JP5651266B1 - Optical receiver AGC circuit and optical receiver with AGC circuit - Google Patents

Optical receiver AGC circuit and optical receiver with AGC circuit

Info

Publication number
JP5651266B1
JP5651266B1 JP2014112870A JP2014112870A JP5651266B1 JP 5651266 B1 JP5651266 B1 JP 5651266B1 JP 2014112870 A JP2014112870 A JP 2014112870A JP 2014112870 A JP2014112870 A JP 2014112870A JP 5651266 B1 JP5651266 B1 JP 5651266B1
Authority
JP
Japan
Prior art keywords
signal
level
attenuation
optical
optical receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014112870A
Other languages
Japanese (ja)
Other versions
JP2015082836A (en
Inventor
直久 朝倉
直久 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014112870A priority Critical patent/JP5651266B1/en
Application granted granted Critical
Publication of JP5651266B1 publication Critical patent/JP5651266B1/en
Publication of JP2015082836A publication Critical patent/JP2015082836A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 光受信器に入力される光信号のレベル差が大きなシステムであっても、光受信器のRF出力レベルを一定に制御することのできるようにする。【解決手段】光受信器が受光素子と、制御回路と、可変減衰器及び増幅器を備え、可変減衰器及び増幅器は二段以上従属接続され、初段の可変減衰器はRF信号を減衰させることなく通過させるスルーラインと、減衰器を備えた減衰ラインと、両ラインを切り替え可能なスイッチを備え、切り替えスイッチは前記制御回路からの制御電圧によりスルーラインと減衰ラインに切り替えられ、光入力レベルが所定レベルよりも低いときは前記切り替えスイッチがスルーラインに切り替えられてRF信号を減衰させることなく通過させ、光入力レベルが所定レベルよりも高いときは減衰器を備えた減衰ラインに切り替えられてとRF信号を減衰ラインの減衰器の減衰量で減衰させて出力できる切り替え式減衰器である。【選択図】 図1PROBLEM TO BE SOLVED: To control an RF output level of an optical receiver to be constant even in a system in which a level difference of an optical signal input to the optical receiver is large. An optical receiver includes a light receiving element, a control circuit, a variable attenuator, and an amplifier. The variable attenuator and the amplifier are cascade-connected in two or more stages, and the first stage variable attenuator does not attenuate the RF signal. It has a through line to pass through, an attenuation line with an attenuator, and a switch that can switch between both lines. The changeover switch is switched between the through line and the attenuation line by the control voltage from the control circuit, and the optical input level is predetermined. When the level is lower than the level, the changeover switch is switched to the through line to pass the RF signal without attenuation, and when the optical input level is higher than the predetermined level, it is switched to the attenuation line with an attenuator. This is a switchable attenuator that can output a signal after attenuation by the attenuation amount of the attenuator of the attenuation line. [Selection] Figure 1

Description

本発明はCATVシステムの光通信の分野で使用される光受信器のAGC回路と、AGC回路を備えた光受信器に関するものであり、光受信器で受光される光信号にレベル変動があっても同受信器から出力されるRF信号のレベルを一定(略一定を含む。以下同じ。)にコントロール(制御)できるものであり、CATVシステムのセンタ、中継装置、加入者端末側のいずれにおいても使用可能なものである。   The present invention relates to an AGC circuit of an optical receiver used in the field of optical communication of a CATV system, and an optical receiver including the AGC circuit, and there is a level fluctuation in an optical signal received by the optical receiver. The level of the RF signal output from the receiver can be controlled (controlled) to be constant (including substantially constant, the same shall apply hereinafter), and any of the CATV system center, relay device, and subscriber terminal side It can be used.

光伝送システムでは光受信器の受光レベルが変化すると、光受信器から出力されるRF信号のレベルも変化する。光受信器では受光レベルが変化してもRF信号の出力レベルは一定であることが望ましい。   In the optical transmission system, when the light reception level of the optical receiver changes, the level of the RF signal output from the optical receiver also changes. In the optical receiver, it is desirable that the output level of the RF signal is constant even if the received light level changes.

従来、受光レベルが変化してもRF信号の出力レベルを一定にするためのAGC回路として特許文献1、2に示すものがある。これらAGC回路は、特許文献1の図1及び図2、特許文献2の図1及び図5に示されているように、いずれも、受光素子(光電変換素子)で光入力信号から変換されたRF信号が初段の増幅器で増幅されてからAGCをかける方式である。   Conventionally, Patent Documents 1 and 2 disclose AGC circuits for keeping the output level of an RF signal constant even when the light reception level changes. As shown in FIGS. 1 and 2 of Patent Document 1 and FIGS. 1 and 5 of Patent Document 2, these AGC circuits are all converted from optical input signals by light receiving elements (photoelectric conversion elements). In this method, AGC is applied after the RF signal is amplified by the first stage amplifier.

特開平8−56200号公報JP-A-8-56200 特開2007−312282号公報JP 2007-31282 A

従来の光受信器には二つの課題があった。一つは光受信器の光入力レベル範囲が広くなると光受信器としての性能を満足できなくなる可能性があること、他の一つは可変減衰回路の減衰範囲の広範囲化(光信号の入力レベルを広範囲に亘って減衰すること)が困難であることである。   Conventional optical receivers have two problems. One is that if the optical input level range of the optical receiver becomes wide, the performance as an optical receiver may not be satisfied, and the other is that the attenuation range of the variable attenuation circuit is widened (the input level of the optical signal) Is attenuated over a wide range).

前記一つ目の課題について詳述する。光受信器の主な性能として、CNR(Carrier to Noise Ratio:信号対雑音比)や複合歪と呼ばれるものがある。複合歪には、CSO(Composite Second Order:複合二次歪)やCTB(Composite Triple Beat:複合三次歪)がある。一般的にCNRは光受信器の光入力レベルが低いときに悪化し、歪は光入力レベルが高いときに悪化する。これら性能は概ね光受信器内部の増幅器の性能により決まる。CNRは増幅器のNF(Noise Figure:ノイズ指数)に、CSO、CTBに代表される歪性能はOIP2(Output 2nd order Intercept Point)、OIP3(Output 3rd order Intercept Point)に大きく影響される。NFと歪性能は相反するものであり、低ノイズのデバイスは歪性能が悪く、低歪のデバイスはノイズ特性が悪いのが一般的である。   The first problem will be described in detail. As the main performance of the optical receiver, there is a so-called CNR (Carrier to Noise Ratio) or composite distortion. Composite distortion includes CSO (Composite Second Order) and CTB (Composite Triple Beat). In general, the CNR worsens when the optical input level of the optical receiver is low, and the distortion worsens when the optical input level is high. These performances are largely determined by the performance of the amplifier in the optical receiver. CNR is greatly influenced by NF (Noise Figure) of the amplifier, and distortion performance represented by CSO and CTB is greatly influenced by OIP2 (Output 2nd order Intercept Point) and OIP3 (Output 3rd order Intercept Point). NF and distortion performance are contradictory, and low noise devices generally have poor distortion performance, and low distortion devices generally have poor noise characteristics.

