JP5650883B2 - Deodorant and interior material - Google Patents
Deodorant and interior material Download PDFInfo
- Publication number
- JP5650883B2 JP5650883B2 JP2008311091A JP2008311091A JP5650883B2 JP 5650883 B2 JP5650883 B2 JP 5650883B2 JP 2008311091 A JP2008311091 A JP 2008311091A JP 2008311091 A JP2008311091 A JP 2008311091A JP 5650883 B2 JP5650883 B2 JP 5650883B2
- Authority
- JP
- Japan
- Prior art keywords
- visible light
- gas
- interior material
- deodorant
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 53
- 239000002781 deodorant agent Substances 0.000 title claims description 23
- 239000003463 adsorbent Substances 0.000 claims description 68
- 239000011941 photocatalyst Substances 0.000 claims description 60
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 54
- 239000000126 substance Substances 0.000 claims description 47
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 8
- 229910021536 Zeolite Inorganic materials 0.000 claims description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 7
- 239000010457 zeolite Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052586 apatite Inorganic materials 0.000 claims description 4
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 3
- 150000004692 metal hydroxides Chemical class 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 87
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 26
- 239000012855 volatile organic compound Substances 0.000 description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 18
- 229910052717 sulfur Inorganic materials 0.000 description 18
- 239000011593 sulfur Substances 0.000 description 18
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 231100000572 poisoning Toxicity 0.000 description 13
- 230000000607 poisoning effect Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 238000013032 photocatalytic reaction Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 229910052815 sulfur oxide Inorganic materials 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 235000010724 Wisteria floribunda Nutrition 0.000 description 4
- -1 alkyl silicate Chemical compound 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 235000019645 odor Nutrition 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000004332 deodorization Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002574 poison Substances 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910011210 Ti—O—N Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 1
- 229960003988 indigo carmine Drugs 0.000 description 1
- 235000012738 indigotine Nutrition 0.000 description 1
- 239000004179 indigotine Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000008842 sick building syndrome Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、消臭剤及び消臭剤を備える内装材に関する。 The present invention relates to a deodorant and an interior material provided with the deodorant.
近年、シックハウス症候群の原因物質であるホルムアルデヒド、アセトアルデヒドをはじめとする揮発性有機化合物(VOC:Volatile organic compound)ガスの低減要求が高まっている。住宅用内装材の場合、建築基準法によってVOCガスの1つであるホルムアルデヒドは規制対象となっているため、法律によって定められた削減基準は達成されている。しかし、持ち込み家具等からVOCガスが発生する場合があるため、さらなるVOCガスの低減が必要になっている。また、自動車の室内においても、VOCガスの低減、外気から侵入する窒素含有ガス及び硫黄含有ガスの低減要求が高まっている。また、快適空間を創出するため、VOCガス、窒素含有ガス及び硫黄含有ガス等の低減に加え、タバコ等の持ち込み臭に対する消臭の要望も高い。 In recent years, there has been an increasing demand for reduction of volatile organic compound (VOC) gases such as formaldehyde and acetaldehyde, which are substances causing sick house syndrome. In the case of residential interior materials, formaldehyde, which is one of the VOC gases, is regulated by the Building Standards Law, so the reduction standards set by law have been achieved. However, since VOC gas may be generated from carry-in furniture or the like, further reduction of VOC gas is necessary. Also in automobile interiors, there are increasing demands for reducing VOC gas and reducing nitrogen-containing gas and sulfur-containing gas entering from outside air. In addition, in order to create a comfortable space, in addition to the reduction of VOC gas, nitrogen-containing gas, sulfur-containing gas, etc., there is a high demand for deodorization against brought-in odors such as tobacco.
そして、住宅、自動車の室内における上記ガスの低減、消臭等の対策として、光触媒を利用した技術が提案されている。例えば、特許文献1には、繊維を主たる構成材としてなる室内内装材であり、該繊維表面に、アルキルシリケート系樹脂、シリコーン系樹脂及びフッ素系樹脂から選ばれた少なくとも1種のバインダと、光触媒材を有することを特徴とする室内内装材料が提案されている。 And the technique using a photocatalyst is proposed as countermeasures, such as reduction of the said gas in the room | chamber interior of a house and a motor vehicle, and deodorization. For example, Patent Document 1 discloses an indoor interior material mainly composed of fibers, and at least one binder selected from alkyl silicate resins, silicone resins, and fluorine resins on the fiber surface, and a photocatalyst. An interior interior material characterized by having a material has been proposed.
しかし、光触媒は分解型であるので永続性はあるものの、窒素含有ガス及び硫黄含有ガスが光触媒により分解されると、窒素酸化物、硫黄酸化物が生成し、光触媒を被毒する。その結果、上記ガスの分解性能を劣化させる場合がある。 However, although the photocatalyst is a decomposition type, it has permanence, but when the nitrogen-containing gas and the sulfur-containing gas are decomposed by the photocatalyst, nitrogen oxides and sulfur oxides are generated and the photocatalyst is poisoned. As a result, the gas decomposition performance may be deteriorated.
また、例えば、特許文献2には、上記ガスの分解に使用する光触媒の厚さを厚くし、光触媒の反応生成物である窒素酸化物、硫黄酸化物等の触媒被毒物質の保持量を多くすることによって、触媒が被毒しても、上記ガスの分解性能の劣化を遅らせる技術が提案されている。 Further, for example, in Patent Document 2, the thickness of the photocatalyst used for the decomposition of the gas is increased, and the amount of catalyst poisoning substances such as nitrogen oxides and sulfur oxides that are reaction products of the photocatalyst is increased. Thus, there has been proposed a technique for delaying the degradation of the gas decomposition performance even if the catalyst is poisoned.
また、例えば、特許文献3には、水洗等で触媒被毒物質を除去できる再生可能な光触媒フィルタを搭載した空気浄化システムが提案されている。 Further, for example, Patent Document 3 proposes an air purification system equipped with a reproducible photocatalytic filter that can remove catalyst poisoning substances by washing with water or the like.
