JP5651998B2 - Abnormality diagnosis method and abnormality diagnosis system using pattern library - Google Patents

Abnormality diagnosis method and abnormality diagnosis system using pattern library Download PDF

Info

Publication number
JP5651998B2
JP5651998B2 JP2010119742A JP2010119742A JP5651998B2 JP 5651998 B2 JP5651998 B2 JP 5651998B2 JP 2010119742 A JP2010119742 A JP 2010119742A JP 2010119742 A JP2010119742 A JP 2010119742A JP 5651998 B2 JP5651998 B2 JP 5651998B2
Authority
JP
Japan
Prior art keywords
pattern
normal
abnormality diagnosis
series data
time series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010119742A
Other languages
Japanese (ja)
Other versions
JP2011247695A (en
Inventor
丈英 平田
丈英 平田
明智 吉弘
吉弘 明智
西名 慶晃
慶晃 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010119742A priority Critical patent/JP5651998B2/en
Publication of JP2011247695A publication Critical patent/JP2011247695A/en
Application granted granted Critical
Publication of JP5651998B2 publication Critical patent/JP5651998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、パターンライブラリを用いた異常診断方法および異常診断システムに関し、特に、鉄鋼プラントなどから得られる音響データ、振動データ、温度データなどの時系列データをもとに機械設備やプロセスの状態監視を行うパターンライブラリを用いた異常診断方法および異常診断システムに関する。   The present invention relates to an abnormality diagnosis method and an abnormality diagnosis system using a pattern library, and in particular, monitors the state of mechanical equipment and processes based on time series data such as acoustic data, vibration data, and temperature data obtained from a steel plant. The present invention relates to an abnormality diagnosis method and an abnormality diagnosis system using a pattern library for performing the above.

従来から、機械設備やプロセス操業の異常診断に関する技術が多数知られている。その一例として特許文献1に記載の技術がある。これは、プロセスから得られる時系列データに対して異常発生時に見られる典型的なパターンを予めデータベースに登録し、これと照合することにより、異常診断を行う技術である。すなわち、異常発生時の傾向を事前知識として有することを前提とする技術である。   Conventionally, many techniques relating to abnormality diagnosis of mechanical equipment and process operation are known. As an example, there is a technique described in Patent Document 1. This is a technique for diagnosing an abnormality by registering in advance a typical pattern seen at the time of occurrence of an abnormality with respect to time-series data obtained from a process, and collating it with this. In other words, it is a technique based on the premise that a tendency at the time of occurrence of an abnormality is included as prior knowledge.

また、機械設備の異常診断を行う実用的な方法として、振動診断や音響診断がある。音響診断は、たとえば特許文献2に記載の技術がある。これは、プランジャーポンプを対象とした異常診断技術であり、異常時の音響の変化が予めわかるので、その変化をとらえようとする技術である。すなわち、特許文献2に記載の技術も、異常発生時の傾向を事前知識として有しることを前提とする技術である。   Moreover, there are vibration diagnosis and acoustic diagnosis as practical methods for diagnosing abnormalities in mechanical equipment. For example, there is a technique described in Patent Document 2 for acoustic diagnosis. This is an abnormality diagnosis technique for the plunger pump, and since a change in sound at the time of an abnormality is known in advance, it is a technique for capturing the change. That is, the technique described in Patent Document 2 is also a technique based on the premise that the tendency at the time of occurrence of abnormality is included as prior knowledge.

特開平8−221113号公報JP-A-8-221113 特開2001−324381号公報Japanese Patent Laid-Open No. 2001-324381

しかしながら、上述した従来技術は、いずれも異常発生時の傾向を事前知識として有することを前提としているため、過去に前例のない異常を検知することはできないという問題点があった。また、過去に異常の前例があったとしても数例しかない場合にはその異常発生時の傾向を事前知識として有することは困難な場合が多く、この場合、異常の検知を見逃してしまうという問題点があった。   However, since the above-described conventional technologies are all premised on having a tendency at the time of occurrence of an abnormality as prior knowledge, there is a problem in that an unprecedented abnormality cannot be detected in the past. In addition, even if there are precedents of abnormalities in the past, if there are only a few cases, it is often difficult to have a tendency at the time of occurrence of abnormalities as prior knowledge, and in this case, the problem of overlooking detection of abnormalities There was a point.

たとえば、鉄鋼プロセスでは、ひとたび発生すると長時間工場を停止しなければならないような重大トラブルが少なくない。しかし、このような重大トラブルは、過去に前例が全くなかったり、あったとしても数例しかないということが珍しくない。このようなプロセスでは、異常時の事例やデータが全くない、あるいは、極端に少ないため、特許文献1に記載されているように過去の異常事例をベースとする従来のアプローチでは、異常発生を見逃さざるを得ず、限界がある。   For example, in the steel process, there are many serious troubles that have to stop the factory for a long time once it occurs. However, it is not uncommon for such serious troubles to have no precedent in the past, or to have only a few. In such a process, there are no or very few cases and data at the time of abnormality, and the conventional approach based on past abnormality cases as described in Patent Document 1 misses the occurrence of abnormality. There is a limit.

本発明は、上記に鑑みてなされたものであって、過去に前例のない異常や過去に前例の少ない異常であっても、この異常を高確率で検知することができるパターンライブラリを用いた異常診断方法および異常診断システムを提供することを目的とする。   The present invention has been made in view of the above, and an abnormality using a pattern library that can detect this abnormality with a high probability even if there is an abnormality that has not been preceded in the past or an abnormality that has been unprecedented in the past. An object is to provide a diagnosis method and an abnormality diagnosis system.

上述した課題を解決し、目的を達成するために、本発明にかかるパターンライブラリを用いた異常診断方法は、異常診断対象から得られる時系列データをもとに、前記異常診断対象の異常を検知するパターンライブラリを用いた異常診断方法であって、前記異常診断対象から予め取得された正常状態の時系列パターンである正常パターンを格納しておき、前記正常パターンをスライディングさせながら前記時系列データの部分列と相関をとってパターン一致度を算出し、少なくとも1つの正常パターンに対して該パターン一致度が予め定めた所定値以上となる場合、該時系列データの部分列が取得された区間における前記異常診断対象は正常であると診断することを特徴とする。 In order to solve the above-described problems and achieve the object, the abnormality diagnosis method using the pattern library according to the present invention detects an abnormality of the abnormality diagnosis target based on time series data obtained from the abnormality diagnosis target. An abnormality diagnosis method using a pattern library that stores a normal pattern that is a time series pattern in a normal state acquired in advance from the abnormality diagnosis target, and slides the normal pattern while sliding the normal pattern . subsequence and taking a correlation calculating the pattern matching degree, if the pattern matching degree for at least one of the normal pattern is preset predetermined value or more, in a section that subsequence of the time series data is obtained The abnormality diagnosis target is diagnosed as normal.

また、本発明にかかるパターンライブラリを用いた異常診断方法は、上記の発明において、前記時系列データの部分列と前記正常パターンとのパターン一致度を算出し、全ての正常パターンに対して前記時系列データの部分列のパターン一致度が前記所定値未満である場合、該時系列データが取得された区間における前記異常診断対象は異常の可能性があると診断することを特徴とする。 Also, the abnormality diagnostic method using the pattern libraries according to the present invention, in the above invention, calculates the pattern matching degree between the time-series data of the substring and the normal pattern, the time for all of the normal pattern When the pattern matching degree of the partial sequence of the series data is less than the predetermined value, the abnormality diagnosis target in the section in which the time series data is acquired is diagnosed as having a possibility of abnormality.

