JP5651871B2 - Descent and ascent method of heavy objects underwater - Google Patents

Descent and ascent method of heavy objects underwater Download PDF

Info

Publication number
JP5651871B2
JP5651871B2 JP2010170330A JP2010170330A JP5651871B2 JP 5651871 B2 JP5651871 B2 JP 5651871B2 JP 2010170330 A JP2010170330 A JP 2010170330A JP 2010170330 A JP2010170330 A JP 2010170330A JP 5651871 B2 JP5651871 B2 JP 5651871B2
Authority
JP
Japan
Prior art keywords
submersible
main
gas
buoyancy
buoyancy body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010170330A
Other languages
Japanese (ja)
Other versions
JP2012030637A (en
Inventor
村原正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Hikari and Energy Laboratory Co Ltd
Original Assignee
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Hikari and Energy Laboratory Co Ltd filed Critical M Hikari and Energy Laboratory Co Ltd
Priority to JP2010170330A priority Critical patent/JP5651871B2/en
Publication of JP2012030637A publication Critical patent/JP2012030637A/en
Application granted granted Critical
Publication of JP5651871B2 publication Critical patent/JP5651871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

深海底や湖底の鉱物資源を水上までの輸送手段として、降下には潜水艇(カプセル)内のボンベに圧入した液化気体を錘として用い、浮上には錘として用いた液化ガスを気化させ、浮力体に移行して、ガスの二態現象(気体が液化して性質が変態する現象)を水底水面間の往復に利用した重量物の降下および浮上方法に関する。 As a means of transporting the mineral resources of the deep sea bottom and lake bottom to the surface of the water, the liquefied gas injected into the cylinder in the submersible craft (capsule) is used as the weight for the descent, and the liquefied gas used as the weight is vaporized for the ascent and the buoyancy The present invention relates to a method for lowering and floating a heavy object that uses a gas two-state phenomenon (a phenomenon in which a property of a gas is liquefied and its properties are transformed) for reciprocation between bottom water surfaces.

海底や海底の地盤中にはマンガン団塊、マンガンクラスト、海底熱水鉱床などの鉱物資源
が開発を待っている。これら鉱石は、八丈島、小笠原諸島など南方海域の調査で、我が国の排他的経済水域内に分布が確認されている。本願発明者による非特許文献1の「“風力よ”エタノール化からトウモロコシを救え <風力発電による海洋資源回収と洋上工場>」に示してあるように、海底熱水鉱床には、すず、タングステン、モリブデン、銅、亜鉛、鉛、金、銀、マンガン、アンチモン、ビスマス、水銀、ウラン、蛍石などの金属や非金属現が豊富であり、マンガンクラストに含有するコバルトの量はマンガン団塊の3倍以上である。コバルトは純金属としての用途よりも、合金としての用途が高く、ニッケル、クロム、モリブデン、タングステンなどに、コバルトを20〜65%加えた合金は高温でも耐摩耗性と耐食性に優れ、ジェット機やガスタービンに用いられている。また、鉄、ニッケルと共に強磁性体のコバルトは磁性合金としても有用である。そのほかにコバルト合金は非常に硬く丈夫なため、切削工具としても広く使われている。このように高性能合金に必要なコバルトは年間生産量の大半がアフリカ大陸のザンビアに偏存している。このため、海底に広く分布するマンガンクラストは各国の注目の的になっている。マンガンクラストの主要産地は沖ノ鳥島や南鳥島周辺や南太平洋から太平洋中央部の海山の山頂や斜面に分布している。このマンガンクラストは、マンガン団塊が水深4,000〜6,000mの海底に存在しているのに対し、水深500〜2,500m付近の海山の斜面に、約10cm厚の薄膜状海底鉱床として存在する。しかも、マンガン団塊の埋蔵量は、モアー博士らの推定結果によれば、約5,000億トンである。これを最近の世界の年間消費量で計算すれば、マンガン14万年、ニッケル7万年、銅2千年、コバルト42万年分の供給量に匹敵するといわれている。しかも、深海とはいえ、場所を選べば海底をすくうだけで高品位な希少金属を採取することが可能なため、多くの国が商業化を見込み、鉱区を設定し、調査・研究と実用的な採取法の開発にしのぎを削っている。日本近海では、大東沖・沖大東海嶺に分布している。さらに排他的経済水域以外のハワイ南東方から東にかけての中部太平洋域にも、2ヶ所で北海道と同じ面積の鉱区を取得している。我が国の他にも、中国、韓国、フランス、ロシア、ドイツも国連海洋条約の下で鉱区を取得している。
しかし、これら鉱物資源は水深1000mから6000mに存在するため、100から600気圧下での採掘作業や輸送の技術的問題がネックとなり、1気圧以下の宇宙開発に比べると、極端に開発が遅れている。しかし昨今の資源高と資源の枯渇は、海底開発に拍車をかけ、世界中で深海調査が行われている。わが国の有人深海調査船「しんかい2000」が2003年引退し、その後継機として潜行深度6,000メートル、乗員2名(パイロットを含めて3名)、0.7m/秒の速度で、2時間かけて6,500メートルまで潜行可能な「しんかい6000」が活躍している。又、無人探査機として「かいこう」や「うらしま」など5艇があり、潜行深度は「かいこう」が7,000メートル、これに積み込んだ子機「ランチャー」は11,000メートルの潜行記録がある。外国でもアメリカの4,500メートル調査艇「アルピン」などがあるが、いずれも調査のみであって、深海鉱物資源の採掘艇は無い。
海底鉱物資源の採掘に関しては本願発明者による特許文献1「海洋資源エネルギー抽出・生産海洋工場」において風力発電や潮流発電などの流体エネルギーから得られた電力により、マンガンクラストあるいは海底熱水鉱床中の泥状硫化物を採鉱し港に輸送する総合工場構想について開示されている。採掘した海底鉱物資源の海上への輸送については、科学技術振興事業団の笹井らが「深海底鉱物資源の揚鉱方法及び揚鉱装置」において、両端開口部で液面が同じ高さに維持されるU字管の中の海水が循環流動する特性を利用し、深海底から鉱物資源を海面に浮上させる方法を特許文献2に開示している。
バケットによる揚鉱について益田は特許文献3「深海鉱物バケット採鉱装置」において、採鉱船による海底鉱物資源の連続バケット採鉱装置にロープと耐圧浮力筒を用い鉱物資源が重くなるのを補償する牽引駆動方式を開示している。竹山は特許文献4「海底鉱物資源の採取方法およびその粉砕装置および連結装置」において、海底で採取した鉱物資源を採取直後に海底で細粒に粉砕し、その細粒を海上の船舶に輸送ホースで揚鉱する方法について開示している。吉岡は特許文献5「深底資源吸引揚装置」において、ポンプで高圧化した気体と液体を共に深海の気液分離室へ圧送し、液体は気液分離室の下部から外部に放流し、気体は気泡となってエアリフトパイプに入り上昇し、同時に下端に接続した吸引パイプの吸引口に吸引力を起こし、海底等の深部の資源を吸引し、資源が上昇する速度で上部まで引揚げる機構について開示している。海洋科学技術センターの青木らは特許文献6「燃料電池搭載型深海潜水調査船運用システム」において、深海潜水調査船の駆動源として燃料電池を搭載し、母船から水素ガス及び酸素ガスをホースで補給する方法についてに開示している。
Mineral resources such as manganese nodules, manganese crusts, and submarine hydrothermal deposits are awaiting development on the seabed and the ground. The distribution of these ores has been confirmed within the exclusive economic zone of Japan in surveys of southern waters such as Hachijojima and Ogasawara Islands. As shown in Non-Patent Document 1, “Saving corn from ethanolization by wind power” <Recovering marine resources by wind power generation and offshore factories> by the inventor of the present application, tin, tungsten, Rich in metals and non-metals such as molybdenum, copper, zinc, lead, gold, silver, manganese, antimony, bismuth, mercury, uranium, and fluorite. The amount of cobalt contained in manganese crusts is three times that of manganese nodules. That's it. Cobalt is more useful as an alloy than pure metal. Nickel, chromium, molybdenum, tungsten, and other alloys containing 20 to 65% cobalt have excellent wear resistance and corrosion resistance even at high temperatures. Used in turbines. In addition to iron and nickel, ferromagnetic cobalt is also useful as a magnetic alloy. In addition, cobalt alloys are very hard and durable and are widely used as cutting tools. In this way, most of the annual production of cobalt required for high performance alloys is unevenly distributed in Zambia on the African continent. For this reason, manganese crusts that are widely distributed on the seabed have been the focus of attention in many countries. The main production areas of manganese crusts are distributed on the summits and slopes of seamounts around Okinotorishima and Minamitorishima, and from the South Pacific to the central Pacific Ocean. This manganese crust exists as a thin-film seabed deposit with a thickness of about 10 cm on the slope of a seamount near a water depth of 500 to 2,500 m, whereas manganese nodules are present on the seabed at a water depth of 4,000 to 6,000 m. Moreover, the reserves of manganese nodules are about 500 billion tons, according to Dr. Moor et al. If this is calculated with the recent annual consumption of the world, it is said that it is equivalent to the supply of 140,000 years for manganese, 70,000 years for nickel, 2,000 years for copper, and 420,000 years for cobalt. Moreover, even in the deep sea, it is possible to collect high-quality rare metals just by scooping the bottom of the sea if you choose a location, so many countries expect commercialization, set up mining areas, and conduct research, research, and practical use. The development of a simple collection method is being sharpened. In the waters near Japan, it is distributed off Daito and off Daito ridges. In addition, two mining areas of the same area as Hokkaido have been acquired in the central Pacific region from southeastern Hawaii to the east other than the exclusive economic zone. In addition to Japan, China, South Korea, France, Russia, and Germany have also acquired mining areas under the UN Maritime Convention.
However, since these mineral resources exist at a depth of 1000m to 6000m, technical problems of mining work and transportation under 100 to 600 atmospheres become a bottleneck, and development is extremely delayed compared to space development at 1 atmosphere or less. Yes. However, recent high resources and resource depletion have spurred seabed development, and deep sea surveys are being conducted around the world. Japan's manned deep sea research ship “Shinkai 2000” retired in 2003, and its successor was a submarine depth of 6,000 meters, two crew members (including three pilots), and a speed of 0.7 m / sec. The “Shinkai 6000”, which can dive to meters, is active. In addition, there are five unmanned spacecrafts such as “Kaikou” and “Urashima”. The depth of the dive is “Kaikou” and the submarine “Launcher” is 11,000 meters. In foreign countries, there is an American 4,500-meter survey boat "Alpin", etc., but all of them are only surveys, and there is no deep sea mineral resource mining boat.
Regarding the mining of marine mineral resources, the patent invented by the inventor of Patent Document 1 “Ocean Resources Energy Extraction / Production Ocean Factory” uses electric power obtained from fluid energy such as wind power generation and tidal current power generation in manganese crusts or submarine hydrothermal deposits. A general plant concept for mining and transporting mud sulfide to the port is disclosed. Regarding the transport of mined seabed mineral resources to the sea, the liquid level is maintained at the same opening at both ends in the “Deeping and deepening of deep sea mineral resources” by Sakurai et al. Patent Document 2 discloses a method for levitating mineral resources from the deep sea floor to the sea surface by utilizing the characteristic of circulating and flowing seawater in a U-shaped pipe.
About the pumping by the bucket In the Patent Document 3 “Deep Sea Mineral Bucket Mining Device”, Masuda uses a rope and a pressure buoyancy cylinder to compensate for heavy mineral resources in a continuous bucket mining device for submarine mineral resources by a mining vessel. Is disclosed. Takeyama, in Patent Document 4 “Submarine Mineral Resource Extraction Method and Crushing Device and Connecting Device thereof”, mineral resources collected on the seabed are pulverized into fine particles on the seabed immediately after collection, and the fine particles are transported to a ship on the sea. The method of unloading is disclosed. Yoshioka, in Patent Document 5 “Deep Bottom Resource Suction Lifting Device”, pumps the gas and liquid pressurized by the pump together into the gas-liquid separation chamber in the deep sea, and discharges the liquid to the outside from the lower part of the gas-liquid separation chamber. Is a bubble that rises into the air lift pipe and rises at the same time, causing suction to the suction port of the suction pipe connected to the lower end, sucking deep resources such as the seabed, and lifting up to the upper part at the rate of rising resources Disclosure. Aoki et al. Of the Marine Science and Technology Center installed a fuel cell as a driving source for a deep-sea diving research ship in Patent Document 6 “Fuel-cell-equipped deep-sea diving research ship operation system”, and supplied hydrogen gas and oxygen gas from the mother ship with a hose. It is disclosed how to do.

本願発明では深海底に潜水艇を沈めるに当たり、その中に錘として密度の重い液化
気体や氷結体を積み込み、海底ではそれらを浮力体として使うことを提案している。しかし現時点では、深海底での利用報告が無いため、陸上での液化ガスや氷結体の応用例を示す。三菱重工業株式会社の渥美らは特許文献7「液化ガスを利用した動力発生装置」において、タンクに貯蔵した液体空気などの液化ガスをポンプで昇圧した後、外気等を利用した熱交換器で加熱してほぼ常温の高圧空気とし、この高圧空気を高圧空気駆動エンジンに導いてその膨張により動力を得ること及びこれを自動車の動力として用いることを開示している。また金属ナトリウムを水と反応させて水素を生成し、これを燃料電池の燃料に供し、かつ廃棄物の水は再度金属ナトリウムから水素を発生させる反応に使用することが、三菱重工業株式会社の玉木による特許文献8「燃料電池の燃料供給システム」に開示され、生田は特許文献9「水素の製造方法及び水素−酸素の製造方法並びにこれらの製造装置」において、金属ナトリウムを石油に入れた状態で水と反応させて水素を生成する方法を開示している。
In the present invention, it is proposed that when submersibles are submerged in the deep sea, heavy liquefied gas or ice is loaded as weights and used as buoyant bodies on the sea. However, since there is no report on the use of the deep sea floor at present, an application example of liquefied gas and ice on land is shown. Atsumi et al. Of Mitsubishi Heavy Industries, Ltd., in Patent Document 7 “Power generation device using liquefied gas”, pressurizes liquefied gas such as liquid air stored in a tank with a pump and then heats it with a heat exchanger using outside air Thus, it is disclosed that high-pressure air of approximately normal temperature is obtained, the high-pressure air is guided to a high-pressure air-driven engine to obtain power by its expansion, and that this is used as power for an automobile. Tamaki of Mitsubishi Heavy Industries, Ltd. also reacts metal sodium with water to produce hydrogen, which is used as fuel for fuel cells, and waste water is used again for the reaction to generate hydrogen from metal sodium. Is disclosed in Patent Document 8 “Fuel Supply System for Fuel Cell” by Ikuta in Patent Document 9 “Method for producing hydrogen, method for producing hydrogen-oxygen, and apparatus for producing these” in a state where metallic sodium is put in petroleum. A method of reacting with water to produce hydrogen is disclosed.

本願発明では深海底に存する鉱物資源を揚鉱するために浮力体(蛇腹型風船)に浮力剤として液化ガスを圧入して使うことを提案しているが、水中で風船にガスを圧入して浮上させる方法として、田中らは特許文献10「水難救助具」において、水中で水と反応して炭酸ガスを発生する薬品を風船に付属したカプセルの中に入れておき、その薬品が水に触れると二酸化炭素が発生して風船が膨張し、浮き袋として水難救助できる方法を開示している。 The present invention proposes to use liquefied gas as a buoyant agent in a buoyant body (bellows-type balloon) in order to pump mineral resources existing in the deep sea floor. As a method of levitation, Tanaka et al. In Patent Document 10 “Liquid Rescue Device” puts a chemical that reacts with water in water to generate carbon dioxide gas in a capsule attached to a balloon, and the chemical touches the water. And carbon dioxide is generated and the balloon is inflated, and a method is disclosed that can save the water as a floating bag.

これら海底開発には、回収資源の運搬の前に、採掘に大電力を必要とする。これまで、その電力はディーゼル発電で賄う以外に方法は無いと考えられていた。たとえ、この電力を洋上風力発電や海流発電で電力を得ても、それを深海底1,500〜6,000メートルまで送電すると、送電ロスを生じる。本願発明者は、非特許文献1の「“風力よ”エタノール化からトウモロコシを救え <風力発電による海洋資源回収と洋上工場>」において、もし深海底掘削現場で電力が得られればこんな経済的なことはないと記載し、一例として、海底熱水鉱床がある付近には、海底火山がある確率が高いため、その海底火山近傍の熱水とそれを取り巻く深層水との温度差発電を行い、これによって得られた電力を掘削機の動力源とすることを提案している。
そこで本願発明では、場所を選ばない発電法として、潜水艇が重力により降下し、浮力により浮上する時に発生する、流体エネルギーをスクリューにより回転エネルギーに変換して発電を行い、これを海底での作業用電力や、海上における電力に使うことを提案している。 水中の浮力を利用して発電する方法について、国土総合建設株式会社の森崎は特許文献11「浮力を利用したエネルギー発生方法と装置」において、海上と海底に固定された車輪の間を無端ベルトが回転する構造にしておき、そのベルトに多数の風船を付け、その風船が最も海底に来た時に空気を送入することによって生じる浮力で風船が順次浮上し、海上に来た時に風船の中の空気を抜くことにより、ベルトが浮力のみで回転するエネルギーを発電機に伝え電力変換する方法が開示されている。水中で物質を化学反応、気化、又は昇華させた時に発生する気体を浮力として使い、海上と海底に固定された車の間を無端ベルトが回転する構造にしておき、そのベルトに多数の円筒形容器を付け、発生させた気体を円筒容器内に入れて、回転により発電する方法が、田野瀬によって特許文献12「水中で気体を発生させ、その浮力を利用して発電する浮力発電システム」が開示されている。
These submarine developments require high power for mining before transporting recovered resources. Until now, it was thought that there was no way other than supplying the electricity with diesel power generation. Even if this power is obtained by offshore wind power generation or ocean current power generation, if it is transmitted to 1,500 to 6,000 meters deep seabed, transmission loss will occur. The inventor of the present application described in “Non-Patent Document 1“ Saving Corn from Ethanol ”<Ocean Resource Recovery and Offshore Factory by Wind Power Generation>” is economical if power is obtained at the deep sea drilling site. As an example, since there is a high probability that there is a submarine volcano near the submarine hydrothermal deposit, temperature difference power generation between the hot water near the submarine volcano and the deep water surrounding it is performed, It has been proposed to use the electric power obtained as a power source for excavators.
Therefore, in the present invention, as a power generation method that does not choose a place, power is generated by converting fluid energy into rotational energy by a screw, which is generated when a submersible descends due to gravity and ascends due to buoyancy, and this is performed on the sea floor. It is proposed to be used for utility power and offshore power. Regarding the method of generating electricity using buoyancy in the water, Morisaki of National Land Construction Co., Ltd. in Patent Document 11 “Energy generation method and device using buoyancy” has an endless belt between the wheels fixed on the sea and the seabed. Keep the structure rotating, attach a lot of balloons to the belt, and when the balloons come to the bottom of the sea, the buoyancy generated by sending in air will cause the balloons to rise sequentially, and when they come to the sea, A method is disclosed in which, by extracting air, the belt rotates only with buoyancy to transmit energy to the generator and convert the power. A gas generated when a substance is chemically reacted, vaporized, or sublimated in water is used as a buoyant force, and an endless belt rotates between a car fixed on the sea and the sea floor. A method of generating electricity by rotation by putting the generated gas in a cylindrical container and disclosed in Patent Document 12 “A buoyancy power generation system that generates gas in water and uses its buoyancy power” disclosed by Tanase Has been.

