JP5650418B2 - Electrically conductive nanocomposites containing sacrificial nanoparticles and open porous nanocomposites produced therefrom - Google Patents

Electrically conductive nanocomposites containing sacrificial nanoparticles and open porous nanocomposites produced therefrom Download PDF

Info

Publication number
JP5650418B2
JP5650418B2 JP2010056719A JP2010056719A JP5650418B2 JP 5650418 B2 JP5650418 B2 JP 5650418B2 JP 2010056719 A JP2010056719 A JP 2010056719A JP 2010056719 A JP2010056719 A JP 2010056719A JP 5650418 B2 JP5650418 B2 JP 5650418B2
Authority
JP
Japan
Prior art keywords
nanoparticles
nanoparticulate
nanocomposite
eam
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010056719A
Other languages
Japanese (ja)
Other versions
JP2010219047A (en
Inventor
ヨアキム・グルップ
Original Assignee
ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP09157135.6A external-priority patent/EP2237346B1/en
Application filed by ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド filed Critical ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド
Publication of JP2010219047A publication Critical patent/JP2010219047A/en
Application granted granted Critical
Publication of JP5650418B2 publication Critical patent/JP5650418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ナノ複合材に組み込まれたナノ粒子状リチウム化合物をベースとした、充電式リチウム電池の電極用の電極材料に関する。本発明はまた、そのような電極材料の製造のための方法に関する。   The present invention relates to an electrode material for an electrode of a rechargeable lithium battery based on a nanoparticulate lithium compound incorporated in a nanocomposite. The invention also relates to a method for the production of such an electrode material.

充電式リチウム電池は、特に、電話、コンピュータおよびビデオ機器等の携帯型電子機器に使用され、最近では電気自転車および自動車等の車にも使用されている。これらの用途では、これらの電池に対する要求が厳しい。特に、それらは所与の体積または重量当たり最大のエネルギー量を貯蔵する必要がある。それらはまた、信頼性があり、環境適合性である必要がある。したがって、高いエネルギー密度および高い比エネルギーが、特にそのような電池の電極材料に課せられる2つの基本要件である。   Rechargeable lithium batteries are particularly used in portable electronic devices such as telephones, computers and video equipment, and more recently in electric bicycles and cars such as automobiles. In these applications, the demands on these batteries are severe. In particular, they need to store the maximum amount of energy per given volume or weight. They also need to be reliable and environmentally compatible. Therefore, high energy density and high specific energy are two basic requirements imposed especially on the electrode material of such batteries.

そのような電極材料に対するさらなる重要な要件は、サイクル耐性である。ここで、各サイクルは、1回の充電および放電プロセスを含む。サイクル耐性は、いくつかのサイクルの後に利用可能な比電荷を実質的に決定する。サイクル毎に99%のサイクル耐性を仮定したとしても、100サイクル後の利用可能な比電荷は、最初の値のわずか37%となる。したがって、そのような99%という比較的高い値であっても、概して不十分である。したがって、上述の種類の充電式の好適な高性能電池は、可能な限り少ない重量および体積で特定量のエネルギーを貯蔵できる必要があるだけでなく、このエネルギーを数百回放電および充電する能力を有する必要がある。ここで重大な要因は、かなりの程度まで電極材料である。   A further important requirement for such electrode materials is cycle resistance. Here, each cycle includes one charge and discharge process. Cycle resistance substantially determines the specific charge available after several cycles. Even assuming 99% cycle endurance per cycle, the available specific charge after 100 cycles is only 37% of the initial value. Therefore, such a relatively high value of 99% is generally insufficient. Therefore, a rechargeable suitable high-performance battery of the type mentioned above not only needs to be able to store a certain amount of energy with as little weight and volume as possible, but also has the ability to discharge and charge this energy several hundred times. It is necessary to have. The critical factor here is the electrode material to a considerable extent.

そのような電池の大きな経済的重要性のため、上述の要件を最大限に満たす電極材料を発見するべく数々の取り組みがなされてきた。   Due to the great economic importance of such batteries, numerous efforts have been made to find electrode materials that fully meet the above requirements.

現在まで、充電式リチウム電池の陽極に使用される材料は、特に遷移金属酸化物または遷移金属硫化物、有機分子およびポリマーであった。特に、遷移金属酸化物および硫化物は、実用に成功していることが示されている。そのような材料は、挿入電極材料と言われ、室温で充電可能な多くの電池に見られる。そのような材料がより広く普及している理由は、電気化学的挿入反応がトポケミカルであり、したがって部分的に構造保持的であるという事実にある。   To date, the materials used for the anode of rechargeable lithium batteries have been in particular transition metal oxides or transition metal sulfides, organic molecules and polymers. In particular, transition metal oxides and sulfides have been shown to be successful in practical use. Such materials are referred to as insertion electrode materials and are found in many batteries that can be charged at room temperature. The reason why such materials are becoming more widespread is the fact that the electrochemical insertion reaction is topochemical and therefore partly structure-retaining.

リチウム挿入反応に基づく充電式電池の考えは、1970年代に発達した。その間、この原理に基づく数々の電極が提案され、実装されてきた。リチウムセルの充電能力は、主に、Li+の挿入および除去の間のゲスト材料の寸法安定性に基づく。 The idea of a rechargeable battery based on the lithium insertion reaction developed in the 1970s. Meanwhile, a number of electrodes based on this principle have been proposed and implemented. The charging capacity of a lithium cell is mainly based on the dimensional stability of the guest material during Li + insertion and removal.