また、本発明にかかるパターンライブラリを用いた異常診断方法は、上記の発明において、前記異常の可能性があると診断された時系列データの部分列を仮置きライブラリに格納しておき、その後、該時系列データの部分列に対して外部装置が詳細照合処理を行うことによって異常診断を行うことを特徴とする。 Further, in the abnormality diagnosis method using the pattern library according to the present invention, in the above invention, a partial sequence of time series data diagnosed as having the possibility of abnormality is stored in a temporary library, and then An abnormality diagnosis is performed by an external device performing detailed collation processing on the partial sequence of the time series data.

また、本発明にかかるパターンライブラリを用いた異常診断方法は、上記の発明において、前記時系列データの部分列の信号振幅レベルが所定値以下の場合、該時系列データの部分列は正常とみなすことを特徴とする。 In the abnormality diagnosis method using the pattern library according to the present invention, in the above invention, when the signal amplitude level of the partial sequence of the time series data is not more than a predetermined value, the partial sequence of the time series data is regarded as normal. It is characterized by that.

また、本発明にかかるパターンライブラリを用いた異常診断方法は、上記の発明において、前記時系列データの部分列と前記正常パターンとのパターン一致度、時系列データの部分列をS、格納されている時系列パターンをP、XとYとの内積を〈X・Y〉とする場合に、数式(1)により算出されることを特徴とする。
R1=〈S・P〉/(〈S・S〉・〈P・P〉) …(1)
In the abnormality diagnosis method using the pattern library according to the present invention, in the above invention, the pattern matching degree between the partial sequence of the time-series data and the normal pattern is stored as a partial sequence of the time-series data. The time series pattern is P, and the inner product of X and Y is <X · Y> .
R1 = <S · P> / (<S · S> · <P · P>) (1)

また、本発明にかかるパターンライブラリを用いた異常診断方法は、上記の発明において、前記異常診断対象から予め取得された異常状態の時系列パターンである異常パターンを格納しておき、前記時系列データの部分列と前記正常パターンとのパターン一致度を算出する前に、前記時系列データの部分列と前記異常パターンとのパターン一致度を算出し該パターン一致度が前記所定値未満となる場合に、前記時系列データと前記正常パターンとのパターン一致度を算出して、異常診断を行うことを特徴とする。 In the abnormality diagnosis method using the pattern library according to the present invention, in the above invention, an abnormality pattern that is a time series pattern of an abnormal state acquired in advance from the abnormality diagnosis target is stored, and the time series data is stored. before calculating the pattern matching degree subsequence and said normal pattern of the time to calculate the pattern matching of the partial sequence of the sequence data and the abnormal pattern, if the pattern matching degree is smaller than the predetermined value Further, the abnormality diagnosis is performed by calculating a pattern matching degree between the time series data and the normal pattern.

また、本発明にかかるパターンライブラリを用いた異常診断システムは、異常診断対象から得られる時系列データをもとに、前記異常診断対象の異常を検知するパターンライブラリを用いた異常診断システムであって、前記異常診断対象から予め取得された正常状態の時系列パターンである正常パターンを格納した正常パターンライブラリと、前記正常パターンをスライディングさせながら前記時系列データの部分列と相関をとってパターン一致度を算出し、少なくとも1つの正常パターンに対して、該パターン一致度が予め定めた所定値以上となる場合、該時系列データの部分列が取得された区間における前記異常診断対象は正常であると診断する正常パターン照合処理部と、を備えたことを特徴とする。 An abnormality diagnosis system using the pattern library according to the present invention is an abnormality diagnosis system using a pattern library for detecting an abnormality of the abnormality diagnosis target based on time series data obtained from the abnormality diagnosis target. A normal pattern library that stores normal patterns that are time series patterns in a normal state acquired in advance from the abnormality diagnosis target, and a pattern matching degree that is correlated with a partial sequence of the time series data while sliding the normal patterns. calculates, and for at least one normal pattern, if the pattern matching degree is preset predetermined value or more, the abnormality diagnostic object in section subsequence of time series data is acquired is normal And a normal pattern matching processing unit for diagnosis.

また、本発明にかかるパターンライブラリを用いた異常診断システムは、上記の発明にいて、前記正常パターン照合処理部は、前記時系列データの部分列と前記正常パターンとのパターン一致度を算出し、全ての正常パターンに対して、該パターン一致度が前記所定値未満である場合、該時系列データの部分列が取得された区間における前記異常診断対象は異常の可能性があると診断することを特徴とする。 Further, the abnormality diagnosis system using the pattern library according to the present invention is the above invention, wherein the normal pattern matching processing unit calculates a pattern matching degree between the partial sequence of the time series data and the normal pattern, for all of the normal pattern, that the pattern matching score is diagnosed the case is less than the predetermined value, the abnormality diagnostic object in section subsequence of time series data is acquired is likely abnormal Features.

また、本発明にかかるパターンライブラリを用いた異常診断システムは、上記の発明にいて、前記時系列データの部分列の信号振幅レベルが所定値以下の場合、該時系列データの部分列は正常であるとみなすノイズ判定処理部を備えたことを特徴とする。 Further, the abnormality diagnosis system using the pattern library according to the present invention is the above invention, wherein when the signal amplitude level of the partial sequence of the time series data is a predetermined value or less, the partial sequence of the time series data is normal. A noise determination processing unit that is considered to be present is provided.

本発明では、異常診断対象から得られる時系列データをもとに、前記異常診断対象の異常を検知するパターンライブラリを用いた異常診断方法であって、前記異常診断対象から予め取得された正常状態の時系列パターンである正常パターンを格納しておき、前記時系列データと前記正常パターンとを照合し、少なくとも1つの正常パターンに前記時系列データが合致する場合、該時系列データが取得された区間における前記異常診断対象は正常であると診断するようにしているので、過去に前例のない異常や過去に前例の少ない異常であっても、この異常を高確率で検知することができる。   In the present invention, an abnormality diagnosis method using a pattern library for detecting an abnormality of the abnormality diagnosis target based on time series data obtained from the abnormality diagnosis object, the normal state acquired in advance from the abnormality diagnosis object A normal pattern that is a time series pattern of the time series data is stored, the time series data is compared with the normal pattern, and when the time series data matches at least one normal pattern, the time series data is acquired. Since the abnormality diagnosis target in the section is diagnosed as being normal, even if there is an unprecedented abnormality in the past or an abnormality with few precedents in the past, this abnormality can be detected with high probability.