特開2007−331681号公報JP 2007-331681 A 特開2003−269070号公報JP 2003-269070 A 特開平07−208061号公報Japanese Patent Laid-Open No. 07-208061 特開平05−141175号公報JP 05-141175 A 特開2000−227100号公報JP 2000-227100 A 特開平10−181685号公報Japanese Patent Laid-Open No. 10-181685 特開平09−079008号公報JP 09-079008 A 特開平08−203550号公報Japanese Patent Laid-Open No. 08-203550 特開2004−155599号公報JP 2004-155599 A 特開2005−343440号公報JP 2005-343440 A 特開2000−130311号公報Japanese Patent Application Laid-Open No. 2000-130311 特開平07−007996号公報JP 07-007996 A

村原正隆・関和市 「“風力よ”エタノール化からトウモロコシを救え」パワー社出版(2007年12月発行)Masataka Murahara / Kanwa City “Wind, save corn from ethanolization” published by Power Company (December 2007) 「Deep-Sea fishes/ Wikipedia, the free encyclopedia (http://en.wikipedia.org/wiki/Deep_sea_fish)"Deep-Sea fishes / Wikipedia, the free encyclopedia (http://en.wikipedia.org/wiki/Deep_sea_fish) 「プラスチック技術マニュアル/松谷守康著/理工学社」アズワン社ホームページ(http://www.as-1.co.jp/academy/17/17-2.html)"Plastic Technical Manual / Moriyasu Matsutani / Science and Technology Company" ASONE website (http://www.as-1.co.jp/academy/17/17-2.html)

水深5,000メートルならば地上の1気圧の500倍の水圧下(500気圧)での鉱物資源の採掘と回収を行い、これを海上に輸送する必要がある。このための電力はディーゼル発電機や洋上風力発電が考えられる。しかし、母船から海底までの送電ケーブルが必要であり、送電ロスも大きい。さらに、それらの資源を揚鉱するためにはクレーンが必要である。本願発明者は非特許文献1で熱電子発電素子による海底温泉と深層水との温度差発電を提唱したが、これは採掘には利用できるが、熱電素子の設置場所が限定され、実用的ではない。最も簡便な方法は海底作業用潜水艇(潜水カプセル)に電池を積み込むことであるが、大電力供給は期待できない。このように大電力を使えば、揚鉱は可能であるが、海底下5000mから鉱物を揚鉱しても採算に合わない。深海底の開発のネックは水圧との闘いである。
そこで考えたのが浮力の利用である。一般に、浮力体の排水量が浮上させる物質の総排水量を超えた時に浮上を開始する。さらに重要なことは、浮力体の内圧と水圧とが常に等しいことである。もしこのバランスが崩れると浮力体は破壊する。深海魚の浮き袋が破壊しないのは水圧と浮き袋の内圧とのバランスが取れているからである。もし、深さ[h]における浮力体の内圧[P(h)]と水圧[W(h)]とを等価[P(h)=W(h)]に制御できれば、浮力体の容積をV(h)とすると、P(h1)×V(h1)= P(h2)×V(h2)=一定、であるから、V(h2)=V(h1)×P(h1)/P(h2)である。 ここで浮力体が深さh1から、深さh2まで浮上したとすると、浮力体の内圧は P(h1)> P(h2)あるから、深さh2における浮力体V2の容積はV(h2)=V(h1)×P(h1)/P(h2)> V(h1)となり、容積は増大することがわかる。
一方、気体は雰囲気温度に敏感である。一般に、水温は低緯度海域では0から4000mまで1.5℃と変化は無いが、高緯度海域では海上で約28℃、1000mで10℃、2000m以下は低緯度海域と同じ1.5℃であると言われている。さらに、海水の密度は低緯度海域では0から4000mまで1.0284g/cm3と変化は無いが、高緯度海域では海上で1.0242g/cm3、1000mで1.027g/cm3、2000m以下では低緯度海域と同じ1.0284g/cm3である。塩濃度は低緯度海域では水面では33.2%、1000mで34.8%、それ以下では平均35%と変わらない。 高緯度海域では海上で約36.9%、1000mで35.2%、それ以下では低緯度海域と同じ35%である。これら物理定数は海域によって異なるため、その都度制御機構に入力することが望ましい。例えば、水深5000mにおける水圧は500気圧であるから、水面上(0m、1気圧)での浮力体の容積は500倍と成り、浮力も500倍に成る。この現象は、深度が浅くなるに連れて浮力が必然的に増大するため、浮力体の牽引力は増大することを意味する。すなわち、海底から海上に浮力体が上昇するに連れて、浮力が増加するため、それに応じて被鉱物資源の格納籠をある間隔をおいて数珠繋ぎに連結すれば、浮力のみで複数個の荷物を揚鉱することができる。海上ではそれらのガスを回収して再度液化すれば、再生可能エネルギーサイクルを構築できる。 又この浮力の増大で発生する流体エネルギーをスクリューで捕らえ、回転エネルギーに変換して発電すれば、艇内の浮力制御用電力、海底での掘削機や集鉱シャベルなどの駆動電力、あるいは洋上や陸上の作業用電力として利用できる。
この浮力・重力発電は、風力発電や太陽光発電あるいは温度差発電が抱える欠点、すなわち、台風、強風、凪、無風、雨、曇、落雷、夜、月の満ち欠け、あるいは温度差も関係なく、景観に悪影響もなく、低周波公害も無く、氷結も関係なく、建設工事も必要なく、重力バランスを考えることも無く、しかも1年中24時間休むことなく発電できる。ただ必要なのは水深のみ。この浮力・重力発電システムで得られた電力の最大の利点は、深海底での鉱物資源回収用電力としの利用である。海底近くで浮上と降下を繰り返し、発電すれば、送電ロスが皆無と成る。さらに、浮上して水面に近づくに連れて浮力が増すため発電量が大きくなることも浮力発電の特徴である。欠点としては、重力で降下する時の発電量が少ないことと、浮上・降下の距離が短いので操作の繰り返しが煩雑であることである。これを解消するには、複数の発電艇を浮上・降下させて、夫々の発電機で得られた電力を平均化すれば一定電力を供給することが可能である。これら浮力体の内圧と水圧の制御システムを構築することが、本発明が解決しようとする課題である。
If the water depth is 5,000 meters, it is necessary to mine and recover mineral resources under 500 times the water pressure (500 atm), and transport it to the sea. For this purpose, diesel generators or offshore wind power generation can be considered. However, a transmission cable from the mother ship to the seabed is necessary, and transmission loss is large. In addition, cranes are necessary to unload those resources. Inventor of the present application proposed temperature difference power generation between submarine hot spring and deep water by thermoelectric power generation element in Non-Patent Document 1, but this can be used for mining, but the installation place of thermoelectric element is limited and practical. Absent. The simplest method is to load the battery in a submarine submarine (submersible capsule), but a large power supply cannot be expected. In this way, if you use high power, you can pump up, but even if you pump up minerals from 5000m below the seabed, it will not be profitable. The bottleneck in the development of the deep sea floor is the fight against water pressure.
Therefore, the use of buoyancy was considered. In general, levitation starts when the amount of drainage of the buoyant body exceeds the total amount of drainage of the material to be levitated. More importantly, the internal pressure of the buoyancy body and the water pressure are always equal. If this balance is lost, the buoyancy body will be destroyed. The reason why the deep-sea fish float does not break is that the balance between the water pressure and the internal pressure of the float is maintained. If the internal pressure [P (h)] and the water pressure [W (h)] of the buoyant body at the depth [h] can be controlled to equivalent [P (h) = W (h)], the volume of the buoyant body is set to V If (h), P (h 1 ) × V (h 1 ) = P (h 2 ) × V (h 2 ) = constant, so V (h 2 ) = V (h 1 ) × P ( h 1 ) / P (h 2 ). Here, if the buoyant body floats from the depth h 1 to the depth h 2 , the internal pressure of the buoyancy body is P (h 1 )> P (h 2 ), so the buoyancy body V 2 at the depth h 2 The volume is V (h 2 ) = V (h 1 ) × P (h 1 ) / P (h 2 )> V (h 1 ), and it can be seen that the volume increases.
On the other hand, gas is sensitive to ambient temperature. In general, the water temperature remains unchanged at 1.5 ° C from 0 to 4000m in the low-latitude sea area, but is said to be about 28 ° C at sea, 10 ° C at 1000m in the high-latitude sea area, and 1.5 ° C below 2000m, the same as the low-latitude sea area. Yes. Furthermore, the density of sea water is not changed and 1.0284g / cm 3 from 0 to 4000m at low latitudes, in the following 1.027 g / cm 3, 2000 m at 1.0242g / cm 3, 1000m at sea in high latitude waters low latitudes it is the same 1.0284g / cm 3 and. The salinity is 33.2% at the surface of the water at low latitudes, 34.8% at 1000m, and 35% at the lower level. At high latitudes, it is about 36.9% at sea, 35.2% at 1000m, and below 35% at low latitudes. Since these physical constants differ depending on the sea area, it is desirable to input them to the control mechanism each time. For example, since the water pressure at a water depth of 5000 m is 500 atm, the volume of the buoyant body on the water surface (0 m, 1 atm) is 500 times, and the buoyancy is also 500 times. This phenomenon means that the traction force of the buoyant body increases because the buoyancy inevitably increases as the depth decreases. In other words, as the buoyant body rises from the sea floor to the sea, the buoyancy increases.Therefore, if the storage jars of mineral resources are connected in a daisy chain at a certain interval, a plurality of packages can be loaded with buoyancy alone. Can be mined. Recovering those gases at sea and liquefying them again can create a renewable energy cycle. If the fluid energy generated by this increase in buoyancy is captured with a screw and converted into rotational energy to generate electricity, power for buoyancy control in the boat, driving power for excavators and collection shovels on the sea floor, It can be used as power for work on land.
This buoyancy / gravity power generation is not related to the disadvantages of wind power generation, solar power generation or temperature difference power generation, that is, typhoon, strong wind, hail, no wind, rain, cloudiness, lightning, night, moon phases, or temperature difference, There is no adverse effect on the landscape, no low-frequency pollution, no icing, no construction work, no consideration of gravity balance, and power generation 24 hours a day. All you need is water depth. The biggest advantage of the electric power obtained by this buoyancy / gravity power generation system is its use as power for recovering mineral resources in the deep sea. Repeated ascent and descent near the bottom of the sea and generate electricity, there will be no transmission loss. Another characteristic of buoyancy power generation is that the amount of power generation increases because buoyancy increases as the surface rises and approaches the water surface. Disadvantages are that the amount of power generation when descending due to gravity is small and that the repetition of operations is complicated because the distance of ascent and descent is short. In order to solve this problem, it is possible to supply constant power by raising and lowering a plurality of power generation boats and averaging the power obtained by the respective generators. It is a problem to be solved by the present invention to construct a control system for the internal pressure and water pressure of these buoyancy bodies.

潜水艇(カプセル)は、深度5,000メートルならば500気圧の水圧に耐えねばならない。しかも潜水艇(カプセル)の形状は水中での抵抗が少ない球状、楕円体状又は円筒形状の涙滴型、葉巻型、鯨型などがよい。一般に潜水艦は艦の内殻と外殻との間に備えたメイン・バラスト・タンクに海水を出し入れして、艦の重さと浮力のバランスを調整する。すなわち潜水艦の場合は、艦自身が浮力体であり、降下時に艦内のタンクに海水を入れ、その錘で降下し、浮上の時はタンクから艦外部に海水を吐き出して、軽くなって浮上する。
ところが本願発明では浮力体は潜水艇の外部に備えてあり、艇内の船体構造は復殻式で、外殻と内殻の間には液化ガスやドライアイスあるいは圧縮ガスを入れるボンベ室、内殻内部には油圧コンプレッサー室、液化ガス製造装置室、蓄電地室、発電装置室を設備する。そして、降下する時には浮力体内のガスを液化あるいは圧縮して潜水艇内部のボンベに移行し、錘としての重力を得、浮上する時はボンベから気化させた液化ガス又は圧縮ガスを浮力体に封入して浮力を得る。一旦浮上を開始した後は、浮力体にはガスを一切供給せず、浮力体の容積のみを膨張させて、浮力を増大させる。
一般的に、潜水艦では、降下のための錘として密度1.02の海水を用いるが、本願発明では、錘として、密度が1.18と重い液体酸素、密度1.56のドライアイス、密度0.81の液体窒素又は密度0.071の液体水素も用いる。一般に多くのガスは加圧だけでは液化しない。しかし、ドライアイスだけは使用する深さを考慮しなければならない。ドライアイスが昇華して発生するCO2は約130気圧で液化する。すなわち、水深が1300mより深い海水では液化二酸化炭素であるため、ガスとはならないため、1300mより浅くなって初めて浮力剤の役割を開始する。潜水艇が降下する重力源としての錘は、潜水艇本体、発電機、ボンベは勿論であるが洋上でボンベに圧入する液化ガスあるいは圧縮ガスの重量が非常に大きくなる。たとえば、簡単のために、水の密度=1、水温=1.5℃、大気圧=1気圧として大まかな計算を行うと、深度5000m(水圧500気圧)の地点で、浮力1トン得るためのガスの重量は、酸素で約714kg、二酸化炭素で約981kg、空気で約647kg、窒素で約624kg、水素45kgである[M(g)(ガス1モル当たりの重さ)× 500(気圧)×1000(リットル)/22.4(リットル)≒22.3M(kg)]。本発明の特徴は、これらのガス重量を、降下時の錘として用いることである。そして、このガスを全て浮力体に移すので、潜水艇の重量はその分だけ軽くなる。しかし、浮力体内のガスの重量は同じである。ただし、浮力体は深度が浅くなるに連れて膨張し、海面に到達した時点では浮力は約800倍になる。この水圧と浮力の関係を利用したのが本発明の特色である。
Submersibles (capsules) must withstand a water pressure of 500 atmospheres at a depth of 5,000 meters. Moreover, the shape of the submersible craft (capsule) is preferably a spherical, ellipsoidal, or cylindrical teardrop type, cigar type, or whale type with little resistance in water. In general, submarines adjust the balance between the ship's weight and buoyancy by putting seawater into and out of the main ballast tank between the inner and outer shells of the ship. That is, in the case of a submarine, the ship itself is a buoyant body, and when it descends, it puts seawater into the tank inside the ship and descends with its weight, and when it ascends, it discharges the seawater from the tank to the outside of the ship and rises lightly.
However, in the present invention, the buoyancy body is provided outside the submersible craft, the hull structure in the boat is a reverse shell type, and a cylinder chamber for storing liquefied gas, dry ice or compressed gas between the outer shell and the inner shell, A hydraulic compressor room, a liquefied gas production equipment room, a power storage ground room, and a power generation equipment room are installed inside the shell. And when descending, the gas in the buoyancy body is liquefied or compressed and transferred to the cylinder inside the submersible craft to obtain gravity as a weight, and when rising, the liquefied gas or compressed gas vaporized from the cylinder is enclosed in the buoyancy body And get buoyancy. Once levitation is started, no gas is supplied to the buoyancy body, and only the volume of the buoyancy body is expanded to increase buoyancy.
In general, submarines use 1.02 density seawater as a descent weight, but in the present invention, the weight is 1.18 and heavy liquid oxygen, density 1.56 dry ice, density 0.81 liquid nitrogen or density 0.071. Also used is liquid hydrogen. In general, many gases are not liquefied only by pressurization. However, for dry ice only, the depth to use must be considered. CO 2 generated by sublimation of dry ice liquefies at about 130 atmospheres. In other words, seawater deeper than 1300m is liquefied carbon dioxide, so it does not become a gas. The weight as a gravity source from which the submersible descends is not only the main body of the submersible, the generator, and the cylinder, but the weight of the liquefied gas or the compressed gas that is pressed into the cylinder at sea is very large. For example, for the sake of simplicity, a rough calculation with water density = 1, water temperature = 1.5 ° C, and atmospheric pressure = 1 atm, the gas to obtain 1 ton of buoyancy at a depth of 5000m (water pressure 500 atm) The weight is about 714 kg for oxygen, about 981 kg for carbon dioxide, about 647 kg for air, about 624 kg for nitrogen, and 45 kg for hydrogen [M (g) (weight per mole of gas) x 500 (atmospheric pressure) x 1000 ( Liter) /22.4 (liter) ≒ 22.3M (kg)]. A feature of the present invention is that these gas weights are used as weights when descending. Since all this gas is transferred to the buoyant body, the weight of the submersible craft is reduced accordingly. However, the weight of the gas in the buoyancy body is the same. However, the buoyancy body expands as the depth becomes shallower, and when it reaches the sea level, the buoyancy increases by about 800 times. The feature of the present invention is that this relationship between water pressure and buoyancy is utilized.

請求項1に記載の発明は、水中で重力、浮力により重量物を移送する潜水艇に関するものであり、潜水艇内部には、潜水艇の浮上や降下を制御するための電力、海底からの採掘重量物の回収に必要な動力源としての電力及び洋上や陸上で電力を得るための発電装置が備えられている。本発明では潜水艇船首外部に取り付けられた浮力体を明確に区別するために主浮力体と命名する。潜水艇船首外部には、水中を降下及び浮上に必要とする浮力を得るために液化気体を気化させたガス又は圧搾気体によるガスを封入した主浮力体が備えられ、水面から水深1300mの間の浮力体として、潜水艇から独立し、独自で浮力材ガスを供給する機構を有する補助浮力体を備えており、必要に応じて、荷物運搬の替え添え役として、あるいは1300mより浅い海面下での荷物運搬用に使うことができる。この補助浮力体にはドライアイスが封入されており、深さが1300mより浅い位置(130気圧より低圧)に到達したら自発的にドライアイスが昇華して二酸化炭素が生成され、補助浮力体に封入されるようになっている。潜水艇船首の外部にある主浮力体にガスを封入する手段として、潜水艇内の外殻と内殻の間には液化ガスやドライアイスあるいは圧縮ガスを入れるボンベ室、内殻内部には油圧コンプレッサー室、液化ガス製造装置室、蓄電気室、発電装置室を設備する。艇船首の外側には、主浮力体がスライドし、又は主浮力体の容積を膨張、収縮させるための浮力機構を備え、降下する時は、主浮力体の容積を収縮させながら内部の浮力剤ガスを潜水艇内部のコンプレッサーに移送し、浮上時には主浮力体の容積を膨張させながら浮力を増大させる主浮力体伸縮膨張駆動機構を備え、潜水艇の外壁には回転や揺れを抑制させ、姿勢安定を保持させ、発電用スクリューの回転が潜水艇本体と競合することを抑制するめに複数枚のフィンを等角度で取り付け、更に船尾には発電装置に連動させたプロペラ(スクリュー)及び荷物牽引用フックを取り付けてある、艇の外観が球状若しくは楕円状あるいは円筒形状の涙滴型、葉巻型、鯨型である潜水艇である。
深海底や海底の地盤中にはマンガン団塊、マンガンクラスト、海底熱水鉱床などの未掘削の鉱物資源が豊富にあり、その他にも、沈没船や遺跡が発見されている。これら海底や湖底の調査は陸上に比べ手間がかかる。2009年1月ユネスコの水中文化遺産保護条約が発効し、水中考古学が脚光を浴びつつあり、深海での調査が盛んに成り、陸上への輸送が盛んに成ると考える。さらに深海底の事故処理も急を要す。2010年4月20日米国ルイジアナ州沖のメキシコ湾で起きた石油掘削施設の爆発炎上により、崩壊した海底1500mの掘削井戸からは1日当たり5000バーレル以上の原油が流出し、メキシコ沿岸地域を汚染し、環境への影響が懸念された。これら噴出原油の回収や海底に未開発のまま存在する鉱物資源を、簡便な方法で陸上まで輸送することが急がれる。海底や湖底から水面まで揚げる荷物は固体と液体に分離できるが、湧出原油、深層水又は汚泥物などの液体物については密閉容器が必要である。そのため、浮力を極力少なくし、降下時は重力だけで海底に運び、海底では容器に液体回収物を満載した後、浮上させるような、密閉容器が必要である。そこで密閉容器を折畳み容器構造とし、畳んだ状態で水底に運搬し、水底で容器を拡大しながら目的の液体物を挿入する方式が望ましい。一方、荷物が固体の場合は、降下時に浮力を発生させない籠状容器を採用する。潜水艇の船尾にはスクリューを備え、重力により降下する場合と、浮力により浮上する場合に発生する流体エネルギーを回転エネルギーに変えて発電機を回し電力を得る機構を有している。潜水艇に搭載する発電機を小型と大型に分け、小型の場合は、主浮力体駆動用モーターの電池充電用に供し、海底や湖底と水面上を荷物の運搬のみに特化させる。一方、大型発電機を搭載した潜水艇は、水面と水底間を往復して発電に特化させても良い。
The invention described in claim 1 relates to a submersible craft that transports heavy objects underwater by gravity and buoyancy. Inside the submersible craft, electric power for controlling the ascent and descent of the submersible, mining from the seabed. Electric power as a power source necessary for collecting heavy objects and a power generation device for obtaining electric power on the sea or on land are provided. In the present invention, the main buoyancy body is named in order to clearly distinguish the buoyancy body attached to the outside of the bow of the submersible craft. Outside the bow of the submersible craft, there is a main buoyant body filled with gas that has vaporized liquefied gas or gas by compressed gas in order to obtain the buoyancy required to descend and ascend underwater. As a buoyant body, it is equipped with an auxiliary buoyant body that is independent from the submersible and has its own mechanism for supplying buoyant material gas.If necessary, it is used as a substitute for carrying goods or under the sea surface shallower than 1300 m. Can be used for luggage transportation. This auxiliary buoyant body is filled with dry ice, and when it reaches a position shallower than 1300m (lower pressure than 130 atm), dry ice sublimes spontaneously to generate carbon dioxide, which is enclosed in the auxiliary buoyancy body. It has come to be. As a means to enclose gas into the main buoyant body outside the submersible craft bow, a cylinder chamber for storing liquefied gas, dry ice or compressed gas is placed between the outer shell and the inner shell of the submersible, and the inner shell is hydraulic. The compressor room, liquefied gas production equipment room, electrical storage room, and power generation equipment room will be installed. A buoyancy mechanism is provided on the outside of the bow of the boat to slide the main buoyancy body or expand and contract the volume of the main buoyancy body. Equipped with a main buoyant body expansion / contraction drive mechanism that transfers gas to the compressor inside the submersible and increases the buoyancy while expanding the volume of the main buoyant body at the time of ascent, and the outer wall of the submersible is restrained from rotating and shaking. To maintain stability and prevent the rotation of the power generation screw from competing with the main body of the submersible, a plurality of fins are attached at equal angles, and the stern for propellers (screws) linked to the power generation device and luggage towing It is a submersible with a hook attached, and the appearance of the boat is a spherical, elliptical, or cylindrical teardrop type, cigar type, or whale type.
There are abundant unexcavated mineral resources such as manganese nodules, manganese crusts, and hydrothermal deposits in the deep seabed and the seabed. In addition, sunken ships and ruins have been found. These surveys of the seabed and lake bottom are more time consuming than on land. In January 2009, the UNESCO Convention on the Protection of Underwater Cultural Heritage came into effect, and underwater archaeology is in the spotlight. Furthermore, accident handling at the deep sea floor is also urgent. April 20, 2010 Explosion of an oil drilling facility in the Gulf of Mexico off Louisiana, USA, caused over 5,000 barrels of crude oil per day from a collapsed 1500 m drilled well, contaminating the coastal area of Mexico, There was concern about the environmental impact. There is an urgent need to recover these ejected crude oil and to transport the undeveloped mineral resources to the land by a simple method. Luggage lifted from the bottom of the sea or lake to the surface of the water can be separated into solids and liquids. However, for liquids such as springing crude oil, deep water or sludge, a sealed container is required. Therefore, it is necessary to use a sealed container that reduces buoyancy as much as possible, transports it to the seabed only by gravity when descending, and then floats after the container is fully loaded with liquid recovery. Therefore, it is desirable that the closed container has a folded container structure, is transported to the bottom of the water in a folded state, and the target liquid is inserted while the container is enlarged at the bottom of the water. On the other hand, when the load is solid, a bowl-shaped container that does not generate buoyancy when descending is adopted. The stern of the submersible is provided with a screw and has a mechanism for obtaining electric power by turning the generator into fluid energy generated when the vehicle descends due to gravity and when it floats due to buoyancy. The generators mounted on submersibles are divided into small and large generators. In the case of small generators, they are used for charging the batteries of the main buoyancy body drive motor, and specialize only in the transportation of luggage on the sea floor, lake bottom and water surface. On the other hand, a submersible equipped with a large generator may specialize in power generation by reciprocating between the water surface and the bottom of the water.

