JP5650969B2 - Electrode material, spark plug electrode, and spark plug - Google Patents

Electrode material, spark plug electrode, and spark plug Download PDF

Info

Publication number
JP5650969B2
JP5650969B2 JP2010213513A JP2010213513A JP5650969B2 JP 5650969 B2 JP5650969 B2 JP 5650969B2 JP 2010213513 A JP2010213513 A JP 2010213513A JP 2010213513 A JP2010213513 A JP 2010213513A JP 5650969 B2 JP5650969 B2 JP 5650969B2
Authority
JP
Japan
Prior art keywords
electrode
electrode material
spark plug
oxidation
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010213513A
Other languages
Japanese (ja)
Other versions
JP2012069393A (en
Inventor
義幸 高木
義幸 高木
西川 太一郎
太一郎 西川
和郎 山▲崎▼
和郎 山▲崎▼
新 冨田
冨田  新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumiden Fine Conductors Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010213513A priority Critical patent/JP5650969B2/en
Priority to PCT/JP2011/071476 priority patent/WO2012039421A1/en
Priority to DE112011102753.2T priority patent/DE112011102753B4/en
Publication of JP2012069393A publication Critical patent/JP2012069393A/en
Application granted granted Critical
Publication of JP5650969B2 publication Critical patent/JP5650969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Description

本発明は、自動車などに具える内燃機関の点火プラグの電極に利用される電極材料、この電極材料からなる電極、及びこの電極を具える点火プラグに関するものである。特に、高温での耐酸化性に優れ、かつ火花により消耗し難く、電極表面に化合物粒が形成され難い点火プラグ用電極が得られる電極材料に関するものである。   The present invention relates to an electrode material used for an electrode of an ignition plug of an internal combustion engine included in an automobile or the like, an electrode made of the electrode material, and an ignition plug including the electrode. In particular, the present invention relates to an electrode material from which an electrode for a spark plug is obtained that is excellent in oxidation resistance at high temperature, is not easily consumed by a spark, and is difficult to form compound particles on the electrode surface.

従来、自動車のガソリンエンジンなどの内燃機関の点火には、点火プラグ(スパークプラグ)が用いられている。点火プラグは、代表的には、棒状の中心電極と、中心電極の端面に対向するように離間して配置された接地電極とを具える。上記中心電極と接地電極との間で火花放電を行い、この放電により両電極間に流入する燃料混合気体に点火する。   Conventionally, an ignition plug (spark plug) is used for ignition of an internal combustion engine such as an automobile gasoline engine. The spark plug typically includes a rod-shaped center electrode and a ground electrode disposed so as to face the end surface of the center electrode. A spark discharge is performed between the center electrode and the ground electrode, and this discharge ignites the fuel gas mixture flowing between the electrodes.

上記電極材料として、特許文献1では、Al,Si,Cr,Mn,Yを含有するニッケル合金を開示している。   As the electrode material, Patent Document 1 discloses a nickel alloy containing Al, Si, Cr, Mn, and Y.

特許第4295501号公報Japanese Patent No. 4295501

点火プラグの電極に求められる特性として、酸化し難く(耐酸化性、特に高温での耐酸化性に優れ)、火花により消耗し難く(耐火花消耗性に優れ)、電極表面にニッケルを含有する化合物粒(後述)が形成され難いことが望まれる。特許文献1に記載される電極材料は、特定の元素を含有することでこれらの要求を満たしている。   The characteristics required of an electrode of a spark plug are difficult to oxidize (oxidation resistance, particularly excellent oxidation resistance at high temperatures), hardly consumed by sparks (excellent resistance to spark consumption), and contains nickel on the electrode surface. It is desired that compound grains (described later) are difficult to be formed. The electrode material described in Patent Document 1 satisfies these requirements by containing a specific element.

近年、環境保全対策などのために自動車などの燃費を向上することが望まれている。例えば、内燃機関における燃焼温度を高めることで燃費を向上することができる。しかし、燃焼温度を更に高めることで、点火プラグの電極は、従来よりも更に高温環境で使用されることになる。例えば、従来の一般的な自動車のガソリンエンジンの使用時の最高到達温度は900℃〜1000℃程度であり、燃焼温度を高めた場合、この温度よりも+100℃程度といった高温環境になり得る。   In recent years, it has been desired to improve the fuel efficiency of automobiles for environmental conservation measures. For example, fuel efficiency can be improved by increasing the combustion temperature in the internal combustion engine. However, by further increasing the combustion temperature, the spark plug electrode is used in a higher temperature environment than before. For example, the maximum temperature reached when using a conventional general gasoline engine of an automobile is about 900 ° C. to 1000 ° C., and when the combustion temperature is increased, a high temperature environment of about + 100 ° C. can be obtained.

上述のように昨今、点火プラグの使用環境は、従来よりも非常に高温となってきており、更に酸化し易い環境と言える。従って、上述の種々の要求特性の中でも、耐高温酸化性により優れることが望まれる。   As described above, in recent years, the use environment of the spark plug has become much higher than before and can be said to be an environment that is more easily oxidized. Therefore, it is desired that the high-temperature oxidation resistance is superior among the above-mentioned various required characteristics.

酸化抑制効果を高めるには、特許文献1に記載されるAlやSiの含有量を多くすることが効果的である。しかし、添加元素の増量は、比抵抗の増大を招き、その結果、火花により消耗し易くなる。従って、耐火花消耗性を考慮すると、AlやSiなどの添加元素の含有量の増加により、更なる高温環境に対して耐酸化性を向上することには限界がある。また、Alは、点火プラグの使用時に雰囲気中の窒素と反応して窒化物(AlN)を形成する。ここで、ニッケル合金からなる電極は、使用時、表面に酸化物層が形成され、この表面の酸化物層により、内部への酸化をある程度抑制している。しかし、上記窒化物が形成されると、熱膨張により酸化物層に亀裂が生じたり、酸化物層が剥離したりして、酸化が進行し易くなる傾向にある。このことからも、Alを単に多くしても、耐高温酸化性の向上に限界がある。   In order to enhance the oxidation suppression effect, it is effective to increase the content of Al or Si described in Patent Document 1. However, an increase in the additive element causes an increase in specific resistance, and as a result, it is easily consumed by a spark. Therefore, considering the spark wear resistance, there is a limit to improving the oxidation resistance against a further high temperature environment by increasing the content of additive elements such as Al and Si. Also, Al reacts with nitrogen in the atmosphere when using the spark plug to form nitride (AlN). Here, when an electrode made of a nickel alloy is used, an oxide layer is formed on the surface, and the oxidation on the surface is suppressed to some extent by the oxide layer on the surface. However, when the nitride is formed, the oxide layer is cracked due to thermal expansion or the oxide layer is peeled off, so that the oxidation tends to proceed easily. For this reason as well, even if Al is simply increased, there is a limit to improving the high-temperature oxidation resistance.

また、上述のような更なる高温環境では、電極を構成する結晶粒が成長して粗大になり易い。粗大化により結晶粒界が短くなると、電極の外部から酸素が上記結晶粒界を伝って電極内部に侵入し易く、侵入度合い(深度)が深くなり、電極内部で酸化し易くなる。従って、更なる高温環境での使用では、粒成長の抑制による耐酸化性の向上も望まれる。   Moreover, in the further high temperature environment as described above, the crystal grains constituting the electrode are likely to grow and become coarse. When the crystal grain boundary becomes shorter due to the coarsening, oxygen easily enters the electrode through the crystal grain boundary from the outside of the electrode, and the degree of penetration (depth) becomes deep, and it is easy to oxidize inside the electrode. Therefore, when used in a higher temperature environment, it is also desired to improve oxidation resistance by suppressing grain growth.