図1は、本発明の実施の形態である異常診断システムの構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing a configuration of an abnormality diagnosis system according to an embodiment of the present invention. 図2は、制御部による異常診断処理手順を示すフローチャートである。FIG. 2 is a flowchart showing an abnormality diagnosis processing procedure by the control unit. 図3は、外部装置による仮置きライブラリ判定処理手順を示すフローチャートである。FIG. 3 is a flowchart showing the temporary library determination processing procedure by the external device. 図4は、正常パターンaを示す波形図である。FIG. 4 is a waveform diagram showing a normal pattern a. 図5は、正常パターンbを示す波形図である。FIG. 5 is a waveform diagram showing a normal pattern b. 図6は、正常パターンcを示す波形図である。FIG. 6 is a waveform diagram showing a normal pattern c. 図7は、異常診断対象から得られた時系列データの一例およびノイズレベル判定結果を示す波形図である。FIG. 7 is a waveform diagram showing an example of time-series data obtained from an abnormality diagnosis target and a noise level determination result. 図8は、図7に示した時系列データと正常パターンa,b,cとのパターン一致度および総合判定結果を示す波形図である。FIG. 8 is a waveform diagram showing the degree of pattern matching between the time series data shown in FIG. 7 and the normal patterns a, b, and c and the overall determination result. 図9は、図7に示した時系列データと正常パターンa,bとのパターン一致度および総合判定結果を示す波形図である。FIG. 9 is a waveform diagram showing the degree of pattern matching between the time series data shown in FIG. 7 and the normal patterns a and b and the overall determination result. 図10は、正常パターンdを示す波形図である。FIG. 10 is a waveform diagram showing a normal pattern d. 図11は、時系列データと正常パターンdとのパターン一致度およびその時間平均の時間変化を示す図である。FIG. 11 is a diagram showing the pattern matching degree between the time series data and the normal pattern d and the temporal change of the time average. 図12は、正常時の音のパターンとその発生タイミングとの関係を示す図である。FIG. 12 is a diagram showing a relationship between a normal sound pattern and its generation timing.

以下、図面を参照して、本発明にかかるパターンライブラリを用いた異常診断方法および異常診断システムの実施の形態について説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an abnormality diagnosis method and an abnormality diagnosis system using a pattern library according to the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施の形態である異常診断システムの構成を示す機能ブロック図である。図1において、この異常診断システム1は、異常診断処理部20を含む制御部Cに、入力部11、出力部12、記憶部13が接続される。制御部Cは、CPUなどによって実現され、入力部11は、データ収集装置やポインティングデバイスなどによって実現され、出力部12は、液晶ディスプレイなどによって実現され、記憶部13は、ハードディスク装置などによって実現される。なお、制御部Cには外部装置14も接続され、通信インターフェースを介して制御部Cと通信が可能である。   FIG. 1 is a functional block diagram showing a configuration of an abnormality diagnosis system according to an embodiment of the present invention. In FIG. 1, in this abnormality diagnosis system 1, an input unit 11, an output unit 12, and a storage unit 13 are connected to a control unit C including an abnormality diagnosis processing unit 20. The control unit C is realized by a CPU or the like, the input unit 11 is realized by a data collection device, a pointing device, or the like, the output unit 12 is realized by a liquid crystal display or the like, and the storage unit 13 is realized by a hard disk device or the like. The An external device 14 is also connected to the control unit C, and communication with the control unit C is possible via a communication interface.

記憶部13は、過去の異常時の異常パターンを格納した異常パターンライブラリ41と、多数の正常時の正常パターンを予め格納した正常パターンライブラリ42と、正常パターンか異常パターンかが不明な複数のパターンを格納した仮置きライブラリ43とを有する。異常パターンライブラリ41は、異常パターンが入手されている場合に異常パターンが格納され、異常がなく異常パターンが入手できない場合に異常パターンは格納されず、空のままとなる。   The storage unit 13 includes an abnormal pattern library 41 that stores abnormal patterns at the time of past abnormalities, a normal pattern library 42 that stores a large number of normal patterns at normal times, and a plurality of patterns that are unknown as normal patterns or abnormal patterns. And a temporary library 43 in which is stored. The abnormal pattern library 41 stores an abnormal pattern when an abnormal pattern is obtained, and does not store the abnormal pattern when there is no abnormality and the abnormal pattern cannot be obtained, and remains empty.

異常診断処理部20は、切出し処理部21、ノイズ判定処理部22、異常パターン照合処理部23、正常パターン照合処理部24、登録処理部25,および警報出力処理部26を有し、異常診断処理を行う。   The abnormality diagnosis processing unit 20 includes a cut-out processing unit 21, a noise determination processing unit 22, an abnormal pattern matching processing unit 23, a normal pattern matching processing unit 24, a registration processing unit 25, and an alarm output processing unit 26. I do.

ここで、図2に示すフローチャートを参照して、異常診断処理部20による異常診断処理手順について説明する。図2において、たとえば鉄鋼プロセスにおける圧延機などの機械設備の近く設置した集音機によって取得した音圧の時系列データが入力部11から順次入力されると、切出し処理部21は、この時系列データを、予め設定された時間長の時系列データである部分列として切り出す処理を行う(ステップS101)。なお、この時間長は、異常パターンライブラリ41あるいは正常パターンライブラリ42に格納されているパターンの中で最も長い時間長に設定される。   Here, the abnormality diagnosis processing procedure by the abnormality diagnosis processing unit 20 will be described with reference to the flowchart shown in FIG. In FIG. 2, for example, when time series data of sound pressure acquired by a sound collector installed near a mechanical facility such as a rolling mill in a steel process is sequentially input from the input unit 11, the cutting processing unit 21 A process of cutting out the data as a partial sequence that is time-series data having a preset time length is performed (step S101). This time length is set to the longest time length among the patterns stored in the abnormal pattern library 41 or the normal pattern library 42.

その後、ノイズ判定処理部22が、部分列の信号振幅レベルが所定値以下であるか否か、すなわちノイズレベルか否かを判断する(ステップS102)。部分列の信号振幅レベルがノイズレベルである場合(ステップS102,Yes)、ステップS107に移行して「正常」と判定する。   Thereafter, the noise determination processing unit 22 determines whether or not the signal amplitude level of the partial sequence is equal to or lower than a predetermined value, that is, whether or not it is a noise level (step S102). When the signal amplitude level of the partial sequence is the noise level (Yes in step S102), the process proceeds to step S107 and is determined as “normal”.

一方、部分列の信号振幅レベルがノイズレベルでない場合(ステップS102,No)には、異常パターンあるいは正常パターンが含まれる有意なパターンであるとして、ステップS103に移行する。   On the other hand, when the signal amplitude level of the partial sequence is not the noise level (No in step S102), the process proceeds to step S103, assuming that the pattern is a significant pattern including an abnormal pattern or a normal pattern.

その後、異常パターン照合処理部23は、切出し処理部21によって切り出された部分列を、異常パターンライブラリ41内の異常パターンと照合する異常パターン照合処理を行う(ステップS103)。この異常パターン照合処理は、部分列に対して、異常パターンライブラリ41に格納されている異常パターンの全てに対して照合処理を行うが、部分列が、少なくとも1つの異常パターンに合致した場合、ステップS104に移行する。なお、異常パターンライブラリ41に異常パターンが格納されていない場合には、この異常パターン照合処理は、スキップされる。   Thereafter, the abnormal pattern matching processing unit 23 performs an abnormal pattern matching process for matching the partial sequence cut out by the cutting processing unit 21 with the abnormal pattern in the abnormal pattern library 41 (step S103). This abnormal pattern matching process performs a matching process on all of the abnormal patterns stored in the abnormal pattern library 41 for the partial sequence. If the partial sequence matches at least one abnormal pattern, a step is performed. The process proceeds to S104. If no abnormal pattern is stored in the abnormal pattern library 41, the abnormal pattern matching process is skipped.

この異常パターン照合処理の結果、切り出された部分列に合致する異常パターンがあるか否かを判断し(ステップS104)、合致する場合(ステップS104,Yes)には、ステップS108に移行して「異常」と判定する。この「異常」と判定された場合、警報出力処理部26は、その旨を出力部12から警報出力する。   As a result of the abnormal pattern matching process, it is determined whether or not there is an abnormal pattern that matches the extracted partial sequence (step S104). If they match (Yes in step S104), the process proceeds to step S108. It is determined as “abnormal”. When it is determined as “abnormal”, the warning output processing unit 26 outputs a warning to that effect from the output unit 12.