しかし、特許文献1及び2の光触媒のように、紫外線を利用する光触媒では、室内に紫外線がほとんど入らない環境において、上記ガスの低減、消臭効果が十分に発揮されない場合がある。また、特許文献2のように、光触媒の厚さを厚くしただけでは、触媒被毒による触媒性能の劣化を充分に抑制することはできない。 However, in photocatalysts using ultraviolet rays, such as the photocatalysts of Patent Documents 1 and 2, the gas reduction and deodorizing effects may not be sufficiently exhibited in an environment where ultraviolet rays hardly enter the room. In addition, as in Patent Document 2, it is not possible to sufficiently suppress deterioration in catalyst performance due to catalyst poisoning simply by increasing the thickness of the photocatalyst.
また、特許文献3の空気浄化システムのように、水洗等によって触媒被毒物質を除去しようとすると、大掛かりな設備が必要となる。 Further, as in the air purification system of Patent Document 3, if an attempt is made to remove the catalyst poisoning substance by water washing or the like, a large facility is required.
そこで、本発明の目的は、住宅、自動車等の室内等の空間において、VOCガス、窒素含有ガス及び硫黄含有ガス、持ち込み臭等を効率良く吸着分解することができる消臭剤を提供することにある。 Accordingly, an object of the present invention is to provide a deodorant capable of efficiently adsorbing and decomposing VOC gas, nitrogen-containing gas and sulfur-containing gas, brought-in odor, etc. in a room such as a house or an automobile. is there.
本発明の消臭剤は、可視光応答型光触媒と、物理吸着剤と、窒素酸化物、硫黄酸化物のうち少なくともいずれか一方を化学吸着する化学吸着剤と、を含む。 The deodorizer of the present invention includes a visible light responsive photocatalyst, a physical adsorbent, and a chemical adsorbent that chemisorbs at least one of nitrogen oxide and sulfur oxide.
また、前記消臭剤において、前記物理吸着剤は、ゼオライト、アパタイト、活性炭のうち、少なくともいずれか1つから選択されることが好ましい。 In the deodorizer, the physical adsorbent is preferably selected from at least one of zeolite, apatite, and activated carbon.
また、前記消臭剤において、前記化学吸着剤は、アルカリ性を有し、アルミニウム、ビスマス、マンガン、イットリウム、アンチモン、錫、希土類金属、第1a族金属、第2a族金属のうち、少なくともいずれか1つから選択される金属の水酸化物又は酸化物であることが好ましい。 Further, in the deodorant, the chemical adsorbent has alkalinity and is at least one of aluminum, bismuth, manganese, yttrium, antimony, tin, rare earth metal, Group 1a metal, and Group 2a metal. It is preferably a metal hydroxide or oxide selected from the above.
また、本発明の内装材は、担体と、前記担体に担持した前記消臭剤と、を備える。 Moreover, the interior material of the present invention includes a carrier and the deodorant carried on the carrier.
また、前記内装材において、前記担体は、積層構造体であって、前記消臭剤は、前記積層構造体の最表層に担持されることが好ましい。 In the interior material, it is preferable that the carrier is a laminated structure, and the deodorizer is supported on the outermost layer of the laminated structure.
また、前記内装材において、前記担体へ担持する消臭剤中の可視光応答型光触媒の担持量は、0.1〜10g/m2の範囲であり、前記消臭剤中の物理吸着剤の担持量及び化学吸着剤の担持量は、それぞれ1〜10g/m2の範囲であることが好ましい。 In the interior material, the amount of the visible light responsive photocatalyst supported in the deodorant supported on the carrier is in the range of 0.1 to 10 g / m 2 , and the physical adsorbent in the deodorant is The loading amount and the loading amount of the chemical adsorbent are each preferably in the range of 1 to 10 g / m 2 .
本発明によれば、住宅、自動車等の室内等の空間において、VOCガス、窒素含有ガス及び硫黄含有ガス、持ち込み臭等を効率良く吸着分解することができる。 According to the present invention, VOC gas, nitrogen-containing gas and sulfur-containing gas, brought-in odor, and the like can be efficiently adsorbed and decomposed in a space such as a room of a house or an automobile.
本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.
図1は、本実施形態に係る内装材の構成の一例を示す模式断面図である。図1に示すように、内装材1は、編物、不織布又は織物等、繊維を主たる構成材料とする担体10と、担体10の表面又は内部に担持される消臭剤と、を有する。担体10への消臭剤の担持には、例えば、アルキルシリケート系樹脂、シリコーン系樹脂及びフッ素系樹脂等のバインダーが用いられる。消臭剤は、可視光応答型光触媒12と、物理吸着剤14と、化学吸着剤16とを有する。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the interior material according to the present embodiment. As shown in FIG. 1, the interior material 1 includes a carrier 10 mainly composed of fibers, such as a knitted fabric, a nonwoven fabric, or a woven fabric, and a deodorant supported on the surface or inside of the carrier 10. For supporting the deodorant on the carrier 10, for example, a binder such as an alkyl silicate resin, a silicone resin and a fluorine resin is used. The deodorant has a visible light responsive photocatalyst 12, a physical adsorbent 14, and a chemical adsorbent 16.