一方、点火プラグの使用時、電極の母相のニッケルと、ガソリンやエンジンオイル等に由来する雰囲気中の元素(アルカリ金属元素、アルカリ土類金属元素、リンなど)とが反応して、電極表面、特に、電極において火花放電が行われる部分(主として中心電極及び接地電極において互いに対向する面)の周囲に、ニッケルを含む粒状の化合物(以下、化合物粒と呼ぶ)が形成されたり、この化合物粒の付着箇所の融点が部分的に低下して母相が溶融して、当該化合物粒が更に大きくなるという現象が生じる。上記化合物粒が形成・成長され続けると、エンジンの点火状態が不安定になったり、最悪の場合、当該化合物粒が脱落してエンジンを破損させる恐れがある。   On the other hand, when a spark plug is used, the electrode surface nickel reacts with elements in the atmosphere derived from gasoline, engine oil, etc. (alkali metal elements, alkaline earth metal elements, phosphorus, etc.), and the electrode surface In particular, a granular compound containing nickel (hereinafter referred to as a compound grain) is formed around the portion of the electrode where spark discharge is performed (mainly the surfaces facing each other in the center electrode and the ground electrode). This causes a phenomenon that the melting point of the adhering portion is partially lowered, the matrix phase is melted, and the compound particles are further enlarged. If the compound particles continue to be formed and grown, the ignition state of the engine may become unstable, or in the worst case, the compound particles may drop and damage the engine.

そこで、本発明の目的は、耐高温酸化性に優れる上に、火花により消耗し難く、化合物粒が形成され難い電極材料を提供することにある。また、本発明の他の目的は、上記電極材料から構成された点火プラグ用電極、及びこの電極を具える点火プラグを提供することにある。   Accordingly, an object of the present invention is to provide an electrode material that is excellent in high-temperature oxidation resistance and is not easily consumed by a spark and is difficult to form compound particles. Another object of the present invention is to provide a spark plug electrode made of the above electrode material, and a spark plug including the electrode.

本発明者らは、特に、高温環境での使用に適した点火プラグ用電極の構成材料として、より好ましい組成を種々検討した結果、以下の知見を得た。
(1) Tiは、酸化抑制効果(特に、内部酸化の抑制効果)が高い。
(2) Tiを特定の範囲で含有することで、Tiの含有による比抵抗の増加が抑えられ、かつAl及びSiの含有量を低減できる。
(3) Tiは、Alの窒化を抑制することができる。
(4) Yは、特に、高温下での結晶粒の成長を効果的に抑制して、結晶粒が微細な状態を維持し易いことで、酸化抑制に効果がある。
(5) Siは、酸化抑制の効果がAlよりも高い傾向にある上に、化合物粒の生成を抑制することができる。
(6) Crは、酸化抑制効果、及び化合物粒の生成抑制に効果がある。
The inventors of the present invention have obtained the following findings as a result of various investigations on more preferable compositions as the constituent material of the spark plug electrode particularly suitable for use in a high temperature environment.
(1) Ti has a high oxidation suppressing effect (particularly, an internal oxidation suppressing effect).
(2) By containing Ti in a specific range, an increase in specific resistance due to the Ti content can be suppressed, and the contents of Al and Si can be reduced.
(3) Ti can suppress nitriding of Al.
(4) Y is particularly effective in suppressing oxidation by effectively suppressing the growth of crystal grains at high temperatures and maintaining the fine crystal grains.
(5) Si tends to have a higher effect of suppressing oxidation than Al, and can suppress the formation of compound grains.
(6) Cr is effective in suppressing oxidation and suppressing the formation of compound grains.

上記知見から、点火プラグの電極材料として、Al,Si,Cr,Yを含有することに加えて、Tiを特定の範囲で含有することを規定する。かつ、Tiの含有に伴ってAl及びSiの含有量を比較的少なくすること、AlよりもSiを多く含有すること、Yの含有量を比較的多くすることを規定する。   From the above findings, it is specified that Ti is contained in a specific range in addition to containing Al, Si, Cr, Y as the electrode material of the spark plug. In addition, it is defined that the contents of Al and Si are relatively reduced with the Ti content, that Si is contained more than Al, and the Y content is relatively increased.

本発明の電極材料は、点火プラグの電極に用いられる電極材料であり、質量%で、Alを0.005%以上0.2%以下、Siを0.3%以上0.5%以下、Crを0.6%以上1.2%以下、Tiを0.05%以上0.5%以下、Yを0.3%以上1.0%以下含有し、残部がNi及び不可避不純物からなる。   The electrode material of the present invention is an electrode material used for an electrode of a spark plug, and in mass%, Al is 0.005% to 0.2%, Si is 0.3% to 0.5%, Cr is 0.6% to 1.2%, It contains 0.05% to 0.5% Ti, 0.3% to 1.0% Y, and the balance consists of Ni and inevitable impurities.

上記特定の組成のニッケル合金から構成される本発明電極材料は、(1) Al,Si,Cr,Yに加えて、Tiを特定の範囲で含有することで、酸化抑制効果、特に内部酸化の抑制効果が高い、(2) Tiの含有により、Alの窒化を抑制して、酸化物層の膨張、亀裂、剥離などの発生を抑制できる、(3) Yを特定の範囲含有することで、高温下での結晶粒の成長を抑制できる、(4) SiをAlよりも多く含有することで、酸化抑制効果が高い、といった点から、高温環境で使用した場合にも耐酸化性に優れる。   The electrode material of the present invention composed of a nickel alloy having the above specific composition includes (1) In addition to Al, Si, Cr, Y, Ti is contained in a specific range, so that the oxidation suppressing effect, particularly the internal oxidation can be achieved. The suppression effect is high, (2) By containing Ti, it is possible to suppress the nitridation of Al and suppress the occurrence of expansion, cracking, peeling, etc. of the oxide layer. (3) By containing Y in a specific range, It is excellent in oxidation resistance even when used in a high temperature environment because it can suppress the growth of crystal grains at high temperatures, and (4) it contains more Si than Al, so that it has a high oxidation suppression effect.

かつ、本発明電極材料は、(1) Al及びSiの含有量が比較的少ないことで、比抵抗が小さく、火花により消耗し難い、(2) Al,Si,Crを特定の範囲で含有する、特に、CrをAl,Siよりも多く含有することで、使用時に上述した化合物粒の形成や成長を効果的に抑制できる上に、AlやSiを多く含有する場合よりも比抵抗の増大を招き難く、耐火花消耗性にも優れるといった効果を奏する。   In addition, the electrode material of the present invention (1) has a relatively low content of Al and Si, has a small specific resistance and is not easily consumed by a spark, and (2) contains Al, Si, Cr in a specific range. In particular, by containing more Cr than Al and Si, the formation and growth of the above-described compound grains can be effectively suppressed during use, and the specific resistance can be increased more than when containing a large amount of Al or Si. It is difficult to invite and has the effect of being excellent in spark wear resistance.

本発明の別の形態として、更にMnを含む形態が挙げられる。具体的には、質量%で、Alを0.005%以上0.2%以下、Siを0.3%以上0.5%以下、Crを0.6%以上1.2%以下、Mnを0.05%以上0.2%以下、Tiを0.05%以上0.5%以下、Yを0.3%以上1.0%以下含有し、残部がNi及び不可避不純物からなる形態が挙げられる。   Another form of the present invention includes a form further containing Mn. Specifically, Al is 0.005% to 0.2%, Si is 0.3% to 0.5%, Cr is 0.6% to 1.2%, Mn is 0.05% to 0.2%, and Ti is 0.05% or more by mass%. Examples include 0.5% or less, Y containing 0.3% or more and 1.0% or less, with the balance being Ni and inevitable impurities.

MnもCrと同様に、上記化合物粒の発生を抑制する効果があることから、Crと共にMnも添加することができる。上記効果を得るには、Mnの含有量は、0.05質量%以上が好ましく、0.2質量%以下であると、比抵抗の増大を招き難い。   Mn, like Cr, has the effect of suppressing the generation of the above compound grains, so Mn can be added together with Cr. In order to obtain the above effect, the content of Mn is preferably 0.05% by mass or more, and if it is 0.2% by mass or less, it is difficult to increase specific resistance.