請求項2に記載の発明は水中で重力、浮力により重量物を請求項1記載の潜水艇により移送する方法に関するものである。このため潜水艇の船尾には重量物を吊り下げるための牽引装置、牽引フック、牽引ロープ、シャックル、スナップシャックル、ハンク、荷物積載用として固体の場合は籠であり、原油、深層水又は汚泥物などの液体の場合は折りたたみ式密閉容器が必要である。潜水艇が単に回収物又は機器の運搬用であれば、潜水艇に搭載する発電機は小型として蓄電池充電用に特化させるか、発電機構を持たない補助浮力体のような構造として使用することもできる。いずれにせよ、本発明の目的は、深海底や湖底の重量物を、浮力を用いて水面上に浮上させることであるから、この主浮力体が最も重要であり、キーテクノロジーである。
水中では10m降下する毎に1気圧上昇するから、5000m降下するならばその点での水圧は500気圧に及ぶ。主浮力体がこの圧力に打ち勝つためには、頑強な構造体が要求される。しかし、これを満足する主浮力体を作れば、材料が重すぎて浮力を得ることが難しい。ここで注目に値するのが、深海魚の浮き袋である。非特許文献2「Deep-Sea fishes」に開示されているように、深海魚の浮き袋の壁は頑丈なグアニン結晶で覆われ、浮き袋の内容物は気体ではなく脂肪やワックスであるという。とくに、はだかいわし類などの深海魚は餌を求めて深海と浅海の間を往復すると言われるから、毎日数百気圧に及び気圧変化を受けている。深海魚は自分の体だけを浮上させれば良い。しかし、本願発明のように潜水艇本体よりも重い重量物を浮上させるためには大きな体積の主浮力体(浮き袋)が必要である。深海魚に習うとすると、大きな主浮力体を満たすにはその体積に見合うだけの油脂が必要である。油脂の密度は約0.8から0.94と水(1.0)より軽いため、浮力剤として申し分ない。さらにこの油脂で満たされた主浮力体に潜水艇内部から油圧をかければ容易に水圧と平衡を取ることができる。しかし、残念ながら油脂など液体は体積を収縮させることはできない。これに反し、気体は圧縮して体積を縮小でき、縮小した形(浮力を小さくした状態)で降下することができる。このため、小型主浮力体ならば油脂を使うことが可能だが、本願発明のように水深が浅くなるに連れて主浮力体の容積を大きくして浮力増を狙う機能を有する大型主浮力体には使えない。従って、深海魚のように水深によって主浮力体の全内容物を気体から油脂に置換することはできない。しかし、主浮力体の内容物を深度によって油脂と気体とを使い分けたり、又は内容物を油脂と気体の混合体とすれば、深さに左右れない主浮力体内容物が可能に成る。これらに使用する油脂としては石油系鉱物油(密度0.8)やパラフィン(密度0.87-0.94)などが有望である。
The invention described in claim 2 relates to a method for transferring a heavy object by the submersible craft described in claim 1 by gravity and buoyancy in water. For this reason, a tow device, a tow hook, a tow rope, a shackle, a snap shackle, a hunk, and a solid material for loading cargo are suspended on the stern of a submersible, crude oil, deep water or sludge. In the case of liquids such as, a folding airtight container is necessary. If the submersible is simply for transporting collected items or equipment, the generator mounted on the submersible should be small and specialized for charging the storage battery, or used as a structure like an auxiliary buoyant body without a power generation mechanism. You can also. In any case, since the object of the present invention is to float heavy objects on the deep sea bottom or lake bottom on the water surface using buoyancy, this main buoyancy body is the most important and key technology.
In water, every 10m of descent increases by 1 atm, so if you descent 5000m, the water pressure at that point reaches 500 atm. In order for the main buoyancy body to overcome this pressure, a robust structure is required. However, if a main buoyancy body satisfying this is made, it is difficult to obtain buoyancy because the material is too heavy. Of note is the deep-sea fish float. As disclosed in Non-Patent Document 2, “Deep-Sea fishes”, the wall of a deep-sea fish float bag is covered with solid guanine crystals, and the contents of the float bag are not gas but fat or wax. In particular, deep sea fish such as sea bream are said to go back and forth between the deep sea and the shallow sea in search of food, and therefore are subject to atmospheric pressure changes of several hundred atmospheres every day. Deep-sea fish need only surface its own body. However, a large volume main buoyant body (floating bag) is required to lift a heavy object heavier than the submersible body as in the present invention. If you learn from deep-sea fish, you will need enough fat to fill the main buoyancy body. The density of fats and oils is about 0.8 to 0.94, which is lighter than water (1.0). Furthermore, if hydraulic pressure is applied to the main buoyant body filled with oil from the inside of the submersible, it can be easily balanced with the water pressure. Unfortunately, however, liquids such as oils and fats cannot shrink volume. On the other hand, the gas can be compressed to reduce the volume, and can be lowered in a reduced form (with reduced buoyancy). For this reason, it is possible to use fats and oils if it is a small main buoyancy body, but as a main main buoyancy body that has the function of increasing the volume of the main buoyancy body and aiming to increase buoyancy as the water depth becomes shallower as in the present invention. Cannot be used. Therefore, the entire contents of the main buoyancy body cannot be replaced from gas to fat by the water depth as in the case of deep sea fish. However, if the contents of the main buoyancy body are separately used for fats and oils depending on the depth, or if the contents are a mixture of fats and oils, the main buoyancy body contents independent of the depth can be achieved. As oils and fats used for these, petroleum-based mineral oil (density 0.8) and paraffin (density 0.87-0.94) are promising.

請求項3に記載の発明は、請求項1、請求項2記載の潜水艇が水中で重力を得る手段に関するものである。一般に潜水艦は重さと浮力のバランスを調整するために、降下時に艦内のタンクに錘として密度1.02の海水を用いる。ところが、本願発明では、目的水深に応じて、錘として、密度が1.18と重い液体酸素、密度1.56のドライアイス、密度0.81の液体窒素又は密度0.071の液体水素も用いる。その他に、潜水艇の船尾に牽引する荷物積載用籠に、海底で作業するための掘削機材や集鉱機材あるいは海底に廃棄する物質を搭載して補助錘とすることができる。潜水艇船首の外部には蛇腹構造の主浮力体(折畳み風船)と主浮力体の容積を収縮・膨張させるための主浮力体伸縮駆動機構が備えられ、潜水艇内部には主浮力体伸縮駆動機構を動かすためのモーター、主浮力体内のガスを吸引して圧縮するコンプレサー、圧縮したガスを断熱膨張して液化する液化ガス製造装置、水圧を検知し主浮力体の内圧を一定に保つための制御装置、浮上・降下制御装置、制御装置や駆動装置の電力補給源としての蓄電池、蓄電池を充電するための発電機を備えている。
潜水艇が降下開始前には、主浮力体伸縮駆動機構を作動して蛇腹型主浮力体を収縮させ、同時に潜水艇内部のコンプレッサーで吸収した主浮力体内部の気体を吸引した後、圧縮気体としあるいは液化気体にしてボンベに貯蔵する。ここで主浮力体の排水量が潜水艇を構成する全重量(主浮力体も含む)より小さく成った時に、降下を開始する。この時点で主浮力体内部から潜水艇内のコンプレッサーへの気体移行を中止する。そして、これ以降は主浮力体伸縮駆動機構を収縮させながら主浮力体内部のガス圧と水圧との平衡を保ちながら降下する。そして目的到達水深近くになったら、主浮力体伸縮駆動機構を膨張に転じさせ、内圧と水圧との平衡を保ちながら主浮力体を膨張させて潜水艇を静止させる。
The invention described in claim 3 relates to means for the submersible craft described in claims 1 and 2 to obtain gravity in water. In general, submarines use seawater with a density of 1.02 as a weight for tanks in the ship when descending to adjust the balance between weight and buoyancy. However, in the present invention, depending on the target water depth, liquid oxygen having a heavy density of 1.18, dry ice having a density of 1.56, liquid nitrogen having a density of 0.81 or liquid hydrogen having a density of 0.071 is used as the weight. In addition, an auxiliary weight can be obtained by mounting excavation equipment, collection equipment, or materials to be disposed on the seabed on a luggage loading pit towed to the stern of the submersible. The main buoyant body (folding balloon) with bellows structure and the main buoyant body expansion / contraction drive mechanism for contracting and expanding the volume of the main buoyancy body are provided outside the bow of the submersible. Motor for moving the mechanism, compressor that sucks and compresses the gas in the main buoyancy body, liquefied gas production device that adiabatically expands and compresses the compressed gas, and detects the water pressure to keep the internal pressure of the main buoyancy body constant A control device, a levitation / descent control device, a storage battery as a power supply source for the control device and the drive device, and a generator for charging the storage battery are provided.
Before the submersible starts descent, the main buoyancy body expansion / contraction drive mechanism is actuated to contract the bellows type main buoyancy body, and at the same time, the gas inside the main buoyancy body absorbed by the compressor inside the submersible is sucked into the compressed gas. Or stored in a cylinder as a liquefied gas. Here, the descent starts when the amount of drainage of the main buoyancy body becomes smaller than the total weight (including the main buoyancy body) constituting the submersible craft. At this point, the gas transfer from the main buoyancy body to the compressor in the submersible is stopped. After that, the main buoyancy body is retracted while maintaining the balance between the gas pressure and the water pressure inside the main buoyancy body while contracting the main buoyancy body expansion / contraction drive mechanism. When the target water depth is reached, the main buoyancy body expansion / contraction drive mechanism is turned into expansion, the main buoyancy body is inflated while maintaining the balance between the internal pressure and the water pressure, and the submersible craft is stopped.

請求項4に記載の発明は、請求項1、請求項2記載の潜水艇が水中で浮力を得る手段に関するものである。一般に潜水艦は浮上の時はタンクから艦外部に海水を吐き出して、軽くなって浮上する。ところが本願発明の潜水艇内部には液化ガス又は圧縮ガスを貯えるボンベが備えてあるが、主浮力体は浮潜水艇の外部に連結しており、浮上時は内部のボンベから気化したガス又は圧縮ガスを主浮力体に移動して、降下時に錘として用いた液化ガスあるいは圧縮ガスを浮力剤として再利用する。これら液化ガスの沸点は、酸素で-183℃、二酸化炭素-78.5℃、窒素で-196℃、水素で-253℃であるが、深海底の水温が1.5℃だから、全てが沸点以上の環境にあるため温度だけから考えると全てのガスが自然に気化して高圧ガスになる。ただし、二酸化炭素(ドライアイス)だけが130気圧以下にならないとガス化しないので、1300mより浅い海域で使用すると言う限界があるが、他のガスは深さに関係なく使用できる。これらの液化ガスが気化して生成する気体の量は莫大である。液体酸素の密度は1.18 だから、容積1ccの液体酸素が気化して、気体に成ると、0℃ 1気圧で0.826 リットルだから体積が約826倍膨張したことに成る。 ドライアイスは密度が1.56だから、約795倍である。窒素は密度が0.81だから648倍である。水素は密度が0.071だから約795倍である。このように液化ガスを気化あるいはドライアイスを昇華させると、夫々体積が約800倍近く膨張するから浮力も800倍得られる。潜水艦が密度1.02の海水を吐き出しても浮力は約1倍であるのに比較すると、液化ガスを気化させて浮力に用いる方法が勝っているかがわかる。さらに、水深が深くなればなるほど浮力を大きくしなければならないため、ガスの量は大きくなる。例えば、深度5000m(水圧500気圧)の地点で、浮力1トン得るためのガスの重量は、酸素で約714kg、二酸化炭素で約981kg、空気で約647kg、窒素で約624kg、水素45kgである[M(g)(ガス1モル当たりの重さ)× 500(気圧)×1000(リットル)/22.4(リットル)≒22.3M(kg)]。水深4000mでは、酸素で570kg、二酸化炭素で785kg、空気で約647kg、窒素で499kg、水素で35.7kgを積載。水深2000mでは、酸素で285kg、二酸化炭素で392kg、窒素で250kg、水素で17.8kgを積載。水深1000mでは、酸素で143kg、二酸化炭素で196kg、窒素で125kg、水素で9kgを積載することになる。ただし二酸化炭素のみは水深1300m以内しか使用できないため、1300mにおいて、1トンの浮力を得るためには、280kgの二酸化炭素又はドライアイスを用いればよい。このように、同じ浮力を得る場合でも、ガスの種類によって、モル数は同じであるが、重量が大きく違ってくる。このため目的降下深度と経済性を考慮して浮力剤を決定する。そこで、ガスの種類による限界水深 [h(km)=224.2/M] を見積ると、酸素で7,000m、空気で7,730m、窒素で8,000m、水素で112,100m、二酸化炭素で1,300mである。このように水深により浮力剤ガスを決定する。このように、1,300メートルより浅い水深ではドライアイスを用い、1,300m以上では液体酸素や液体空気を用い、5000m以上では液体窒素や液体水素を用いることが望ましい。またドライアイスを封入した浮力体(浮き袋)に、水深1,300m付近で揚鉱用ロープに連結して、浮力体の補助として使えば、水面上で重量物を回収する駆動電力を軽減することができる。
ここで、海底に到達している潜水艇に重量物を牽引させ、浮上準備に取り掛かる。先ず、潜水艇外部の主浮力体伸縮起動機構を駆動して、主浮力体の体積を膨張させながら、同時に潜水艇内部のボンベのコックを開き主浮力体にガスを圧入し、潜水艇が浮上を開始したら、潜水艇内部のボンベのコックを閉じて、以後は主浮力体伸縮起動機構を駆動して主浮力体の内圧と水圧とが平衡を保ちながら、主浮力体の体積を膨張させる。これにより、水深が浅くなるに連れて浮力が増大し、浮上速度が速くなり、主浮力体が海面に到達した時点で浮上が完了する。
The invention described in claim 4 relates to means for the submersible craft described in claims 1 and 2 to obtain buoyancy in water. In general, when a submarine ascends, it discharges seawater from the tank to the outside of the ship, and rises lightly. However, although a cylinder for storing liquefied gas or compressed gas is provided inside the submersible craft of the present invention, the main buoyancy body is connected to the outside of the submersible craft, and when ascending, gas or compressed gas from the internal cylinder is compressed. The gas is moved to the main buoyant body, and the liquefied gas or compressed gas used as the weight when descending is reused as the buoyant agent. The boiling points of these liquefied gases are -183 ° C for oxygen, -78.5 ° C for carbon dioxide, -196 ° C for nitrogen, and -253 ° C for hydrogen, but the water temperature at the deep sea floor is 1.5 ° C. Therefore, considering only the temperature, all the gases are naturally vaporized into high pressure gas. However, since only carbon dioxide (dry ice) does not gasify unless it becomes 130 atm or less, there is a limit to use it in a sea area shallower than 1300 m, but other gases can be used regardless of the depth. The amount of gas produced by the vaporization of these liquefied gases is enormous. Since the density of liquid oxygen is 1.18, when 1 cc of liquid oxygen is vaporized into a gas, it is 0.826 liters at 0 ° C. and 1 atm, which means that the volume has expanded about 826 times. Since dry ice has a density of 1.56, it is about 795 times. Nitrogen is 648 times because its density is 0.81. Since hydrogen has a density of 0.071, it is about 795 times. Thus, when the liquefied gas is vaporized or the dry ice is sublimated, the volume expands nearly 800 times, so that buoyancy can be obtained 800 times. Compared to submarine spouting 1.02 density seawater, the buoyancy is about 1 time, but it is clear that the method of vaporizing liquefied gas and using it for buoyancy is superior. Furthermore, since the buoyancy must be increased as the water depth increases, the amount of gas increases. For example, at a depth of 5000 m (water pressure 500 atm), the weight of gas to obtain 1 ton of buoyancy is about 714 kg for oxygen, about 981 kg for carbon dioxide, about 647 kg for air, about 624 kg for nitrogen, and 45 kg for hydrogen [ M (g) (weight per mole of gas) x 500 (atmospheric pressure) x 1000 (liter) /22.4 (liter) ≒ 22.3M (kg)]. At a water depth of 4000m, 570kg for oxygen, 785kg for carbon dioxide, about 647kg for air, 499kg for nitrogen, and 35.7kg for hydrogen. At a water depth of 2000 m, it carries 285 kg of oxygen, 392 kg of carbon dioxide, 250 kg of nitrogen, and 17.8 kg of hydrogen. At a depth of 1000m, 143kg for oxygen, 196kg for carbon dioxide, 125kg for nitrogen, and 9kg for hydrogen. However, since only carbon dioxide can be used within a depth of 1300 m, to obtain 1 ton of buoyancy at 1300 m, 280 kg of carbon dioxide or dry ice may be used. Thus, even when the same buoyancy is obtained, the number of moles is the same depending on the type of gas, but the weight varies greatly. For this reason, the buoyant agent is determined in consideration of the target descent depth and economy. Therefore, the critical water depth [h (km) = 224.2 / M] by gas type is estimated to be 7,000m for oxygen, 7,730m for air, 8,000m for nitrogen, 112,100m for hydrogen, and 1,300m for carbon dioxide. Thus, the buoyant agent gas is determined by the water depth. Thus, it is desirable to use dry ice at a depth of 1,300 meters or less, use liquid oxygen or liquid air at 1,300 m or more, and use liquid nitrogen or liquid hydrogen at 5000 m or more. In addition, if it is used as a buoyancy body with a buoyancy body (floating bag) filled with dry ice and connected to a rope for lifting at a depth of about 1,300 m, it can reduce the driving power to recover heavy objects on the surface of the water. it can.
Here, a heavy object is towed by a submarine that has reached the bottom of the sea, and preparation for ascent is underway. First, the main buoyant body expansion / contraction start mechanism outside the submersible is driven to expand the volume of the main buoyant body, and at the same time, the cock of the cylinder inside the submersible is opened to inject gas into the main buoyant body, and the submersible levitates. Is started, the cock of the cylinder inside the submersible is closed, and thereafter, the main buoyancy body expansion / contraction start mechanism is driven to expand the volume of the main buoyancy body while maintaining the internal pressure and the water pressure of the main buoyancy body in equilibrium. Thereby, as the water depth becomes shallower, the buoyancy increases, the levitation speed increases, and the buoyancy is completed when the main buoyancy body reaches the sea surface.