本実施形態に係る消臭剤の機能について説明する。自動車、住宅の室内空間に存在するVOCガス、窒素含有ガス及び硫黄含有ガス、たばこ臭等の持ち込みガスは、まず、物理吸着剤14により速やかに吸着される。その後、可視光下において、物理吸着剤14から離脱したVOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスが、可視光応答型光触媒12により酸化分解される。具体的には、VOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスのうち、炭化水素系ガスは、水と二酸化炭素に分解され、窒素含有ガス、硫黄含有ガスは、窒素酸化物及び硫黄酸化物に酸化される。そして、可視光応答型光触媒12の分解反応により生成した窒素酸化物又は硫黄酸化物は、化学吸着剤16により化学吸着される。 The function of the deodorant according to this embodiment will be described. Carry-in gases such as VOC gas, nitrogen-containing gas and sulfur-containing gas, and tobacco odor present in the indoor space of automobiles and houses are first quickly adsorbed by the physical adsorbent 14. Thereafter, under visible light, the VOC gas, the nitrogen-containing gas, the sulfur-containing gas, and the carry-in gas separated from the physical adsorbent 14 are oxidatively decomposed by the visible light responsive photocatalyst 12. Specifically, among VOC gas, nitrogen-containing gas, sulfur-containing gas, and brought-in gas, hydrocarbon-based gas is decomposed into water and carbon dioxide, and nitrogen-containing gas and sulfur-containing gas are oxidized with nitrogen oxides and sulfur oxides. It is oxidized to things. The nitrogen oxide or sulfur oxide generated by the decomposition reaction of the visible light responsive photocatalyst 12 is chemically adsorbed by the chemical adsorbent 16.
例えば、触媒に可視光が照射されない場合や、VOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスが多量に存在する場合等では、可視光応答型光触媒12が当該ガスを速やかに酸化分解できない場合等がある。しかし、本実施形態の消臭剤には、物理吸着剤14が含有されているため、上記状況下でも、VOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスを速やかに吸着することが可能(すなわち、昼夜問わずガス吸着が可能)となる。 For example, when the catalyst is not irradiated with visible light, or when there is a large amount of VOC gas, nitrogen-containing gas, sulfur-containing gas, or carry-in gas, the visible-light-responsive photocatalyst 12 cannot oxidize and decompose the gas quickly. Etc. However, since the deodorizer of this embodiment contains the physical adsorbent 14, it is possible to quickly adsorb VOC gas, nitrogen-containing gas, sulfur-containing gas, and carry-in gas even under the above circumstances ( That is, gas adsorption is possible regardless of day or night).
また、本実施形態の消臭剤には、可視光応答型の光触媒が含有されている。該光触媒の動作光は、波長λ<380nmの紫外線に限られず、波長380nm以上の可視光も含まれる。したがって、可視光応答型光触媒12含有の消臭剤は、太陽エネルギの効率的な利用、太陽光以外の光源を使用することができるため、より効率的にVOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスを分解、特に物理吸着剤14に吸着されているガスを分解することが可能となる。 Moreover, the deodorizer of this embodiment contains a visible light responsive photocatalyst. The operation light of the photocatalyst is not limited to ultraviolet light having a wavelength λ <380 nm, and includes visible light having a wavelength of 380 nm or more. Therefore, since the deodorizer containing the visible light responsive photocatalyst 12 can use solar energy efficiently and use a light source other than sunlight, VOC gas, nitrogen-containing gas, sulfur-containing gas can be used more efficiently. It is possible to decompose the introduced gas, particularly the gas adsorbed on the physical adsorbent 14.
また、物理吸着剤14から離脱したガスのうち窒素含有ガス、硫黄含有ガスが、可視光応答型光触媒12により酸化分解されると、窒素酸化物又は硫黄酸化物となる。そして、これらの生成物は、可視光応答型光触媒12を被毒し、光触媒の分解効率を低下させる。しかし、本実施形態の消臭剤には、化学吸着剤16が含有されているため、可視光応答型光触媒12の触媒反応により生成した窒素酸化物又は硫黄酸化物は、化学吸着剤16により化学吸着され、光触媒の被毒が抑制される。その結果、長期間光触媒の触媒機能を維持させることが可能となり、メンテナンス回数を減らすことができる。化学吸着剤16は、触媒被毒物質(窒素酸化物、硫黄酸化物)中の硝酸イオン、硫酸イオンと中和反応を介して、触媒反応生成物と化学的に結合する。このように化学吸着剤16は、触媒被毒物質と化学的に結合するため、一旦、窒素酸化物、硫黄酸化物が化学吸着剤16に化学吸着されると、容易に離脱することができない。その結果、光触媒の触媒被毒を安定して抑えることができる。 Moreover, when the nitrogen-containing gas and the sulfur-containing gas out of the gas adsorbed from the physical adsorbent 14 are oxidatively decomposed by the visible light responsive photocatalyst 12, they become nitrogen oxides or sulfur oxides. These products poison the visible light responsive photocatalyst 12 and reduce the decomposition efficiency of the photocatalyst. However, since the deodorizer of this embodiment contains the chemical adsorbent 16, the nitrogen oxide or sulfur oxide generated by the catalytic reaction of the visible light responsive photocatalyst 12 is chemically treated by the chemical adsorbent 16. Adsorption is suppressed and poisoning of the photocatalyst is suppressed. As a result, the catalytic function of the photocatalyst can be maintained for a long time, and the number of maintenance can be reduced. The chemical adsorbent 16 is chemically bonded to the catalytic reaction product through a neutralization reaction with nitrate ions and sulfate ions in the catalyst poisoning substance (nitrogen oxide, sulfur oxide). Thus, since the chemical adsorbent 16 is chemically bonded to the catalyst poisoning substance, once nitrogen oxide and sulfur oxide are chemically adsorbed to the chemical adsorbent 16, it cannot be easily detached. As a result, the catalyst poisoning of the photocatalyst can be stably suppressed.