前記特許文献1の回路構成(本願の図7参照)の場合、光ファイバから入力される光信号は光電変換素子Aで電気信号(RF信号)に変換され、そのRF信号は増幅器Bで増幅され、制御回路Cからの制御電圧で可変増幅器Dの減衰量が調整され、その減衰量で所定レベルに減衰されて出力され、増幅器Eで増幅されて出力される。前記制御電圧は光電変換素子Aから出力される直流電圧(低周波成分を含む)に基づいて制御回路Cで設定される。   In the case of the circuit configuration of Patent Document 1 (see FIG. 7 of the present application), an optical signal input from an optical fiber is converted into an electric signal (RF signal) by a photoelectric conversion element A, and the RF signal is amplified by an amplifier B. The attenuation amount of the variable amplifier D is adjusted by the control voltage from the control circuit C, is attenuated to a predetermined level by the attenuation amount, and is output after being amplified by the amplifier E. The control voltage is set by the control circuit C based on a DC voltage (including a low frequency component) output from the photoelectric conversion element A.

図7の光受信器では、光ファイバから入力されて光電変換されたRF信号は、AGCされる前に増幅されるため、光入力レベルが高くなれば、RF出力レベルも高くなり、前記のように歪性能が劣化する。このため、増幅器Bは、光入力レベルが高い場合でも光受信器としての歪性能を満足できる低歪なデバイスであることが望ましい。一方、光入力レベルが低くなれば、増幅器BへのRF信号の入力レベルも低くなり、前記のようにCNRが劣化する。このため、増幅器Bは光入力が低い場合でも光受信器のCNRを満足できる低ノイズのデバイスであることが望ましい。   In the optical receiver of FIG. 7, since the RF signal input from the optical fiber and photoelectrically converted is amplified before AGC, the RF output level increases as the optical input level increases, as described above. Strain performance deteriorates. Therefore, it is desirable that the amplifier B is a low distortion device that can satisfy the distortion performance as an optical receiver even when the optical input level is high. On the other hand, when the optical input level is lowered, the input level of the RF signal to the amplifier B is also lowered, and the CNR is deteriorated as described above. Therefore, it is desirable that the amplifier B is a low noise device that can satisfy the CNR of the optical receiver even when the optical input is low.

CATVシステムの映像信号の帯域(映像帯域)は、一般に70MHzから始まりBS/CS−IFの右旋・左旋を含めると2602MHzまでと広帯域である。そのため、図7の回路構成の場合、増幅器Bには広帯域、低歪、低ノイズといった性能が求められる。しかし、そのような特性のデバイスは稀である。   The band of the video signal (video band) of the CATV system generally starts from 70 MHz and includes a wide band up to 2602 MHz when BS / CS-IF right / left rotation is included. Therefore, in the case of the circuit configuration of FIG. 7, the amplifier B is required to have performances such as wide band, low distortion, and low noise. However, devices with such characteristics are rare.

他の課題について詳述する。光受信器のAGCに使用される可変減衰器には二つの問題点がある。一つは可変減衰器の減衰量の問題である。可変減衰器は信号レベルを減衰させる回路であるが、減衰させることのできる量(減衰量)は有限であり、ある一定の量以上は減衰させることができない。他の一つは可変減衰器の制御電圧の問題である。AGCには多くの方法(回路)があるが、可変減衰器としてPINダイオードを用いた回路が一般的である。PINダイオードを使用したπ型減衰器を図9に示す。図9のπ型減衰器において、入出力間の減衰量を小さくする場合は、D3に流れる順方向の直流電流を流すことでD3の高周波直列抵抗を小さくし、D1、D2に流れる順方向の直流電流を流さなくすることでD1、D2の高周波直列抵抗を大きくし、減衰器として最小損失とすることができる。入出力間の減衰量を大きくする場合は、D3に順方向の直流電流が流れないようにすることでD3の高周波直列抵抗を大きくし、D1、D2に順方向の直流電流を流すことでD1、D2の高周波直列抵抗を小さくし、減衰器として最大損失とすることができる。図9のVagc電圧を変化させることでD1、D2及びD3に流れる順方向電流を変化させることができ、それぞれの高周波直列抵抗が変化して、入出力間の減衰量を連続変化させることができる。A点電圧の設定と制御電圧Vagcの変化量などの決定はD1〜D3の高周波直列抵抗成分が所望の値になるようにする必要がある。   Other issues will be described in detail. There are two problems with the variable attenuator used in the AGC of the optical receiver. One problem is the amount of attenuation of the variable attenuator. The variable attenuator is a circuit that attenuates the signal level, but the amount (attenuation amount) that can be attenuated is finite, and it cannot be attenuated beyond a certain amount. The other is the problem of the control voltage of the variable attenuator. There are many methods (circuits) for AGC, but a circuit using a PIN diode as a variable attenuator is common. FIG. 9 shows a π-type attenuator using a PIN diode. In the π-type attenuator shown in FIG. 9, when the attenuation between the input and the output is reduced, the high-frequency series resistance of D3 is reduced by flowing a forward DC current flowing through D3, and the forward direction current flowing through D1 and D2 is reduced. By eliminating the direct current, the high-frequency series resistances of D1 and D2 can be increased, and the minimum loss as an attenuator can be achieved. When increasing the amount of attenuation between input and output, the high-frequency series resistance of D3 is increased by preventing forward DC current from flowing through D3, and D1 by flowing forward DC current through D1 and D2. The high-frequency series resistance of D2 can be reduced, and the maximum loss can be achieved as an attenuator. By changing the Vagc voltage in FIG. 9, the forward currents flowing through D1, D2, and D3 can be changed, and the respective high-frequency series resistances can be changed, whereby the attenuation between the input and output can be continuously changed. . The setting of the point A voltage and the determination of the amount of change in the control voltage Vagc, etc. require that the high-frequency series resistance components D1 to D3 have a desired value.

PINダイオードは図8の通り順方向電流が小さくなるにつれて高周波順抵抗の変化率が大きくなるため、制御電圧Vagcは図10のように減衰量が大きくなるにつれて小さくしなければならない。そのため、図10のような減衰特性(減衰量が大きくなると傾きが小さくなる:順方向バイアスが小さくなる)の可変減衰器の場合は、一つの可変減衰器で16dB以上減衰させることは難しい。   In the PIN diode, as the forward current decreases as shown in FIG. 8, the rate of change of the high-frequency forward resistance increases. Therefore, the control voltage Vagc must be reduced as the attenuation increases as shown in FIG. Therefore, in the case of a variable attenuator having an attenuation characteristic as shown in FIG. 10 (inclination decreases as the amount of attenuation increases: forward bias decreases), it is difficult to attenuate by 16 dB or more with one variable attenuator.