請求項5に記載の発明は、請求項1、請求項2及び請求項4記載の主浮力体の内圧が常に水圧と平衡を維持するための制御機構に関するものである。中空構造物が深海の高水圧下で変形や崩壊を起こさないためには構造物の外壁(外殻)を肉厚にし、かつ形状を球体にする。しかし、この構造体の総重量は重く、軽さが必須条件である主浮力体としては使えない。ところが高気圧下であろうと真空中であろうと材料の両面で気圧差が無ければ変形も崩壊も起こらない。すなわち主浮力体の内圧と外圧(水圧)が常に等しい環境を創成すれば軽量主浮力体は実現する。本願発明の特徴は、降下の時は重力源の錘として液化ガスを用い、浮上時は液化ガスを気化させて重力源を浮力源に変えることである。液化ガスを気化して気体に変えれば約800倍に体積膨張する。従って、800倍の浮力を得ることができる。主浮力体の中は気体、外は液体(水)と物理定数がことごとく違う媒質との比較である。液体は温度に対して鈍感であるが、気体は敏感で、体積の膨張・収縮を伴う。ただし本願発明が目的とする水深での温度は高々1.5℃であり、主浮力体も海水中であるため温度に対して神経を尖らす心配は無い。
本願発明では、主浮力体内のガス圧と水圧とが平衡を保たせる手段として、機械的手段と電気的手段が考えられる。機械的方法は、電気回路のような判断部が無いため連動動作が容易で、とくに内圧と水圧比較は1:1の対応が取れる。一般に圧力制御弁はパイロットポペットをパイロットばねをネジ込みハンドルで回転してガスの出し入れを調整している。本発明ではこのパイロットばねが水圧を検知する油圧シリンダーと連動した構造を有し、海面に露出した油圧ポンプのシリンダーが油圧でパイロットを押す構造であるため、直接水圧とガス圧を制御できる。一方電気式制御装置は水圧と浮力の内圧をセンサーで検知し、比較回路で圧力の大小を判別するため、その出力信号を電流増幅して電磁弁やモーターを正転又は逆転させることにより早い応答が期待できる。
The invention described in claim 5 relates to a control mechanism for maintaining the internal pressure of the main buoyant body always in equilibrium with the water pressure, according to claims 1, 2, and 4. In order to prevent deformation and collapse of the hollow structure under high water pressure in the deep sea, the outer wall (outer shell) of the structure is made thick and the shape is made spherical. However, the total weight of this structure is heavy and cannot be used as a main buoyancy body where lightness is a prerequisite. However, no deformation or collapse occurs if there is no pressure difference on both sides of the material, whether under high pressure or in vacuum. That is, a lightweight main buoyancy body can be realized by creating an environment in which the internal pressure and the external pressure (water pressure) of the main buoyancy body are always equal. The feature of the present invention is that the liquefied gas is used as the weight of the gravity source during the descent, and the liquefied gas is vaporized during the ascent to change the gravity source to the buoyancy source. If the liquefied gas is vaporized and converted to gas, the volume expands about 800 times. Therefore, a buoyancy of 800 times can be obtained. The main buoyant body is a gas and the outside is a liquid (water) compared to a medium with completely different physical constants. Liquids are insensitive to temperature, but gases are sensitive, with volume expansion and contraction. However, since the temperature at the depth of water targeted by the present invention is at most 1.5 ° C. and the main buoyant body is also in seawater, there is no fear of sharpening nerves with respect to the temperature.
In the present invention, mechanical means and electrical means can be considered as means for keeping the gas pressure and water pressure in the main buoyancy body in equilibrium. Since the mechanical method does not have a judgment part such as an electric circuit, the interlocking operation is easy, and in particular, the internal pressure and the water pressure comparison can take a 1: 1 correspondence. In general, a pressure control valve adjusts gas flow by rotating a pilot poppet with a pilot spring screwed on a handle. In the present invention, the pilot spring has a structure interlocked with a hydraulic cylinder that detects water pressure, and the hydraulic pump cylinder exposed to the sea surface has a structure that pushes the pilot with oil pressure, so that the water pressure and gas pressure can be directly controlled. On the other hand, the electric control device detects the internal pressure of water pressure and buoyancy with a sensor, and in order to determine the magnitude of the pressure with a comparison circuit, the output signal is amplified by current and the electromagnetic valve or motor is rotated forward or backward to respond quickly. Can be expected.

請求項6に記載の発明は、請求項1、請求項2及び請求項4記載の主浮力体及び補助浮力体(蛇腹式風船)の材質及び浮力気体に関するものである。一般に水圧が高い深海においては、浮力体は頑強な殻を有することが常識である。しかし、主及び補助浮力体の内圧と水圧とが常に平衡が取れていれば、多くの材料が主及び補助浮力体として使える。例えば、水深5000mでは水圧は500気圧(517 kgf/cm2)であるから、この値を基準に材料の圧縮強度を見ると、ステンレス圧延板で4500 kgf/cm2、プラスチックス材料の圧縮強度は非特許文献3「プラスチック技術マニュアル/松谷守康著/理工学社」(http://www.as-1.co.jp/academy/17/17-2.html)によると、ナイロン6:914kgf/cm2(30%ガラス繊維ナイロン6:1340 kgf/cm2)、硬質ポリ塩化ビニル:562〜914 kgf/cm2、メラニン樹脂:2810〜3160 kgf/cm2、ポリカーボネート:844 kgf/cm2、アクリル樹脂:844〜1270 kgf/cm2と多くの材料が水圧より高い。主及び補助浮力体に封入するガスは二酸化炭素、空気、酸素、窒素あるいは水素ガスであるが、とくにドライアイスは130気圧以上の圧力では昇華しないから、水深1300mを境にして自発的にガス発生を誘起させ、主及び補助浮力体として供することができる。すなわち1300m以下の水深での主浮力体として使うことは勿論のことであるが、それよりも水深の深い点で荷物の間に補助浮力体として連結しておけば、1300mで補助浮力体として働きを開始し、水面まで荷物を揚げる役割をする。あるいは、この補助浮力体を水深1300mの地点で別の浮上中の荷物に連結すれば輸送の効率があがる。又は、深海に存在する荷物をロープで繋いでおき、1300mから水面までの輸送手段として使うことができる。 The invention described in claim 6 relates to the material and buoyancy gas of the main buoyancy body and auxiliary buoyancy body (bellows-type balloon) according to claims 1, 2, and 4. It is common knowledge that buoyancy bodies generally have a strong shell in the deep sea where the water pressure is high. However, many materials can be used as the main and auxiliary buoyancy bodies as long as the internal pressure and the water pressure of the main and auxiliary buoyancy bodies are always balanced. For example, at a water depth of 5000m, the water pressure is 500 atmospheres (517 kgf / cm 2 ), so if you look at the compressive strength of the material based on this value, 4500 kgf / cm 2 for the stainless rolled plate, the compressive strength of the plastics material is According to Non-Patent Document 3 “Plastics Technical Manual / Moriyasu Matsutani / Science and Technology” (http://www.as-1.co.jp/academy/17/17-2.html), nylon 6: 914kgf / cm 2 (30% glass fiber nylon 6: 1340 kgf / cm 2 ), rigid polyvinyl chloride: 562 to 914 kgf / cm 2 , melanin resin: 2810 to 3160 kgf / cm 2 , polycarbonate: 844 kgf / cm 2 , acrylic resin: 844~1270 kgf / cm 2 and more material is higher than the water pressure. The gas enclosed in the main and auxiliary buoyancy bodies is carbon dioxide, air, oxygen, nitrogen or hydrogen gas. However, dry ice does not sublime at a pressure of 130 atmospheres or higher, so gas is generated spontaneously at a depth of 1300 m. And can serve as main and auxiliary buoyancy bodies. That is, of course, it can be used as a main buoyant body at a depth of 1300 m or less, but if it is connected as an auxiliary buoyant body between cargoes at a deeper depth than that, it will function as an auxiliary buoyant body at 1300 m. And play the role of lifting the luggage to the surface of the water. Alternatively, if this auxiliary buoyant body is connected to another floating baggage at a depth of 1300 m, the efficiency of transportation will increase. Or, it can be used as a means of transportation from 1300m to the surface of the water by linking luggage in the deep sea with a rope.

請求項7に記載の発明は、請求項1、請求項2、請求項4、請求項5及び請求項6記載の主浮力体及び補助浮力体への初期ガス封入量は維持(固定)した状態で、深度と水圧の変化を利用して、外部エネルギー無しで、重量物を複数個数珠繋ぎの状態で、浮上させる方法に関するものである。ボイルシャルルの法則によると温度(T)において容器の体積(V)と容器内の気圧(P)の関係は P×V/T=一定 である。簡便のために海底と海面の温度及び海水の密度は一定として計算する。深度h1の海底における水圧はWh1、主及び補助浮力体の内圧はP h1とし、その時の主及び補助浮力体の容積をV h1とすると、海面h2における水圧Wh2=1(気圧)であり、主及び補助浮力体の内圧P h2=1(気圧)であるから、海面における主及び補助浮力体の容積はV h2=P h1×V h1=Wh1×V h1であるから、海面における主及び補助浮力体の容積(V h2)は海底における水圧(Wh1)倍となる。すなわち水深5000mで浮上開始する主浮力体は、海面では500倍の容積に成るから、浮力は500倍に成る。従って、計算上は500倍の重量の荷物を分割して揚荷することができる。実際には複数個の荷揚げ容器に回収物を分取させ、各単位毎の回収荷物は、複数個の荷揚げ用容器の下部に取り付けられたフックと牽引ロープの両端に取り付けてあるシャクルにより、夫々の籠または折りたたみ式容器を順次繋ぎ、先頭を潜水艇の船尾部分に取り付けたフックに繋ぎ、浮上を開始する。主浮力体内には液化ガスを気化させた浮力剤ガスを封入させ、浮上するに連れ外圧(水圧)減少分に相当する浮力が、主浮力体の容積膨張により増大し、その浮力の増加分に相当する重量物が順次牽引されて浮上する。ここでもし必要な時は、任意の位置に補助浮力体を連結すれば、水深1300mの地点を境として浮力が発生し、この補助浮力体が、浮上を助けるため、海面での荷揚げ作業が楽になる。 The invention according to claim 7 is a state in which the initial gas filling amount to the main buoyancy body and the auxiliary buoyancy body according to claims 1, 2, 4, 5, and 6 is maintained (fixed). Thus, the present invention relates to a method for levitating a plurality of heavy objects in a connected state without external energy by utilizing changes in depth and water pressure. According to Boyle-Charles' law, the relationship between the volume (V) of the container and the pressure (P) in the container at temperature (T) is P × V / T = constant. For simplicity, the seafloor and sea surface temperature and seawater density are assumed to be constant. The water pressure at the seabed at depth h 1 is W h1 , the internal pressure of the main and auxiliary buoyant bodies is P h1, and the volume of the main and auxiliary buoyant bodies at that time is V h1 , the water pressure W h2 = 1 (atmospheric pressure) at sea level h 2 Since the internal pressure of the main and auxiliary buoyancy bodies is P h2 = 1 (atmospheric pressure), the volume of the main and auxiliary buoyancy bodies at the sea level is V h2 = P h1 × V h1 = W h1 × V h1 , The volume of the main and auxiliary buoyant bodies (V h2 ) at is double the water pressure (Wh 1 ) at the seabed. That is, the main buoyancy body that starts to float at a water depth of 5000 m has a volume 500 times that of the sea surface, so the buoyancy will be 500 times. Therefore, in calculation, it is possible to divide and lift a 500-fold weight load. Actually, the collected items are separated into a plurality of unloading containers, and the collected packages for each unit are respectively connected by hooks attached to the lower part of the plurality of unloading containers and shackles attached to both ends of the tow rope.籠 or foldable containers are connected in sequence, the top is connected to a hook attached to the stern part of the submersible, and ascent begins. The main buoyancy body is filled with a buoyant agent gas that vaporizes liquefied gas, and the buoyancy corresponding to the decrease in external pressure (water pressure) increases due to the volume expansion of the main buoyancy body as it rises. Corresponding heavy objects are sequentially pulled and surfaced. If necessary, if an auxiliary buoyant body is connected at an arbitrary position, buoyancy is generated at a point of 1300m in depth, and this auxiliary buoyant body helps ascend, so unloading work on the sea surface is easy. Become.

請求項8に記載の発明は、請求項1及び請求項2記載の潜水艇の動力源又は海底資源掘削や集鉱に必要とする電力を潜水艇が降下及び浮上する時に発生する流体エネルギーをプロペラ(スクリュー)で回転エネルギーに変換して発電機を回し電力を得る方法に関するものである。ここで得られる電力は、潜水艇の制御機能駆動用電力、蓄電池充電用電力、深海底での鉱物資源の採掘及び鉱物資源回収に必要な電力及び洋上や陸上で消費する電力に供される。一般の風力発電装置はタワーの上のナセルの中に発電機と増速ギアーを載せた構造のものである。タワーを高くする理由は、高所ほど安定で強い風が得られること及び大型プロペラを回転させる回転領域確保のためである。しかし、タワーが高いために風力装置全体の重心が高位置になるため、頭でっかちになり転倒の危険性も少なくない。このため、従来の風力発電装置は、頭部を軽くする目的で発電機の小型・軽量化が進んでいる。しかし、風力発電は、強風、落雷、あるいは凪に弱い。そして風境にも影響され稼働時間も少ない。これらの欠点を解消するために、この風力発電装置のナセル部を、タワーの首部から切り離し、海の中に突き落としたと考えよう。海の中ではナセルは潜水艇であり、プロペラはスクリューである。一般に風力や水流などの流体から得られる回転エネルギー(W)は、受流体面積(A)、流体密度(ρ)、流速(V)とすると W=ρV3A/2 で与えられる。 空気の密度は1.2kg/m3に対し、水の密度は1,025kg/cm3 であるため、風の流れを水の流れに変えれば854倍のエネルギーを得ることができる。このように、水の中での発電施設は風力発電に比べ、1艇あたりの発電量が854倍あり、建造費は少なく、稼働時間は24時間、しかも水面に近づくに連れて浮力が増大し、浮上速度が増加した分、発電量も大きくなる。一般に発電機は高速回転することにより発電量が上昇する。従って本発明の浮力・重力発電装置は、プロペラ(スクリュー)と増速ギアーが一体構造であり、水の密度も高いため、プロペラ(スクリュー)から得られるトルクも大きく、発電機を効率よく回転させることができる。ここで得られた電力は深海底又は深湖底で回収物採取用の動力源となる電力を得ると同時に、潜水艇内部の蓄電池に蓄える電力や駆動用機器の駆動電力に供し、更に、余剰電力は送電線によりは洋上や陸上での電源として供される。 According to an eighth aspect of the present invention, the propeller generates fluid energy generated when the submersible descents and ascends the power required for the submarine power source or the submarine resource excavation or collection of the submarine according to the first and second aspects. The present invention relates to a method for obtaining electric power by turning a generator by converting into rotational energy with a (screw). The electric power obtained here is used for the power for driving the control function of the submersible, the power for charging the storage battery, the power necessary for mining and collecting mineral resources in the deep sea, and the power consumed on the sea or on land. A general wind power generator has a structure in which a generator and a speed increasing gear are mounted in a nacelle on a tower. The reason for raising the tower is to obtain a stable and strong wind at a higher position and to secure a rotation area for rotating the large propeller. However, since the center of gravity of the entire wind power device is high because the tower is high, there is a considerable risk of falling and falling over the head. For this reason, in the conventional wind power generator, the generator is reduced in size and weight for the purpose of reducing the head. However, wind power is vulnerable to strong winds, lightning strikes, or hail. And it is also affected by the wind environment, so the operation time is short. To eliminate these shortcomings, let's think that the nacelle part of this wind turbine was cut off from the neck of the tower and pushed into the sea. In the sea, the nacelle is a submersible and the propeller is a screw. In general, rotational energy (W) obtained from a fluid such as wind or water flow is given by W = ρV 3 A / 2 when the receiving fluid area (A), fluid density (ρ), and flow velocity (V). Since the density of air is 1.2 kg / m 3 and the density of water is 1,025 kg / cm 3 , 854 times more energy can be obtained by changing the wind flow to the water flow. In this way, the power generation facility in water has 854 times the amount of power generation per boat compared to wind power generation, construction costs are low, operation time is 24 hours, and buoyancy increases as it approaches the water surface. The amount of power generation increases as the ascent rate increases. Generally, the amount of power generation increases as the generator rotates at high speed. Therefore, in the buoyancy / gravity power generation device of the present invention, since the propeller (screw) and the speed increasing gear are integrally structured and the density of water is high, the torque obtained from the propeller (screw) is large and the generator is efficiently rotated. be able to. The electric power obtained here is used as the power source for collecting collected materials at the bottom of the deep sea or deep lake, and at the same time, it is used for the power stored in the storage battery inside the submersible and the driving power of the driving equipment. Depending on the transmission line, it can be used as offshore or onshore power.

本発明による重量物の水中における降下及び浮上方法は、深海底や湖底の鉱物資源を水上までの輸送手段として、降下は潜水艇内のボンベに圧入した液化ガスを錘として用い、浮上は錘として用いた液化ガスを気化させて浮力剤として用い、海底と海面間を重力と浮力と水圧を利用して往復し、重量物の搬送を外部エネルギーの供給無しで行う。さらに、降下及び浮上時に発生する流体エネルギーで水流発電を行い、艇内施設の制御用電力、深海底での鉱物資源回収用電力、あるいは洋上や陸上での作業用電力として、自然環境の変化に左右されず、景観に悪影響もなく、建設工事も必要なく、しかも1年中24時間休むことなく発電できるため、経済効果大である。 The method of lowering and ascent of heavy objects in water according to the present invention uses the mineral resources at the bottom of the deep sea or the bottom of the lake as a means of transportation to the water, and the descent uses the liquefied gas injected into the cylinder in the submersible as a weight, and the ascent is used as a weight. The liquefied gas used is vaporized and used as a buoyant agent, reciprocating between the sea floor and the sea surface using gravity, buoyancy and water pressure, and transporting heavy objects without supplying external energy. In addition, hydroelectric power is generated using fluid energy generated during descent and ascent, and power for controlling boat facilities, power for recovering mineral resources at the deep sea floor, or power for work on the ocean and land, will change the natural environment. It does not affect the landscape, does not adversely affect the landscape, does not require construction work, and can generate electricity 24 hours a day, so it has a great economic effect.