本実施形態に用いられる可視光応答型光触媒12は、可視光領域においても光触媒機能を発現するものであれば特に制限されるものではないが、例えば、特許第3587178号公報、特許第3601532号公報記載の可視光応答型光触媒12等が挙げられる。具体的には、IRスペクトル測定において、波数2050cm−1にピークを有し、12μM/ccの濃度のインジゴカルミン水溶液に0.5mg/ccを混合した場合における1時間当たりの可視光照射時の吸光度減少率が0.32ABS以上である光触媒活性を示し、アミノ基(NH2−)を有する酸化チタン又は酸窒化チタンを含み、可視光照射下において光触媒活性を示す可視光応答型光触媒が用いられる。また、具体的には、酸化チタン結晶の酸素サイトの一部を窒素原子で置換したTi−O−N構成を含み、チタン原子と窒素原子との化学結合を有する、可視光領域において光触媒作用を発現する可視光応答型光触媒が用いられる。より具体的には、窒素ドープ酸化チタン、白金担持増感型酸化チタン等が採用される。 The visible light responsive photocatalyst 12 used in the present embodiment is not particularly limited as long as it exhibits a photocatalytic function even in the visible light region. For example, Japanese Patent No. 3587178 and Japanese Patent No. 3601532 are disclosed. And the visible light responsive photocatalyst 12 described. Specifically, in IR spectrum measurement, the absorbance at the time of visible light irradiation per hour when 0.5 mg / cc is mixed with an indigo carmine aqueous solution having a wave number of 2050 cm −1 and a concentration of 12 μM / cc. A visible light responsive photocatalyst exhibiting a photocatalytic activity having a reduction rate of 0.32 ABS or more, including titanium oxide or titanium oxynitride having an amino group (NH 2− ) and exhibiting photocatalytic activity under irradiation with visible light is used. Specifically, it includes a Ti—O—N structure in which a part of the oxygen site of the titanium oxide crystal is replaced with a nitrogen atom, and has a chemical bond between the titanium atom and the nitrogen atom, and has a photocatalytic action in the visible light region. A visible light responsive photocatalyst is used. More specifically, nitrogen-doped titanium oxide, platinum-supported sensitized titanium oxide, or the like is employed.
本実施形態に用いられる物理吸着剤14は、VOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガスを吸着することができるものであれば特に制限されるものではないが、例えば、ゼオライト、アパタイト(リン酸カルシウム(フッ素、塩素等を含む)を主成分とする鉱物)、酸性白土、漂白土、カオリナイト、アルミナ、シリカゲル、ベントナイト、粘度鉱物等の無機系材料、活性炭材料のうち少なくともいずれか1つから選択されることが好ましい。特に、ガス吸着性能、取り扱い等の点で、ゼオライト、アパタイト、活性炭材料のうち少なくともいずれか1つから選択されることがより好ましい。ゼオライトは、天然物又は合成物であってもよく、特に制限されるものではない。また、ゼオライトの構造は、A型、X型、Y型、α型、β型、ZSM−5型等多様であるが、特に制限されるものではない。しかし、ゼオライトを用いる場合、消臭剤を担体10に担持する分散液(消臭剤+バインダ)のpHは、2〜8の範囲であることが好ましい。活性炭材料は、セルロース系、ピッチ系、ポリアクリロニトリル、フェノール樹脂等を原料としたものを用いることができるが、必ずしもこれに制限されるものではない。また、活性炭の比表面積は、500m2/g以上であることが好ましく、さらに、活性炭の形状は、粒子状(粉末状)であることが好ましい。 The physical adsorbent 14 used in the present embodiment is not particularly limited as long as it can adsorb VOC gas, nitrogen-containing gas, sulfur-containing gas, and carry-in gas. For example, zeolite, apatite ( From mineral materials such as calcium phosphate (including minerals containing fluorine, chlorine, etc.), acid clay, bleaching clay, kaolinite, alumina, silica gel, bentonite, viscous minerals, and activated carbon materials. Preferably it is selected. In particular, it is more preferable to select from at least one of zeolite, apatite, and activated carbon material in terms of gas adsorption performance, handling, and the like. The zeolite may be a natural product or a synthetic product, and is not particularly limited. Further, the structure of the zeolite is various, such as A type, X type, Y type, α type, β type, ZSM-5 type, but is not particularly limited. However, when zeolite is used, the pH of the dispersion (deodorant + binder) carrying the deodorant on the carrier 10 is preferably in the range of 2-8. As the activated carbon material, materials made of cellulose, pitch, polyacrylonitrile, phenol resin, or the like can be used, but are not necessarily limited thereto. Moreover, it is preferable that the specific surface area of activated carbon is 500 m < 2 > / g or more, and it is preferable that the shape of activated carbon is a particulate form (powder form).
本実施形態に用いられる化学吸着剤は、窒素酸化物、硫黄酸化物のうち少なくともいずれか一方を化学吸着することができるものであれば特に制限されるものではないが、アルカリ性を有し、アルミニウム、ビスマス、マンガン、イットリウム、アンチモン、錫、希土類金属、第1a族金属、第2a族金属のうち、少なくともいずれか1つから選択される金属の水酸化物又は酸化物であることが好ましい。 The chemical adsorbent used in the present embodiment is not particularly limited as long as it can chemically adsorb at least one of nitrogen oxide and sulfur oxide, but has alkalinity and aluminum. , Bismuth, manganese, yttrium, antimony, tin, rare earth metal, Group 1a metal, Group 2a metal, and preferably a metal hydroxide or oxide selected from at least one of them.
担体10に担持する消臭剤において、消臭剤中の可視光応答型光触媒12の担持量は、0.1〜10g/m2の範囲であることが好ましく、0.5〜5g/m2の範囲であることがより好ましい。可視光応答型光触媒12の担持量が0.1g/m2より少ないと、光触媒によるガス分解性能が低下する場合があり、10g/m2より多いと内装材1の意匠性に影響を及ぼす場合がある。 In deodorizer supported on a carrier 10, the supported amount of the visible light responsive photocatalyst 12 in deodorant is preferably in the range of 0.1~10g / m 2, 0.5~5g / m 2 More preferably, it is the range. When the loading amount of the visible light responsive photocatalyst 12 is less than 0.1 g / m 2 , the gas decomposition performance by the photocatalyst may be deteriorated, and when it is more than 10 g / m 2 , the design of the interior material 1 is affected. There is.