また、PINダイオード自身の順方向特性が図8のように非直線性であるため、順方向バイアス電流が小さい場合、波形歪が生じ易く、混変調、相互変調特性が悪化することが知られている。可変減衰器の減衰量を大きくすると順方向バイアス電流(図9の場合は制御電圧Vagc)が小さくなるため歪性能が劣化する。そのため、PINダイオードを用いた可変減衰器で減衰させることのできる減衰量は10数dB程度が上限と考えられている。AGC機能を備えた光受信器は光入力レベルで6dB、つまり電気信号で12dB程度のAGC特性とされているものが多い。日本CATV技術協会で標準仕様化されたJCTEA STD-014-3.0の望ましい性能として、AGC範囲は6dBと規定されている(表1)。   Further, since the forward characteristics of the PIN diode itself are non-linear as shown in FIG. 8, it is known that when the forward bias current is small, waveform distortion is likely to occur, and the intermodulation and intermodulation characteristics deteriorate. Yes. When the attenuation amount of the variable attenuator is increased, the forward bias current (control voltage Vagc in the case of FIG. 9) decreases, so that the distortion performance deteriorates. For this reason, the upper limit of the amount of attenuation that can be attenuated by a variable attenuator using a PIN diode is considered to be about several ten dB. Many optical receivers having an AGC function have an AGC characteristic of about 6 dB at an optical input level, that is, about 12 dB in an electric signal. As a desirable performance of JCTEA STD-014-3.0 standardized by the Japan CATV Technology Association, the AGC range is defined as 6 dB (Table 1).

Figure 0005651266
Figure 0005651266

前記6dBの範囲は、表1に示されているようにRF信号の伝送帯域、強度変調方式によって異なり、−6〜+0dBm、−8〜−2dBm、−12〜−6dBm、−14〜−8dBmのように各種ある。このため、光受信器メーカーは前記範囲のAGCが可能なAGC回路を備えた光受信器を数種類ラインナップする必要があり、製造も管理も大変であった。   As shown in Table 1, the 6 dB range varies depending on the RF signal transmission band and the intensity modulation method, and ranges from −6 to +0 dBm, −8 to −2 dBm, −12 to −6 dBm, and −14 to −8 dBm. There are various types. For this reason, it is necessary for optical receiver manufacturers to line up several types of optical receivers equipped with AGC circuits capable of AGC within the above-mentioned range, and manufacturing and management are difficult.

本発明の目的は、光受信器の光入力レベル差(レベル変動)が大きな光システムであっても、光受信器のRF出力レベルを一定に制御することのできる光受信器のAGC回路と、そのAGC回路を備えた光受信器を提供することにある。   An object of the present invention is to provide an AGC circuit for an optical receiver capable of controlling the RF output level of the optical receiver to be constant even in an optical system in which the optical input level difference (level fluctuation) of the optical receiver is large. An object of the present invention is to provide an optical receiver including the AGC circuit.

本発明の光受信器のAGC回路は、光受信器の受光素子で光信号を光電変換してRF信号と直流電圧を得、そのRF信号のレベルを可変減衰器で調整する光受信器のAGC回路において、光受信器が受光素子と、一つの制御回路と、可変減衰器及び増幅器を備え、可変減衰器及び増幅器は二段以上従属接続され、前記制御回路は前記直流電圧に基づいて制御電圧を設定することができ、初段の可変減衰器は初段の増幅器よりも前段に設けられて、前記RF信号が初段増幅器に入力される前に前記制御回路からの制御信号で減衰量が調整され、その調整後の減衰量で当該RF信号のレベルを調整することができ、二段目以降の可変減衰器は、各段の増幅器よりも前段に設けられ、前記制御回路又はそれとは別の制御回路から出力される制御信号により減衰量が調整され、その調整後の減衰量により、前段の増幅器で増幅されたRF信号のレベルを調整することができ、初段の可変減衰器はRF信号を減衰させることなく通過させるスルーラインと、減衰器を備えた減衰ラインと、両ラインを切り替え可能なスイッチを備え、切り替えスイッチは前記制御回路からの光入力レベルに基づいて設定される制御電圧によりスルーラインと減衰ラインを切り替えることができ、光入力レベルが所定レベルよりも低いときは前記切り替えスイッチがスルーラインに接続されてRF信号を減衰させることなく通過させ、光入力レベルが所定レベルよりも高いときは前記減衰ラインに切り替えて、RF信号を減衰ラインの減衰器の減衰量で減衰させて出力できる切り替え式減衰器であり前記切り替え式減衰器の減衰ラインの減衰器は、制御回路からの制御電圧により減衰量の調節が可能であり、二段目以降の可変減衰器はスルーラインを備えず、減衰ラインのみの減衰器であり、一つの制御回路が初段の可変減衰器の減衰量調整と、二段目以降の一又は二以上の可変減衰器の減衰量調整に共用であり、一つの制御回路が同じ又は異なる電圧の制御電圧を出力でき、一つの制御回路から出力される異なる二以上の制御電圧又は同じ制御電圧で、前記初段の可変減衰器の減衰量と前記二段目以降の一又は二以上の可変減衰器の減衰量を個別に調整することができ、前記初段の可変減衰器の切り替えスイッチは、制御信号が光受信器への最低光入力レベルと最高光入力レベルの中間レベル(ほぼ中間レベルを含む)よりも低い光入力レベルに基づくものであるときはスルーラインに接続され、中間レベルよりも高い光入力レベルに基づくものであるときは減衰ラインに切り替え接続され、前記次段の可変減衰器は、制御信号が光受信器への最低光入力レベルと最高光入力レベルの中間レベル(ほぼ中間レベルを含む)においてリセットされて、リセット前後の光入力レベルと制御電圧との関係を同じ関係(ほぼ同じ関係を含む)になるものである。 An AGC circuit of an optical receiver according to the present invention is an AGC circuit of an optical receiver that photoelectrically converts an optical signal by a light receiving element of the optical receiver to obtain an RF signal and a DC voltage and adjusts the level of the RF signal by a variable attenuator. In the circuit, the optical receiver includes a light receiving element, one control circuit, a variable attenuator and an amplifier, and the variable attenuator and the amplifier are connected in two or more stages, and the control circuit controls the control voltage based on the DC voltage. The first stage variable attenuator is provided before the first stage amplifier, and the attenuation amount is adjusted by the control signal from the control circuit before the RF signal is input to the first stage amplifier. The level of the RF signal can be adjusted by the attenuation amount after the adjustment, and the second and subsequent variable attenuators are provided in front of the amplifiers of the respective stages, and the control circuit or a control circuit different from the control circuit is provided. Control signal output from Is adjusted more attenuation is, the attenuation after the adjustment, it is possible to adjust the level of the amplified RF signal at the preceding stage of the amplifier, through line first-stage variable attenuator to pass without attenuating the RF signal to switch between the, and the attenuation line equipped with attenuators, a switch capable of switching both lines, and through line attenuation line by the control voltage selector switch is set on the basis of the optical input level from the control circuit can be, when the optical input level is lower than the predetermined level, the changeover switch is connected to the through line is passed without attenuation RF signal, when the optical input level is higher than a predetermined level is switched to the damping line Te, a switchable attenuator that can output attenuates the RF signal attenuation of the attenuator in the attenuation lines, the switches Attenuator the attenuation line of the formula attenuator is adjustable attenuation by the control voltage from the control circuit, variable attenuator after the second stage is not provided with a through-line, be attenuator only attenuation line , One control circuit is shared by the first stage variable attenuator and the second and subsequent variable attenuators, and one control circuit controls the same or different voltage. A voltage can be output, and two or more different control voltages or the same control voltage output from one control circuit, the attenuation amount of the first stage variable attenuator and one or more variable attenuators after the second stage. Attenuation amount can be adjusted individually, and the first-stage variable attenuator changeover switch controls the control signal from an intermediate level (including almost the intermediate level) between the lowest optical input level and the highest optical input level to the optical receiver. Based on low light input level If it is based on a light input level higher than the intermediate level, it is switched to an attenuation line, and the variable attenuator in the next stage is connected to the optical receiver. Reset at the intermediate level (including almost the intermediate level) between the lowest optical input level and the highest optical input level, and the relationship between the optical input level before and after the reset and the control voltage becomes the same (including almost the same relationship) It is.