本発明の一形態として、Alの含有量が0.05質量%以上0.2質量%以下である形態が挙げられる。   As one form of this invention, the form whose content of Al is 0.05 mass% or more and 0.2 mass% or less is mentioned.

上記形態によれば、Alを0.05質量%以上含有することで、Alの含有による酸化抑制効果を十分に得ることができる。   According to the said form, the oxidation suppression effect by containing Al can fully be acquired by containing 0.05 mass% or more of Al.

本発明の一形態として、Bを0質量%超0.05質量%以下含有する形態が挙げられる。   As one form of the present invention, a form containing B more than 0 mass% and 0.05 mass% or less can be mentioned.

上記形態によれば、Bを含有することで、熱間加工性を向上することができ、電極材料の生産性を向上することができる。   According to the said form, by containing B, hot workability can be improved and productivity of an electrode material can be improved.

本発明の一形態として、上記電極材料の常温での比抵抗が20μΩ・cm以下である形態が挙げられる。   As an embodiment of the present invention, an embodiment in which the electrode material has a specific resistance at room temperature of 20 μΩ · cm or less can be given.

上記形態によれば、比抵抗が小さいことで耐火花消耗性にも優れる。   According to the said form, it is excellent also in spark wear resistance by a small specific resistance.

本発明の一形態として、上記電極材料を1000℃×72時間加熱したとき、この加熱後の電極材料の平均結晶粒径が300μm以下である形態が挙げられる。   As one form of the present invention, there is a form in which, when the electrode material is heated at 1000 ° C. for 72 hours, the average crystal grain size of the electrode material after heating is 300 μm or less.

上記形態によれば、特定の組成から構成されることで1000℃といった非常に高い温度環境で使用された場合でも結晶粒が成長し難く(粗大になり難く)、平均結晶粒径が小さい状態を維持できる。従って、上記形態によれば、高温での耐酸化性に優れる。   According to the above form, even when used in a very high temperature environment such as 1000 ° C. by being composed of a specific composition, the crystal grains are difficult to grow (not easily coarse), and the average crystal grain size is small. Can be maintained. Therefore, according to the said form, it is excellent in the oxidation resistance in high temperature.

上記本発明電極材料から構成された本発明点火プラグ用電極や本発明点火プラグ用電極を具える本発明点火プラグは、1000℃程度、或いはそれ以上といった非常に高温な環境で使用される場合でも、耐高温酸化性に優れる。更に、耐火花消耗性に優れる上に、上述した化合物粒も生じ難いことからも、本発明点火プラグ用電極や本発明点火プラグは、長期に亘り良好に使用できると期待される。   The spark plug electrode of the present invention or the spark plug electrode of the present invention composed of the above-mentioned electrode material of the present invention can be used even in a very high temperature environment of about 1000 ° C. or higher. Excellent in high temperature oxidation resistance. Furthermore, since the above-described spark wear resistance is excellent and the above-described compound particles are less likely to be produced, it is expected that the present spark plug electrode and the present spark plug can be used well over a long period of time.

本発明電極材料により構成される本発明電極、及びこの電極を具える本発明点火プラグは、耐高温酸化性に優れる。   The electrode of the present invention composed of the electrode material of the present invention and the spark plug of the present invention including the electrode are excellent in high-temperature oxidation resistance.

図1は、酸化状態を説明するための電極材料の光学顕微鏡写真である。FIG. 1 is an optical micrograph of an electrode material for explaining an oxidation state.

以下、本発明をより詳しく説明する。なお、元素の含有量は、断りが無い限り質量%とする。
[電極材料]
(組成)
本発明電極材料は、Al,Si,Cr,Y及びTiを添加元素とし、残部がNi及び不可避不純物のニッケル合金から構成される。Niを主成分(97質量%以上(より好ましくは98質量%以上))とすることで、塑性加工性に優れる上に、比抵抗が小さく(導電率が高く)、点火プラグの電極に用いられた場合に火花による消耗を低減できる。
Hereinafter, the present invention will be described in more detail. In addition, unless otherwise indicated, content of an element shall be mass%.
[Electrode material]
(composition)
The electrode material of the present invention comprises Al, Si, Cr, Y and Ti as additive elements, with the balance being Ni and a nickel alloy with inevitable impurities. Ni is the main component (97 mass% or more (more preferably 98 mass% or more)). In addition to being excellent in plastic workability, it has low specific resistance (high conductivity) and is used for spark plug electrodes. If this happens, the consumption of sparks can be reduced.

《Al,Si》
Al及びSiは酸化抑制の効果が高い元素であり、両元素を含有することで、電極材料の表面にAlやSiの酸化物を形成して、電極材料の内部に酸素が侵入することを低減し、酸化、特に内部酸化を抑制することができる。また、AlやSiを後述するCrやMnと同時に含有することで、上述した化合物粒の発生を抑制する効果がある。AlやSiが多いほど、電極材料の表面に酸化物が形成され易く、内部酸化の抑制や化合物粒の発生・成長の抑制を図れるが、多過ぎると、電極材料の表面に形成された酸化物層が膨張して亀裂(クラック)が入ったり破裂したり、剥離したりする。酸化物層の亀裂や剥離により、経時的に酸化が進行する。また、AlやSiが多いほど、比抵抗が大きくなり易く、耐火花消耗性の低下を招く。そこで、本発明電極材料では、Al及びSiの双方を含有すると共に、その含有量を比較的少なくし、代わって内部酸化の抑制効果が高い元素として、Tiを含有する。具体的な含有量はAl:0.005%以上0.2%以下、Si:0.3%以上0.5%以下とする。Alの含有量は、0.05%以上0.2%以下がより好ましい。また、Siは、Alよりも酸化抑制効果が高い傾向にあることから、本発明電極材料では、上記のようにSiをAlよりも多めに含有する。
《Al, Si》
Al and Si are elements that have a high effect of suppressing oxidation, and by containing both elements, an oxide of Al or Si is formed on the surface of the electrode material, reducing oxygen from entering the electrode material. In addition, oxidation, particularly internal oxidation can be suppressed. Further, by containing Al and Si together with Cr and Mn described later, there is an effect of suppressing the generation of the above-described compound grains. The more Al and Si, the easier the oxides are formed on the surface of the electrode material, which can suppress internal oxidation and suppress the generation / growth of compound grains, but if too much, the oxide formed on the surface of the electrode material The layer expands and cracks, cracks, or peels off. Oxidation progresses over time due to cracking or peeling of the oxide layer. In addition, the more Al and Si, the greater the specific resistance, which leads to a reduction in spark resistance. Therefore, the electrode material of the present invention contains both Al and Si, and the content thereof is relatively reduced. Instead, Ti is contained as an element having a high effect of suppressing internal oxidation. The specific contents are Al: 0.005% to 0.2%, Si: 0.3% to 0.5%. The Al content is more preferably 0.05% or more and 0.2% or less. Further, since Si tends to have a higher oxidation suppressing effect than Al, the electrode material of the present invention contains Si more than Al as described above.