風潜水艇の概略図。(A)は外観図、(B) は内部構造図である。Schematic of a wind submersible craft. (A) is an external view and (B) is an internal structure diagram. 搭載発電機が小型の荷物運搬用に特化した潜水艇の概略図である。(A)は降下時、(B)は浮上時を示す図である。FIG. 2 is a schematic view of a submersible with an onboard generator specialized for carrying small packages. (A) is a diagram showing the descent, and (B) is a diagram showing the ascent. 荷揚げ容器の形状と構造の概略図である。(A)は固体運搬用籠、(B)は液体物運搬用密閉容器を降下時に収縮させた状態図、(C)は液体物を回収途中の状態図、(D)は液体物が回収容器に満たされた状態図である。It is the schematic of the shape and structure of a loading container. (A) is a container for transporting solids, (B) is a state diagram in which a sealed container for transporting liquid objects is shrunk when lowered, (C) is a state diagram in the middle of recovery of liquid objects, and (D) is a container for recovering liquid objects FIG. 潜水艇が重力により降下を開始し、海底又は目的深度で静止するまでの状態図である。(A)は降下準備、(B)は降下開始、(C)は降下中、(D)は降下完了を示す状態図である。It is a state figure until a submarine starts descent by gravity and stops at the seabed or a target depth. (A) is a descent preparation, (B) is a descent start, (C) is during descent, and (D) is a state diagram showing completion of descent. 複潜水艇が浮力により浮上を開始し、海面上又は目的深度で静止するまでの状態図である。(A)は浮上準備、(B)は浮上開始、(C)は浮上中、(D)は浮上完了を示す状態図である。It is a state figure until a double submarine starts ascent by buoyancy and stops at the sea level or the target depth. (A) is ascending preparation, (B) is ascending start, (C) is ascending, (D) is a state diagram showing completion of ascending. 主浮力体の内圧が常に水圧と平衡を維持するための制御機構を示したフローチャートである。It is the flowchart which showed the control mechanism for the internal pressure of a main buoyancy body always maintaining a water pressure and an equilibrium. 主浮力体(折畳み風船)の中心部が空洞の浮力体構造図である。(A)は主浮力体の横断面図。(B)は体積を膨張させた状態図。(C)は体積を縮小させた状態図。(D)は主浮力体を伸縮・膨張させる駆動機構に主浮力体を取り付けた構造図である。FIG. 4 is a structural diagram of a buoyancy body in which a central portion of a main buoyancy body (folding balloon) is hollow. (A) is a cross-sectional view of the main buoyancy body. (B) is a state diagram in which the volume is expanded. (C) is a state diagram in which the volume is reduced. (D) is a structural diagram in which the main buoyancy body is attached to a drive mechanism that expands and contracts the main buoyancy body. 主浮力体(折畳み風船)多段提灯形状を成す浮力体の構造図である。(A)は最大限膨張させた時の縦断面図、(B)は体積を1/10に縮小させた時の縦断面図、(C)は体積を1/4に縮小させた時の縦断面図、(D)は体積を1/2に縮小させた時の縦断面図である。FIG. 3 is a structural diagram of a buoyancy body having a main buoyancy body (folding balloon) multi-stage lantern shape. (A) is a longitudinal section when the volume is fully expanded, (B) is a longitudinal section when the volume is reduced to 1/10, and (C) is a longitudinal section when the volume is reduced to 1/4. FIG. 4D is a longitudinal sectional view when the volume is reduced to ½. 主浮力体(折畳み風船)を潜水艇の船首に水平に配置した概念図である。(A)は主浮力体を膨張させた時(浮力による浮上時)の概念図、(B)は主浮力体を縮小させた時(重力による降下時)の概念図である。It is the conceptual diagram which has arrange | positioned the main buoyancy body (folding balloon) horizontally at the bow of a submersible craft. (A) is a conceptual diagram when the main buoyancy body is expanded (when levitation is caused by buoyancy), and (B) is a conceptual diagram when the main buoyancy body is contracted (when descending due to gravity). ドライアイスを利用した補助浮力体の動作概念図である。(A)水圧130気圧以下、(B)は水圧130気圧以上の状態を示す図である。It is an operation | movement conceptual diagram of the auxiliary buoyancy body using dry ice. (A) The water pressure is 130 atm or less, and (B) is a diagram showing a state in which the water pressure is 130 atm or more. 封筒型浮力体の概略図である。(A)は封筒型浮力体を巻き取り方式により内容積を縮小させる構造、(B)は封筒型浮力体に浮力ガスを封入して内容積を膨張させる構造の概念図である。It is the schematic of an envelope type buoyancy body. (A) is a structure for reducing the internal volume of the envelope-type buoyancy body by a winding method, and (B) is a conceptual diagram of a structure for expanding the internal volume by enclosing buoyancy gas in the envelope-type buoyancy body. 主球状浮力体1個に複数個の球状浮力体を連結した構造の浮力体概念図である。(A)は全ての球状浮力体を脱気した概念図、(B)は深海の高い外圧(水圧)下で主球状浮力体のみにガスを圧入した概念図、(C)は浮上中の外圧(水圧)下で主球状浮力体のガスを複数個の球状浮力体に分圧した概念図、(D)は海面近くまで浮上した時の球状浮力体の概念図である。FIG. 2 is a conceptual diagram of a buoyancy body having a structure in which a plurality of spherical buoyancy bodies are connected to one main spherical buoyancy body. (A) is a conceptual diagram in which all spherical buoyant bodies are degassed, (B) is a conceptual diagram in which gas is injected only into the main spherical buoyant body under high external pressure (water pressure) in the deep sea, and (C) is an external pressure during levitation. The conceptual diagram which divided the gas of the main spherical buoyancy body into the several spherical buoyancy body under (water pressure), (D) is a conceptual diagram of the spherical buoyancy body when it floats to the sea surface vicinity. 複数個の重量物を珠繋ぎの状態で牽引浮上する状態図である。(A)は浮上開始時の状態図、(B)は浮上中の状態図、(C)は更に浮上が進んだ状態図、(D)は海面近くの状態図であり、補助浮力体を連結した概念図である。It is a state figure which pulls and floats a plurality of heavy goods in the state where it is connected with a bead. (A) is the state diagram at the start of ascent, (B) is the state diagram during the ascent, (C) is the state diagram where the ascent is further advanced, (D) is the state diagram near the sea surface, and the auxiliary buoyant body is connected. FIG. 潜水艇が浮上や降下で発生する流体エネルギーで発電する方法の概念図である。It is a conceptual diagram of the method of generating electric power with the fluid energy which a submersible craft generates by ascent and descent. 図15は潜水艇の両舷に取り付けた垂直軸羽根車水車により水流発電を行う方法の概念図である。FIG. 15 is a conceptual diagram of a method for performing hydroelectric power generation using vertical axis impeller turbines attached to both sides of a submersible craft.

以下、本発明の効果的な実施の形態を図1〜15に基づいて詳細に説明する。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIGS.

図1は潜水艇の概略図。(A)は外観図、(B) は内部構造図である。潜水艇1の船首の外部には主浮力体2と主浮力体を伸縮・膨張させる駆動機構3があり、潜水艇1の外壁には回転や揺れを抑制させ、姿勢安定を保持させ、発電用スクリュー5の回転が潜水艇本体と競合することを抑制するめに複数枚のフィン4を等角度で取り付け、更に船尾には発電装置に連動させたプロペラ(スクリュー)5及び牽引機構6と荷物牽引用フック7を取り付けてあり、荷揚げ容器(籠)8に積まれた重量物9を牽引して浮上する。潜水艇1の外観が球状若しくは楕円状あるいは円筒形状の涙滴型、葉巻型、鯨型である。潜水艇1の内部には、潜水艇の浮上や降下を制御するための電力、海底からの採掘重量物の回収に必要な動力源としての電力及び洋上や陸上で電力を得るための発電装置(発電機)10が備えられている。本発明では潜水艇1の船首外部に取り付けられた浮力体を明確に区別するために主浮力体2と命名する。潜水艇船首外部には、水中を降下及び浮上に必要とする浮力を得るために、液化気体を気化させたガス又は圧搾気体によるガスを封入した、主浮力体2が備えられている。潜水艇1の船首の外部にある主浮力体2にガスを封入する手段として、潜水艇内の外殻と内殻の間には液化ガスやドライアイスあるいは圧縮ガスを入れるボンベ室11、内殻内部には油圧コンプレッサー室12、液化ガス製造装置室13、蓄電地室14、発電装置室(発電機)10を設備する。潜水艇1の内部のモーター15で、主浮力体2の容積を膨張、収縮させるための浮力機構3を駆動する。降下する時は、主浮力体2の容積を収縮させながら内部の浮力剤ガスを配管16で潜水艇内部の油圧コンプレッサー12に移送し、圧縮ガスとして又は液化ガス製造装置室13で液化した後、ガス出口17から出た液化ガス又は圧縮ガス18はボンベ室11に貯蔵される。そして浮上時には液化ガス又は圧縮ガス18は、主浮力体を伸縮・膨張させる駆動機構3により主浮力体2に圧入され、容積を膨張させながら浮力を増大させる。
本発明では、重力により降下する場合と、浮力により浮上する場合に発生する流体エネルギーを回転エネルギーに変えて発電する機構を有するが、そのために、潜水艇1の船尾には発電装置室(発電機)10が艇外部のプロペラ(スクリュー)5に連動している。潜水艇1に搭載する発電機を大型と小型に分けて必要に応じて使い分けることもできる。発電機が小型の場合は、主浮力体駆動用モーター15の駆動用電源として蓄電池14を充電用に供し、海底や湖底と水面上を荷物の運搬のみに特化させる。一方、大型発電機を搭載した潜水艇は、水面と水底間を往復して発電に特化させることもできる。
水面から水深1300mの間の浮力体として、潜水艇から独立し、独自で浮力材ガスを供給する機構を有する補助浮力体を備えており、必要に応じて、荷物運搬の替え添え役として、あるいは1300mより浅い海面下での荷物運搬用に使うことができる。この補助浮力体にはドライアイスが封入されており、深さが1300mより浅い位置(130気圧より低圧)に到達したら自発的にドライアイスが昇華して二酸化炭素が生成され、補助浮力体に封入されるようになっている。
Figure 1 is a schematic diagram of a submersible craft. (A) is an external view and (B) is an internal structure diagram. The main buoyancy body 2 and the drive mechanism 3 for expanding and contracting / expanding the main buoyancy body are provided outside the bow of the submersible 1, and the outer wall of the submersible 1 is restrained from rotating and shaking to maintain posture stability, and for power generation. To prevent the rotation of the screw 5 from competing with the main body of the submersible, a plurality of fins 4 are attached at an equal angle, and the propeller (screw) 5 and the towing mechanism 6 linked to the power generation device are attached to the stern for cargo towing. A hook 7 is attached, and the heavy object 9 loaded in the unloading container (籠) 8 is pulled to rise. The appearance of the submersible 1 is a spherical, elliptical, or cylindrical teardrop type, cigar type, or whale type. Inside the submersible 1 are electric power for controlling the ascent and descent of the submersible, electric power as a power source necessary for recovering mining heavy objects from the seabed, and power generators for obtaining electric power on the sea and on land ( Generator) 10 is provided. In the present invention, the main buoyancy body 2 is named in order to clearly distinguish the buoyancy body attached to the outside of the bow of the submersible 1. Outside the bow of the submersible craft, a main buoyancy body 2 is provided in which a gas obtained by vaporizing a liquefied gas or a compressed gas is enclosed in order to obtain buoyancy required for descent and ascent underwater. As a means for enclosing gas into the main buoyancy body 2 outside the bow of the submersible 1, a cylinder chamber 11 for placing liquefied gas, dry ice or compressed gas between the outer shell and the inner shell in the submersible, an inner shell A hydraulic compressor chamber 12, a liquefied gas production device chamber 13, a power storage base chamber 14, and a power generation device chamber (generator) 10 are installed inside. A motor 15 inside the submersible 1 drives a buoyancy mechanism 3 for expanding and contracting the volume of the main buoyancy body 2. When descending, the internal buoyant agent gas is transferred to the hydraulic compressor 12 inside the submarine by piping 16 while shrinking the volume of the main buoyant body 2 and liquefied as compressed gas or in the liquefied gas production apparatus chamber 13. The liquefied gas or compressed gas 18 exiting from the gas outlet 17 is stored in the cylinder chamber 11. During levitation, the liquefied gas or compressed gas 18 is pressed into the main buoyancy body 2 by the drive mechanism 3 that expands and contracts the main buoyancy body to increase the buoyancy while expanding the volume.
In the present invention, there is a mechanism for generating electric power by changing fluid energy generated when descending due to gravity and when surfacing due to buoyancy to rotational energy. For this purpose, a power generator room (generator) is provided at the stern of the submersible 1. ) 10 is linked to the propeller (screw) 5 outside the boat. The generator mounted on the submersible 1 can be divided into a large size and a small size and can be selectively used as necessary. When the generator is small, the storage battery 14 is used for charging as a driving power source for the main buoyancy body driving motor 15, and the seabed, the lake bottom and the surface of the water are specialized only for the transportation of luggage. On the other hand, a submersible equipped with a large generator can be specialized in power generation by reciprocating between the water surface and the bottom of the water.
As a buoyant body between the surface of the water and a depth of 1300m, it is equipped with an auxiliary buoyant body that is independent of the submersible and has its own mechanism for supplying buoyant material gas. It can be used for carrying goods under the sea surface shallower than 1300m. This auxiliary buoyant body is filled with dry ice, and when it reaches a position shallower than 1300m (lower pressure than 130 atm), dry ice sublimes spontaneously to generate carbon dioxide, which is enclosed in the auxiliary buoyancy body. It has come to be.

図2は搭載発電機が小型の荷物運搬用に特化した潜水艇の概略図である。(A)は降下時、(B)は浮上時を示す図である。潜水艇1が図1の潜水艇1との違いは、艇の形状が球状であることと、発電室10の発電機が小型であることで、重量物運搬用に特化した潜水艇で、艇内部の発電機10は潜水艇の降下・浮上を制御する電力を供給するための蓄電池14の充電用に特化している。(A)は潜水艇1が重力で降下している状態を示す図で、主浮力体(折畳み風船)2を主浮力体を伸縮・膨張させる駆動機構3で収縮させ、内部の気体を全て液化又は圧縮してボンベ室11に液化ガス又は圧縮ガス18として格納した状態を示す。(B)は潜水艇1が浮上下している状態を示す図で、主浮力体(折畳み風船)2を主浮力体を伸縮・膨張させる駆動機構3で膨張させ、潜水艇1の内部の液化ガス又は圧縮ガス18を吐き出し、主浮力体(折畳み風船)2を膨張させた状態を示す。海底や湖底から重量物9を運搬するにはフック7に荷揚げ容器8を牽引するが、その荷物を固体と液体に分離して運ぶ必要がある。
図3は荷揚げ容器の形状と構造の概略図である。(A)は固体運搬用籠、(B)は液体物運搬用密閉容器を降下時に収縮させた状態図、(C)は液体物を回収途中の状態図、(D)は液体物が回収容器に満たされた状態図である。(A)は深海底や深湖底で回収した鉱物資源、埋没遺跡物、沈没船、あるいは海底に運ぶ掘削器具、集鉱装置、回収した鉱物のかすとしての廃棄物など重量物(固体)9を運搬するための籠8である。(B)、(C)、(D)は湧出原油、深層水又は汚泥物などの液体物については密閉型荷揚げ容器である。この密閉容器19は、浮力を極力少なくし、降下時は重力だけで海底に運び、海底では密閉容器19容器に液体回収物を回収するために流体回収物吸入口のバルブ20を開き、同時に容器収縮・拡大用モーター21で密閉容器収縮・拡張駆動機構22を駆動する。そして、液体回収物を満載した後、浮上させる。そこで密閉容器を折畳み容器構造とし、畳んだ状態(B)で水底に運搬し、水底で容器を拡大しながら目的の液体物を挿入(C,D)する方式を採用する。
FIG. 2 is a schematic diagram of a submersible craft specialized for carrying a small load. (A) is a diagram showing the descent, and (B) is a diagram showing the ascent. The submersible boat 1 is different from the submersible boat 1 of FIG. 1 in that the boat has a spherical shape and the generator in the power generation chamber 10 is small. The generator 10 inside the boat is specialized for charging the storage battery 14 for supplying electric power for controlling the descent and ascent of the submersible. (A) is a diagram showing a state in which the submersible 1 is descending due to gravity. The main buoyancy body (folding balloon) 2 is contracted by the drive mechanism 3 that expands and contracts the main buoyancy body, and all the gas inside is liquefied. Or the state compressed and stored in the cylinder chamber 11 as liquefied gas or compressed gas 18 is shown. (B) is a diagram showing a state in which the submersible craft 1 is lifted up and down. The main buoyant body (folding balloon) 2 is inflated by a drive mechanism 3 that expands and contracts the main buoyant body to liquefy the inside of the submersible craft 1. A state where the gas or compressed gas 18 is discharged and the main buoyancy body (folding balloon) 2 is expanded is shown. In order to transport the heavy object 9 from the sea bottom or the lake bottom, the unloading container 8 is pulled by the hook 7, but it is necessary to carry the luggage separately into solid and liquid.
FIG. 3 is a schematic view of the shape and structure of the unloading container. (A) is a container for transporting solids, (B) is a state diagram in which a sealed container for transporting liquid objects is shrunk when lowered, (C) is a state diagram in the middle of recovery of liquid objects, and (D) is a container for recovering liquid objects FIG. (A) shows heavy resources (solid) 9 such as mineral resources, buried remains, sunken ships, drilling equipment to be transported to the seabed, mining equipment, waste as waste of collected minerals, etc. It is a basket 8 for carrying. (B), (C), (D) are closed-type unloading containers for liquids such as spring crude oil, deep water or sludge. The airtight container 19 reduces buoyancy as much as possible, and when it descends, it is transported to the seabed only by gravity. On the seafloor, the airtight valve 19 container opens the valve 20 of the fluid recovery material inlet to collect the liquid recovery material, and at the same time the container The airtight container contraction / expansion drive mechanism 22 is driven by the contraction / expansion motor 21. Then, after the liquid collected material is fully loaded, it is levitated. Therefore, the closed container is made into a folded container structure, transported to the bottom of the water in the folded state (B), and a method of inserting (C, D) the target liquid object while expanding the container at the bottom of the water is adopted.

図4は、潜水艇が重力により降下を開始し、海底又は目的深度で静止するまでの状態図である。(A)は降下準備、(B)は降下開始、(C)は降下中、(D)は降下完了を示す状態図である。一般に、潜水艦は、降下の際に艦内のタンクに錘として密度1.02の海水を外部から採りいれる。ところが、本願発明では、潜水艇1の外部に付属する主浮力体2及び重量物9(海底に運ぶ物資)を含めた総重量が全体の排水量より重く設定してあり、潜水艦のように外部から海水を取り入れることは行わない。先ず、降下準備(A)として、潜水艇1の船尾の荷揚げ容器(籠)8に、海底で作業するための掘削機材や集鉱機材あるいは海底に廃棄する物質を重量物9として搭載して補助錘として、牽引機構6に連結する。(B)では、潜水艇1の船首の外部に取り付けた主浮力体(蛇腹構造の折畳み風船)2を、潜水艇1内部のモーター15により、主浮力体伸縮・駆動機構3により駆動し、主浮力体内のガスを吸引して圧縮するコンプレサー12、圧縮したガスを断熱膨張して液化する液化ガス製造装置13などで製造した液化ガス又は圧縮ガス18をボンベ11に貯蔵する。これにより浮力が小さくなり潜水艇1は降下を開始する。(C)では降下が開始された時点で主浮力体2内部から潜水艇内のコンプレッサー12へのガス移行を中止する。そして、これ以降は主浮力体を伸縮・膨張させる駆動機構3を収縮させながら主浮力体内部のガス圧と水圧との平衡を保ちながら降下する。(D)では、目的到達水深近くになった時点で、主浮力体2を膨張に転じさせるために、主浮力体を伸縮・膨張させる駆動機構3を動かし、主浮力体(折畳み風船)2の内圧と水圧との平衡を保ちながら膨張させて潜水艇を静止させる。 FIG. 4 is a state diagram from when the submersible begins to descend due to gravity until it stops at the seabed or the target depth. (A) is a descent preparation, (B) is a descent start, (C) is during descent, and (D) is a state diagram showing completion of descent. In general, submarines take 1.02 of seawater from the outside as weights in tanks when they descend. However, in the present invention, the total weight including the main buoyancy body 2 attached to the outside of the submarine 1 and the heavy object 9 (materials to be transported to the seabed) is set to be heavier than the total amount of drainage. Do not take in seawater. First of all, as preparation for descent (A), the excavation equipment, the mining equipment for working on the seabed, or the material to be discarded on the seafloor is loaded as a heavy object 9 on the unloading vessel (籠) 8 at the stern of the submersible 1. The weight is connected to the pulling mechanism 6. In (B), a main buoyancy body (folded balloon with a bellows structure) 2 attached to the outside of the bow of the submersible 1 is driven by a main buoyancy body expansion / contraction / drive mechanism 3 by a motor 15 inside the submersible 1. A liquefied gas or compressed gas 18 produced by a compressor 12 that sucks and compresses gas in the buoyancy body and a liquefied gas production device 13 that adiabatically expands and compresses the compressed gas is stored in a cylinder 11. As a result, the buoyancy is reduced and the submersible craft 1 starts to descend. In (C), when the descent starts, the gas transfer from the main buoyancy body 2 to the compressor 12 in the submersible is stopped. Thereafter, the main buoyancy body descends while maintaining the balance between the gas pressure and the water pressure while contracting the drive mechanism 3 that expands and contracts the main buoyancy body. In (D), when it becomes close to the target water depth, in order to turn the main buoyancy body 2 into expansion, the drive mechanism 3 for expanding and contracting the main buoyancy body is moved, and the main buoyancy body (folding balloon) 2 is moved. The submersible is kept stationary by inflating while maintaining a balance between internal pressure and water pressure.