本発明の光受信器のAGC回路は、前記光受信器のAGC回路において、一つの制御回路がCPUであり、CPUの記憶回路にモニタ信号の入力レベルとその入力レベルに対応する出力レベルの対応表(テーブル)が記憶されており、入力されるモニタ信号のレベルに対応する出力信号が前記テーブルから選択されて、可変減衰器の減衰量を制御する制御信号として、二段以上の可変減衰器の夫々に入力されるようにすることもできる。 In the AGC circuit of the optical receiver according to the present invention, in the AGC circuit of the optical receiver, one control circuit is a CPU, and a correspondence between an input level of the monitor signal and an output level corresponding to the input level in the storage circuit of the CPU A table is stored, and an output signal corresponding to the level of the input monitor signal is selected from the table, and two or more variable attenuators are used as control signals for controlling the attenuation amount of the variable attenuator. It is also possible to input to each of the above.

本発明の光受信器は、光信号を光電変換できる受光素子と、当該受光素子で光電変換されたRF信号のレベルを調整可能なAGC回路と、AGC回路でレベル調整されたRF信号を増幅する増幅器を備えた光受信器において、AGC回路が請求項1又は請求項2記載のAGC回路であり、光入力信号を光電変換したRF信号が、前記AGC回路によりレベル調整されるものである。 An optical receiver of the present invention a light receiving element capable of photoelectrically converting an optical signal, an AGC circuit capable of adjusting the level of an RF signal photoelectrically converted by the light receiving element, and an RF signal whose level is adjusted by the AGC circuit In the optical receiver including an amplifier, the AGC circuit is the AGC circuit according to claim 1 or 2 , and the RF signal obtained by photoelectrically converting the optical input signal is level-adjusted by the AGC circuit.

本発明の光受信器のAGC回路は次のような効果を奏する。
(1)RF信号を初段増幅器で増幅する前にAGCするので、RF信号の入力レベルが高いときは、初段増幅器の前の可変減衰器で入力レベルを減衰することができ、初段増幅器への入力過剰によるRF信号の歪(複合二次歪や複合三次歪)の発生が低減する。
(2)RF信号の入力レベルが低いときは、RF信号を初段の可変減衰器のスルーラインを通過させて減衰させずに初段の増幅器に入力させることができるので、CNRの低減を防止できる。
(3)歪の発生、CNRの低減が改善されるため、増幅器が格別、広帯域、低歪、低ノイズのものでなくとも、低歪、低ノイズの光受信器が実現可能である。
(4)同一システムで複数種の光受信器を使用することが無くなるため、CATV事業者にとっては在庫管理が容易になり、光受信器メーカーにとっては複数種の光受信器を用意する必要がないため少ない種類の光受信器を量産でき、コストダウンを図ることができる。また、増幅器に低ノイズのデバイスを選定することが可能となる。
The AGC circuit of the optical receiver of the present invention has the following effects.
(1) Since the AGC before amplifying the RF signal in the first-stage amplifier, when the input level of the RF signal is high, it is possible to attenuate the input level variable attenuator before the first-stage amplifier, the input to the first-stage amplifier Generation of RF signal distortion (composite secondary distortion or composite tertiary distortion) due to excess is reduced.
(2) When the input level of the RF signal is low, the RF signal can be input to the first-stage amplifier without being attenuated by passing through the through line of the first-stage variable attenuator, so that CNR can be prevented from being reduced.
(3) Since distortion generation and CNR reduction are improved, an optical receiver with low distortion and low noise can be realized even if the amplifier is not exceptionally wideband, low distortion and low noise.
(4) Since there is no need to use multiple types of optical receivers in the same system, inventory management becomes easy for CATV operators, and there is no need for optical receiver manufacturers to prepare multiple types of optical receivers. Therefore, a small number of types of optical receivers can be mass-produced, and cost can be reduced. In addition, a low noise device can be selected for the amplifier.

RF信号のAGCを二段以上の可変減衰器で行う場合は、前記効果の他に次のような効果がある。
AGC回路の数だけAGC範囲を広くすることができる(AGC回路が二つの場合はAGC範囲が二倍:例えば、−8〜−2dBmと−14〜−8dBmの範囲を合わせた−14〜−2dBmの広範囲に対応できる:ワイドレンジのAGCが可能となる)。このため、光受信器の光信号入力レベル範囲も、歪性能を劣化させることなく従来の二倍にすることが可能である。
When the AGC of the RF signal is performed by a variable attenuator having two or more stages, the following effects can be obtained in addition to the above effects.
The AGC range can be widened by the number of AGC circuits (when there are two AGC circuits, the AGC range is doubled: for example, −14 to −2 dBm, which is a combination of −8 to −2 dBm and −14 to −8 dBm) A wide range of AGC is possible). For this reason, the optical signal input level range of the optical receiver can be doubled as compared with the conventional one without degrading the distortion performance.