一方、切り出された部分列に合致する異常パターンがない場合(ステップS104,No)には、さらに、正常パターン照合処理部24が、切り出された部分列を、正常パターンライブラリ42内の正常パターンと照合する正常パターン照合処理を行う(ステップS105)。この正常パターン照合処理は、異常パターン照合処理と同様に、正常パターンライブラリ42に格納されている正常パターンの全てに対して照合処理を行うが、部分列が、少なくとも1つの正常パターンに合致した場合、ステップS106に移行する。   On the other hand, when there is no abnormal pattern that matches the extracted partial sequence (No in step S104), the normal pattern matching processing unit 24 further converts the extracted partial sequence as a normal pattern in the normal pattern library 42. A normal pattern matching process for matching is performed (step S105). In the normal pattern matching process, as in the case of the abnormal pattern matching process, the matching process is performed on all the normal patterns stored in the normal pattern library 42, but the partial sequence matches at least one normal pattern. The process proceeds to step S106.

この正常パターン照合処理の結果、切り出された部分列に合致する正常パターンがあるか否かを判断し(ステップS106)、合致する場合(ステップS106,Yes)には、ステップS107に移行して「正常」と判定する。この「正常」と判定された場合、警報出力処理部26は、その旨を出力部12から出力するようにしてもよい。   As a result of the normal pattern matching process, it is determined whether or not there is a normal pattern that matches the extracted partial sequence (step S106). If they match (step S106, Yes), the process proceeds to step S107. It is determined as “normal”. If it is determined as “normal”, the alarm output processing unit 26 may output the fact from the output unit 12.

一方、切り出された部分列に合致する正常パターンがない場合(ステップS106,No)には、正常パターン照合処理部24が、この部分列のパターンを、とりあえず異常の可能性もあるため、「仮異常」と判定する。そして、この部分列のパターンは、現時点で正常でも異常でもないため、警報出力処理部26が「いつもと違う状態」である旨を出力部12から警報出力する。また、登録処理部25は、この部分列のパターンを仮置きライブラリ43内に登録する(ステップS109)。なお、この仮置きライブラリ43への登録時に、登録処理部25は、この部分列に、この部分列の発生時間データを対応づけて登録しておくことが好ましい。   On the other hand, if there is no normal pattern that matches the extracted partial sequence (No in step S106), the normal pattern matching processing unit 24 may have an error in the partial sequence pattern. It is determined as “abnormal”. Since the pattern of the subsequence is neither normal nor abnormal at this time, the alarm output processing unit 26 outputs an alarm from the output unit 12 to indicate that “the state is different from usual”. Further, the registration processing unit 25 registers the pattern of the partial sequence in the temporary placement library 43 (step S109). When registering in the temporary library 43, the registration processing unit 25 preferably registers the occurrence time data of this partial sequence in association with this partial sequence.

次に、ステップS108による異常判定あるいはステップS107による正常判定あるいはステップS109による仮異常判定の後、入力部11から本処理の終了指示があったか否かを判断する(ステップS110)。終了指示があった場合(ステップS110,Yes)には、本処理を終了し、終了指示がない場合(ステップS110,No)には、ステップS101に移行し、次の部分列を切出し、上述した処理を繰り返す。   Next, after the abnormality determination in step S108, the normality determination in step S107, or the temporary abnormality determination in step S109, it is determined whether or not there is an instruction to end this processing from the input unit 11 (step S110). When there is an end instruction (step S110, Yes), this process is ended. When there is no end instruction (step S110, No), the process proceeds to step S101, and the next partial sequence is cut out. Repeat the process.

なお、外部装置14は、仮置きライブラリ判定処理システムとして機能し、仮置きライブラリ43に登録された部分列のパターンが異常パターンか正常パターンかの詳細判定を行い、この判定結果をもとに異常パターンライブラリ41または正常パターンライブラリ42に登録する仮置きライブラリ判定処理を行う。この外部装置14は、たとえば、過去の操業データや機器の単体テストデータなどが格納されたデータベースを有し、このデータベースをもとに部分列が異常パターンか正常パターンを詳細に照合処理(詳細照合処理)する大型コンピュータなどによって実現される。もちろん、外部装置14による詳細照合処理には、熟練者などの人の判断処理を加えてもよい。   The external device 14 functions as a temporary placement library determination processing system, and performs detailed determination of whether the pattern of the partial sequence registered in the temporary storage library 43 is an abnormal pattern or a normal pattern. Temporary library determination processing registered in the pattern library 41 or the normal pattern library 42 is performed. The external device 14 has, for example, a database in which past operation data, unit test data of equipment, and the like are stored. Based on this database, a detailed verification process (detailed verification process) is performed on whether a partial sequence is an abnormal pattern or a normal pattern. ) Is realized by a large computer. Of course, determination processing by a person such as an expert may be added to the detailed collation processing by the external device 14.

ここで、図3に示すフローチャートを参照して、外部装置14による仮置きライブラリ判定処理手順について説明する。外部装置14は、異常診断システム1の出力部12から警報通知があった場合(ステップS201,Yes)、仮置きライブラリ43にアクセスして、登録されている部分列のパターンを取り出す(ステップS202)。   Here, with reference to the flowchart shown in FIG. 3, the temporary library determination processing procedure by the external apparatus 14 will be described. When there is an alarm notification from the output unit 12 of the abnormality diagnosis system 1 (Yes in step S201), the external device 14 accesses the temporary library 43 and extracts the registered partial sequence pattern (step S202). .

その後、外部装置14は、取り出した部分列のパターンが異常パターンか正常パターンかの詳細照合処理を行う(ステップS203)。その後、外部装置14は、詳細照合処理が行われた部分列のパターンが異常であるか否かを判断する(ステップS204)。異常と判断された場合(ステップS204,Yes)、登録処理部25は、この部分列のパターンを異常パターンライブラリ41に登録する処理を行う(ステップS205)。一方、異常と判断されない場合(ステップS204,No)、登録処理部25は、この部分列のパターンを正常パターンライブラリ42に登録する処理を行う(ステップS206)。このようにしていつもと違う状態である「仮異常」の部分列のパターンは、異常あるいは正常と判断され、それぞれ異常パターンライブラリ41あるいは正常パターンライブラリ42に登録されることによって蓄積され、その後の異常診断処理に利用されることによって、一層、精度の高い異常診断処理を行うことができる。   Thereafter, the external device 14 performs detailed collation processing to determine whether the extracted partial sequence pattern is an abnormal pattern or a normal pattern (step S203). Thereafter, the external device 14 determines whether or not the pattern of the partial sequence on which the detailed matching process has been performed is abnormal (step S204). If it is determined that there is an abnormality (step S204, Yes), the registration processing unit 25 performs a process of registering the pattern of this partial sequence in the abnormality pattern library 41 (step S205). On the other hand, if it is not determined to be abnormal (No in step S204), the registration processing unit 25 performs a process of registering the pattern of this partial sequence in the normal pattern library 42 (step S206). In this way, the pattern of the “temporary abnormality” subsequence that is in an unusual state is determined to be abnormal or normal, and is stored by being registered in the abnormal pattern library 41 or the normal pattern library 42, respectively. By being used for the diagnosis process, a more accurate abnormality diagnosis process can be performed.