図5は、潜水艇が浮力により浮上を開始し、海面上又は目的深度で静止するまでの状態図である。(A)は浮上準備、(B)は浮上開始、(C)は浮上中、(D)は浮上完了を示す状態図である。一般に潜水艦は浮上の時はタンクから艦外部に海水を吐き出して、軽くなって浮上する。それに反し、本願発明の潜水艇1は艇内部のボンベ11に貯蔵してある液化ガス又は圧縮ガス18を、艇外部に連結した主浮力体2に移動して、降下時に錘として用いた液化ガスあるいは圧縮ガスを浮力剤として再利用する。先ず、浮上準備(A)として、潜水艇1の船尾の荷揚げ容器(籠)8に、海底で採取した鉱物資源や他の採取物など重量物9を搭載して、牽引機構6に連結する。(B)では、浮上を開始するために、主浮力体を伸縮・膨張させる機構3を駆動して、主浮力体2の体積を膨張させながら、同時に潜水艇内部のボンベ11のコックを開き主浮力体2にガスを圧入し、潜水艇が浮上を開始したら、潜水艇内部のボンベのコックを閉じ、潜水艇1は浮上を開始する。
(C)では浮上が開始したら、以後は主浮力体を伸縮・膨張させる駆動機構3を駆動して主浮力体2の内圧と水圧とが平衡を保ちながら、主浮力体の体積を膨張させる。これにより、水深が浅くなるに連れて浮力が増大し、浮上速度が速くなる。
(D)では、海上又は目的到達深度近くになった時点で、潜水艇1の船首の外部に取り付けた主浮力体(蛇腹構造の折畳み風船)2を主浮力体伸縮・駆動機構3により駆動し、主浮力体2内のガスを吸引して圧縮するコンプレサー12、圧縮したガスを断熱膨張して液化する液化ガス製造装置13などで製造した液化ガス又は圧縮ガス18をボンベ11に貯蔵する。これにより浮力が小さくなり潜水艇1は浮上を停止する。潜水艇1の船尾の牽引機構6に連結し、浮上させた重量物9は海上の作業船のクレーで回収する。
FIG. 5 is a state diagram from when the submarine starts to ascend by buoyancy until it stops at sea level or at a target depth. (A) is ascending preparation, (B) is ascending start, (C) is ascending, (D) is a state diagram showing completion of ascending. In general, when a submarine ascends, it discharges seawater from the tank to the outside of the ship, and rises lightly. On the other hand, the submersible craft 1 of the present invention moves the liquefied gas or compressed gas 18 stored in the cylinder 11 inside the boat to the main buoyant body 2 connected to the outside of the boat and uses it as a weight when descending. Alternatively, the compressed gas is reused as a buoyant agent. First, as preparation for ascending (A), a heavy object 9 such as a mineral resource or another sample collected on the seabed is mounted on the unloading vessel (籠) 8 at the stern of the submersible 1 and connected to the traction mechanism 6. In (B), in order to start ascent, the mechanism 3 for expanding / contracting / expanding the main buoyancy body is driven to expand the volume of the main buoyancy body 2 and simultaneously open the cock of the cylinder 11 inside the submersible. When gas is injected into the buoyant body 2 and the submersible starts to ascend, the cock of the cylinder inside the submersible is closed, and the submersible 1 starts to ascend.
In (C), when the levitation starts, the drive mechanism 3 for expanding / contracting / expanding the main buoyancy body is driven to expand the volume of the main buoyancy body while keeping the internal pressure and the water pressure of the main buoyancy body 2 in equilibrium. Thereby, as the water depth becomes shallower, the buoyancy increases and the ascent speed increases.
In (D), the main buoyancy body (folding balloon of bellows structure) 2 attached to the outside of the bow of the submersible 1 is driven by the main buoyancy body expansion / contraction / drive mechanism 3 at the time of reaching the sea or near the target depth. The cylinder 11 stores a liquefied gas or a compressed gas 18 produced by a compressor 12 that sucks and compresses the gas in the main buoyancy body 2 and a liquefied gas production device 13 that adiabatically expands and compresses the compressed gas. As a result, the buoyancy is reduced and the submersible craft 1 stops levitation. The heavy object 9 which is connected to the stern traction mechanism 6 of the submersible 1 and is levitated is collected by the clay of the work boat at sea.

図6は主浮力体の内圧が常に水圧と平衡を維持するための制御機構を示したフローチャートである。本発明で最も重要なことは主浮力体の内圧と外圧(水圧)を如何なる場合でも如何なる場所でも平衡を維持させることである。この平衡を維持させる手段として、機械的手段と電気的手段が考えられる。機械的手段は、電気回路のような判断部が無いため連動動作が容易で、とくに内圧と水圧比較は1:1の対応が取れる。一般に圧力制御弁はパイロットポペットをパイロットばねで押して(ネジ込みハンドルで回転して)ガスの出し入れを調整している。本発明ではパイロットばねを、シリンダー棒を介して、水圧で押す構造であるため、直接水圧とガス圧を制御できる。一方電気式制御装置は水圧と浮力の内圧をセンサーで検知し、比較回路で圧力の大小を判別するため、その出力信号を電流増幅して電磁弁やモーターを正転又は逆転させることにより早い応答を行っている。 これら主浮力体の内圧と外圧(水圧)とを平衡に保ちながら、先ず、潜水艇が降下を開始(潜水開始)するために、主浮力体の容積を収縮し、潜水艇の総重量が浮力を上回るまで浮力体内のガスを潜水艇内のボンベに移行し続ける。同時に主浮力体の内圧と外圧(水圧)とを比較し、内圧が外圧(水圧)より大きい場合は、主浮力体の容積を収縮し、浮力体内のガスを潜水艇内のボンベに移行する行程を繰り返して行う。一方、内圧より外圧(水圧)の方が小さい場合には潜水艇内のボンベから主浮力体内にガスを移行し、再度内圧と外圧(水圧)を比較して、目的深度に到達するまでこの操作を繰り返す。ただし主浮力体の破壊限界を考慮して、便宜上、内圧と外圧の許容範囲は5%内外とすることが望ましい。潜水艇が目的深度に到達したら、潜水艇内のボンベから浮力体にガスを圧入し、内圧と水圧を等圧に維持しながら、浮力体の容積を潜水艇の排水量を僅かに(1〜5%)超えるまで膨張させる。すなわち浮力が重力を超えるまで(静止状態から浮上に転ずるまで)この動作を繰り返す。この時点で、潜水艇内のボンベを閉じて浮力体へのガス供給を停止し、浮上へのステップに転換する。
浮上によって、海底から海面に、複数個の重量物を多量に運搬することが可能なことが、本発明の特徴である。主浮力体の深度が浅くなるに連れて、水圧も下がる(10m上昇すると1気圧下がる)。若しここで、主浮力体の体積を固定したまま浮上を続ければ内圧は増大する。ところが本発明では浮力体内のガスの分量は固定したままの状態で、主浮力体の内圧と水圧を平衡(等圧)に維持しているため、必然的に主浮力体の容積は拡大し、その拡大分だけ浮力が増大する。従って、浮上開始直後、前行程で主浮力体に充填されたガス量を維持したまま(潜水艇内部からのガスの供給は停止されたまま)、主浮力体の内圧と外圧(水圧)を等圧に調整しながら(許容範囲は5%内外)、浮力体の容積を膨張させて浮上を行う。ここで主浮力体の内圧と外圧(水圧)とが許容範囲(許容範囲は5%内外)に至らず、内圧が外圧(水圧)以上の時は主浮力体の容積を膨張させ、内圧が外圧(水圧)以下の時は主浮力体の容積を縮小して、内圧と外圧(水圧)を許容範囲(5%内外)に収斂させて浮上を続け、水面又は予定深さに到達した時点で、再度降下準備に取りかかる。
FIG. 6 is a flowchart showing a control mechanism for constantly maintaining the internal pressure of the main buoyancy body in equilibrium with the water pressure. The most important thing in the present invention is to maintain the balance between the internal pressure and the external pressure (water pressure) of the main buoyancy body at any location. As means for maintaining this balance, mechanical means and electrical means can be considered. The mechanical means does not have a judgment part such as an electric circuit, so that the interlocking operation is easy, and in particular, the internal pressure and the water pressure comparison can take a 1: 1 correspondence. In general, the pressure control valve adjusts gas flow in and out by pushing a pilot poppet with a pilot spring (rotating with a screw handle). In the present invention, since the pilot spring is pushed by the hydraulic pressure through the cylinder rod, the water pressure and the gas pressure can be directly controlled. On the other hand, the electric control device detects the internal pressure of water pressure and buoyancy with a sensor, and in order to determine the magnitude of the pressure with a comparison circuit, the output signal is amplified by current and the electromagnetic valve or motor is rotated forward or backward to respond quickly. It is carried out. While maintaining the internal pressure and external pressure (water pressure) of these main buoyancy bodies in equilibrium, first, the submersible boat starts to descend (starts diving) so that the volume of the main buoyancy body is shrunk and the total weight of the submersible craft is The gas in the buoyancy body continues to be transferred to the cylinder in the submersible craft until it exceeds. At the same time, the internal pressure of the main buoyancy body is compared with the external pressure (water pressure). If the internal pressure is greater than the external pressure (water pressure), the volume of the main buoyancy body is shrunk and the process of transferring the gas in the buoyancy body to the cylinder in the submersible craft. Repeat this step. On the other hand, when the external pressure (water pressure) is smaller than the internal pressure, gas is transferred from the cylinder in the submersible craft to the main buoyancy body, and the internal pressure and external pressure (water pressure) are compared again until the target depth is reached. repeat. However, in consideration of the breakage limit of the main buoyant body, for convenience, it is desirable that the allowable range of the internal pressure and the external pressure is 5% inside or outside. When the submersible reaches the target depth, gas is injected into the buoyant body from the cylinder in the submersible and the internal pressure and the water pressure are maintained at the same pressure, while the volume of the buoyant body is reduced slightly (1-5 %) Inflate until it exceeds. In other words, this operation is repeated until the buoyancy exceeds gravity (until the buoyancy starts to rise from the stationary state). At this point, the cylinder in the submersible is closed, the gas supply to the buoyant body is stopped, and a step to ascend is entered.
It is a feature of the present invention that a large number of heavy objects can be transported from the sea floor to the sea surface by floating. As the depth of the main buoyant body becomes shallower, the water pressure also drops (up 10 meters, it drops by 1 atmosphere). If the buoyancy is continued while the volume of the main buoyancy body is fixed, the internal pressure increases. However, in the present invention, the volume of the main buoyancy body is inevitably increased because the internal pressure and the water pressure of the main buoyancy body are maintained in equilibrium (equal pressure) while the amount of gas in the buoyancy body remains fixed. Buoyancy increases by that amount. Therefore, immediately after the start of levitation, the main buoyancy body's internal pressure and external pressure (water pressure) are maintained while maintaining the amount of gas charged in the main buoyancy body in the previous stroke (while the gas supply from the submersible is stopped). While adjusting to the pressure (allowable range is 5% inside / outside), the volume of the buoyant body is expanded to perform the ascent. Here, when the internal pressure and the external pressure (water pressure) of the main buoyancy body do not reach the allowable range (the allowable range is 5% internal / external) and the internal pressure is equal to or higher than the external pressure (water pressure), the volume of the main buoyancy body is expanded and the internal pressure is the external pressure. When the water pressure is below, the volume of the main buoyancy body is reduced, the internal pressure and the external pressure (water pressure) are converged within the permissible range (5% inside and outside), and continue to ascend. Start preparing for descent again.

図7は主浮力体(折畳み風船)の中心部が空洞の浮力体構造図である。(A)は主浮力体の横断面図。(B)は体積を膨張させた状態図。(C)は体積を縮小させた状態図。(D)は主浮力体を伸縮・膨張させる駆動機構に主浮力体を取り付けた構造図である。主浮力体はドーナツ状の浮力体が縦方向に連結した一体構造に成っている(A,B)。この主浮力体2を上下2枚の円形の押さえ板23で挟み、回転伸縮ネジ24をモーター15で回転して収縮又は膨張を行う。 収縮の時は2枚の押さえ板23を接近させ、同時に主浮力体のガスを配管16から吐き出しながら主浮力体2を収縮させて、潜水艇を降下体勢にする。他方、浮上の時は、体積を縮小させた(C)の状態で、内圧と外圧(水圧)を等圧にして配管16からのガスの供給を止め、浮上を開始する。ここで、浮上が開始されると、深度が浅く成り、それに連れて外圧(水圧)が減少するため、その減少分だけ、回転伸縮ネジ24を緩め、主浮力体2の体積を膨張させる。この操作により、水深が浅くなるに連れて浮力が増大する。
図8は主浮力体(折畳み風船)多段提灯形状を成す浮力体の構造図である。(A)は最大限膨張させた時の縦断面図、(B)は体積を1/10に縮小させた時の縦断面図、(C)は体積を1/4に縮小させた時の縦断面図、(D)は体積を1/2に縮小させた時の縦断面図である。この多段提灯形状の主浮力体は上下に2枚の押さえ板23で挟んであるが、上部の押さえ板23を、ワイヤー25(主浮力体2の内部に)により下方に(矢印の方向に)引っ張ることにより上下の押さえ板23間を縮めることにより体積を縮小させる構造であり、主浮力体を軽量化できることが特徴である。
図9は主浮力体(折畳み風船)を潜水艇の船首に水平に配置した概念図である。(A)は主浮力体を膨張させた時(浮力による浮上時)の概念図、(B)は主浮力体を縮小させた時(重力による降下時)の概念図である。この方式は、主浮力体が安定しないため、主浮力体の要所要所にロープを取り付け、これら複数本のロープを潜水艇の船首部で留め、主浮力体が潜水艇を牽引する。
FIG. 7 is a structural diagram of a buoyancy body in which the center of the main buoyancy body (folding balloon) is hollow. (A) is a cross-sectional view of the main buoyancy body. (B) is a state diagram in which the volume is expanded. (C) is a state diagram in which the volume is reduced. (D) is a structural diagram in which the main buoyancy body is attached to a drive mechanism that expands and contracts the main buoyancy body. The main buoyancy body has a unitary structure in which donut-shaped buoyancy bodies are connected vertically (A, B). The main buoyancy body 2 is sandwiched between two upper and lower circular pressing plates 23, and the rotary expansion / contraction screw 24 is rotated by a motor 15 to contract or expand. At the time of contraction, the two holding plates 23 are brought close to each other, and at the same time, the main buoyancy body 2 is contracted while exhaling the gas of the main buoyancy body from the pipe 16, so that the submersible craft is lowered. On the other hand, when ascending, in the state of (C) with the volume reduced, the internal pressure and the external pressure (water pressure) are made equal to stop the supply of gas from the pipe 16, and the ascent is started. Here, when the ascent is started, the depth becomes shallower, and the external pressure (water pressure) decreases accordingly. Therefore, the rotary expansion / contraction screw 24 is loosened by that amount, and the volume of the main buoyant body 2 is expanded. This operation increases buoyancy as the water depth decreases.
FIG. 8 is a structural diagram of a buoyancy body having a main buoyancy body (folding balloon) multi-stage lantern shape. (A) is a longitudinal section when the volume is fully expanded, (B) is a longitudinal section when the volume is reduced to 1/10, and (C) is a longitudinal section when the volume is reduced to 1/4. FIG. 4D is a longitudinal sectional view when the volume is reduced to ½. This multi-stage lantern-shaped main buoyancy body is sandwiched between two holding plates 23 up and down, but the upper holding plate 23 is moved downward (in the direction of the arrow) by a wire 25 (inside the main buoyancy body 2). This is a structure in which the volume is reduced by contracting between the upper and lower pressing plates 23 by pulling, and the main buoyancy body can be reduced in weight.
FIG. 9 is a conceptual diagram in which main buoyancy bodies (folding balloons) are horizontally arranged on the bow of a submersible craft. (A) is a conceptual diagram when the main buoyancy body is expanded (when levitation is caused by buoyancy), and (B) is a conceptual diagram when the main buoyancy body is contracted (when descending due to gravity). In this method, since the main buoyant body is not stable, a rope is attached to a necessary part of the main buoyant body, the plurality of ropes are fastened at the bow of the submersible, and the main buoyant body pulls the submersible.