本発明の光受信器のAGC回路の一例を示したブロック図。The block diagram which showed an example of the AGC circuit of the optical receiver of this invention. 本発明の光受信器のAGC回路の他例を示したブロック図。The block diagram which showed the other example of the AGC circuit of the optical receiver of this invention. (a)、(b)は受光素子によるRF信号、直流信号の取り出し方法の説明図。(A), (b) is explanatory drawing of the extraction method of RF signal and DC signal by a light receiving element. (a)はCPUを使用した制御回路の説明図、(b)は比較器を使用した制御回路の説明図、(c)はオペアンプを使用した制御回路の説明図。(A) is explanatory drawing of the control circuit using CPU, (b) is explanatory drawing of the control circuit using a comparator, (c) is explanatory drawing of the control circuit using an operational amplifier. 可変減衰器の一例を示す説明図。Explanatory drawing which shows an example of a variable attenuator. 本発明の光受信器のAGC回路による光入力レベルとコントロール電圧の関係の一例を示す説明図。Explanatory drawing which shows an example of the relationship between the optical input level and control voltage by the AGC circuit of the optical receiver of this invention. AGC回路を備えた従来の光受信器の説明図。Explanatory drawing of the conventional optical receiver provided with the AGC circuit. 制御電圧と減衰量の関係を示すグラフ。The graph which shows the relationship between a control voltage and attenuation amount. PINダイオードを用いた可変減衰回路の一例を示す説明図。Explanatory drawing which shows an example of the variable attenuation circuit using a PIN diode. 可変減衰回路の減衰量とコントロール電圧の関係を示す説明図。Explanatory drawing which shows the relationship between the attenuation amount of a variable attenuation circuit, and a control voltage.

(実施形態1)
本発明のAGC回路を備えた光受信器の一例を、図面を参照して説明する。本発明の光受信器のAGC回路は可変減衰器と増幅器と制御回路で構成される。可変減衰器と増幅器は二段以上としてある。本発明のAGC回路を備えた光受信器の一例として図1に示す光受信器は可変減衰器と増幅器が二段の場合の例である。
(Embodiment 1)
An example of an optical receiver including the AGC circuit of the present invention will be described with reference to the drawings. The AGC circuit of the optical receiver of the present invention includes a variable attenuator, an amplifier, and a control circuit. The variable attenuator and the amplifier have two or more stages. As an example of an optical receiver provided with the AGC circuit of the present invention, the optical receiver shown in FIG. 1 is an example in which a variable attenuator and an amplifier are two stages.

図1に示す光受信器は受光素子(光電変換素子)1、初段可変減衰器2、初段増幅器3、次段可変減衰器4、次段増幅器5、初段制御回路6、次段制御回路7を備える。このうち、初段可変減衰器2と初段制御回路6で初段AGC回路が構成され、次段可変減衰器4と次段制御回路7で次段AGC回路が構成されている。   The optical receiver shown in FIG. 1 includes a light receiving element (photoelectric conversion element) 1, a first stage variable attenuator 2, a first stage amplifier 3, a next stage variable attenuator 4, a next stage amplifier 5, a first stage control circuit 6, and a next stage control circuit 7. Prepare. Among these, the first stage AGC circuit is configured by the first stage variable attenuator 2 and the first stage control circuit 6, and the next stage AGC circuit is configured by the next stage variable attenuator 4 and the next stage control circuit 7.

(受光素子)
受光素子1には各種受光素子を使用することができるが、一例として図3(a)(b)に示す受光素子1はフォトダイオードである。図3(a)ではフォトダイオードのカソード側がチョークコイルLを介してバイアス電圧Vccに接続され、アノード側が抵抗RとコンデンサCを介して接地(アース)されている。フォトダイオードで光電変換されたRF信号はカソード側(チョークコイルL)からコンデンサCを介して取り出され、低周波を含む直流信号(モニタ信号)がアノード側から取り出されるようにしてある。
(Light receiving element)
Various light receiving elements can be used as the light receiving element 1, but the light receiving element 1 shown in FIGS. 3A and 3B is a photodiode as an example. The cathode side of FIGS. 3 (a) In the photodiode is connected to the bias voltage Vcc via a choke coil L, the anode side is grounded via a resistor R and a capacitor C 1 (ground). RF signals photoelectrically converted by the photodiode is taken out from the cathode side (choke coil L) through a capacitor C 2, it is as DC signal including a low frequency (monitor signal) is taken out from the anode side.

(RF信号、モニタ電流)
RF信号及び直流信号の取出しは図3(b)のようにして行うこともできる。図3(b)ではフォトダイオードのカソード側が抵抗Rを介してバイアス電圧Vccに接続され、コンデンサCを介して接地され、アノード側がチョークコイルLを介して接地されて、フォトダイオードで光電変換されたRF信号がアノード側(チョークコイルL)からコンデンサCを介して取り出され、低周波を含む直流信号(モニタ信号)がカソード側から取り出されるようにしてある。
(RF signal, monitor current)
The extraction of the RF signal and the DC signal can also be performed as shown in FIG. Cathode shown in FIG. 3 (b) the photodiode is connected to the bias voltage Vcc via the resistor R, is grounded via a capacitor C 3, the anode is grounded through a choke coil L, it is photoelectrically converted by the photodiode RF signal is taken out from the anode side (the choke coil L) through a capacitor C 4, it is as DC signal including a low frequency (monitor signal) is taken out from the cathode side.

(増幅器)
図1の初段増幅器3、次段増幅器5には汎用の高周波用増幅器を使用することができる。
(amplifier)
A general-purpose high-frequency amplifier can be used as the first-stage amplifier 3 and the next-stage amplifier 5 in FIG.

(制御回路)
図1の初段制御回路6、次段制御回路7にも汎用のAGC用制御回路を使用することができる。両制御回路6、7は同じ構成であっても異なる構成であってもよく、出力電圧も同じでも異なるものでもよい。初段制御回路6、次段制御回路7の各種例を図4(a)〜(c)に示す。
(Control circuit)
A general-purpose AGC control circuit can be used for the first stage control circuit 6 and the next stage control circuit 7 of FIG. Both control circuits 6 and 7 may have the same configuration or different configurations, and the output voltages may be the same or different. Various examples of the first stage control circuit 6 and the next stage control circuit 7 are shown in FIGS.

図4(a)に示す制御回路6、7はCPUを使用した汎用のAGC制御回路である。この制御回路6(7)ではCPUの内部(記憶回路)に、モニタ信号の入力レベルと、その入力レベルに対応する出力ベルの対応表(テーブル)が記憶されており、入力されるモニタ信号のレベルに基づいて前記テーブルから出力信号が選択されて制御信号として設定されて、可変減衰器2(4)に入力されるようにしてある。   The control circuits 6 and 7 shown in FIG. 4A are general-purpose AGC control circuits using a CPU. In the control circuit 6 (7), the input level of the monitor signal and the output bell correspondence table corresponding to the input level are stored in the CPU (storage circuit). An output signal is selected from the table based on the level, set as a control signal, and input to the variable attenuator 2 (4).

図4(b)に示す制御回路6(7)は比較器(コンパレータ)を使用した汎用のAGC用制御回路である。この制御回路6(7)ではモニタ信号の入力レベルと、制御回路6(7)に予め設定されている基準レベルを比較器で比較して適正な制御信号を設定し、その制御信号が出力される(可変減衰器2(4)に入力される)ようにしてある。   A control circuit 6 (7) shown in FIG. 4B is a general-purpose AGC control circuit using a comparator. In this control circuit 6 (7), the input level of the monitor signal and the reference level preset in the control circuit 6 (7) are compared by a comparator to set an appropriate control signal, and the control signal is output. (Input to the variable attenuator 2 (4)).

図4(c)に示す制御回路6(7)はオペアンプを使用した汎用のAGC用制御回路である。この制御回路6(7)ではモニタ信号の入力レベルに基づいてオペアンプの電圧利得を調整して制御電圧を設定し、その制御電圧を可変減衰器2(4)に入力できるようにしてある。   A control circuit 6 (7) shown in FIG. 4C is a general-purpose AGC control circuit using an operational amplifier. In the control circuit 6 (7), the control voltage is set by adjusting the voltage gain of the operational amplifier based on the input level of the monitor signal, and the control voltage can be input to the variable attenuator 2 (4).

(可変減衰器)
図1の初段可変減衰器2、次段可変減衰器4には汎用の可変減衰器(ATT)を使用することができる。少なくとも6dBの可変範囲のものが使用される。両可変減衰器2、4は同じ構成のものでも異なる構成のものでもよい。
(Variable attenuator)
A general-purpose variable attenuator (ATT) can be used for the first stage variable attenuator 2 and the next stage variable attenuator 4 in FIG. A variable range of at least 6 dB is used. Both variable attenuators 2 and 4 may have the same configuration or different configurations.

前記可変減衰器2、4にはPINダイオードを使用した回路や、スイッチによりスルーラインSLと減衰ラインALを切り替える回路など、減衰量を可変できる回路であればどのようなものであっても構わない。図5に示す回路は、制御回路6(7)からAGC電圧が入力されると、スイッチ(スイッチSWとスイッチSW)が切り替わるように構成されている。例えば、最低光入力レベルが−14dBm、最高光入力レベルが−2dBmの光受信器の場合、スイッチSWとスイッチSWは、−8dBm未満ではA−B及びB’−A’が接続され、−8dBm以上ではA−C及びC’−A’が接続される。このスイッチSW、SWを切り替えることにより、光入力レベルが−8dBm以上になった場合、12dBの減衰回路が接続されるため信号レベルは12dB減衰される。これにより、増幅器3、5の歪性能はリセットされ改善する。 The variable attenuators 2 and 4 may be any circuit as long as the amount of attenuation can be varied, such as a circuit using a PIN diode or a circuit that switches between the through line SL and the attenuation line AL by a switch. . The circuit shown in FIG. 5 is configured to switch the switches (switch SW 1 and switch SW 2 ) when an AGC voltage is input from the control circuit 6 (7). For example, in the case of an optical receiver having a minimum optical input level of −14 dBm and a maximum optical input level of −2 dBm, the switches SW 1 and SW 2 are connected to AB and B′-A ′ when less than −8 dBm. AC and C′-A ′ are connected at −8 dBm or more. When the optical input level becomes -8 dBm or more by switching the switches SW 1 and SW 2 , the signal level is attenuated by 12 dB because a 12 dB attenuation circuit is connected. As a result, the distortion performance of the amplifiers 3 and 5 is reset and improved.

同様に、可変減衰器も−8dBm未満と−8dBm以上で制御電圧がリセットされる必要がある。これは、一つの可変減衰器では減衰させる量に限界があるためである。可変減衰器への制御電圧は図6のようになることが望ましい。このようなAGC制御をすることにより、光受信器のRF出力レベルは−14dBm〜−2dBmまで一定の値を出力することができ、広範囲のレベル調整ができる。 Similarly, the control voltage of the variable attenuator 4 needs to be reset at less than −8 dBm and at −8 dBm or more. This is because there is a limit to the amount of attenuation with one variable attenuator. The control voltage to the variable attenuator 4 is preferably as shown in FIG. By performing such AGC control, the RF output level of the optical receiver can output a constant value from −14 dBm to −2 dBm, and a wide range of level adjustment can be performed.

(AGC制御)
図1の光受信器では、受光素子1に入力された光信号が電気信号に変換されて、RF信号と直流電圧が出力される。RF信号は初段増幅器3に入力される前に、初段制御回路6から初段可変減衰器2にAGC電圧が供給されて初段可変減衰器2の減衰量が調整され、その減衰量でRF信号のレベルが一定になるようにAGCされる。制御電圧は受光素子1から出力される前記直流電圧が初段制御回路6に入力され、その直流電圧のレベルに基づいて設定される。
(AGC control)
In the optical receiver of FIG. 1, an optical signal input to the light receiving element 1 is converted into an electric signal, and an RF signal and a DC voltage are output. Before the RF signal is input to the first-stage amplifier 3, the AGC voltage is supplied from the first-stage control circuit 6 to the first-stage variable attenuator 2, and the attenuation amount of the first-stage variable attenuator 2 is adjusted. AGC is performed so that is constant. As the control voltage, the DC voltage output from the light receiving element 1 is input to the first stage control circuit 6 and set based on the level of the DC voltage.

前記AGCされたRF信号は、初段増幅器3で増幅されて次段可変減衰器4に入力される。このとき、次段制御回路7から次段可変減衰器4にAGC電圧が供給されて次段可変減衰器4の減衰量が調整され、その減衰量でRF信号のレベルが一定になるようにAGCされて、次段増幅器5に送られる。この場合も、前記直流電圧が初段制御回路7に入力され、そのモニタ電圧のレベルに基づいて設定される。   The AGC RF signal is amplified by the first stage amplifier 3 and input to the next stage variable attenuator 4. At this time, the AGC voltage is supplied from the next-stage control circuit 7 to the next-stage variable attenuator 4 to adjust the attenuation amount of the next-stage variable attenuator 4, and the AGC level is set so that the level of the RF signal becomes constant with the attenuation amount. Then, it is sent to the next stage amplifier 5. Also in this case, the DC voltage is input to the first stage control circuit 7 and set based on the level of the monitor voltage.

前記次段増幅器5で所定レベルに増幅されたRF信号は、その先の受信端末(図示しない)に出力される。   The RF signal amplified to a predetermined level by the next stage amplifier 5 is output to a receiving terminal (not shown) ahead.