《Y》
Yは、主として、母相のNiと金属間化合物を形成して、金属間化合物として存在し、極一部は、Niに固溶して存在する。この金属間化合物の所謂ピン止め効果により、本発明電極材料は、900℃以上、更には1000℃以上といった非常に高温環境でも結晶粒の粒成長を効果的に抑制できる。そのため、本発明電極材料からなる本発明電極は、上述のような非常に高温の環境で使用されても、結晶粒が微細な状態を維持でき、酸素の侵入を低減できることから、内部酸化を効果的に抑制できる。このように優れた耐酸化性、特に耐高温酸化性を有するには、Yを0.3%以上含有することが好ましく、Yが多いほど、結晶粒を微細に維持でき、耐高温酸化性に優れる傾向にある。また、Yの含有量を1.0%以下とすることで、比抵抗の増大による電極の熱劣化を抑制して耐火花消耗性に優れる上に、塑性加工性の低下を抑制して所定の形状の電極に加工し易く、電極の製造性に優れる。更に、Yは、他の希土類元素と比較して水素を吸蔵し難いことから、製造工程で水素を含有する雰囲気で熱処理を行った場合でも、本発明電極材料は、水素脆化が生じ難い。Yのより好ましい含有量は、0.3%以上0.75%以下である。
《Y》
Y mainly forms an intermetallic compound with Ni of the parent phase and exists as an intermetallic compound, and a very small part thereof exists as a solid solution in Ni. Due to the so-called pinning effect of this intermetallic compound, the electrode material of the present invention can effectively suppress crystal grain growth even in a very high temperature environment such as 900 ° C. or higher, further 1000 ° C. or higher. Therefore, the electrode of the present invention made of the electrode material of the present invention is effective in internal oxidation because the crystal grains can be maintained in a fine state and oxygen intrusion can be reduced even when used in a very high temperature environment as described above. Can be suppressed. In order to have such excellent oxidation resistance, particularly high temperature oxidation resistance, it is preferable to contain 0.3% or more of Y. The more Y, the finer the crystal grains can be maintained and the higher the high temperature oxidation resistance tends to be It is in. In addition, by making the Y content 1.0% or less, the thermal deterioration of the electrode due to an increase in the specific resistance is suppressed, and the spark wear resistance is excellent. It is easy to process into an electrode and is excellent in electrode manufacturability. Furthermore, since Y is less likely to occlude hydrogen than other rare earth elements, the electrode material of the present invention hardly causes hydrogen embrittlement even when heat treatment is performed in an atmosphere containing hydrogen in the manufacturing process. A more preferable content of Y is 0.3% or more and 0.75% or less.

《Cr,Mn》
上述のようにAlやSiと共にCr、適宜Mnを含有することで、上述した化合物粒が生じ難い。この理由は、AlやSiと共にCrやMnがガソリンやエンジンオイル中に含まれるPなどといった雰囲気中の元素と反応することで、母相のNiとPなどとの反応を抑制し、NiとPなどとの化合物が電極材料に付着することを低減できるため、と考えられる。特に、Crは、Mnよりも化合物粒の発生を抑制する効果が高い傾向にある。また、CrやMnも内部酸化の抑制に効果がある上に、Crは、AlやSiよりも比抵抗を増大させ難い。そこで、本発明電極材料では、上述のようにAlやSiを少なめにしてCrを含有する。また、本発明電極材料は、適宜Mnを含有する。CrやMnの含有量が多いほど、上記化合物粒の発生・成長や内部酸化を抑制し易いが、多過ぎると、比抵抗が大きくなり過ぎる。従って、Crの含有量は、0.6%以上1.2%以下とする。特に、Crの含有量は1.0%以下が好ましい。Mnを含有する場合、Mnの含有量は、0.05%以上0.2%以下が好ましい。
《Cr, Mn》
As described above, by containing Cr and Mn as appropriate together with Al and Si, the above-described compound particles are hardly generated. The reason for this is that Cr and Mn, together with Al and Si, react with elements in the atmosphere such as P contained in gasoline and engine oil to suppress the reaction between Ni and P in the parent phase, and Ni and P This is thought to be because it is possible to reduce the adhesion of compounds such as to the electrode material. In particular, Cr tends to have a higher effect of suppressing the generation of compound grains than Mn. Cr and Mn are also effective in suppressing internal oxidation, and Cr is less likely to increase the specific resistance than Al or Si. Therefore, the electrode material of the present invention contains Cr with less Al and Si as described above. The electrode material of the present invention appropriately contains Mn. As the content of Cr and Mn increases, the generation / growth and internal oxidation of the compound grains are more easily suppressed. However, when the content is too large, the specific resistance becomes too large. Therefore, the Cr content should be 0.6% or more and 1.2% or less. In particular, the Cr content is preferably 1.0% or less. When Mn is contained, the content of Mn is preferably 0.05% or more and 0.2% or less.

《Ti》
本発明電極材料は、Tiを含有することを最大の特徴とする。Tiは、上述のように内部酸化を効果的に抑制でき、この効果は、Tiの含有量が多いほど顕著であるが、多過ぎると、比抵抗の増大を招く。また、Tiは、上述のようにAlの窒化物(AlN)の生成を抑制し、Alの窒化物の形成による熱膨張によって酸化物層に亀裂が生じるなどして酸化が進行することを効果的に抑制できる。上記効果を十分に得るために、Tiの含有量を0.05%以上0.5%以下とする。特に、Tiの含有量は、0.1%以上0.3%以下がより好ましい。
《Ti》
The electrode material of the present invention is characterized by containing Ti. Ti can effectively suppress internal oxidation as described above, and this effect becomes more prominent as the Ti content increases. However, if the Ti content is too large, the specific resistance increases. In addition, Ti suppresses the formation of Al nitride (AlN) as described above, and it is effective for the oxidation to proceed due to cracks in the oxide layer due to thermal expansion due to the formation of Al nitride. Can be suppressed. In order to sufficiently obtain the above effects, the Ti content is set to 0.05% to 0.5%. In particular, the Ti content is more preferably 0.1% or more and 0.3% or less.

《B》
Bを0.05%以下の範囲、好ましくは0.001%以上0.02%以下含有することで、熱間加工性に優れ、本発明電極材料や本発明電極の生産性を高められる。
《B》
By containing B in a range of 0.05% or less, preferably 0.001% or more and 0.02% or less, the hot workability is excellent, and the productivity of the electrode material of the present invention and the electrode of the present invention can be enhanced.

上記電極材料の添加元素の含有量は、原料として添加する元素の量を調整することで、上記特定の範囲にすることができる。上記添加元素の他、高温強度が望まれる場合、Cを微量に含有することを許容する。但し、Cが多過ぎると、加工性が悪くなる傾向にあるため、Cの含有量は0.05質量%以下が好ましい。   The content of the additive element in the electrode material can be adjusted to the specific range by adjusting the amount of the element added as a raw material. In addition to the above additive elements, if high temperature strength is desired, it is allowed to contain a trace amount of C. However, if the amount of C is too large, the workability tends to deteriorate, so the C content is preferably 0.05% by mass or less.

(耐酸化性)
本発明電極材料は、900℃以上、更に1000℃以上といった高温環境下に長時間曝した場合であっても、耐高温酸化性に優れており、例えば、結晶粒が微細な組織を維持することができる。具体的には、上記電極材料を1000℃×72時間加熱した場合に、この加熱後の電極材料の平均結晶粒径が300μm以下を満たすことができる。「1000℃×72時間」との条件は、従来の一般的な自動車のガソリンエンジンにおける使用時の最高到達温度と同等程度或いはそれ以上の温度条件であり、かつ加熱時間が長いため、非常に厳しい条件を模したものである。このような厳しい条件の加熱を行った場合でも、電極材料を構成する結晶粒が小さいほど、上述のように電極材料の内部への酸素の侵入を抑制でき、耐高温酸化性に優れる、と評価することができる。そこで、本発明では、耐酸化性の評価の指標として、「1000℃×72時間加熱後の平均結晶粒径」を採用する。この平均結晶粒径は、上記添加元素の含有量により変化させることができ、例えば、200μm以下、更に150μm以下、特に100μm以下を満たす電極材料とすることができる。上述のように平均粒径が小さいほど、結晶粒界が長くなることで、電極材料内部への酸素の侵入を防止し易く、下限は特に設けない。「1000℃×72時間加熱後の平均結晶粒径」は、特にYの含有量が多いほど小さくなる傾向にある。
(Oxidation resistance)
The electrode material of the present invention is excellent in high temperature oxidation resistance even when exposed to a high temperature environment such as 900 ° C. or higher, and further 1000 ° C. or higher, for example, to maintain a fine structure of crystal grains Can do. Specifically, when the electrode material is heated at 1000 ° C. for 72 hours, the average crystal grain size of the electrode material after heating can satisfy 300 μm or less. The condition of “1000 ° C x 72 hours” is very severe because it is the same temperature as or higher than the maximum temperature achieved when using a conventional general gasoline engine and the heating time is long. It mimics the conditions. Even when heating under such severe conditions, it is evaluated that the smaller the crystal grains constituting the electrode material, the more the oxygen can penetrate into the electrode material as described above, and the higher the resistance to high-temperature oxidation. can do. Therefore, in the present invention, “average crystal grain size after heating at 1000 ° C. × 72 hours” is adopted as an index for evaluating oxidation resistance. The average crystal grain size can be changed depending on the content of the additive element. For example, an electrode material satisfying 200 μm or less, further 150 μm or less, and particularly 100 μm or less can be obtained. As described above, the smaller the average grain size, the longer the crystal grain boundary, thereby making it easier to prevent oxygen from entering the electrode material, and there is no particular lower limit. “Average crystal grain size after heating at 1000 ° C. for 72 hours” tends to be smaller as the Y content increases.