図10はドライアイスを利用した補助浮力体の動作概念図である。(A)水圧130気圧以下、(B)は水圧130気圧以上の状態を示す図である。補助浮力体26に封入する浮力剤はドライアイス27である。(A)に示すように、ドライアイスは130気圧以上の圧力では昇華しないから、水深1300mよりも深い深度では浮力体としての役割を示さない。しかし、1300mより水深が浅くなると、(B)に示すように、水圧が130気圧以下に成るため、1300mを境にして、ドライアイス27は二酸化炭素(昇華したドライアイス)28になり、浮力体29を膨張させて、補助浮力体26として効果を発揮する。 この補助浮力体26を、(A)で示すように、深海で荷物の間に補助浮力体として連結しておけば、1300mで補助浮力体として働きを開始し、水面まで荷物を揚げる役割をする。あるいは、この補助浮力体を水深1300mの地点で別の浮上中の荷物に連結すれば輸送の効率があがる。又は、深海に存在する荷物をロープ30で繋いでおき、1300mから水面までの輸送手段として使うことができる。このように補助浮力体26として使うことは勿論のことであるが、水深1300m以下の海域では主浮力体として使うこともできる。
図11は封筒型浮力体の概略図である。(A)は封筒型浮力体を巻き取り方式により内容積を縮小させる構造、(B)は封筒型浮力体に浮力ガスを封入して内容積を膨張させる構造の概念図である。プラスチックフィルムで作られた帯状の封筒型浮力体(風船)31の一方の端には液化気体用耐圧ボンベ(バルブ付)32、他の端には封筒型浮力体を巻き取りにより伸縮・膨張させる駆動機構33が取り付けられ、モーター15により巻き取られ、真空状態の封筒型浮力体34を形成する。この真空状態の封筒型浮力体34と封筒型浮力体(風船)31の間は、2本の棒を互いに挟み込んで線閉塞を起こさせる、気体遮断用棒状バルブ35によって遮断されている。この封筒型浮力体31は潜水艇船首部を牽引する形で取り付けられる。潜水艇の降下時には、液化気体用耐圧ボンベ(バルブ付)32のバルブを閉めて、かつ封筒型浮力体を巻き取りにより伸縮・膨張させる駆動機構33により、封筒型浮力体(風船)31を全て巻き取り、浮力が最も小さい状態で降下し、浮上時には、液化気体用耐圧ボンベ(バルブ付)32のバルブを開きながら、封筒型浮力体(風船)31を潜水艇1の浮力に相当する体積まで膨張させる。この状態で、浮上を開始させ、浮力体31の内圧と外圧(水圧)が等しくなるように調整しながら浮上する。水深が浅くなり水圧が下がる分だけ、帯状の封筒型浮力体(風船)31の体積を膨張させ、浮力が増大する。この装置では液化ガスの代わりにドライアイスを封入して、水深1300m以内の浮力体としても使える。
図12は主球状浮力体1個に複数個の球状浮力体を連結した構造の浮力体概念図である。(A)は全ての球状浮力体を脱気した概念図、(B)は深海の高い外圧(水圧)下で主球状浮力体のみにガスを圧入した概念図、(C)は浮上中の外圧(水圧)下で主球状浮力体のガスを複数個の球状浮力体に分圧した概念図、(D)は海面近くまで浮上した時の球状浮力体の概念図である。 主球状浮力体36と全ての球状浮力体37は配管40で結合されており、主球状浮力体36の両端の配管40には第一バルブ(弁)38及び第2バルブ(弁)39が具備されている。 (A)は重力により降下してきた浮力体である。これを浮上させる目的で、(B)に示すように、先ず、潜水艇内部の液化ガスを球状浮力体に圧入するために、第1バルブ38を開き(第2バルブは閉めたまま)、主球状浮力体36を潜水艇が浮上する浮力になるまでガスを圧入する(予め主球状浮力体36のみで、重量物を牽引した潜水艇が浮上を開始する体積に設定しておく)。次に(C)に示すように、浮上を開始したら、第2バルブを開き主球状浮力体36のガスを全ての球状浮力体37に分圧し(浮力体の内圧と水圧とが常に平衡に成るように球状浮力体の膨張を制御する)、浮上を続ける。そして浮力体が海上に近づくと(D)のようにすべての球状浮力体37及び主球状浮力体36は夫々の内圧が1気圧となる。このように球状浮力体を数珠状に並べて浮力体を構成し、任意の配管部にバランス良く牽引ロープを繋ぎ、複数本の牽引ロープで潜水艇を牽引することができる。
FIG. 10 is a conceptual diagram of the operation of the auxiliary buoyancy body using dry ice. (A) The water pressure is 130 atm or less, and (B) is a diagram showing a state in which the water pressure is 130 atm or more. The buoyancy agent sealed in the auxiliary buoyancy body 26 is dry ice 27. As shown in (A), since dry ice does not sublime at a pressure of 130 atm or higher, it does not exhibit a role as a buoyant body at a depth deeper than 1300 m. However, when the water depth becomes shallower than 1300 m, as shown in (B), the water pressure becomes 130 atm or less, so that the dry ice 27 becomes carbon dioxide (sublimated dry ice) 28 at the 1300 m boundary, and the buoyancy body 29 is expanded, and the effect as the auxiliary buoyancy body 26 is exhibited. If this auxiliary buoyancy body 26 is connected as an auxiliary buoyancy body between the loads in the deep sea as shown in (A), it starts to function as an auxiliary buoyancy body at 1300 m and plays the role of lifting the load to the surface of the water. . Alternatively, if this auxiliary buoyant body is connected to another floating baggage at a depth of 1300 m, the efficiency of transportation will increase. Or you can connect the luggage in the deep sea with the rope 30 and use it as a means of transportation from 1300m to the water surface. Of course, it can be used as the auxiliary buoyancy body 26 as described above, but it can also be used as the main buoyancy body in the sea area with a depth of 1300 m or less.
FIG. 11 is a schematic view of an envelope-type buoyancy body. (A) is a structure for reducing the internal volume of the envelope-type buoyancy body by a winding method, and (B) is a conceptual diagram of a structure for expanding the internal volume by enclosing buoyancy gas in the envelope-type buoyancy body. A belt-like enveloped buoyant body (balloon) 31 made of plastic film has a pressure-resistant cylinder (with a valve) 32 for liquefied gas at one end, and an envelope-type buoyant body at the other end is expanded and contracted by winding. A drive mechanism 33 is attached and wound by the motor 15 to form an envelope-type buoyancy body 34 in a vacuum state. Between the envelope-type buoyancy body 34 and the envelope-type buoyancy body (balloon) 31 in a vacuum state, they are shut off by a gas shut-off rod-like valve 35 that sandwiches two rods and causes line closure. The envelope-type buoyancy body 31 is attached so as to pull the bow of the submersible craft. When the submersible descends, the envelope of the buoyant body (balloon) 31 is all closed by the drive mechanism 33 that closes the valve of the pressure cylinder (with valve) 32 for liquefied gas and expands and contracts the envelope buoyant body by winding up. Winding, descending in the state where the buoyancy is the smallest, and at the time of ascent, open the valve of the pressure cylinder (with valve) 32 for liquefied gas, and open the envelope type buoyant body (balloon) 31 to the volume corresponding to the buoyancy of the submersible 1 Inflate. In this state, levitation is started, and levitation is performed while adjusting the internal pressure and the external pressure (water pressure) of the buoyancy body 31 to be equal. The volume of the belt-shaped envelope-type buoyancy body (balloon) 31 is expanded and the buoyancy is increased as the water depth becomes shallower and the water pressure decreases. In this device, dry ice is enclosed instead of liquefied gas, and it can be used as a buoyant body with a depth of 1300m or less.
FIG. 12 is a conceptual diagram of a buoyancy body having a structure in which a plurality of spherical buoyancy bodies are connected to one main spherical buoyancy body. (A) is a conceptual diagram in which all spherical buoyant bodies are degassed, (B) is a conceptual diagram in which gas is injected only into the main spherical buoyant body under high external pressure (water pressure) in the deep sea, and (C) is an external pressure during levitation. The conceptual diagram which divided the gas of the main spherical buoyancy body into the several spherical buoyancy body under (water pressure), (D) is a conceptual diagram of the spherical buoyancy body when it floats to the sea surface vicinity. The main spherical buoyancy body 36 and all the spherical buoyancy bodies 37 are connected by pipes 40, and the pipes 40 at both ends of the main spherical buoyancy body 36 include a first valve (valve) 38 and a second valve (valve) 39. Has been. (A) is a buoyant body that has fallen due to gravity. For the purpose of levitation, as shown in (B), first, in order to press-fit the liquefied gas inside the submersible craft into the spherical buoyant body, the first valve 38 is opened (the second valve is kept closed). Gas is injected into the spherical buoyancy body 36 until the buoyancy of the submersible levitates (the main buoyancy body 36 alone is set in advance to a volume at which the submersible towing heavy objects starts to ascend). Next, as shown in (C), when the ascent is started, the second valve is opened and the gas of the main spherical buoyancy body 36 is divided into all the spherical buoyancy bodies 37 (the internal pressure and the water pressure of the buoyancy body are always in equilibrium). So as to control the expansion of the spherical buoyancy body) and continue to float. When the buoyancy body approaches the sea, all the spherical buoyancy bodies 37 and the main spherical buoyancy bodies 36 have an internal pressure of 1 atm as shown in (D). In this way, spherical buoyancy bodies are arranged in a rosary shape to constitute a buoyancy body, and a tow rope can be connected to an arbitrary piping portion with a good balance, and a submersible craft can be towed by a plurality of tow ropes.

図13は複数個の重量物を珠繋ぎの状態で牽引浮上する状態図である。(A)は浮上開始時の状態図、(B)は浮上中の状態図、(C)は更に浮上が進んだ状態図、(D)は海面近くの状態図であり、補助浮力体を連結した概念図である。
本発明は深海で主浮力体2に圧入したガス量は増減させず、主浮力体2の内圧と外圧(水圧)を一定に保つだけで(すなわち水深が浅くなるに従い水圧が減圧する分だけ主浮力体2の体積を増大させる)、浮力を増大させることができる。従って、例えば水深5000mで浮上開始する主浮力体2は、海面では500倍の容積に成るから、浮力は500倍に成る。この浮力と水圧の関係を利用して、計算上では500倍の重量の荷物を分割して揚荷することができる。実際には、複数個の荷揚げ用容器の下部に取り付けられたフック7と牽引ロープ30の両端に取り付けてあるシャクルにより、夫々の籠または折りたたみ式容器8を順次繋ぎ、先頭を潜水艇1の船尾部分に取り付けたフック7に繋ぎ、浮上を開始する。主浮力体2内には液化ガスを気化させた浮力剤ガスを封入させ、浮上するに連れ外圧(水圧)減少分に相当する浮力が、主浮力体2の容積膨張により増大し、その浮力の増加分に相当する重量物9が順次牽引されて浮上する。ここでもし必要な時は、任意の位置に補助浮力体26を連結すれば、水深1300mの地点を境として浮力が発生し、この補助浮力体が、浮上を助けるため、海面での荷揚げ作業が楽になる。
FIG. 13 is a state diagram in which a plurality of heavy objects are pulled and levitated in a state where they are connected together. (A) is the state diagram at the start of ascent, (B) is the state diagram during the ascent, (C) is the state diagram where the ascent is further advanced, (D) is the state diagram near the sea surface, and the auxiliary buoyant body is connected. FIG.
In the present invention, the amount of gas injected into the main buoyant body 2 in the deep sea is not increased or decreased, and only the internal pressure and the external pressure (water pressure) of the main buoyant body 2 are kept constant (that is, the water pressure decreases as the water depth decreases). The volume of the buoyancy body 2 is increased), and the buoyancy can be increased. Therefore, for example, the main buoyancy body 2 that starts to float at a water depth of 5000 m has a volume 500 times that at the sea surface, and thus has a buoyancy 500 times. Using this relationship between buoyancy and water pressure, it is possible to divide and lift a 500-fold weight load. Actually, the hooks 7 attached to the lower parts of the plurality of discharge containers and the shackles attached to both ends of the tow rope 30 are used to sequentially connect the respective cages or the folding containers 8 with the top being the stern of the submersible 1. Connect to the hook 7 attached to the part and start ascending. The main buoyant body 2 is filled with a buoyant agent gas obtained by vaporizing the liquefied gas, and the buoyancy corresponding to the decrease in the external pressure (water pressure) increases as the buoyancy rises due to the volume expansion of the main buoyancy body 2. The heavy object 9 corresponding to the increase is sequentially pulled and floated. If necessary, if the auxiliary buoyant body 26 is connected to an arbitrary position, buoyancy is generated at a point at a water depth of 1300m, and this auxiliary buoyant body helps to ascend. It will be easy.

図14は潜水艇が浮上や降下で発生する流体エネルギーで発電する方法の概念図である。 潜水艇1が降下及び浮上する時に発生する流体エネルギーをプロペラ(スクリュー)5で回転エネルギーに変換し、これを増速ギアー41で高速回転を得て発電機10を回転させ電力を得る。特に潜水艇1がプロペラ(スクリュー)5と同じ方向に回転すると、回転トルクは打ち消される。又お互いの回転が反対方向ならば回転トルクは2倍になり発電効率は上がる。しかし牽引重量物9や送電ケーブル42などをねじることに成りトラブルの原因になる。そこで本発明では潜水艇1の外壁に等角度でフィン4を取り付け、潜水艇の回転や揺れを抑制させている。更に、本発明の特徴は、水面に近づくに連れて浮力が増大し、浮上速度が増加した分だけ発電量も大きくなることである。 ここで得られた電力は送電ケーブル42により深海底又は深湖底で回収物採取用の動力源となる電力を得ると同時に、潜水艇内部の蓄電池に蓄える電力や駆動用機器の駆動電力に供し、更に、余剰電力は送電ケーブル42によりは洋上や陸上での電源として供される。 FIG. 14 is a conceptual diagram of a method for generating electricity with fluid energy generated by a submersible levitation or descent. The fluid energy generated when the submersible 1 descends and rises is converted into rotational energy by the propeller (screw) 5, which is rotated at high speed by the speed increasing gear 41 to rotate the generator 10 to obtain electric power. In particular, when the submersible 1 rotates in the same direction as the propeller (screw) 5, the rotational torque is canceled. If the rotations are opposite to each other, the rotational torque is doubled and the power generation efficiency is increased. However, the towed heavy object 9 and the power transmission cable 42 are twisted, causing trouble. Therefore, in the present invention, fins 4 are attached to the outer wall of the submersible 1 at equal angles to suppress the rotation and shaking of the submersible. Furthermore, the feature of the present invention is that the buoyancy increases as it approaches the water surface, and the amount of power generation increases as the ascent rate increases. The electric power obtained here is used as the power source for collecting collected material at the bottom of the deep sea or deep lake by the power transmission cable 42, and at the same time is used for the power stored in the storage battery inside the submersible or the driving power of the driving equipment. Further, surplus power is supplied as a power source offshore or on land by the transmission cable 42.

図15は潜水艇の両舷に取り付けた垂直軸羽根車水車により水流発電を行う方法の概念図である。浮力・重力による水流発電のための潜水艇の外部には回転防止のための複数のフィン4を備え、潜水艇1の両舷には発電機を駆動するための垂直軸羽根車水車43が備えられ、回転増速ギアーを介して潜水艇1内部の発電機の回転子(ローター)を回転させる構造を有している。ここで潜水艇1の左舷と右舷に夫々1個ずつの垂直軸羽根車水車43が共に同一方向に回転させているが、右舷と左舷の垂直軸羽根車水車43の羽(ブレード)の向きを逆にして、水車の回転方向を逆にして、一方を該発電機の回転子(ローター)に他方を固定子(第2回転子)に連結すれば、夫々の相対回転により2倍の電力を得ることも可能である。 FIG. 15 is a conceptual diagram of a method for performing hydroelectric power generation using vertical axis impeller turbines attached to both sides of a submersible craft. A plurality of fins 4 for preventing rotation are provided outside a submersible for hydroelectric power generation by buoyancy and gravity, and a vertical axis impeller turbine 43 for driving a generator is provided on both sides of the submersible 1. The rotor (rotor) of the generator inside the submersible 1 is rotated through the rotation speed increasing gear. Here, each of the vertical shaft impeller turbines 43 on the port and starboard of the submersible 1 is rotated in the same direction, but the direction of the blades of the vertical shaft impeller turbine 43 on the starboard and port is determined. On the other hand, if the direction of rotation of the water turbine is reversed and one is connected to the rotor (rotor) of the generator and the other is connected to the stator (second rotor), twice the electric power is generated by each relative rotation. It is also possible to obtain.

我が国の排他的経済水域内の海底や海底の地盤中にはマンガン団塊、マンガンクラスト、海底熱水鉱床などの未掘削の鉱物資源が豊富に存在すると言う調査結果が出ているが、水圧が高いことが原因で開発は全く進んでいないのが現状である。この原因は、掘削や集鉱に必要な電力と洋上までの輸送が困難なことが一因であると考えられる。そこで、本発明では、深海底における水圧と浮力を積極的に利用して、これら2つの課題を解決する手段を見出した。すなわち、深海底の鉱物資源を洋上まで輸送する手段として、潜水艇内のボンベに圧入した液化ガスを錘として海底に降下し、錘として用いた液化ガスを気化させて浮力剤として利用して浮上させることにより、外部から一切のエネルギー供給を無くし、重力と浮力と水圧のみで海底と海面間を往復することを可能にした。更に、降下及び浮上時に発生する流体エネルギーで水流発電を行い、潜水艇内での制御用電力、深海底での鉱物資源回収用電力、あるいは洋上や陸上での作業用電力として活用できる。 この浮力・重力発電は、自然環境の変化に左右されず、景観に悪影響もなく、建設工事も必要なく、しかも1年中24時間休むことなく発電できる発電システムである。これらの発電と輸送とを一度に解決する本発明は、世界的資源の枯渇と資源高騰あるいはこれに伴う資源供給国の新規台頭や国際社会に影響力を拡大させている現況を沈静化させることは勿論のこと、無尽蔵にある海洋資源及びクリーンで再生可能な自然エネルギーを使って、化石燃料の代替エネルギー源を確保することは、四面を海に囲まれた我が国の産業にとっても地球環境上、更には経済的にも重要な手段になり得ると考える。 Although the survey results indicate that there are abundant unexcavated mineral resources such as manganese nodules, manganese crusts, and hydrothermal deposits in the seabed and ground of the exclusive economic zone in Japan, the water pressure is high. Because of this, development is not progressing at all. This is thought to be due in part to the power required for excavation and collection and the difficulty of transportation to the ocean. Therefore, the present invention has found a means for solving these two problems by actively utilizing the water pressure and buoyancy at the deep sea floor. In other words, as a means of transporting deep sea bottom mineral resources to the ocean, the liquefied gas injected into the cylinder in the submersible is lowered to the sea floor as a weight, and the liquefied gas used as the weight is vaporized and floated as a buoyant agent. By doing so, it was possible to reciprocate between the sea floor and the sea surface only by gravity, buoyancy, and water pressure without any external energy supply. Furthermore, hydroelectric power can be generated using fluid energy generated during descent and ascent, and can be used as power for control in submersibles, power for recovering mineral resources at the deep sea floor, or power for work on the sea or land. This buoyancy / gravity power generation system is a power generation system that is not affected by changes in the natural environment, does not adversely affect the landscape, does not require construction work, and can generate electricity 24 hours a day, 24 hours a day. The present invention, which solves these power generation and transportation at the same time, calms the current situation of global resources depletion and resource soaring, or the emergence of new resource supply countries and associated influences on the international community. Needless to say, securing an alternative energy source for fossil fuels using inexhaustible marine resources and clean and renewable natural energy is also a global environment for our industry surrounded by the sea. In addition, it can be an economically important tool.

1 潜水艇
2 主浮力体
3 主浮力体を伸縮・膨張させる駆動機構
4 フィン
5 プロペラ(スクリュー)
6 牽引機構
7 フック(荷物牽引用)
8 荷揚げ容器(籠)
9 重量物
10 発電装置(発電機)
11 ボンベ室
12 油圧コンプレッサー室
13 液化ガス製造装置室
14 蓄電地室
15 モーター
16 配管
17 ガス出口
18 液化ガス又は圧縮ガス
19 密閉容器
20 流体回収物吸入口のバルブ
21 容器収縮・拡大用モーター
22 密閉容器収縮・拡張駆動機構
23 押さえ板
24 回転伸縮ネジ
25 ワイヤー
26 補助浮力体
27 ドライアイス
28 二酸化炭素(昇華したドライアイス)
29 浮力体
30 ロープ
31 封筒型浮力体(風船)
32 液化気体用耐圧ボンベ(バルブ付)
33 封筒型浮力体を巻き取りにより伸縮・膨張させる駆動機構
34 真空状態の封筒型浮力体
35 気体遮断用棒状バルブ
36 球主球状浮力体
37 球状浮力体
38 第1バルブ
39 第2バルブ
40 配管

1 Submersible 2 Main buoyancy body
3 Drive mechanism that expands and contracts the main buoyancy body 4 Fin 5 Propeller (screw)
6 Towing mechanism 7 Hook (for luggage towing)
8 Unloading container (籠)
9 Heavy objects 10 Power generator (generator)
DESCRIPTION OF SYMBOLS 11 Cylinder chamber 12 Hydraulic compressor chamber 13 Liquefied gas production apparatus chamber 14 Power storage chamber 15 Motor 16 Piping 17 Gas outlet 18 Liquefied gas or compressed gas 19 Sealed container 20 Fluid recovery inlet valve 21 Container contraction / expansion motor 22 Sealed Container contraction / expansion drive mechanism 23 Presser plate 24 Rotating telescopic screw 25 Wire 26 Auxiliary buoyancy body 27 Dry ice 28 Carbon dioxide (sublimated dry ice)
29 Buoyancy body 30 Rope 31 Envelope type buoyancy body (balloon)
32 Pressure cylinder for liquefied gas (with valve)
33 Drive mechanism for expanding / contracting / expanding the envelope type buoyancy body by winding 34 Envelope type buoyancy body in a vacuum state 35 Gas-blocking rod-shaped valve 36 Spherical main spherical buoyancy body 37 Spherical buoyancy body 38 First valve 39 Second valve 40 Piping

Claims (8)