なお、上記の外部装置14による仮置きライブラリ判定処理は、上述したように、異常診断システム1に対してオンラインで処理してもよいし、オフラインで処理してもよい。たとえば、定期的に異常診断システム1の仮置きライブラリ43から「仮異常」の部分列のパターンを取得して所定の記憶媒体内に格納し、この格納された部分列のパターンを外部装置14に入力することによって外部装置14が上述した詳細照合処理を行い、その照合処理結果をもとに、対応する異常パターンライブラリ41あるいは正常パターンライブラリ42に登録するようにしてもよい。   Note that the temporary library determination process by the external device 14 may be processed online or may be processed offline with respect to the abnormality diagnosis system 1 as described above. For example, a “temporary abnormality” partial sequence pattern is periodically acquired from the temporary placement library 43 of the abnormality diagnosis system 1 and stored in a predetermined storage medium, and the stored partial sequence pattern is stored in the external device 14. By inputting, the external device 14 may perform the detailed collation process described above, and may be registered in the corresponding abnormal pattern library 41 or the normal pattern library 42 based on the collation process result.

(照合処理例1)
ここで、上述したステップS103による異常パターン照合処理あるいはステップS105による正常パターン照合処理の一例について説明する。この照合処理例1では、次式(1)によって異常パターンあるいは正常パターンをスライディングさせながら時系列データの部分列と相関をとってパターン一致度R1を算出することにより行う。
R1=〈S・P〉/(〈S・S〉・〈P・P〉) …(1)
ただし、Sは、切り出された部分列であり、Pは、異常パターンライブラリ41あるいは正常パターンライブラリ42に登録されているパターンである。また、〈X・Y〉は、XとYとの内積を示す。このパターン一致度R1は、異常パターンライブラリ41あるいは正常パターンライブラリ42に登録されているパターンと同じパターンの部分列が出現すると、値が「1」になり、登録されているパターンと部分列とが合致しない場合には値が「0」に近づく。
(Verification processing example 1)
Here, an example of the abnormal pattern matching process in step S103 or the normal pattern matching process in step S105 will be described. In this collation processing example 1, the pattern matching degree R1 is calculated by correlating with the partial sequence of the time series data while sliding the abnormal pattern or the normal pattern by the following equation (1).
R1 = <S · P> / (<S · S> · <P · P>) (1)
Here, S is a cut out partial sequence, and P is a pattern registered in the abnormal pattern library 41 or the normal pattern library 42. <X · Y> indicates an inner product of X and Y. The pattern matching degree R1 becomes “1” when a partial sequence having the same pattern as the pattern registered in the abnormal pattern library 41 or the normal pattern library 42 appears. If they do not match, the value approaches “0”.

このパターン一致度R1を用いた正常パターン照合処理による連続的な異常診断処理の一例についてさらに説明する。この異常診断処理例では、図4〜図6に示すような、3つの正常パターンa,b,cが正常パターンライブラリ42に格納されており、図7(a)に示すような時系列データに対して異常診断処理を行う。なお、図7(a)に示した時系列データは、複数の部分列からなるデータである。この図7(a)に示した時系列データには、1000秒の時間軸上の各所に正常パターンa,b,cの1以上の組合せが内在している。   An example of continuous abnormality diagnosis processing by normal pattern matching processing using the pattern matching degree R1 will be further described. In this abnormality diagnosis processing example, three normal patterns a, b, and c as shown in FIGS. 4 to 6 are stored in the normal pattern library 42, and the time series data as shown in FIG. Abnormality diagnosis processing is performed. The time series data shown in FIG. 7A is data composed of a plurality of partial columns. In the time-series data shown in FIG. 7A, one or more combinations of normal patterns a, b, and c are inherent at various locations on the time axis of 1000 seconds.

図8(a)〜図8(c)は、それぞれ図7(a)に示した時系列データに対して正常パターンa,b,cを時間軸上にスライディングさせて相関をとり、時々刻々とパターン一致度R1を算出した結果である。各図8(a)〜図8(c)には、それぞれパターン一致度R1の時間変化を示している。たとえば、図7(a)に示す時系列データでは、100秒付近で正常パターンaが含まれているため、図8(a)に示すパターン一致度R1は、100秒付近で「1」に近いピーク値を示している。   8 (a) to 8 (c) show the correlation by sliding the normal patterns a, b, and c on the time axis with respect to the time series data shown in FIG. 7 (a). This is a result of calculating the pattern matching degree R1. Each of FIGS. 8A to 8C shows a temporal change in the pattern matching degree R1. For example, in the time-series data shown in FIG. 7A, the normal pattern a is included in the vicinity of 100 seconds, so the pattern matching degree R1 shown in FIG. 8A is close to “1” in the vicinity of 100 seconds. The peak value is shown.

図8(a)〜図8(c)において、パターン一致度R1をもとに図7(a)に示した時系列データのパターンの合致を判定するために、たとえば、パターン一致度R1が0.5以上の場合に、合致するとして「1」を出力し、0.5未満の場合に合致しないとして「0」を出力する判定結果をそれぞれ示している。この場合、ある時点で、図8(a)〜図8(c)の判定結果の少なくとも1つが「1」である場合に、時系列データは正常パターンに合致したものと判定され、正常と判定される。また、ある時点で、図8(a)〜図8(c)の判定結果のいずれもが「0」である場合であっても、図7(b)に示すようにノイズレベルが所定値以下、たとえば信号振幅レベルが0.6以下の場合に、有効なパターンが存在しない区間として「1」を出力するようにしている。この結果、図8(d)に示した総合判定結果のように、図8(a)〜図8(c)および図7(b)の判定結果の少なくとも1つが「1」である場合、すなわち論理和演算が「1」である場合、各時点の時系列データは、「正常」であると判定し、論理和演算が「0」である場合、各辞典の時系列データは、その後の詳細照合処理の対象となり、「正常」あるいは「異常」と判定される。なお、図8(d)の総合判定結果では、すべての区間で、「正常」であると判定されている。なお、パターン一致度R1は、所定の時間長を有するため、図8(a)〜図8(c)の判定結果は、パターン長の分が広がった区間となっている。   In FIG. 8A to FIG. 8C, in order to determine the match of the time series data pattern shown in FIG. 7A based on the pattern matching degree R1, for example, the pattern matching degree R1 is 0. In the case of .5 or more, “1” is output as matching, and “0” is output as not matching if less than 0.5. In this case, when at least one of the determination results in FIGS. 8A to 8C is “1” at a certain point in time, the time-series data is determined to match the normal pattern and determined to be normal. Is done. Further, even when all of the determination results in FIGS. 8A to 8C are “0” at a certain point in time, the noise level is not more than a predetermined value as shown in FIG. 7B. For example, when the signal amplitude level is 0.6 or less, “1” is output as a section where there is no effective pattern. As a result, when at least one of the determination results in FIGS. 8A to 8C and FIG. 7B is “1” as in the comprehensive determination result illustrated in FIG. When the logical sum operation is “1”, the time-series data at each time point is determined to be “normal”, and when the logical sum operation is “0”, the time-series data of each dictionary is the subsequent details. It becomes the target of the collation process and is determined as “normal” or “abnormal”. In the comprehensive determination result of FIG. 8D, it is determined that “normal” in all the sections. Since the pattern matching degree R1 has a predetermined time length, the determination results in FIGS. 8A to 8C are sections in which the pattern length is increased.