また、消臭剤中の物理吸着剤14の担持量は、1〜10g/m2の範囲であることが好ましく、1〜5g/m2の範囲であることがより好ましい。物理吸着剤14の担持量が1g/m2より少ないと、ガス吸着性能が低下する場合があり、10g/m2より多いと、上記同様に内装材1の意匠性に影響を及ぼす場合がある。 Further, the supported amount of physical adsorbent 14 in the deodorant is preferably in the range of 1 to 10 g / m 2, and more preferably in the range of 1 to 5 g / m 2. If the loading amount of the physical adsorbent 14 is less than 1 g / m 2 , the gas adsorption performance may be deteriorated. If it is more than 10 g / m 2 , the design of the interior material 1 may be affected as described above. .
また、消臭剤中の化学吸着剤16の担持量は、1〜10g/m2の範囲であることが好ましく、1〜5g/m2の範囲であることがより好ましい。化学吸着剤16の担持量が1g/m2より少ないと、光触媒反応生成物と速やかな反応が行われず、可視光応答型光触媒12の触媒被毒を抑制することが困難となる場合があり、10g/m2より多いと、上記同様に内装材1の意匠性に影響を及ぼす場合がある。 Further, the supported amount of the chemical adsorbent 16 in the deodorant is preferably in the range of 1 to 10 g / m 2, and more preferably in the range of 1 to 5 g / m 2. When the loading amount of the chemical adsorbent 16 is less than 1 g / m 2 , a rapid reaction with the photocatalytic reaction product is not performed, and it may be difficult to suppress catalyst poisoning of the visible light responsive photocatalyst 12. When it is more than 10 g / m 2, the design of the interior material 1 may be affected as described above.
図2は、本実施形態に係る内装材の構成の他の一例を示す模式断面図である。消臭剤を担体10に担持する場合、図1に示すように、可視光応答型光触媒12、物理吸着剤14及び化学吸着剤16のそれぞれの粒子を一緒に混合し、担体10に担持させることが好ましい。これにより、可視光応答型光触媒12粒子の周辺に物理吸着剤14及び化学吸着剤16の粒子が配置されるため、物理吸着剤14に吸着されたVOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガス等を速やかに可視光応答型光触媒12側に受け渡すことが可能となり、また、光触媒の触媒反応により生成した窒素酸化物、硫黄酸化物を速やかに化学吸着剤16に受け渡し可視光応答型光触媒12の触媒被毒を抑制することができる。しかし、必ずしもこれに制限されるものではなく、例えば、図2に示すように、担体10上に可視光応答型光触媒12の層、物理吸着材14の層及び化学吸着材16の層を形成させた構成としてもよい。ここで、VOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガス等を速やかに吸着すること、吸着したガスを速やかに光触媒で分解すること、そして、触媒反応により生成する窒素酸化物及び硫黄酸化物を速やかに吸着することができる点で、各層の配置順は物理吸着剤14層を内装材2の最表面に形成し、その下に可視光応答型光触媒12層を形成し、さらにその下に化学吸着剤16層を形成することが好ましい(化学吸着剤16層の下は担体10となる)。なお、必ずしもこれに制限されるものではない。 FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the interior material according to the present embodiment. When the deodorant is carried on the carrier 10, the particles of the visible light responsive photocatalyst 12, the physical adsorbent 14 and the chemical adsorbent 16 are mixed together and carried on the carrier 10 as shown in FIG. 1. Is preferred. Thereby, since the particles of the physical adsorbent 14 and the chemical adsorbent 16 are arranged around the visible light responsive photocatalyst 12 particles, the VOC gas, the nitrogen-containing gas, the sulfur-containing gas adsorbed on the physical adsorbent 14 are brought in. Gas and the like can be quickly transferred to the visible light responsive photocatalyst 12 side, and nitrogen oxides and sulfur oxides generated by the catalytic reaction of the photocatalyst can be quickly transferred to the chemical adsorbent 16 and visible light responsive photocatalyst. 12 catalyst poisoning can be suppressed. However, the present invention is not necessarily limited to this. For example, as shown in FIG. 2, a layer of visible light responsive photocatalyst 12, a layer of physical adsorbent 14, and a layer of chemical adsorbent 16 are formed on the carrier 10. It is good also as a structure. Here, VOC gas, nitrogen-containing gas, sulfur-containing gas, brought-in gas, etc. are quickly adsorbed, the adsorbed gas is quickly decomposed by a photocatalyst, and nitrogen oxides and sulfur oxides generated by catalytic reaction Are arranged so that the physical adsorbent 14 layer is formed on the outermost surface of the interior material 2, the visible light responsive photocatalyst 12 layer is formed thereunder, and further below the physical adsorbent 14 layer. It is preferable to form 16 layers of chemical adsorbent (under the chemical adsorbent 16 layer is the carrier 10). Note that the present invention is not necessarily limited to this.
また、例えば、物理吸着剤14及び可視光応答型光触媒12の粒子を混合した層を内装材2の最表面に形成し、その下に化学吸着剤16の層を形成することによっても、上記のようにVOCガス、窒素含有ガス、硫黄含有ガス、持ち込みガス等の速やかな吸着、光触媒反応による速やかな分解、窒素酸化物及び硫黄酸化物の速やかな吸着を可能とする。しかし、必ずしもこれに制限されるものではなく、可視光応答型光触媒12、物理吸着剤14及び化学吸着剤16のうちいずれか2つを混合した層を内装材2の最表面に形成し、その下に上記2つ以外の物質の層を形成するものであってもよい(上記2つ以外の物質で構成される層の下は、担体10となる)。 In addition, for example, by forming a layer in which the particles of the physical adsorbent 14 and the visible light responsive photocatalyst 12 are mixed on the outermost surface of the interior material 2 and forming a layer of the chemical adsorbent 16 therebelow, Thus, it is possible to quickly adsorb VOC gas, nitrogen-containing gas, sulfur-containing gas, brought-in gas, etc., quickly decompose by photocatalytic reaction, and quickly adsorb nitrogen oxides and sulfur oxides. However, it is not necessarily limited thereto, and a layer in which any two of the visible light responsive photocatalyst 12, the physical adsorbent 14 and the chemical adsorbent 16 are mixed is formed on the outermost surface of the interior material 2, A layer of a substance other than the above two substances may be formed below (below the layer made of a substance other than the above two substances is the carrier 10).