(実施形態2)
本発明のAGC回路を備えた光受信器の例を図2に示す。図2の基本的構成は図1の場合と同じであり、異なるのは、初段制御回路6と次段制御回路7を兼用としたことである。この場合も、受光素子1から出力される前記直流電圧が制御回路6(7)に入力され、その直流電圧のレベルに基づいてAGC電圧が設定され、そのAGC電圧が初段可変減衰器2、次段可変減衰器4に送られて、夫々の可変減衰器2、4の減衰量が調整される。
(Embodiment 2)
An example of an optical receiver including the AGC circuit of the present invention is shown in FIG. The basic configuration of FIG. 2 is the same as that of FIG. 1, and the difference is that the first-stage control circuit 6 and the next-stage control circuit 7 are also used. Also in this case, the DC voltage output from the light receiving element 1 is input to the control circuit 6 (7), and the AGC voltage is set based on the level of the DC voltage. It is sent to the stage variable attenuator 4, and the attenuation amount of each variable attenuator 2, 4 is adjusted.

前記制御回路6(7)にはCPUやマイコン等を使用することもできる。具体的には、図2に示すように、直流電圧取出し端子(モニタ用端子)8にCPUやマイコンなどを使用した制御回路6(7)を配置し、当該制御回路6(7)を初段可変減衰器2及び次段可変減衰器4の双方に接続することができる。   For the control circuit 6 (7), a CPU, a microcomputer or the like can be used. Specifically, as shown in FIG. 2, a control circuit 6 (7) using a CPU, a microcomputer or the like is arranged at a DC voltage extraction terminal (monitoring terminal) 8, and the control circuit 6 (7) is variable at the first stage. Both the attenuator 2 and the next-stage variable attenuator 4 can be connected.

前記実施形態は、初段増幅器3の前に設けた初段可変減衰器2でAGCする場合であるが、二以上のAGCを行う場合は、必ずしも初段増幅器3の前の初段可変減衰器2でAGCする必要はなく、任意の二以上の段の可変減衰器でAGCすることもできる。この場合のAGCは前記実施形態のAGCと同様に行うことができる。   In the above embodiment, AGC is performed by the first-stage variable attenuator 2 provided before the first-stage amplifier 3. However, when two or more AGCs are performed, the AGC is necessarily performed by the first-stage variable attenuator 2 before the first-stage amplifier 3. It is not necessary, and AGC can be performed with any two or more stages of variable attenuators. The AGC in this case can be performed in the same manner as the AGC in the above embodiment.

前記実施形態は、可変減衰器2、4を必ず各段の増幅器3、5の前に設けた場合であるが、本発明ではこの構成に限ることなく、例えば、いずれかの段では可変減衰器が二以上連続配置され、その後に増幅器が一段又は二段以上配置されるとか、いずれかの段では増幅器が二以上連続配置され、それら二以上の増幅器の前に可変減衰器が一段又は二段以上配置される構成であってもよい。この場合のAGCも前記実施形態のAGCと同様に行うことができる。   In the above-described embodiment, the variable attenuators 2 and 4 are always provided in front of the amplifiers 3 and 5 in each stage. However, the present invention is not limited to this configuration. 2 or more are continuously arranged, and then the amplifier is arranged in one or more stages, or in any stage, two or more amplifiers are arranged in series, and the variable attenuator is arranged in one or two stages before the two or more amplifiers. The structure arrange | positioned above may be sufficient. The AGC in this case can be performed in the same manner as the AGC in the above embodiment.

1 受光素子(光電変換素子)
2 初段可変減衰器
3 初段増幅器
4 次段可変減衰器
5 次段増幅器
6 初段制御回路
7 次段制御回路
8 直流電圧取出し端子(モニタ用端子)
SWスイッチ
SWスイッチ
A 受光素子(光電変換素子)
B 増幅器
C 制御回路
D 可変減衰器
E 増幅器
F モニタ用端子
1 Light receiving element (photoelectric conversion element)
2 First stage variable attenuator 3 First stage amplifier 4 Next stage variable attenuator 5 Next stage amplifier 6 First stage control circuit 7 Next stage control circuit 8 DC voltage extraction terminal (monitoring terminal)
SW 1 switch SW 2 switch A Light receiving element (photoelectric conversion element)
B Amplifier C Control circuit D Variable attenuator E Amplifier F Monitor terminal

Claims (3)