(比抵抗)
本発明電極材料は、比抵抗が小さく、例えば、常温(代表的には20℃程度)での比抵抗が20μΩ・cm以下を満たすことができる。比抵抗は、主として添加元素の含有量により変化し、添加元素の含有量が少ないほど、比抵抗が小さくなる傾向にある。比抵抗は小さいほど好ましく、特に下限を設けない。
(Resistivity)
The electrode material of the present invention has a small specific resistance, for example, a specific resistance at room temperature (typically about 20 ° C.) can satisfy 20 μΩ · cm or less. The specific resistance changes mainly depending on the content of the additive element, and the specific resistance tends to decrease as the content of the additional element decreases. The specific resistance is preferably as small as possible, and there is no particular lower limit.

(形状)
本発明電極材料は、代表的には、伸線加工により形成された線材が挙げられる。断面形状は、矩形状、円形状など、種々の形状とすることができる。
(shape)
The electrode material of the present invention typically includes a wire formed by wire drawing. The cross-sectional shape can be various shapes such as a rectangular shape and a circular shape.

[製造方法]
本発明電極材料は、代表的には、溶解→鋳造→熱間圧延→冷間伸線及び熱処理という工程により得られる。また、Yを含有する金属間化合物を電極材料中に十分に存在させるには、例えば、溶解時や鋳造時の雰囲気を酸素濃度が低くなるように制御することが挙げられる。Yは酸化物を形成し易いため、低酸素雰囲気で鋳造などを行うことで、Yの酸化物の形成を抑制して、金属間化合物を形成し易い。
[Production method]
The electrode material of the present invention is typically obtained by a process of melting → casting → hot rolling → cold drawing and heat treatment. Further, in order for the intermetallic compound containing Y to be sufficiently present in the electrode material, for example, the atmosphere during melting or casting is controlled so that the oxygen concentration becomes low. Since Y is easy to form an oxide, it is easy to form an intermetallic compound by suppressing the formation of the oxide of Y by casting or the like in a low oxygen atmosphere.

冷間伸線後、最終熱処理(軟化処理)を行う場合、非酸化性雰囲気(例えば、水素雰囲気、窒素雰囲気などの酸素濃度が低い或いは酸素を実質的に含有しない雰囲気)で700℃〜1000℃、特に、800℃〜950℃程度で行うことが好ましい。このような軟化処理を行うことで、電極材料を所定の電極形状に加工し易かったり、当該軟化処理以前の加工による加工歪みを除去して、電極材料の比抵抗を小さくすることができる。   When performing the final heat treatment (softening treatment) after cold drawing, 700 ° C to 1000 ° C in a non-oxidizing atmosphere (e.g., an oxygen atmosphere such as a hydrogen atmosphere, a nitrogen atmosphere, or an oxygen-free atmosphere). In particular, it is preferable to carry out at about 800 ° C to 950 ° C. By performing such a softening process, it is easy to process the electrode material into a predetermined electrode shape, or the processing distortion due to the process before the softening process can be removed, and the specific resistance of the electrode material can be reduced.

[点火プラグ用電極]
本発明電極材料は、点火プラグに具える中心電極及び接地電極のいずれの構成材料にも好適に利用することができる。上記接地電極は、中心電極と比較して、自動車のエンジンなどの内燃機関において、燃焼室の中心に近い位置に配置されることが多い。本発明電極材料は、上述のように高温での特性に優れることから、特に、上記接地電極の構成材料に好適に利用することができる。本発明電極は、上記電極材料を適宜な長さに切断したり、更に所定の形状に成形したりすることで製造することができる。
[Spark plug electrode]
The electrode material of the present invention can be suitably used for any constituent material of the center electrode and the ground electrode provided in the spark plug. In many cases, the ground electrode is disposed closer to the center of the combustion chamber in an internal combustion engine such as an automobile engine than the center electrode. Since the electrode material of the present invention is excellent in characteristics at a high temperature as described above, it can be suitably used particularly as a constituent material of the ground electrode. The electrode of the present invention can be produced by cutting the electrode material into an appropriate length or further forming it into a predetermined shape.

[点火プラグ]
本発明電極は、自動車のエンジンといった内燃機関において、点火に利用する点火プラグの構成部材として好適に利用することができる。本発明点火プラグは、代表的には、絶縁碍子と、この絶縁碍子を保持する主体金具と、上記絶縁碍子内に保持され、当該絶縁碍子の先端から一部が突出された中心電極と、上記主体金具の先端側の面に一端を溶接され、他端が中心電極の端面に対向するように設けられた接地電極と、上記絶縁碍子の後端に設けられた端子金具とを具えるものが挙げられる。公知の点火プラグの電極に代えて、本発明電極を利用することができる。
[Ignition plug]
The electrode of the present invention can be suitably used as a constituent member of a spark plug used for ignition in an internal combustion engine such as an automobile engine. The spark plug of the present invention typically includes an insulator, a metal shell that holds the insulator, a center electrode that is held in the insulator and partially protrudes from the tip of the insulator, and the above One having one end welded to the front end surface of the metal shell and the other end facing the end surface of the center electrode and a terminal metal fitting provided at the rear end of the insulator. Can be mentioned. The electrode of the present invention can be used in place of a known spark plug electrode.

以下、本発明のより具体的な形態を説明する。
一般的な自動車のガソリンエンジンの点火に利用される点火プラグ用電極の材料として、ニッケル合金からなる線材(電極材料)を複数作製し、その特性を評価した。
Hereinafter, more specific embodiments of the present invention will be described.
A plurality of nickel alloy wires (electrode materials) were prepared as materials for spark plug electrodes used for ignition of general automobile gasoline engines, and their characteristics were evaluated.

各線材は、以下のように作製した。通常の真空溶解炉を用いて、表1に示す組成(単位は質量%)のニッケル合金の溶湯を作製した。溶湯の原料には、市販の純Ni(99.0質量%以上Ni)、各添加元素の粒を用いた。また、不純物や介在物などを低減、除去するために溶湯の精錬を行った。いずれの試料も実質的にCが含有されないように上記精錬具合を調整した。そして、酸素濃度が低くなるように雰囲気を管理して、上記溶解を行い、溶湯温度を適宜調整して真空鋳造を行い、鋳塊(2ton)を得た。   Each wire was produced as follows. Using an ordinary vacuum melting furnace, a nickel alloy melt having the composition shown in Table 1 (unit: mass%) was produced. Commercially available pure Ni (99.0 mass% or more Ni) and grains of each additive element were used as the raw material for the molten metal. In addition, the molten metal was refined to reduce and remove impurities and inclusions. The above refining condition was adjusted so that any sample did not substantially contain C. Then, the atmosphere was controlled so as to reduce the oxygen concentration, the above melting was performed, the molten metal temperature was appropriately adjusted, and vacuum casting was performed to obtain an ingot (2 tons).

得られた鋳塊を再加熱して鍛造加工を施し、約150mm角のビレットを得た。このビレットに熱間圧延を施し、線径5.5mmφの圧延線材を得た。この圧延線材に冷間伸線及び熱処理を組み合わせて施し、線径2.5mmφと線径4.2mmφの各冷間伸線材を得た。線径2.5mmφの冷間伸線材には、圧延加工を施して、1.5mm×2.8mmの平角線状となるように変形し、平角線材を得た。得られた平角線材、及び線径4.2mmφの冷間伸線材に最終熱処理(軟化処理、温度:800℃〜1000℃、非酸化性雰囲気(窒素雰囲気又は水素雰囲気)、連続軟化炉使用)を施して、軟材(電極材料)を得た。得られた各軟材を適宜な長さに切断した後、所定の形状に適宜成形して、一般的な普通乗用車に用いられている点火プラグ用接地電極(1.5mm×2.8mmの平角線を使用)、点火プラグ用中心電極(線径4.2mmφを使用)を作製し、試料とした。   The obtained ingot was reheated and forged to obtain a billet of about 150 mm square. This billet was hot-rolled to obtain a rolled wire having a wire diameter of 5.5 mmφ. The rolled wire rod was subjected to a combination of cold wire drawing and heat treatment to obtain each cold wire rod having a wire diameter of 2.5 mmφ and a wire diameter of 4.2 mmφ. The cold-drawn wire with a wire diameter of 2.5 mmφ was rolled and deformed into a 1.5 mm × 2.8 mm rectangular wire, thereby obtaining a rectangular wire. Final flat heat treatment (softening treatment, temperature: 800 ° C to 1000 ° C, non-oxidizing atmosphere (nitrogen atmosphere or hydrogen atmosphere), using continuous softening furnace) is applied to the obtained rectangular wire and cold drawn wire with a wire diameter of 4.2 mmφ. Thus, a soft material (electrode material) was obtained. Each soft material obtained was cut into an appropriate length and then molded into a predetermined shape as appropriate, and a spark plug ground electrode (1.5 mm x 2.8 mm rectangular wire) used in general ordinary passenger cars. Use), a spark plug center electrode (using a wire diameter of 4.2 mmφ) was prepared and used as a sample.

得られた各試料(ここでは上記軟材)の組成をICP発光分光分析装置を用いて調べたところ、表1に示す組成と同様であり、残部は、Ni及び不可避不純物であった。また、いずれの試料もNiの含有量が90質量%以上であった(試料No.1〜8は98質量%以上Ni)。組成の分析は、上記ICP発光分光分析法による他、原子吸光光度法などでも行える。表1において「-(ハイフン)」は、検出限界未満であり、実質的に含有されていないことを示す。更に、Yを含む各試料をSEM及びEDXによる元素分析、又はEPMAを用いて調べたところ、YとNiとの金属間化合物が存在していることが確認できた。   When the composition of each sample obtained (here, the soft material) was examined using an ICP emission spectroscopic analyzer, it was the same as the composition shown in Table 1, with the balance being Ni and inevitable impurities. In addition, the Ni content in each sample was 90% by mass or more (sample Nos. 1 to 8 were 98% by mass or more Ni). The composition can be analyzed by the atomic absorption spectrophotometry method as well as the above ICP emission spectroscopic analysis method. In Table 1, “-(hyphen)” is less than the detection limit and indicates that it is not substantially contained. Furthermore, when each sample containing Y was examined using elemental analysis by SEM and EDX, or EPMA, it was confirmed that an intermetallic compound of Y and Ni was present.

《比抵抗》
作製した各試料(軟材)の比抵抗を測定した。その結果を表2に示す。比抵抗(常温)は、電気抵抗測定装置を用いて、直流四端子法により測定した(評点間距離GL=100mm)。
《Specific resistance》
The specific resistance of each prepared sample (soft material) was measured. The results are shown in Table 2. The specific resistance (room temperature) was measured by a DC four-terminal method using an electrical resistance measuring apparatus (distance between grades GL = 100 mm).

《耐酸化性》
作製した各試料(軟材)について、耐高温酸化性を評価した。その結果を表2に示す。耐高温酸化性は、上述した1.5mm×2.8mmの平角の軟材により作製した接地電極と、線径4.2mmφの軟材により作製した中心電極とを1000℃に昇温した大気炉に挿入し、1時間加熱した後、当該炉の外に取り出して30分間空冷し、再度1時間加熱するという操作を加熱時間が合計72時間となるまで繰り返す高温酸化試験を行った。
<Oxidation resistance>
Each manufactured sample (soft material) was evaluated for high-temperature oxidation resistance. The results are shown in Table 2. High-temperature oxidation resistance is achieved by inserting the ground electrode made of the above-mentioned 1.5 mm x 2.8 mm flat soft material and the center electrode made of soft material with a wire diameter of 4.2 mmφ into an atmospheric furnace heated to 1000 ° C. Then, after heating for 1 hour, the sample was taken out of the furnace, air-cooled for 30 minutes, and then heated again for 1 hour. A high-temperature oxidation test was repeated until the heating time reached a total of 72 hours.

上記高温酸化試験後、接地電極の断面を光学顕微鏡で観察し(倍率:50〜200倍)、この顕微鏡観察像(写真)を用いて当該電極の酸化している領域(酸化物層)の厚さを測定した。ここで、Ni合金からなる電極に酸化物層が形成されると、図1に示すように二層構造になる。具体的には、電極の最表面及びその近傍に形成され、添加元素の含有量が高く、Niの含有が少ない表面酸化物層と、表面酸化物層の内部に形成されて、Niの含有が多い内部酸化物層とを具える。なお、図1に示す電極は、従来の電極であり、900℃×72時間の条件で上記高温酸化試験を行った説明用サンプルである。この試験では、内部酸化物層及び表面酸化物層のそれぞれの厚さを測定した。具体的には、内部酸化物層の厚さは、Ni合金から構成される母相領域と内部酸化物層との境界から内部酸化物層と表面酸化物層との境界までの平均厚さ、表面酸化物層は、上記両酸化物層の境界から上記電極の最表面までの平均厚さを測定した。平均厚さは、上記観察像に画像処理などを施すことで容易に求められる。電極内部への酸素の侵入度合いが少ないほど、内部酸化物層が薄くなり、内部酸化し難いと言える。なお、中心電極については、接地電極と同様の傾向であったため、結果を記載していない。   After the high temperature oxidation test, the cross section of the ground electrode was observed with an optical microscope (magnification: 50 to 200 times), and the thickness of the oxidized region (oxide layer) of the electrode using this microscopic observation image (photograph) Was measured. Here, when an oxide layer is formed on an electrode made of a Ni alloy, a two-layer structure is formed as shown in FIG. Specifically, the surface oxide layer is formed on the outermost surface of the electrode and in the vicinity thereof, the content of the additive element is high, the content of Ni is low, and the surface oxide layer is formed inside the surface oxide layer. With many internal oxide layers. The electrode shown in FIG. 1 is a conventional electrode, which is an explanatory sample in which the high temperature oxidation test was performed under the condition of 900 ° C. × 72 hours. In this test, the thicknesses of the inner oxide layer and the surface oxide layer were measured. Specifically, the thickness of the internal oxide layer is the average thickness from the boundary between the parent phase region composed of Ni alloy and the internal oxide layer to the boundary between the internal oxide layer and the surface oxide layer, For the surface oxide layer, the average thickness from the boundary between the two oxide layers to the outermost surface of the electrode was measured. The average thickness can be easily obtained by performing image processing or the like on the observed image. It can be said that the lower the degree of oxygen intrusion into the electrode, the thinner the internal oxide layer and the less internal oxidation occurs. In addition, about the center electrode, since it was the tendency similar to a ground electrode, the result is not described.

そして、耐高温酸化性は、上記表面酸化物層及び内部酸化物層の合計厚さが200μm以上の場合、耐高温酸化性が従来品と同等程度であったとして×、上記合計厚さが200μm未満であるものを○と評価し、上記膨張や亀裂、剥離があったものはその旨を記載した。上記合計厚さが190μm未満で、上記膨張や亀裂がほとんど無い場合を特に良好であるとして◎と評価した。   And, when the total thickness of the surface oxide layer and the internal oxide layer is 200 μm or more, the high-temperature oxidation resistance is X, and the total thickness is 200 μm. Those with less than were evaluated as ◯, and those with the above expansion, cracks, and peeling were described as such. A case where the total thickness was less than 190 μm and there was almost no expansion or cracking was evaluated as “Excellent” as being particularly good.