図3は、本実施形態に係る内装材の他の構成の一例を示す模式断面図である。図3に示すように担体10は、積層構造体であってもよい。積層構造体の構成は、内装材3の目的に合う構成であれば特に制限されるものではないが、例えば、自動車等の車両の内装に用いる場合には、積層構造体の担体10は、不織布等から構成されるバリヤ材22、発泡樹脂材等から構成されるクッション材20、合成繊維、天然繊維等から構成される表皮材18を順に積層したものが用いられる。そして、本実施形態に係る消臭剤は、少なくとも積層構造体の担体10の最表層に担持されていればよい。ここで、担体10の最表層とは室内側であり、例えば図3では、表皮材18の面となる。 FIG. 3 is a schematic cross-sectional view showing an example of another configuration of the interior material according to the present embodiment. As shown in FIG. 3, the carrier 10 may be a laminated structure. The structure of the laminated structure is not particularly limited as long as the structure meets the purpose of the interior material 3. For example, when used for the interior of a vehicle such as an automobile, the carrier 10 of the laminated structure is a non-woven fabric. A material obtained by sequentially laminating a barrier material 22 composed of, for example, a cushion material 20 composed of a foamed resin material, etc., and a skin material 18 composed of synthetic fiber, natural fiber, etc. is used. And the deodorizer which concerns on this embodiment should just be carry | supported by the outermost layer of the support | carrier 10 of a laminated structure. Here, the outermost surface layer of the carrier 10 is the indoor side. For example, in FIG.
図3に示すような内装材3の製造方法の一例を説明する。例えば、可視光応答型光触媒12、物理吸着剤14、化学吸着剤16及びバインダーを混合したスラリーに表皮材18を浸漬させ、その後必要担持量(例えば、可視光応答型光触媒12が0.5〜5g/m2、物理吸着剤14及び化学吸着剤16がそれぞれ1〜10g/m2)となるように絞りを加えた後、乾燥させる。その後、消臭剤を担持した表皮材18と、クッション材20とバリヤ材22とを重ねて、ローラにより融着させることにより、内装材3が得られる。なお、表皮材18とクッション材20、クッション材20とバリヤ材22との間を接着剤等により接着、熱による溶着をしてもよい。 An example of a method for manufacturing the interior material 3 as shown in FIG. 3 will be described. For example, the skin material 18 is immersed in a slurry in which the visible light responsive photocatalyst 12, the physical adsorbent 14, the chemical adsorbent 16 and the binder are mixed, and then the required loading amount (for example, the visible light responsive photocatalyst 12 is 0.5 to 0.5). 5 g / m 2, after the physical adsorbent 14 and chemical adsorbent 16 was added to stop so as to be respectively 1~10g / m 2), and dried. Thereafter, the skin material 18 carrying the deodorant, the cushion material 20 and the barrier material 22 are overlapped and fused with a roller, whereby the interior material 3 is obtained. Note that the skin material 18 and the cushion material 20 and the cushion material 20 and the barrier material 22 may be bonded with an adhesive or the like and welded by heat.
本実施形態に用いられる内装材は、例えば、自動車等の車両、住宅、ビル等の内装に用いられるものであり、自動車の車内、飛行機の機内、船舶の船室等の天井、ドアトリム、ピラー、床等に使用する構造物及びその付属品、さらには、住宅、ビル、ホール等の天井、壁に使用する構造物及びその付属品等を全て含むものである。 The interior material used in the present embodiment is, for example, used for interiors of vehicles such as automobiles, houses, buildings, etc., such as interiors of automobiles, airplane cabins, ship cabins, ceilings, door trims, pillars, floors. It includes all structures and accessories used for the above, as well as structures and accessories used for ceilings and walls of houses, buildings, and halls.
以下に、実施例により本発明を更に詳細に説明するが、本発明はその要旨を変えない限り、以下の実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist thereof is changed.
可視光応答型光触媒として、0.05gの窒素ドープ型酸化チタン(豊田通商社製、V−CATII)の粉末、物理吸着剤として、0.025gのモレキュラーシーブ(ユニオン昭和社製、HiSivTM3000)の粉末、0.025gの化学吸着剤(富士シリシア化学社製、富士シリシア730)の粉末を混合した。これを実施例とした。 As a visible light responsive photocatalyst, 0.05 g of nitrogen-doped titanium oxide (V-CAT II, manufactured by Toyota Tsusho), and as a physical adsorbent, 0.025 g of molecular sieve (Union Showa, HiSiv TM 3000) Powder of 0.025 g of chemical adsorbent (Fuji Silysia Chemical Co., Ltd., Fuji Silysia 730) was mixed. This was taken as an example.