さらに具体的に示すと、図7(a)の正常パターンa,b,cを含む時系列データに対して、正常パターンa,bのみによって異常診断処理を行うと、図9(a),図9(b)に示すように、図8(a),図8(b)と同じパターン一致度R1を得るが、図8(c)に対応するパターンcに対応するパターン一致度R1および判定結果を得ることができないため、たとえ、図7(b)に示したノイズレベルの判定結果が得られても、図9(c)に示すように、総合判定結果が、600秒付近(区間E1)および930秒付近(区間E2)で論理和が「0」となっている。これは、図7(a)に示した時系列データに正常パターンcが含まれる時点に対応した区間E1,E2に、予期しないパターンが現れ、「異常」の可能性があることを精度高く診断したことになる。もちろん、図8に示したように、正常パターンcに対する照合処理を行うことによって、区間E1,E2は、総合判定結果が「1」となり「正常」と判定される。   More specifically, when abnormality diagnosis processing is performed only on the normal patterns a and b for the time series data including the normal patterns a, b, and c in FIG. 7A, FIG. 9A and FIG. As shown in FIG. 9B, the same pattern matching degree R1 as in FIGS. 8A and 8B is obtained, but the pattern matching degree R1 corresponding to the pattern c corresponding to FIG. Therefore, even if the determination result of the noise level shown in FIG. 7B is obtained, the overall determination result is around 600 seconds (section E1) as shown in FIG. 9C. In the vicinity of 930 seconds (section E2), the logical sum is “0”. This is because the unexpected pattern appears in the sections E1 and E2 corresponding to the time point when the normal pattern c is included in the time series data shown in FIG. It will be done. Of course, as shown in FIG. 8, by performing the matching process on the normal pattern c, the overall determination result is determined to be “normal” in the sections E1 and E2, with “1”.

(照合処理例2)
つぎに、正常パターン照合処理の他の例として、次式(2)に示すパターン一致度R2を用い、このパターン一致度R2の変化率をもとに微小変化の異常診断処理を行うようにしてもよい。
R2=〈S・P〉/(〈P・P〉・〈P・P〉) …(2)
(Verification processing example 2)
Next, as another example of the normal pattern matching process, a pattern matching degree R2 shown in the following equation (2) is used, and a minute change abnormality diagnosis process is performed based on the rate of change of the pattern matching degree R2. Also good.
R2 = <S · P> / (<P · P> · <P · P>) (2)

この照合処理例2では、図10に示した1つの正常パターンdのみを用い、図11(a)に示した時系列データに対して式(2)に示したパターン一致度R2を求めると、図11(b)に示すようなパターン一致度R2の時間変化が得られる。このパターン一致度R2の所定時間幅の時間平均をとると、図11(c)のようになる。   In this collation processing example 2, when only one normal pattern d shown in FIG. 10 is used and the pattern matching degree R2 shown in the equation (2) is obtained for the time series data shown in FIG. A time change of the pattern matching degree R2 as shown in FIG. If the time average of the predetermined time width of the pattern matching degree R2 is taken, it is as shown in FIG.

ここで、図11(a)に示した時系列データは、650秒付近まで正常パターンdが周期的に出現するが、650秒以降は、正常パターンdが変化したパターンが出現している。このため、図11(c)に示したパターンdに対するパターン一致度R2の時間平均は、650秒付近まで、ほぼ「1」であったが、650秒以降、特に700秒以降は急激に「1.2」に上昇する。したがって、パターン一致度R2の時間平均の閾値を「1.1」とし、この閾値を越えた場合に、時系列データが「正常」から「異常」になったと判定することができる。なお、図2に示す異常診断処理では、各時点でのパターン一致度R2の時間平均の値が閾値を越えた場合に、部分列が正常パターンに合致しないと判断し、閾値を越えない場合に、部分列が正常パターンに合致したと判断する。   Here, in the time-series data shown in FIG. 11A, the normal pattern d appears periodically until around 650 seconds, but after 650 seconds, a pattern in which the normal pattern d has changed appears. For this reason, the time average of the pattern coincidence degree R2 with respect to the pattern d shown in FIG. 11C is almost “1” until around 650 seconds, but after 650 seconds, particularly after 700 seconds, suddenly “1”. .2 ”. Therefore, the time average threshold value of the pattern matching degree R2 is set to “1.1”, and when this threshold value is exceeded, it can be determined that the time series data has changed from “normal” to “abnormal”. In the abnormality diagnosis process shown in FIG. 2, when the time average value of the pattern matching degree R2 at each time exceeds the threshold, it is determined that the partial sequence does not match the normal pattern, and the threshold is not exceeded. , It is determined that the partial sequence matches the normal pattern.

この比較照合例2では、正常パターンのみを用い、そのパターン一致度の変化をもとに時系列データが正常か異常かを診断している。なお、この比較照合例2では、上述した比較照合例1で示したパターン一致度R1を用いてもよいし、上述した比較照合例1において、パターン一致度R2を用いてもよい。さらに、パターン一致度R1,R2は、パターンと部分列との一致度の一例であり、他のパターン一致度の式を用いてもよい。   In this comparative collation example 2, only the normal pattern is used, and whether the time series data is normal or abnormal is diagnosed based on the change in the pattern matching degree. In the comparative collation example 2, the pattern matching degree R1 shown in the comparative collating example 1 may be used, or in the comparative collating example 1, the pattern matching degree R2 may be used. Furthermore, the pattern matching degrees R1 and R2 are an example of the matching degree between the pattern and the partial sequence, and other pattern matching degree expressions may be used.

この実施の形態では、少なくとも正常パターンのみを用いて時系列データが正常か異常かを検知するようにしているので、過去に前例のない異常や過去に前例の少ない異常であっても、通常得られる正常パターンのみで、この異常を高確率で検知することができる。なお、異常パターンが得られている場合には、異常パターン照合処理を正常パターン照合処理よりも先に行うことによって、迅速かつ効率的な異常診断処理を行うことができる。   In this embodiment, at least only the normal pattern is used to detect whether the time-series data is normal or abnormal. Therefore, even if there is an unprecedented abnormality or an abnormality with few precedents in the past, it is usually obtained. This abnormality can be detected with high probability only by the normal pattern. When an abnormal pattern is obtained, the abnormal pattern matching process is performed prior to the normal pattern matching process, whereby a quick and efficient abnormality diagnosis process can be performed.

なお、鉄鋼プロセスにおける圧延機を対象とした音響による異常診断を行う場合、図12に示した正常パターン(正常時の音のパターン)を用いることができる。これらの正常時の音のパターンは、それぞれ対応する発生タイミングで得ることができ、たとえば、工場の定期的な修理期間などにおいて実施される機器単体テストで個別に採取し、あるいは操業時に採取することができる。この採取したパターンをライブラリ化することにより、本発明を適用して異常診断を行うことが可能となる。たとえば、正常時の音のパターンとして「圧延ロール駆動音」は、発生タイミングである「圧延ロール回転時」に採取することができる。   In addition, when performing the abnormality diagnosis by the sound for the rolling mill in the steel process, the normal pattern (sound pattern at normal time) shown in FIG. 12 can be used. These normal sound patterns can be obtained at the corresponding occurrence timings. For example, they can be collected individually during equipment unit tests conducted during regular repairs at the factory, or during operation. it can. By making this collected pattern into a library, it is possible to apply the present invention to perform abnormality diagnosis. For example, “rolling roll driving sound” as a normal sound pattern can be collected at the time of “rolling roll rotation” as the generation timing.

1 異常診断システム
11 入力部
12 出力部
13 記憶部
14 外部装置
20 異常診断処理部
21 切出し処理部
22 ノイズ判定処理部
23 異常パターン照合処理部
24 正常パターン照合処理部
25 登録処理部
26 警報出力処理部
41 異常パターンライブラリ
42 正常パターンライブラリ
43 仮置きライブラリ
C 制御部
DESCRIPTION OF SYMBOLS 1 Abnormality diagnosis system 11 Input part 12 Output part 13 Memory | storage part 14 External apparatus 20 Abnormality diagnosis process part 21 Cutout process part 22 Noise determination process part 23 Abnormal pattern collation process part 24 Normal pattern collation process part 25 Registration process part 26 Alarm output process Unit 41 Abnormal pattern library 42 Normal pattern library 43 Temporary placement library C Control unit

Claims (9)

異常診断対象から得られる時系列データをもとに、前記異常診断対象の異常を検知するパターンライブラリを用いた異常診断方法であって、
前記異常診断対象から予め取得された正常状態の時系列パターンである正常パターンを格納しておき、前記正常パターンをスライディングさせながら前記時系列データの部分列と相関をとってパターン一致度を算出し、少なくとも1つの正常パターンに対して該パターン一致度が予め定めた所定値以上となる場合、該時系列データの部分列が取得された区間における前記異常診断対象は正常であると診断することを特徴とするパターンライブラリを用いた異常診断方法。
Based on the time series data obtained from the abnormality diagnosis target, an abnormality diagnosis method using a pattern library for detecting the abnormality of the abnormality diagnosis target,
A normal pattern that is a time-series pattern in a normal state acquired in advance from the abnormality diagnosis target is stored, and a pattern matching degree is calculated by correlating with a partial sequence of the time-series data while sliding the normal pattern. , that diagnosis of at least one for the normal pattern when said pattern matching degree is preset predetermined value or more, the abnormality diagnostic object in section subsequence of time series data is acquired is normal An abnormality diagnosis method using a featured pattern library.
前記時系列データの部分列と前記正常パターンとのパターン一致度を算出し、全ての正常パターンに対して前記時系列データの部分列のパターン一致度が前記所定値未満である場合、該時系列データが取得された区間における前記異常診断対象は異常の可能性があると診断することを特徴とする請求項1に記載のパターンライブラリを用いた異常診断方法。 Calculating the pattern matching degree between the normal pattern and subsequence of the time-series data, when the pattern matching of the partial sequence of the time series data for all of the normal pattern is smaller than the predetermined value, time series The abnormality diagnosis method using the pattern library according to claim 1, wherein the abnormality diagnosis target in a section in which data is acquired is diagnosed as having a possibility of abnormality. 前記異常の可能性があると診断された時系列データの部分列を仮置きライブラリに格納しておき、その後、該時系列データの部分列に対して外部装置が詳細照合処理を行うことによって異常診断を行うことを特徴とする請求項2に記載のパターンライブラリを用いた異常診断方法。 The partial sequence of the time series data diagnosed as having the possibility of abnormality is stored in a temporary library, and then the external device performs a detailed matching process on the partial sequence of the time series data. The abnormality diagnosis method using the pattern library according to claim 2, wherein diagnosis is performed. 前記時系列データの部分列の信号振幅レベルが所定値以下の場合、該時系列データの部分列は正常とみなすことを特徴とする請求項1〜3のいずれか一つに記載のパターンライブラリを用いた異常診断方法。 The pattern library according to any one of claims 1 to 3, wherein when the signal amplitude level of the partial sequence of the time series data is equal to or less than a predetermined value, the partial sequence of the time series data is regarded as normal. Abnormal diagnosis method used. 前記時系列データの部分列と前記正常パターンとのパターン一致度、時系列データの部分列をS、格納されている時系列パターンをP、XとYとの内積を〈X・Y〉とする場合に、数式(1)により算出されることを特徴とする請求項1〜4のいずれか一つに記載のパターンライブラリを用いた異常診断方法。
R1=〈S・P〉/(〈S・S〉・〈P・P〉) …(1)
The degree of pattern matching between the partial sequence of the time series data and the normal pattern is S for the partial sequence of the time series data, P for the stored time series pattern, and <X · Y> for the inner product of X and Y. When performing, the abnormality diagnosis method using the pattern library as described in any one of Claims 1-4 calculated by Numerical formula (1) .
R1 = <S · P> / (<S · S> · <P · P>) (1)
前記異常診断対象から予め取得された異常状態の時系列パターンである異常パターンを格納しておき、前記時系列データの部分列と前記正常パターンとのパターン一致度を算出する前に、前記時系列データの部分列と前記異常パターンとのパターン一致度を算出し該パターン一致度が前記所定値未満となる場合に、前記時系列データと前記正常パターンとのパターン一致度を算出して、異常診断を行うことを特徴とする請求項1〜5のいずれか一つに記載のパターンライブラリを用いた異常診断方法。 An abnormality pattern that is a time series pattern of an abnormal state acquired in advance from the abnormality diagnosis target is stored, and before calculating the pattern matching degree between the partial sequence of the time series data and the normal pattern, the time series A pattern matching degree between the partial sequence of data and the abnormal pattern is calculated , and when the pattern matching degree is less than the predetermined value , a pattern matching degree between the time series data and the normal pattern is calculated , Diagnosis is performed, and the abnormality diagnosis method using the pattern library according to any one of claims 1 to 5. 異常診断対象から得られる時系列データをもとに、前記異常診断対象の異常を検知するパターンライブラリを用いた異常診断システムであって、
前記異常診断対象から予め取得された正常状態の時系列パターンである正常パターンを格納した正常パターンライブラリと、
前記正常パターンをスライディングさせながら前記時系列データの部分列と相関をとってパターン一致度を算出し、少なくとも1つの正常パターンに対して、該パターン一致度が予め定めた所定値以上となる場合、該時系列データの部分列が取得された区間における前記異常診断対象は正常であると診断する正常パターン照合処理部と、
を備えたことを特徴とするパターンライブラリを用いた異常診断システム。
Based on the time-series data obtained from the abnormality diagnosis target, an abnormality diagnosis system using a pattern library that detects the abnormality of the abnormality diagnosis target,
A normal pattern library storing normal patterns that are time series patterns in a normal state acquired in advance from the abnormality diagnosis target,
If the while sliding the normal pattern taking a correlation between the subsequence of the time series data to calculate a pattern matching degree, for at least one of the normal pattern, and the pattern matching score preset predetermined value or more, A normal pattern matching processing unit for diagnosing that the abnormality diagnosis target in the section in which the partial sequence of the time series data is acquired;
An abnormality diagnosis system using a pattern library characterized by comprising:
前記正常パターン照合処理部は、前記時系列データの部分列と前記正常パターンとのパターン一致度を算出し、全ての正常パターンに対して、該パターン一致度が前記所定値未満である場合、該時系列データの部分列が取得された区間における前記異常診断対象は異常の可能性があると診断することを特徴とする請求項7に記載のパターンライブラリを用いた異常診断システム。 The normal pattern matching processing unit calculates a pattern matching degree between the time-series data of the substring and the normal pattern, for all of the normal pattern, when the pattern matching degree is smaller than the predetermined value, the 8. The abnormality diagnosis system using a pattern library according to claim 7, wherein the abnormality diagnosis target in a section in which a partial sequence of time series data is acquired has a possibility of abnormality. 前記時系列データの部分列の信号振幅レベルが所定値以下の場合、該時系列データの部分列は正常であるとみなすノイズ判定処理部を備えたことを特徴とする請求項7,8に記載のパターンライブラリを用いた異常診断システム。 9. The noise determination processing unit according to claim 7, further comprising: a noise determination processing unit that regards the partial sequence of the time series data as normal when the signal amplitude level of the partial sequence of the time series data is equal to or less than a predetermined value. An abnormality diagnosis system using the pattern library.
JP2010119742A 2010-05-25 2010-05-25 Abnormality diagnosis method and abnormality diagnosis system using pattern library Active JP5651998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119742A JP5651998B2 (en) 2010-05-25 2010-05-25 Abnormality diagnosis method and abnormality diagnosis system using pattern library