光受信器の受光素子で光信号を光電変換してRF信号と直流電圧を得、そのRF信号のレベルを可変減衰器で調整する光受信器のAGC回路において、
光受信器が受光素子と、一つの制御回路と、可変減衰器及び増幅器を備え、可変減衰器及び増幅器は二段以上従属接続され、
前記制御回路は前記直流電圧に基づいて制御電圧を設定することができ、
初段の可変減衰器は初段の増幅器よりも前段に設けられて、前記RF信号が初段増幅器に入力される前に前記制御回路からの制御信号で減衰量が調整され、その調整後の減衰量で当該RF信号のレベルを調整することができ、
二段目以降の可変減衰器は、各段の増幅器よりも前段に設けられ、前記制御回路又はそれとは別の制御回路から出力される制御信号により減衰量が調整され、その調整後の減衰量により、前段の増幅器で増幅されたRF信号のレベルを調整することができ、
初段の可変減衰器はRF信号を減衰させることなく通過させるスルーラインと、減衰器を備えた減衰ラインと、両ラインを切り替え可能なスイッチを備え、切り替えスイッチは前記制御回路からの光入力レベルに基づいて設定される制御電圧によりスルーラインと減衰ラインを切り替えることができ、光入力レベルが所定レベルよりも低いときは前記切り替えスイッチがスルーラインに接続されてRF信号を減衰させることなく通過させ、光入力レベルが所定レベルよりも高いときは前記減衰ラインに切り替えて、RF信号を減衰ラインの減衰器の減衰量で減衰させて出力できる切り替え式減衰器であり
前記切り替え式減衰器の減衰ラインの減衰器は、制御回路からの制御電圧により減衰量の調節が可能であり、
二段目以降の可変減衰器はスルーラインを備えず、減衰ラインのみの減衰器であり、
一つの制御回路が初段の可変減衰器の減衰量調整と、二段目以降の一又は二以上の可変減衰器の減衰量調整に共用であり、
一つの制御回路が同じ又は異なる電圧の制御電圧を出力でき、
一つの制御回路から出力される異なる二以上の制御電圧又は同じ制御電圧で、前記初段の可変減衰器の減衰量と前記二段目以降の一又は二以上の可変減衰器の減衰量を個別に調整することができ、
前記初段の可変減衰器の切り替えスイッチは、制御信号が光受信器への最低光入力レベルと最高光入力レベルの中間レベル(ほぼ中間レベルを含む)よりも低い光入力レベルに基づくものであるときはスルーラインに接続され、中間レベルよりも高い光入力レベルに基づくものであるときは減衰ラインに切り替え接続され、
前記次段の可変減衰器は、制御信号が光受信器への最低光入力レベルと最高光入力レベルの中間レベル(ほぼ中間レベルを含む)においてリセットされて、リセット前後の光入力レベルと制御電圧との関係を同じ関係(ほぼ同じ関係を含む)になるものである、
ことを特徴とする光受信器のAGC回路。
In an AGC circuit of an optical receiver that photoelectrically converts an optical signal with a light receiving element of an optical receiver to obtain an RF signal and a DC voltage and adjusts the level of the RF signal with a variable attenuator,
The optical receiver includes a light receiving element, one control circuit, a variable attenuator and an amplifier, and the variable attenuator and the amplifier are cascade-connected in two or more stages.
The control circuit can set a control voltage based on the DC voltage,
The first-stage variable attenuator is provided in front of the first-stage amplifier, and before the RF signal is input to the first-stage amplifier, the attenuation is adjusted by the control signal from the control circuit. The level of the RF signal can be adjusted,
The variable attenuators in the second and subsequent stages are provided in front of the amplifiers in the respective stages, and the attenuation is adjusted by a control signal output from the control circuit or a control circuit different from the control circuit. Can adjust the level of the RF signal amplified by the amplifier in the previous stage,
The first stage of the variable attenuator and through the line to pass without attenuating the RF signal, an attenuation line with an attenuator, a switch capable of switching both lines, the selector switch to the optical input level from the control circuit based can switch through line attenuation line by a control voltage which is set, when the optical input level is lower than the predetermined level is passed without attenuation RF signal the changeover switch is connected to the through line , when the optical input level is higher than a predetermined level by switching on the damping lines, a switchable attenuator that can output attenuates the RF signal attenuation of the attenuator in the attenuation lines,
The attenuator of the attenuation line of the switchable attenuator can adjust the amount of attenuation by a control voltage from a control circuit,
The variable attenuators in the second and subsequent stages are not equipped with through lines, but are only attenuators.
One control circuit is shared for the attenuation adjustment of the first stage variable attenuator and the attenuation adjustment of one or more variable attenuators after the second stage.
One control circuit can output the same or different control voltage,
With two or more different control voltages or the same control voltage output from one control circuit, the attenuation amount of the first stage variable attenuator and the attenuation amount of one or more variable attenuators after the second stage are individually set. Can be adjusted,
When the control signal of the first-stage variable attenuator is based on an optical input level lower than an intermediate level (including almost the intermediate level) between the lowest optical input level and the highest optical input level to the optical receiver. Is connected to the through line and switched to the attenuation line when it is based on a light input level higher than the intermediate level,
In the variable attenuator at the next stage, the control signal is reset at an intermediate level (including almost the intermediate level) between the lowest optical input level and the highest optical input level to the optical receiver. Is the same relationship (including almost the same relationship),
An AGC circuit for an optical receiver.
請求項1記載の光受信器のAGC回路において、
一つの制御回路がCPUであり、CPUの記憶回路にモニタ信号の入力レベルとその入力レベルに対応する出力レベルの対応表(テーブル)が記憶されており、入力されるモニタ信号のレベルに対応する出力信号が前記テーブルから選択されて、可変減衰器の減衰量を制御する制御信号として、二段以上の可変減衰器の夫々に入力される、
ことを特徴とする光受信器のAGC回路。
The AGC circuit of the optical receiver according to claim 1,
One control circuit is a CPU, and a correspondence table (table) of the monitor signal input level and the output level corresponding to the input level is stored in the memory circuit of the CPU, and corresponds to the level of the input monitor signal. An output signal is selected from the table and input to each of the two or more variable attenuators as a control signal for controlling the attenuation amount of the variable attenuator.
An AGC circuit for an optical receiver.
光信号を光電変換できる受光素子と、当該受光素子で光電変換されたRF信号のレベルを調整可能なAGC回路と、AGC回路でレベル調整されたRF信号を増幅する増幅器を備えた光受信器において、
AGC回路が請求項1又は請求項2記載のAGC回路であり、光入力信号を光電変換したRF信号が、前記AGC回路によりレベル調整される、
ことを特徴とする光受信器。
In an optical receiver comprising a light receiving element capable of photoelectrically converting an optical signal, an AGC circuit capable of adjusting the level of an RF signal photoelectrically converted by the light receiving element, and an amplifier for amplifying the RF signal level-adjusted by the AGC circuit ,
The AGC circuit is the AGC circuit according to claim 1 or claim 2 , and an RF signal obtained by photoelectrically converting an optical input signal is level-adjusted by the AGC circuit.
An optical receiver.
JP2014112870A 2014-05-30 2014-05-30 Optical receiver AGC circuit and optical receiver with AGC circuit Active JP5651266B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112870A JP5651266B1 (en) 2014-05-30 2014-05-30 Optical receiver AGC circuit and optical receiver with AGC circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112870A JP5651266B1 (en) 2014-05-30 2014-05-30 Optical receiver AGC circuit and optical receiver with AGC circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013220308 Division 2013-10-23

Publications (2)

Publication Number Publication Date
JP5651266B1 true JP5651266B1 (en) 2015-01-07
JP2015082836A JP2015082836A (en) 2015-04-27

Family

ID=52344883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112870A Active JP5651266B1 (en) 2014-05-30 2014-05-30 Optical receiver AGC circuit and optical receiver with AGC circuit

Country Status (1)

Country Link
JP (1) JP5651266B1 (en)

Also Published As

Publication number Publication date
JP2015082836A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
US7362178B2 (en) Wide dynamic range amplifier gain control
US5267071A (en) Signal level control circuitry for a fiber communications system
US7242871B2 (en) High dynamic range optical receiver
KR19990007996A (en) Automatic Gain Control Circuitry for Tuner
US11309845B2 (en) Reconfigurable optical receivers for extended maximum input signals
US7023294B2 (en) System and a method for reducing tilt effects in a radio frequency attenuator
US8035445B2 (en) Frequency response compensation amplifier arrangements
US6339356B1 (en) Variable attenuator
JP3779562B2 (en) booster
JP5651266B1 (en) Optical receiver AGC circuit and optical receiver with AGC circuit
US6549087B1 (en) Variable equalizer with independently controlled branches based on different frequency breakpoints
JP2005312043A (en) Amplifier for television receiver
JP2005006280A (en) Amplifier for television receiver
JPH1169333A (en) Reception amplifier for catv
JP3896962B2 (en) Tuner circuit
US11863145B1 (en) Automatic gain control (AGC) using a wideband RF tuner in RF amplifiers in a hybrid fiber-coaxial (HFC) network
JP4612394B2 (en) TV receiver amplifier
KR100764373B1 (en) Television receiver with rf low noise agc
US20210399704A1 (en) Variable gain amplifier system, particularly for optical receiver systems
JP2010258858A (en) Feedforward type agc circuit
JP5851137B2 (en) Optical receiver
JP2009027463A (en) Common-use receiver for terrestrial wave tv and catv
JP2007500989A (en) Channel selector with automatic gain control
JP2008529392A (en) Receiving device having input stage capable of gain control
JPH07131776A (en) Level adjustment device for catv

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5651266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250