0.05gの窒素ドープ型酸化チタン(豊田通商社製、V−CATII)の粉末を比較例1とし、0.05gの窒素ドープ型酸化チタン(豊田通商社製、V−CATII)の粉末、0.025gのモレキュラーシーブ(ユニオン昭和社製、HiSivTM3000)の粉末を混合したものを比較例2とし、0.05gの窒素ドープ型酸化チタン(豊田通商社製、V−CATII)の粉末、0.025gの化学吸着剤(富士シリシア化学社製、富士シリシア730)の粉末を混合したものを比較例3とした。 0.05 g of nitrogen-doped titanium oxide (Toyota Tsusho Co., Ltd., V-CATII) powder was set as Comparative Example 1, 0.05 g of nitrogen-doped titanium oxide (Toyota Tsusho Co., Ltd., V-CATII) powder, 0 0.05 g of molecular sieve (Union Showa Co., Ltd., HiSiv TM 3000) mixed powder was set as Comparative Example 2, 0.05 g of nitrogen-doped titanium oxide (Toyota Tsusho Co., Ltd., V-CATII) powder, 0 Comparative Example 3 was prepared by mixing 0.025 g of a chemical adsorbent (Fuji Silysia Chemical Co., Ltd., Fuji Silysia 730) powder.
<アセトアルデヒドガス(対象ガス)の消臭試験>
可視光応答型光触媒の触媒被毒を意図的に再現するために、1Nの硝酸液を実施例及び比較例1〜3それぞれに加え、乾燥させた。その後、1Lのガラス瓶に各粉末を入れ、次いで乾燥空気を1L入れ、さらに、1500ppmのアセトアルデヒドを注入した。ガスを注入してから18時間暗所に放置し、その後、可視光(蛍光灯、UVカット、MAX2万5千ルクス)を照射した。アルデヒドガス濃度はガスクロマトグラフ(島津製作所製)により測定した。
<Deodorization test of acetaldehyde gas (target gas)>
In order to intentionally reproduce the catalyst poisoning of the visible light responsive photocatalyst, 1N nitric acid solution was added to each of Examples and Comparative Examples 1 to 3, and dried. Thereafter, each powder was put into a 1 L glass bottle, then 1 L of dry air was added, and 1500 ppm of acetaldehyde was further injected. After injecting the gas, it was left in a dark place for 18 hours, and then irradiated with visible light (fluorescent lamp, UV cut, MAX 25,000 lux). The aldehyde gas concentration was measured by a gas chromatograph (manufactured by Shimadzu Corporation).
図4は、実施例及び比較例1〜3におけるアセトアルデヒドガス濃度の測定結果を示す図である。図4から明らかなように、実施例では、暗所放置でも物理吸着剤の機能により、アセトアルデヒド濃度が急激に減少し、さらに可視光照射後、可視光応答型光触媒の光触媒反応により、2時間程度でアセトアルデヒドが検出限界以下の濃度になった。一方、比較例1では、暗所放置ではアセトアルデヒド濃度の減少はほとんどなく、また、可視光照射後では、可視光応答型光触媒の光触媒反応により、アセトアルデヒド濃度が減少するものの検出限界以下の濃度に達するまで25時間以上掛かった。これは、比較例1には、物理吸着剤が含まれていないため、暗所放置では、アセトアルデヒドを吸着することができず、また化学吸着剤も含まれていないため、可視光応答型光触媒の光触媒反応により生成する窒素酸化物が、該光触媒を被毒し、触媒性能を低下させているためである。また、比較例2では、暗所放置でも物理吸着剤の機能により、アセトアルデヒド濃度は急激に減少する。また、可視光照射後では、可視光応答型光触媒の光触媒反応により、アセトアルデヒド濃度は減少する。しかし、検出限界以下の濃度に達するまでには、25時間以上掛かった。これは、比較例2には、化学吸着剤が含まれていないため、光触媒反応により生成する窒素酸化物が、該光触媒を被毒し、触媒性能を低下させているためである。比較例3では、物理吸着剤が含まれていないため、暗所放置ではアセトアルデヒド濃度の減少はほとんどなく、また、可視光照射後では、可視光応答型光触媒の光触媒反応により、アセトアルデヒド濃度が減少するものの検出限界以下の濃度に達するまで30時間以上掛かった。 FIG. 4 is a diagram showing the measurement results of the acetaldehyde gas concentration in Examples and Comparative Examples 1 to 3. As is clear from FIG. 4, in the examples, the acetaldehyde concentration rapidly decreases due to the function of the physical adsorbent even in the dark, and after irradiation with visible light, the photocatalytic reaction of the visible light responsive photocatalyst takes about 2 hours. The concentration of acetaldehyde was below the detection limit. On the other hand, in Comparative Example 1, there is almost no decrease in the acetaldehyde concentration in the dark, and after irradiation with visible light, the photocatalytic reaction of the visible light responsive photocatalyst reduces the acetaldehyde concentration but reaches a concentration below the detection limit. It took more than 25 hours. This is because Comparative Example 1 does not contain a physical adsorbent, so that it cannot adsorb acetaldehyde when left in the dark and does not contain a chemical adsorbent. This is because the nitrogen oxides produced by the photocatalytic reaction poison the photocatalyst and lower the catalyst performance. In Comparative Example 2, the acetaldehyde concentration rapidly decreases due to the function of the physical adsorbent even in the dark. In addition, after visible light irradiation, the acetaldehyde concentration decreases due to the photocatalytic reaction of the visible light responsive photocatalyst. However, it took more than 25 hours to reach a concentration below the detection limit. This is because Comparative Example 2 does not contain a chemical adsorbent, and thus nitrogen oxides produced by the photocatalytic reaction poison the photocatalyst and lower the catalytic performance. In Comparative Example 3, since the physical adsorbent is not contained, there is almost no decrease in the acetaldehyde concentration when left in the dark, and the acetaldehyde concentration decreases due to the photocatalytic reaction of the visible light responsive photocatalyst after irradiation with visible light. It took over 30 hours to reach a concentration below the detection limit.