《平均結晶粒径》
上記高温酸化試験後の各試料について、接地電極の断面を光学顕微鏡(倍率:50〜200倍)で観察し、この顕微鏡観察像(写真)に対して、交線法(ライン法)を利用して平均結晶粒径を算出した。その結果を表2に示す。また、測定した平均結晶粒径が300μm以下のものを○、300μm超のものを×と評価した。
<Average crystal grain size>
For each sample after the above high-temperature oxidation test, the cross section of the ground electrode was observed with an optical microscope (magnification: 50 to 200 times), and the cross line method (line method) was used for this microscope observation image (photograph). The average crystal grain size was calculated. The results are shown in Table 2. In addition, a sample having an average crystal grain size of 300 μm or less was evaluated as ◯, and a sample having a mean crystal grain size of more than 300 μm was evaluated as ×.

《耐火花消耗性》
耐火花消耗性は、電極材料の比抵抗と相関がある。そこで、作製した上記各試料について、常温での比抵抗が20μΩ・cm超のものを耐火花消耗性が劣るとして×、20μΩ・cm以下のものを耐火花消耗性が優れるとして○とした。その結果を表2に示す。
《Sparkproof wear resistance》
The spark wear resistance correlates with the specific resistance of the electrode material. Accordingly, for each of the above prepared samples, those having a specific resistance at room temperature of more than 20 μΩ · cm are marked as poor in spark wear resistance, and those having a specific resistance of 20 μΩ · cm or less are marked as good in terms of spark wear resistance. The results are shown in Table 2.

《化合物粒の発生状態》
作製した上記各試料について、以下のようにして化合物粒の発生状態を調べた。その結果を表2に示す。上述した1.5mm×2.8mmの平角の軟材にエンジンオイルを塗布し、当該軟材を雰囲気制御が行える環状の加熱炉にセットする。ここでは、一般的な自動車のガソリンエンジンにおける燃焼温度(900℃〜1000℃程度)よりも100℃程度燃焼温度が高くなるように加熱炉を1100℃まで加熱し、試験用のガソリンエンジン(排気量2000cc、6気筒)から排出される排ガスを当該炉内に流しながらエンジン内を模擬した雰囲気で試料を合計60時間保持する。この加熱試験後の各試料の表面状態を拡大鏡で観察した。
<< Formation of compound grains >>
About each produced said sample, the generation | occurrence | production state of the compound grain was investigated as follows. The results are shown in Table 2. The engine oil is applied to the 1.5 mm × 2.8 mm flat soft material described above, and the soft material is set in an annular heating furnace capable of controlling the atmosphere. Here, the heating furnace is heated to 1100 ° C so that the combustion temperature is about 100 ° C higher than the combustion temperature (about 900 ° C to 1000 ° C) in a general automobile gasoline engine, and a test gasoline engine (displacement volume) The sample is held for 60 hours in an atmosphere simulating the inside of the engine while exhaust gas discharged from 2000 cc, 6 cylinders) flows into the furnace. The surface state of each sample after this heating test was observed with a magnifying glass.

上記観察の結果、大きな化合物粒が存在して、試料が大きく膨れていたり、全面的に化合物粒が発生している場合を×、化合物粒が発生し、試料表面の凹凸が大きな場合を従来材並みとして△、化合物粒の発生が軽微である場合を○、化合物粒の発生がほとんど見られない場合を◎と評価した。その結果を表2に示す。   As a result of the above observations, the case where large compound particles are present and the sample is greatly swollen or the compound particles are generated over the entire surface is x. When the compound particles are generated and the surface of the sample is large, the conventional material As a rule, Δ was evaluated as ◯, when the generation of compound particles was slight, and ◯ when the generation of compound particles was hardly observed. The results are shown in Table 2.

表2に示すように、Al,Si,Cr,Y,及びTiを特定の範囲で含有する試料No.1〜8は、1000℃、或いはそれ以上といった高温であっても耐酸化性に優れることが分かる。具体的には、試料No.1〜8はいずれも、表面酸化物層の厚さと内部酸化物層の厚さとの差が小さく、内部酸化物層が極端に厚くなっていない。この理由の一つは、AlやSiを少なめに含有すると共に、Cr及びTiを適量含有することで、内部酸化が抑制できたためであると考えられる。また、試料No.1〜8はいずれも、酸化物層の膨張、亀裂や剥離が実質的に生じていない。この理由の一つは、AlやSiを少なめに含有したためであると考えられる。更に、試料No.1〜8はいずれも、上述のような高温に曝されても結晶粒が微細である。この理由の一つは、Yを適量含有したためであると考えられる。このことから試料No.1〜8はいずれも、優れた耐高温酸化性を有することができたと考えられる。   As shown in Table 2, sample Nos. 1 to 8 containing Al, Si, Cr, Y, and Ti in a specific range are excellent in oxidation resistance even at a high temperature of 1000 ° C. or higher. I understand. Specifically, in all of sample Nos. 1 to 8, the difference between the thickness of the surface oxide layer and the thickness of the internal oxide layer is small, and the internal oxide layer is not extremely thick. One reason for this is thought to be that internal oxidation could be suppressed by containing a small amount of Al or Si and containing appropriate amounts of Cr and Ti. Further, in any of the sample Nos. 1 to 8, the oxide layer is not substantially expanded, cracked or peeled off. One reason for this is thought to be that a small amount of Al or Si was contained. Further, all of the sample Nos. 1 to 8 have fine crystal grains even when exposed to the high temperature as described above. One reason for this is considered to be that an appropriate amount of Y was contained. From this, it is considered that all of sample Nos. 1 to 8 could have excellent high-temperature oxidation resistance.

加えて、試料No.1〜8はいずれも、比抵抗が20μΩ・cm以下と小さいことが分かる。この理由の一つは、AlやSiを過剰に含有していないためであると考えられる。また、比抵抗が小さいことから試料No.1〜8を点火プラグ用電極に利用する場合、耐火花消耗性に優れると考えられる。更に、試料No.1〜8はいずれも、化合物粒が発生し難いことが分かる。この理由の一つは、Al,Si,及びCr、適宜Mnを含有することで、雰囲気中の元素と、母相のNiとが低融点の化合物を生成することを抑制することができたためであると考えられる。   In addition, it can be seen that all of Sample Nos. 1 to 8 have a small specific resistance of 20 μΩ · cm or less. One reason for this is thought to be because Al and Si are not excessively contained. Moreover, since the specific resistance is small, when using sample No. 1-8 for an electrode for spark plugs, it is thought that it is excellent in spark wear resistance. Further, it can be seen that all of the sample Nos. 1 to 8 hardly generate compound grains. One reason for this is that by containing Al, Si, and Cr, and optionally Mn, it was possible to suppress the formation of low melting point compounds between the elements in the atmosphere and the parent phase Ni. It is believed that there is.

これに対して、上記特定の元素を特定の範囲で含有していない試料No.100,120〜127は、特に内部酸化物層が厚くなったり、酸化物層に膨張・亀裂・剥離が生じたり、化合物粒が発生したり、結晶粒が粗大になっていることが分かる。即ち、上記特定の元素を特定の範囲で含有していない線材から点火プラグ用電極を形成し、この電極が従来よりも高温環境で使用される場合、耐高温酸化性や耐火花消耗性を十分に有することができず、化合物粒も発生し易いと言える。   In contrast, Sample Nos. 100 and 120 to 127 that do not contain the specific element in a specific range are particularly thick in the internal oxide layer, expanded, cracked, or peeled off in the oxide layer. It can be seen that grains are generated and crystal grains are coarse. That is, when an electrode for a spark plug is formed from a wire that does not contain the specific element in a specific range, and this electrode is used in a higher temperature environment than before, sufficient resistance to high-temperature oxidation and resistance to sparks is sufficient. It can be said that compound grains are also likely to be generated.