深海底及び/又は深湖底から鉱物資源、埋没遺跡物、沈没船、湧出原油、深層水又は汚泥物を水面に荷揚げさせる潜水艇において、前記海底からの採掘重量物の回収に必要な動力源としての電力及び/又は洋上や陸上で電力を得るための発電装置及び前記潜水艇が水中を降下及び浮上に必要とする浮力を得るための浮力体として主浮力体及び/又は補助浮力体から構成され、主浮力体には液化気体又は圧搾気体によるガスを封入し、補助浮力体にはドライアイスを昇華させたガスを封入させ、該潜水艇内部には油圧コンプレッサー及び浮力体を伸縮・膨張させる駆動機構を具備させ、該潜水艇船首上部には該浮力体の伸縮・膨張駆動機構と連動させた潜水艇の該主浮力体がスライド若しくは膨張・収縮させる浮上機構を具備した浮上手段と、
該潜水艇内部には、潜水艇重力により降下させるための降下手段として液化ガス又はガスを圧入したボンベを具備し、該潜水艇の外壁には回転や揺れを抑制させるめに複数枚のフィンを等角度で取り付け、更に船尾には前記発電装置に連動させたスクリューを取り付け
かつ前記潜水艇の降下手段において、水中における任意の深度で所望する重力を得る手段が、該潜水艇船尾の末端部に取り付けられた錘及び該潜水艇内部に具備されたボンベに圧入する液化ガス又は圧縮ガスの充填量を調整し、かつ、前記浮上手段としての主浮力体内のガスを圧縮若しくは膨張させる機構と連動して主浮力体の容積を縮小させる調整機構により降下速度および降下深度を調整可能とすることを特徴とする球状若しくは楕円状又は円筒形状の潜水艇。
As a power source necessary for recovering mining heavy material from the seabed in a submersible that unloads mineral resources, buried remains, sunken ship, crude oil, deep water or sludge from the deep seabed and / or deep lake bottom. And / or a power generator for obtaining power on the sea or on land, and a main buoyancy body and / or an auxiliary buoyancy body as a buoyancy body for obtaining the buoyancy necessary for the submarine to descend and float underwater. The main buoyant body is filled with gas by liquefied gas or compressed gas, the auxiliary buoyant body is filled with gas sublimated with dry ice, and the hydraulic compressor and the buoyant body are driven to expand and contract inside the submersible craft. is provided with a mechanism, the floating means in the bow upper latent water boat equipped with a floating mechanism for the main buoyancy bodies submersible in which includes the expansion and contraction and expansion drive mechanism of the main buoyancy body to slide or expand and contract
Inside the latent water boat, a submarine provided with a cylinder which was injected liquefied gas or gas as drop means for lowering by gravity, the outer wall of the latent water boat plurality in order to thereby suppress the rotation or shaking Attach fins at an equal angle, and attach a screw linked to the power generator to the stern .
And in the descent means of the submarine, the means for obtaining a desired gravity at an arbitrary depth in the water is a liquefied gas which is press-fitted into a weight attached to the terminal part of the stern of the submarine and a cylinder provided inside the submarine. Alternatively, the descent speed and descent depth are adjusted by an adjustment mechanism that reduces the volume of the main buoyancy body in conjunction with a mechanism that compresses or expands the gas in the main buoyancy body as the levitation means by adjusting the filling amount of the compressed gas. A spherical, elliptical, or cylindrical submersible characterized in that it is possible .
深海底及び/又は深湖底から鉱物資源、埋没遺跡物、沈没船、湧出原油、深層水又は汚泥物を水面に荷揚げさせる潜水艇において、前記海底からの採掘重量物の回収に必要な動力源としての電力及び/又は洋上や陸上で電力を得るための発電装置及び前記潜水艇が水中を降下及び浮上に必要とする浮力を得るための浮力体として主浮力体及び/又は補助浮力体から構成され、主浮力体には液化気体又は圧搾気体によるガスを封入し、補助浮力体にはドライアイスを昇華させたガスを封入させ、該潜水艇内部には油圧コンプレッサー及び浮力体を伸縮・膨張させる駆動機構を具備させ、該潜水艇船首上部には該浮力体の伸縮・膨張駆動機構と連動させた潜水艇の該主浮力体がスライド若しくは膨張・収縮させる浮上機構を具備した浮上手段と、
該潜水艇内部には、潜水艇重力により降下させるための降下手段として液化ガス又はガスを圧入したボンベを具備し、該潜水艇の外壁には回転や揺れを抑制させるめに複数枚のフィンを等角度で取り付け、更に船尾には前記発電装置に連動させたスクリューを取り付け
かつ前記潜水艇の降下手段において、水中における任意の深度で所望する重力を得る手段が、該潜水艇船尾の末端部に取り付けられた錘及び該潜水艇内部に具備されたボンベに圧入する液化ガス又は圧縮ガスの充填量を調整し、かつ、前記浮上手段としての主浮力体内のガスを圧縮若しくは膨張させる機構と連動して主浮力体の容積を縮小させる調整機構により降下速度および降下深度を調整可能とすることを特徴とする球状若しくは楕円状又は円筒形状の潜水艇による重量物の降下および浮上方法。
As a power source necessary for recovering mining heavy material from the seabed in a submersible that unloads mineral resources, buried remains, sunken ship, crude oil, deep water or sludge from the deep seabed and / or deep lake bottom. And / or a power generator for obtaining power on the sea or on land, and a main buoyancy body and / or an auxiliary buoyancy body as a buoyancy body for obtaining the buoyancy necessary for the submarine to descend and float underwater. The main buoyant body is filled with gas by liquefied gas or compressed gas, the auxiliary buoyant body is filled with gas sublimated with dry ice, and the hydraulic compressor and the buoyant body are driven to expand and contract inside the submersible craft. is provided with a mechanism, the floating means in the bow upper latent water boat equipped with a floating mechanism for the main buoyancy bodies submersible in which includes the expansion and contraction and expansion drive mechanism of the main buoyancy body to slide or expand and contract
Inside the latent water boat, a submarine provided with a cylinder which was injected liquefied gas or gas as drop means for lowering by gravity, the outer wall of the latent water boat plurality in order to thereby suppress the rotation or shaking Attach fins at an equal angle, and attach a screw linked to the power generator to the stern .
And in the descent means of the submarine, the means for obtaining a desired gravity at an arbitrary depth in the water is a liquefied gas which is press-fitted into a weight attached to the terminal part of the stern of the submarine and a cylinder provided inside the submarine. Alternatively, the descent speed and descent depth are adjusted by an adjustment mechanism that reduces the volume of the main buoyancy body in conjunction with a mechanism that compresses or expands the gas in the main buoyancy body as the levitation means by adjusting the filling amount of the compressed gas. A method of lowering and ascending a heavy object by a spherical, elliptical, or cylindrical submersible characterized by being made possible .
前記潜水艇が水中における任意の深度における浮力を得る手段として、該潜水艇外部の上部に連結した主浮力体を伸縮自在可能とするために主浮力体に液化気体又は圧搾気体によるガスを予め圧入させ、任意の水中深度において浮上速度および浮上深度を維持、調整させるに、前記主浮力体が折りたたみ式浮力体であり、主浮力体内に圧入させたガス圧を変えずに容積を拡大させることにより浮力を調整させ、かつ、任意の水中深度地点において折り畳み式主浮力体内の内圧を膨張および収縮させることにより容積を制御させ、外圧となる水圧と主浮力体の内圧とが平衡を保持する機構を有し、かつ、任意の水中深度地点において該潜水艇が停止状態の作動保持も可能とさせることを特徴とする請求項1記載の潜水艇。As a means for the submersible craft to obtain buoyancy at an arbitrary depth in the water, in order to make the main buoyant body connected to the upper part outside the submersible detachable, a gas by a liquefied gas or a compressed gas is previously injected into the main buoyant body. The main buoyant body is a foldable buoyant body to maintain and adjust the ascent speed and levitation depth at an arbitrary underwater depth, and by expanding the volume without changing the gas pressure injected into the main buoyant body. A mechanism that adjusts the buoyancy and controls the volume by expanding and contracting the internal pressure in the folding main buoyancy body at an arbitrary depth of water, and maintains a balance between the external water pressure and the internal pressure of the main buoyancy body 2. The submersible craft according to claim 1, wherein the submersible craft is also capable of holding the submersible in a stopped state at an arbitrary underwater depth point. 前記潜水艇が水中における任意の深度における浮力を得る手段として、該潜水艇外部の上部に連結した主浮力体を伸縮自在可能とするに主浮力体に液化気体又は圧搾気体によるガスを予め圧入させ、任意の水中深度において浮上速度および浮上深度を維持、調整させるに、前記主浮力体が折りたたみ式浮力体であり、主浮力体内に圧入させたガス圧を変えずに容積を拡大させることにより浮力を調整させ、かつ、任意の水中深度地点において折り畳み式主浮力体内の内圧を膨張および収縮させることにより容積を制御させ、外圧となる水圧と主浮力体の内圧とが平衡を保持する機構を有し、かつ、任意の水中深度地点において該潜水艇が停止状態の作動保持も可能とさせることを特徴とする請求項2記載の潜水艇による重量物の水中での浮上方法。 As a means for the submersible craft to obtain buoyancy at an arbitrary depth in the water, a liquefied gas or a compressed gas is previously injected into the main buoyancy body so that the main buoyancy body connected to the upper part outside the submersible can be expanded and contracted. The main buoyancy body is a foldable buoyancy body to maintain and adjust the ascent speed and the ascent depth at any depth of water, and the buoyancy can be increased by increasing the volume without changing the gas pressure injected into the main buoyancy body. The volume is controlled by expanding and contracting the internal pressure in the folding main buoyancy body at an arbitrary underwater depth point, and there is a mechanism that maintains the balance between the external water pressure and the main buoyancy body pressure. And the submersible levitation of a heavy object by the submersible according to claim 2, wherein the submersible can also be held in a stopped state at an arbitrary underwater depth point. Law. 前記潜水艇に具備された主浮力体の内圧が任意の深度において水圧と平衡を保持する機構として、主浮力体の外部水圧と主浮力体内部内圧との差圧を最小値にさせるため、主浮力体の内圧より水圧が高い場合は、液化ガス又はガスを圧入したボンベの電磁弁を開き、主浮力体の内圧を水圧に近づけ、主浮力体の内圧より水圧が低い場合は、主浮力体の伸縮機構を駆動させ、主浮力体の容積を拡張させる制御機構を具備することを特徴とする請求項2及び請求項4記載の潜水艇による重量物の水中での降下及び浮上方法。 As a mechanism for maintaining the internal pressure of the main buoyancy body provided in the submersible craft at an arbitrary depth, the differential pressure between the water pressure outside the main buoyancy body and the internal pressure inside the main buoyancy body is minimized. If the water pressure is higher than the internal pressure of the main buoyancy body, open the solenoid valve of the cylinder into which the liquefied gas or gas is injected, and bring the internal pressure of the main buoyancy body close to the water pressure, and if the water pressure is lower than the internal pressure of the main buoyancy body, 5. The method for lowering and levitating heavy objects in water by the submersible craft according to claim 2 and 4, further comprising a control mechanism for driving a telescopic mechanism of the buoyant body to expand a volume of the main buoyant body. 前記浮力を得る主浮力体及び補助浮力体がプラスチックス、金属又はゴムからなる蛇腹式若しくは折り畳み式風船体であり、主浮力体に封入させる浮力剤である気体が二酸化炭素、空気、酸素、窒素あるいは水素ガスから選ばれた気体種であり、水深度1300m以内の水中で採用する補助浮力体に封入させる気体はドライアイスを昇華させたガスであることを特徴とする請求項2、請求項4及び請求項5記載の潜水艇による重量物の水中での浮上方法。 The main buoyant body and auxiliary buoyant body for obtaining the buoyancy are bellows type or folding balloon bodies made of plastics, metal, or rubber, and the gas that is the buoyant encapsulated in the main buoyancy body is carbon dioxide, air, oxygen, nitrogen Alternatively, the gas species selected from hydrogen gas, and the gas to be enclosed in the auxiliary buoyant body used in water having a water depth of 1300 m or less is a gas obtained by sublimating dry ice. A method of ascending a heavy object in water by the submersible craft according to claim 5. 深海底及び/又は深湖底で掘削、回収した重量物を順次荷揚げさせる手段として、該潜水艇の船尾部分には荷物を牽引するロープを固定するフックが取り付けられ、荷揚用重量物が複数個の場合は複数個の荷揚げ容器に回収物を分取させ、各単位毎の回収物は複数個の荷揚げ用容器の下部に取り付けられたフックと牽引ロープの両端に取り付けてあるシャクルで籠若しくは折りたたみ式容器を順次繋ぎ、浮上の開始時には主浮力体の容積を前記液化ガスを気化させた浮力剤を主浮力体に封入させ、浮上するに連れ水圧減少分に相当する浮力が主浮力体の容積膨張により増大し、重量物が水深1300m以内に浮上した時点で昇華させたドライアイスを荷揚げ容器間の任意の位置に連結させた複数個の補助浮力体に封入させることにより主浮力体及び補助浮力体の内圧と水圧とが平衡を保持させ、任意の水深において回収物の重量に応じて所望する浮力を得ることを特徴とする請求項2、請求項4、請求項5及び請求項6記載の水中における潜水艇による重量物の浮上方法。 As a means for sequentially unloading heavy objects excavated and collected at the deep sea floor and / or deep lake bottom, a hook for fixing a rope for pulling a load is attached to the stern part of the submersible craft. In this case, the collected items are separated into a plurality of unloading containers, and the collected items for each unit are hooked or folded with hooks attached to the lower part of the plurality of unloading containers and shackles attached to both ends of the tow rope. At the beginning of levitation, the buoyant agent that vaporizes the liquefied gas is sealed in the main buoyancy body, and the buoyancy corresponding to the decrease in water pressure as the surface floats is expanded. The main buoyancy body and the dry ice sublimated when the heavy object floats within a depth of 1300 m are enclosed in a plurality of auxiliary buoyancy bodies connected to arbitrary positions between the unloading containers. The internal pressure of the auxiliary buoyancy body and the water pressure are kept in equilibrium, and a desired buoyancy is obtained according to the weight of the recovered material at an arbitrary water depth. A method for ascending a heavy object by a submersible underwater as described. 該潜水艇が動力源を得る手段としての発電装置が水中を降下及び浮上する際に、浮力を得るための浮力体として該潜水艇の外部に備えた主浮力体から構成され、主浮力体には液化気体又は圧搾気体によるガスを封入し、該潜水艇内部には油圧コンプレッサー及び主浮力体を伸縮・膨張させる駆動機構を具備させ、該潜水艇船首上部には該主浮力体の伸縮・膨張駆動機構と連動させた潜水艇の該主浮力体がスライド若しくは膨張・収縮させる浮上機構を具備した浮上手段と、
該潜水艇内部には、潜水艇が重力により降下させるための降下手段として液化ガス又はガスを圧入したボンベを具備し、該潜水艇の外壁には回転や揺れを抑制させるために複数枚のフィンを等角度で取り付け、更に潜水艇の末端部に取り付けられた発電機の回転軸と連動する増速ギアーとスクリューとが一体構造を成し、流体エネルギーによりスクリューが回転し発電させ、深海底及び/又は深湖底で回収物採取用の動力源となる電力を得ると同時に、該電力は、該潜水艇内部の駆動用機器の駆動に供し、更に、余剰電力は送電線により洋上や陸上での電源として供されることを特徴とする請求項1及び請求項3記載の潜水艇による浮力・重力発電装置


The power generator as a means for the power source to obtain a power source is composed of a main buoyant body provided outside the submersible as a buoyant body for obtaining buoyancy when descending and ascending underwater. Is filled with liquefied gas or compressed gas, and has a hydraulic compressor and a drive mechanism for expanding and contracting the main buoyant body inside the submersible. A levitation means including a levitation mechanism in which the main buoyancy body of the submersible interlocked with the drive mechanism slides or expands and contracts;
The submersible craft is provided with a cylinder filled with liquefied gas or gas as descent means for the dive craft to descend by gravity, and a plurality of fins are provided on the outer wall of the submersible to suppress rotation and shaking. Is installed at an equal angle, and the speed increasing gear and the screw linked to the rotating shaft of the generator attached to the end of the submersible form an integral structure, and the screw rotates by the fluid energy to generate electricity, At the same time as obtaining electric power to be a power source for collecting collected materials at the bottom of the deep lake, the electric power is used to drive the driving equipment inside the submersible, and the surplus power is transmitted offshore or on land by transmission lines. 4. A buoyancy / gravity power generation apparatus using a submersible craft according to claim 1, wherein the buoyancy / gravity power generation apparatus is provided as a power source.


JP2010170330A 2010-07-29 2010-07-29 Descent and ascent method of heavy objects underwater Active JP5651871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170330A JP5651871B2 (en) 2010-07-29 2010-07-29 Descent and ascent method of heavy objects underwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170330A JP5651871B2 (en) 2010-07-29 2010-07-29 Descent and ascent method of heavy objects underwater

Publications (2)

Publication Number Publication Date
JP2012030637A JP2012030637A (en) 2012-02-16
JP5651871B2 true JP5651871B2 (en) 2015-01-14

Family

ID=45844613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170330A Active JP5651871B2 (en) 2010-07-29 2010-07-29 Descent and ascent method of heavy objects underwater

Country Status (1)

Country Link
JP (1) JP5651871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038871A1 (en) * 2022-08-16 2024-02-22 株式会社エム光・エネルギー開発研究所 Industrial machine utilizing electrical breakdown of liquid dielectric body

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444851B1 (en) * 2012-10-17 2014-09-30 삼성중공업 주식회사 Apparatus for producing emergency buoyancy
JP2016155392A (en) * 2013-05-16 2016-09-01 株式会社Ihi Water movable body
KR102304978B1 (en) 2013-09-06 2021-09-24 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 Electrochemical reaction device provided with liquid-repellant porous film
CN104986311A (en) * 2015-07-08 2015-10-21 中国船舶重工集团公司第七一九研究所 Low-noise high-navigational-speed large-depth underwater unpowered upwards-floating test platform
CN105115480A (en) * 2015-08-14 2015-12-02 青岛海洋地质研究所 Seabed thermal water and cold spring observation method and system
KR102300222B1 (en) 2016-04-13 2021-09-09 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 Electrochemical reaction device using on/off side switches of ions
JP6343068B1 (en) * 2017-05-15 2018-06-13 石井 昭良 Underwater transport aircraft
JP7245988B2 (en) * 2018-04-06 2023-03-27 株式会社Lakshmi Undersea Mineral Resource Lifting Equipment
CN108657398B (en) * 2018-04-27 2019-10-11 江苏泰姆仕机器人科技有限公司 A kind of underwater robot center of gravity regulating system and method
CN111731455A (en) * 2019-03-25 2020-10-02 深圳市依卓尔能源有限公司 Variable buoyancy underwater power supply device
CN109928287B (en) * 2019-04-15 2023-09-29 广州广日电梯工业有限公司 Emergency rescue system and method for elevator without machine room
JP7095056B2 (en) * 2020-11-16 2022-07-04 川崎重工業株式会社 Water injection and drainage system for autonomous underwater vehicles and autonomous underwater vehicles
CN114394217B (en) * 2022-03-03 2023-05-26 华中科技大学 Long-endurance underwater vehicle and control method thereof
CN114771758A (en) * 2022-04-27 2022-07-22 深圳大学 Concrete buoy equipment capable of floating up and submerging and floating up and submerging method
CN115123493A (en) * 2022-08-24 2022-09-30 阳信东泰精密金属有限公司 Underwater fishing tool

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153595A (en) * 1976-06-15 1977-12-20 Ishikawajima Harima Heavy Ind Co Ltd Underwater buoyancy control device
JPS54103932A (en) * 1978-02-02 1979-08-15 Ogawa Purasuchitsuku Kougei Kk Hydraulic dynamo
JPS60148992A (en) * 1984-01-12 1985-08-06 三浦 照明 Diving module apparatus in sea bottom mining apparatus
JPS6181292A (en) * 1984-09-28 1986-04-24 Kubota Ltd Buoyancy generator
JPS6192075A (en) * 1984-10-12 1986-05-10 Mitsui Eng & Shipbuild Co Ltd Buoyancy adjustment of under-water robot
JPS63162699U (en) * 1987-04-14 1988-10-24
JPH03276896A (en) * 1990-03-27 1991-12-09 Ishikawajima Harima Heavy Ind Co Ltd Recovery method of submarine moorings
KR100281717B1 (en) * 1998-11-13 2001-03-02 김종수 Buoyancy control device of underwater equipment
US20070022935A1 (en) * 2005-04-11 2007-02-01 Griffith Ian E Unmanned submersible vehicle with on-board generating capability
JP5002760B2 (en) * 2006-10-17 2012-08-15 独立行政法人港湾空港技術研究所 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method
CN1951762A (en) * 2006-11-21 2007-04-25 沈阳工业大学 Enclosed type electric and hydraulic floating force driving system
WO2008098003A1 (en) * 2007-02-05 2008-08-14 Perin James C Buoyancy vehicle apparatus to create electrical power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038871A1 (en) * 2022-08-16 2024-02-22 株式会社エム光・エネルギー開発研究所 Industrial machine utilizing electrical breakdown of liquid dielectric body

Also Published As

Publication number Publication date
JP2012030637A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5651871B2 (en) Descent and ascent method of heavy objects underwater
JP2013166406A (en) Descent and surfacing method of underwater heavy load
AU2020200853B2 (en) Floating wave energy conversion island platforms
US9045209B2 (en) Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources
JP6630876B2 (en) Subsea resources recovery equipment
JP2010180528A (en) Deep sea resource mining and recovery integrated ocean factory
JP5436452B2 (en) Robotic marine aquaculture method and apparatus for food and energy
US20220017194A1 (en) Systems, modules, and submersible vehicles for collecting material from a seafloor
US20060162642A1 (en) Sea-based hydrogen-oxygen generation system
US10808679B2 (en) Drone mounted wind turbine-generator system
JP2014515711A (en) Cold water recovery system
US8794710B2 (en) Deep undersea mining system and mineral transport system
CN104334448A (en) Method and device for lifting an object from the sea floor
KR20110116385A (en) Ocean energy hybrid system
JP2012012974A (en) Wind power energy recovery floating ship
CN113799929B (en) Telescopic buoyancy cabin and submarine mineral lifting system
AU2021341795B2 (en) Coalification and carbon sequestration using deep ocean hydrothermal borehole vents
US20230304466A1 (en) Systems and methods for harnessing marine hydrokinetic energy
US9181102B2 (en) Method for producing crystallized salt and bittern with a system through the evaporation process
GB2592209A (en) Filtration system
US11794893B2 (en) Transportation system for transporting organic payloads
KR20210022665A (en) Wind turbine, heat pump, energy storage, and heat transfer systems and methods
WO2005075287A1 (en) Gravity-inertia motor
GB2556971A (en) Orca wave energy inversion system
WO2015059345A1 (en) Gas tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5651871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250