以上のように、可視光応答型光触媒に物理吸着剤及び窒素酸化物(及び硫黄酸化物)を化学吸着する化学吸着剤を混合することにより、可視光が照射されない環境下でも対象ガス(VOCガス、窒素及び硫黄含有ガス、持ち込みガス)を吸着することが可能となり、また、光触媒被毒物質である窒素酸化物及び硫黄酸化物による触媒被毒も抑制することができ、消臭剤の消臭性能を向上させることができた。さらに、上記実施例の粉末量を100〜500cm2の内装材に担持使用したところ、上記と同様な優れた消臭性能が発現できた。 As described above, by mixing the physical adsorbent and the chemical adsorbent that chemisorbs nitrogen oxide (and sulfur oxide) with the visible light responsive photocatalyst, the target gas (VOC gas) can be used even in an environment where no visible light is irradiated. , Nitrogen and sulfur containing gases, and brought-in gases) can be adsorbed, and the catalyst poisoning by nitrogen oxides and sulfur oxides, which are photocatalyst poisoning substances, can be suppressed. The performance could be improved. Furthermore, when the amount of the powder of the above example was supported on an interior material of 100 to 500 cm 2 , excellent deodorizing performance similar to the above could be expressed.
1〜3 内装材、10 担体、12 可視光応答型光触媒、14 物理吸着剤、16 化学吸着剤、18 表皮材、20 クッション材、22 バリヤ材。 1-3 interior material, 10 carrier, 12 visible light responsive photocatalyst, 14 physical adsorbent, 16 chemical adsorbent, 18 skin material, 20 cushion material, 22 barrier material.
Claims (6)
前記処理対象物質に接触する面と反対側の物理吸着剤層の面上に配置される可視光応答型光触媒層と、
物理吸着剤層が配置される面と反対側の可視光応答型光触媒層の面上に配置され、窒素酸化物、硫黄酸化物のうち少なくともいずれか一方を化学吸着する化学吸着剤層と、を含むことを特徴とする消臭剤。 A physical adsorbent layer having a surface in contact with the substance to be treated;
A visible light responsive photocatalyst layer disposed on the surface of the physical adsorbent layer opposite to the surface in contact with the substance to be treated;
A chemical adsorbent layer that is disposed on the surface of the visible light responsive photocatalyst layer opposite to the surface on which the physical adsorbent layer is disposed and chemically adsorbs at least one of nitrogen oxide and sulfur oxide; Deodorant characterized by containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008311091A JP5650883B2 (en) | 2008-12-05 | 2008-12-05 | Deodorant and interior material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008311091A JP5650883B2 (en) | 2008-12-05 | 2008-12-05 | Deodorant and interior material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010131550A JP2010131550A (en) | 2010-06-17 |
JP5650883B2 true JP5650883B2 (en) | 2015-01-07 |
Family
ID=42343428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008311091A Expired - Fee Related JP5650883B2 (en) | 2008-12-05 | 2008-12-05 | Deodorant and interior material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5650883B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4033552B2 (en) * | 1998-04-22 | 2008-01-16 | 株式会社エクォス・リサーチ | Air purifying filter and air purifier using the same |
JP2002191682A (en) * | 2000-12-26 | 2002-07-09 | Matsushita Electric Ind Co Ltd | Air cleaner and air cleaning filter |
JP2003080034A (en) * | 2001-09-10 | 2003-03-18 | Mitsubishi Heavy Ind Ltd | Oxidation apparatus and method for maintaining the same |
JP2005153472A (en) * | 2003-11-28 | 2005-06-16 | Sekisui Jushi Co Ltd | Laminated plate |
JP2006089858A (en) * | 2004-09-21 | 2006-04-06 | Asahi Kasei Chemicals Corp | Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same |
JP2006299210A (en) * | 2005-04-25 | 2006-11-02 | Showa Denko Kk | Coating material, photocatalytic film and its use |
JP2007167699A (en) * | 2005-12-19 | 2007-07-05 | Toyota Central Res & Dev Lab Inc | Deodorant |
JP2008264758A (en) * | 2007-03-23 | 2008-11-06 | Toshiba Lighting & Technology Corp | Visible light responsive type photocatalyst synthetic method, photocatalytic material, photocatalyst coating compositions, and photocatalyst body |
-
2008
- 2008-12-05 JP JP2008311091A patent/JP5650883B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010131550A (en) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Paz | Application of TiO2 photocatalysis for air treatment: Patents’ overview | |
JP7294755B2 (en) | Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants | |
ES2376661T3 (en) | SYSTEMS FOR THE ELIMINATION OF FLUX FLOW POLLUTANTS. | |
US6878191B2 (en) | Photocatalytic composition | |
EP3302796B1 (en) | Use of a photocatalytic composition in the removal of trimethylamine | |
KR100818436B1 (en) | Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality | |
JP2001070800A (en) | Photocatalyst film composition and photocatalyst body using the same | |
CN101495228A (en) | Systems and methods for removal of contaminants from fluid streams | |
JP3227373B2 (en) | Air purification paint using photocatalyst | |
JP5650883B2 (en) | Deodorant and interior material | |
JP2000218161A (en) | Photo-catalyst body | |
JPH0975434A (en) | Deodorant using photocatalyst | |
JP5571939B2 (en) | Decomposition apparatus and decomposition method for volatile organic compounds | |
RU2465046C1 (en) | Composite adsorption-catalytic material for photocatalytic oxidation | |
KR102524465B1 (en) | Photocatalyst composition for adsorption and decomposition of gas | |
CN212188580U (en) | Air purification module | |
JP2002263449A (en) | Activated carbon filter | |
WO2010010231A1 (en) | Acoustic tile | |
KR100333590B1 (en) | Deodorizer and method for deodorizing in light-regeneration mode | |
JP2001090214A (en) | Building material having adsorption decomosing power of harmful substance | |
KR101729364B1 (en) | The wall paper with the air cleaning fuction comprising porous clay minerals coated by photocatalyst | |
KR20220067010A (en) | Functional WALL COATINGS | |
KR101234609B1 (en) | Micro porousity ceramic panel having pollutant decomposition effect and method of manufacturing the same | |
JP2001025668A (en) | Photocatalytic corrugated filter | |
JP3837517B2 (en) | Functional adsorbent and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5650883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |