2013-09-09
JP5655020B2 true JP5655020B2 (en) 2015-01-14

Family

ID=49269059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041500A Active JP5655020B2 (en) 2012-02-28 2012-02-28 Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube

Country Status (1)

Country Link
JP (1) JP5655020B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026385U (en) * 1995-12-27 1996-07-12 東京特殊電線株式会社 Multi-layer insulation tube
JP2002321286A (en) * 2001-04-23 2002-11-05 Sekisui Chem Co Ltd Method for producing crosslinked resin pipe
JP3972917B2 (en) * 2003-05-12 2007-09-05 ダイキン工業株式会社 Laminated body

Also Published As

Publication number Publication date
JP2013176872A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
CN101992555A (en) Processing method of net framework enhanced plastic composite pipe and manufactured composite pipe
WO2021047006A1 (en) Electromagnetic dielectric material and method for producing electromagnetic dielectric material
CN102280172B (en) Four-core cable and manufacturing method thereof
CN111105903A (en) Insulated double-layer co-extrusion production process of cable
CN103322340B (en) Double-layer coextrusion polyethylene spirally enwound structure-wall tubular product and production method thereof and manufacturing mechanism
JP5655020B2 (en) Thin-walled tube manufacturing method, tube manufactured by the manufacturing method, and multilayer structure tube
EP3867049B1 (en) Hose extrusion mandrel and method for manufacturing a hose
CN103912545B (en) Combine clamp device connector
CN102024530A (en) Superfine high-temperature electronic wire double-core extrusion process and die thereof
CN102774012B (en) Production method of steel-plastic composite pipe
CN1936404A (en) Continuous-composite-winding socket type structure-wall pipe material and processing method
CN102563231A (en) Double reinforced plastic composite water pipe, device and method for manufacturing water pipe, and special-shaped strip for manufacturing water pipe
CN101532595A (en) Special-shaped fuel hose wound by 5-layer tetrafluoroethylene (TFE) resin films and preparation method thereof
CN203273060U (en) Double-layer co-extrusion polyethylene winding structure wall tube and production equipment thereof
CN110549579A (en) extrusion molding device and optical cable roundness improving process
CN206455014U (en) A kind of improved aluminum sectional material mould
JP5926934B2 (en) Electric wire manufacturing method and electric wire
JP5807091B1 (en) Method for producing extruded product having synthetic resin core material
CN217444164U (en) Cable rubber coating device
CN216732925U (en) Armored cable sheath extrusion molding die
CN101630547A (en) Mold used for producing self-supporting type moisture-resistant cable sheath
JP4282697B2 (en) Hose and manufacturing method thereof
JPH0195023A (en) Covering method for plastic pipe by co-extrusion
CN204566634U (en) A kind of pressure-reducing three layer insulation wire extrusion die
JPH0460292A (en) Manufacture of fiber reinforced resin pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141121

R150 Certificate of patent or registration of utility model

Ref document number: 5655020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250