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119742A JP5651998B2 (en) 2010-05-25 2010-05-25 Abnormality diagnosis method and abnormality diagnosis system using pattern library

Publications (2)

Publication Number Publication Date
JP2011247695A JP2011247695A (en) 2011-12-08
JP5651998B2 true JP5651998B2 (en) 2015-01-14

Family

ID=45413141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119742A Active JP5651998B2 (en) 2010-05-25 2010-05-25 Abnormality diagnosis method and abnormality diagnosis system using pattern library

Country Status (1)

Country Link
JP (1) JP5651998B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748693B1 (en) * 2016-10-19 2017-06-19 모루기술 주식회사 Wireless vibration measuring system
JP2018014093A (en) * 2016-07-06 2018-01-25 Jfeスチール株式会社 Process state diagnosis method and state diagnosis device
WO2022085350A1 (en) 2020-10-22 2022-04-28 Jfeスチール株式会社 Method for building abnormality diagnosis model, abnormality diagnosis method, device for building abnormality diagnosis model, and abnormality diagnosis device
WO2022091639A1 (en) 2020-10-27 2022-05-05 Jfeスチール株式会社 Abnormality diagnosing model construction method, abnormality diagnosing method, abnormality diagnosing model construction device, and abnormality diagnosing device
US12007758B2 (en) 2019-03-26 2024-06-11 Jfe Steel Corporation Process state monitoring device and process state monitoring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075466B1 (en) 2020-11-17 2022-05-25 株式会社酉島製作所 Abnormality diagnosis device and abnormality diagnosis method for vibrating machines
JP2023162865A (en) * 2022-04-27 2023-11-09 パナソニックIpマネジメント株式会社 Allophone collecting device and method for collecting allophone
WO2024171327A1 (en) * 2023-02-15 2024-08-22 三菱電機株式会社 Stop device, stop system, and method for installing sound detector

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123807A (en) * 1990-09-11 1992-04-23 Toshiba Corp System for supporting prediction of abnormality
JP2514123B2 (en) * 1991-06-21 1996-07-10 東洋ガラス株式会社 Glass bottle molding machine monitoring system and monitoring method
JPH06309580A (en) * 1993-04-27 1994-11-04 Toshiba Corp Monitor and diagnosis device for plant
JPH07152789A (en) * 1993-11-26 1995-06-16 Mitsubishi Electric Corp Plant analysis equipment diagnosis system
JPH07209035A (en) * 1994-01-11 1995-08-11 Toshiba Corp Watching device for state of apparatus
JPH08221113A (en) * 1995-02-16 1996-08-30 Hitachi Ltd Time-series data storage device and process abnormality diagnostic device
JPH09166483A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Method and apparatus for monitoring equipment
JP3930628B2 (en) * 1997-12-05 2007-06-13 高砂熱学工業株式会社 Monitoring object abnormality diagnosis method
JP2001022431A (en) * 1999-07-09 2001-01-26 Hitachi Ltd Built-in type fault diagnostic device
JP2001324381A (en) * 2000-05-17 2001-11-22 Nkk Corp Abnormality diagnostic method of plunger pump
JP2002257623A (en) * 2001-03-05 2002-09-11 Yanmar Diesel Engine Co Ltd Apparatus for inspecting source generating abnormal sound
JP2005121639A (en) * 2003-09-22 2005-05-12 Omron Corp Inspection method, inspection apparatus and diagnostic apparatus for facility
JP4480019B2 (en) * 2005-04-28 2010-06-16 財団法人石油産業活性化センター Refinery monitoring system
JP4417318B2 (en) * 2005-10-17 2010-02-17 三菱電機株式会社 Equipment diagnostic equipment
JP2011203116A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Abnormality prediction device for vehicle, and method of the same
JP5499900B2 (en) * 2010-05-25 2014-05-21 Jfeスチール株式会社 Pattern automatic extraction method and pattern automatic extraction system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014093A (en) * 2016-07-06 2018-01-25 Jfeスチール株式会社 Process state diagnosis method and state diagnosis device
KR101748693B1 (en) * 2016-10-19 2017-06-19 모루기술 주식회사 Wireless vibration measuring system
WO2018074721A1 (en) * 2016-10-19 2018-04-26 모루기술 주식회사 Wireless vibration measurement system
US12007758B2 (en) 2019-03-26 2024-06-11 Jfe Steel Corporation Process state monitoring device and process state monitoring method
WO2022085350A1 (en) 2020-10-22 2022-04-28 Jfeスチール株式会社 Method for building abnormality diagnosis model, abnormality diagnosis method, device for building abnormality diagnosis model, and abnormality diagnosis device
WO2022091639A1 (en) 2020-10-27 2022-05-05 Jfeスチール株式会社 Abnormality diagnosing model construction method, abnormality diagnosing method, abnormality diagnosing model construction device, and abnormality diagnosing device

Also Published As

Publication number Publication date
JP2011247695A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5651998B2 (en) Abnormality diagnosis method and abnormality diagnosis system using pattern library
JP5499900B2 (en) Pattern automatic extraction method and pattern automatic extraction system
US10115298B2 (en) Method of trend analysis and automatic tuning of alarm parameters
US9122273B2 (en) Failure cause diagnosis system and method
CN109981328B (en) Fault early warning method and device
JP6354755B2 (en) System analysis apparatus, system analysis method, and system analysis program
JP6291161B2 (en) Detection of rotor abnormality
EP2750041A1 (en) Operation management device, operation management method, and program
CN109238455B (en) A kind of characteristic of rotating machines vibration signal monitoring method and system based on graph theory
JP2015028700A (en) Failure detection device, failure detection method, failure detection program and recording medium
EP2135144B1 (en) Machine condition monitoring using pattern rules
JP4922265B2 (en) Plant monitoring apparatus and plant monitoring method
JP7501266B2 (en) Driving assistance device, driving assistance system, and driving assistance method
JP2019082918A (en) Monitoring object selection device, monitoring object selection method, and program
JP2022084435A5 (en)
JPWO2019049523A1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP5771317B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JPWO2004068078A1 (en) State determination method, state prediction method and apparatus
JP6135192B2 (en) Time series data abnormality monitoring apparatus, abnormality monitoring method and program
JP6574533B2 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
CN112380073B (en) Fault position detection method and device and readable storage medium
JP6875199B2 (en) Equipment diagnostic system
JP6556418B2 (en) PLANT MONITORING DEVICE, PLANT MONITORING METHOD, AND PLANT MONITORING PROGRAM
JP2010203929A (en) Abnormality diagnostic system in mechanical equipment
JP6482742B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5651998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250