上述のように、Al,Si,Cr,Y,及びTi、適宜Mnを特定の範囲で含有する電極材料は、耐高温酸化性に優れる上に、比抵抗が小さく、かつ化合物粒が発生し難い。従って、この電極材料から作製された点火プラグ用電極は、従来よりも更に温度が高い環境(例えば、従来温度+100℃程度の超高温環境)であっても、良好に使用できると期待される。また、上記電極は、酸化物層が過剰に形成され難い上に、酸化物層の膨張、亀裂、剥離が生じ難く、比抵抗も小さくて火花による消耗が少なく、かつ上述の化合物粒が形成、成長され難いことから、長寿命であると期待される。   As described above, an electrode material containing Al, Si, Cr, Y, and Ti, and optionally Mn in a specific range is excellent in high-temperature oxidation resistance, has a low specific resistance, and does not easily generate compound grains. . Therefore, the electrode for a spark plug made from this electrode material is expected to be used well even in an environment where the temperature is higher than before (for example, an ultra-high temperature environment of the conventional temperature + 100 ° C.). . Further, the above-mentioned electrode is difficult to form an oxide layer excessively, the oxide layer hardly expands, cracks, and peels off, has a small specific resistance and is less consumed by sparks, and the above-mentioned compound particles are formed. It is expected to have a long life because it is difficult to grow.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、電極材料の組成、形状、大きさなどを適宜変更することができる。また、接地電極と中心電極とで組成を異ならせることもできる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition, shape, size, etc. of the electrode material can be changed as appropriate. Further, the composition can be made different between the ground electrode and the center electrode.

本発明電極材料は、自動車のエンジンといった種々の内燃機関の点火プラグ用電極の構成材料に好適に利用することができる。本発明電極は、上記点火プラグの構成部品に好適に利用することができる。本発明点火プラグは、上記内燃機関の点火用部材に好適に利用することができる。   The electrode material of the present invention can be suitably used as a constituent material for spark plug electrodes of various internal combustion engines such as automobile engines. The electrode of the present invention can be suitably used for the components of the spark plug. The spark plug of the present invention can be suitably used as an ignition member for the internal combustion engine.

Claims (4)

点火プラグの電極に用いられる電極材料であって、
質量%で、
Alを0.005%以上0.2%以下、
Siを0.3%以上0.5%以下、
Crを0.6%以上1.2%以下、
Tiを0.05%以上0.5%以下、
Yを0.3%以上1.0%以下含有し、残部がNi及び不可避不純物からなり、
前記電極材料を1000℃×72時間加熱したとき、この加熱後の電極材料の平均結晶粒径が100μm以下である電極材料。
An electrode material used for an electrode of a spark plug,
% By mass
Al is 0.005% or more and 0.2% or less,
Si is 0.3% to 0.5%,
Cr is 0.6% or more and 1.2% or less,
Ti 0.05% or more and 0.5% or less,
Containing Y 0.3% or more and 1.0% or less, with the balance being Ni and inevitable impurities,
An electrode material having an average crystal grain size of 100 μm or less when the electrode material is heated at 1000 ° C. for 72 hours.
更に、Mnを0.05質量%以上0.2質量%以下含有する請求項1に記載の電極材料。   2. The electrode material according to claim 1, further comprising 0.05% by mass to 0.2% by mass of Mn. 請求項1又は請求項2に記載の電極材料から構成された点火プラグ用電極。 An ignition plug electrode comprising the electrode material according to claim 1 or 2 . 請求項3に記載の点火プラグ用電極を具える点火プラグ。 A spark plug comprising the spark plug electrode according to claim 3 .
JP2010213513A 2010-09-24 2010-09-24 Electrode material, spark plug electrode, and spark plug Active JP5650969B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010213513A JP5650969B2 (en) 2010-09-24 2010-09-24 Electrode material, spark plug electrode, and spark plug
PCT/JP2011/071476 WO2012039421A1 (en) 2010-09-24 2011-09-21 Electrode material
DE112011102753.2T DE112011102753B4 (en) 2010-09-24 2011-09-21 electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213513A JP5650969B2 (en) 2010-09-24 2010-09-24 Electrode material, spark plug electrode, and spark plug

Publications (2)

Publication Number Publication Date
JP2012069393A JP2012069393A (en) 2012-04-05
JP5650969B2 true JP5650969B2 (en) 2015-01-07

Family

ID=45873905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213513A Active JP5650969B2 (en) 2010-09-24 2010-09-24 Electrode material, spark plug electrode, and spark plug

Country Status (3)

Country Link
JP (1) JP5650969B2 (en)
DE (1) DE112011102753B4 (en)
WO (1) WO2012039421A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912986B2 (en) * 2012-08-09 2016-04-27 住友電気工業株式会社 Electrode material, electrode for spark plug and spark plug
JP6075707B2 (en) * 2012-08-31 2017-02-08 住友電気工業株式会社 Electrode material, spark plug electrode, and spark plug
JP6065580B2 (en) * 2012-12-25 2017-01-25 住友電気工業株式会社 Evaluation test method for internal combustion engine materials
CN104532064A (en) * 2014-12-25 2015-04-22 春焱电子科技(苏州)有限公司 Alloy for electronic material
JP6312723B2 (en) * 2016-01-18 2018-04-18 日本特殊陶業株式会社 Spark plug
DE102017205520A1 (en) * 2017-03-31 2018-10-04 Robert Bosch Gmbh Spark plug electrode, spark plug, and method of making a spark plug electrode
US11196235B2 (en) 2017-05-19 2021-12-07 Sumitomo Electric Industries, Ltd. Electrode material spark plug electrode, and spark plug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043897B2 (en) * 1978-09-07 1985-10-01 日本特殊陶業株式会社 Nickel alloy for spark plug electrodes
JPH0717979B2 (en) * 1986-07-08 1995-03-01 三菱マテリアル株式会社 Ni-based alloy spark plug electrode
JPH02163335A (en) * 1988-12-15 1990-06-22 Toshiba Corp Electrode for spark plug
JP2909667B2 (en) 1991-03-12 1999-06-23 エッセ.ティ.エ.エンメ.ソチエタ ア リスポンサビリタ リミタータ Home and commercial steam generators
JP4706441B2 (en) * 2004-11-04 2011-06-22 日立金属株式会社 Spark plug electrode material
JP4769070B2 (en) * 2005-01-31 2011-09-07 日本特殊陶業株式会社 Spark plug for internal combustion engine

Also Published As

Publication number Publication date
WO2012039421A1 (en) 2012-03-29
DE112011102753T5 (en) 2013-07-04
JP2012069393A (en) 2012-04-05
DE112011102753B4 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5650969B2 (en) Electrode material, spark plug electrode, and spark plug
US9932656B2 (en) Nickel-based alloy with silicon, aluminum, and chromium
JP4769070B2 (en) Spark plug for internal combustion engine
US7279827B2 (en) Spark plug with electrode including precious metal
JP5697484B2 (en) Spark plug electrode material
JP5619843B2 (en) Spark plug
JP5232917B2 (en) Spark plug
JP6155575B2 (en) Electrode material, spark plug electrode, and spark plug
JP7140112B2 (en) Electrode materials, electrodes for spark plugs, and spark plugs
JP5172425B2 (en) Spark plug
WO2018117135A1 (en) Heat-resistant ir alloy
JP5912986B2 (en) Electrode material, electrode for spark plug and spark plug
JP6484160B2 (en) Electrode material, spark plug electrode, and spark plug
JP6075707B2 (en) Electrode material, spark plug electrode, and spark plug
JP6719976B2 (en) Electrode material and spark plug electrode
JP6419108B2 (en) Spark plug
JP2002235137A (en) Spark plug electrode material having excellent spark consumption resistance
JP5794890B2 (en) Materials for spark plug electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5650969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250