上述したように、いくつかの遷移金属酸化物、硫化物、リン酸塩およびハロゲン化物が、可逆性の高い陽極用材料として知られている。それらは、特に、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物およびリチウムバナジウム酸化物、オキシリン酸銅、硫化銅、硫化鉛および硫化銅、硫化鉄、塩化銅等を含む。しかし、これらの材料は幾分不適当である。つまり、例えばリチウムコバルト酸化物は比較的高価であり、特に環境適合性ではない。環境適合性の観点から、リチウムマンガン酸化物が特に好適である。しかしながら、これらの酸化物は一般にスピネル構造を有し、そのためそれらはより低い比電荷を有することとなるか、またはリチウム交換に関するサイクル下での安定性が低くなることが判明している。また、リチウムの除去により、斜方晶系リチウムマンガン酸化物はスピネル構造をとることが試験により示されている。従来技術に関しては、Martin Winter、Juergen O.Besenhard、Michael E.SparhおよびPetr Novakによる、出版物「Insertion Electrode Materials for Rechargeable Lithium Batteries」、ADVANCED MATERIALS 1998、10、11月、no.10、725〜763頁、ならびに、M.E.Spahrによる論文ETH no.12281、「Synthese und Charakterisierung neuartiger Oxide, Kohlenstoffverbindungen, Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung」(「Synthesis and characterization of new types of oxides, carbon compounds, silicides and nano-structured materials and their electro- and magneto-chemical analysis」)を参照されたい。   As described above, several transition metal oxides, sulfides, phosphates and halides are known as highly reversible anode materials. They include in particular lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide and lithium vanadium oxide, copper oxyphosphate, copper sulfide, lead sulfide and copper sulfide, iron sulfide, copper chloride and the like. However, these materials are somewhat unsuitable. That is, for example, lithium cobalt oxide is relatively expensive and not particularly environmentally compatible. From the viewpoint of environmental compatibility, lithium manganese oxide is particularly preferable. However, it has been found that these oxides generally have a spinel structure so that they have a lower specific charge or are less stable under cycles for lithium exchange. Tests have also shown that orthorhombic lithium manganese oxides have a spinel structure upon removal of lithium. Regarding the prior art, the publication “Insertion Electrode Materials for Rechargeable Lithium Batteries” by Martin Winter, Juergen O. Besenhard, Michael E. Sparh and Petr Novak, ADVANCED MATERIALS 1998, October, November, no. 10, pages 725-763, and the article ETH no. 12281, “Synthese und Charakterisierung neuartiger Oxide, Kohlenstoffverbindungen, Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung” (“Synthesis and characterization of new types of oxides, carbon compounds, silicides and nano-structured materials and their electro- and magneto- and See "chemical analysis").

したがって、特に高い比エネルギーおよび大電力密度の点で改善された電池が依然として大いに求められている。   Therefore, there is still a great need for batteries that are particularly improved in terms of high specific energy and high power density.

WO01/41238WO01 / 41238 米国特許出願公開US 2007 10054187 A1US Patent Application Publication US 2007 10054187 A1

Martin Winter、Juergen O.Besenhard、Michael E.SparhおよびPetr Novakによる、出版物「Insertion Electrode Materials for Rechargeable Lithium Batteries」、ADVANCED MATERIALS 1998、10、11月、no.10、725〜763頁Publication "Insertion Electrode Materials for Rechargeable Lithium Batteries" by Martin Winter, Juergen O. Besenhard, Michael E. Sparh and Petr Novak, ADVANCED MATERIALS 1998, October, October, no. 10, pages 725-763 M.E.Spahrによる論文ETH no.12281、「Synthese und Charakterisierung neuartiger Oxide,Kohlenstoffverbindungen,Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung」(「Synthesis and characterization of new types of oxides,carbon compounds,silicides and nano-structured materials and their electro- and magneto-chemical analysis」)A paper by M.E.Spahr ETH no. 12281, `` Synthese und Charakterisierung neuartiger Oxide, Kohlenstoffverbindungen, Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung '' (`` Synthesis and characterization of new types of oxides, carbon compounds, silicides and nano-structured materials and their electro-magnetic chemical analysis ") Yong-Jun Li, Wei-Jun Huang, and Shi-Gang Sun. Angew. Chem. 118, 2599, (2006)Yong-Jun Li, Wei-Jun Huang, and Shi-Gang Sun. Angew. Chem. 118, 2599, (2006) Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. J. Electrochem. Soc., 144, 1188 (1997)Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. J. Electrochem. Soc., 144, 1188 (1997) S. Franger, F. Le Cras, C. Bourbon and H. Rouault, Electrochem. Solid-State Lett., 5, A231 (2002)S. Franger, F. Le Cras, C. Bourbon and H. Rouault, Electrochem.Solid-State Lett., 5, A231 (2002) S. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun., 3, 505(2001).S. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun., 3, 505 (2001). S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 119, 252 (2003)S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 119, 252 (2003) Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Nature Mater., 1, 123 (2002)Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M.Nature Mater., 1, 123 (2002) S. Y. Chung and Y.-M. Chiang, Electrochem. Solid-State Lett., 6, A278 (2003)S. Y. Chung and Y.-M. Chiang, Electrochem.Solid-State Lett., 6, A278 (2003) F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, J. Olczac, and B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002)F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, J. Olczac, and B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002) A. Yamada, S. C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224, (2001)A. Yamada, S. C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224, (2001) Zhaohui Chen and J. R. Dahn, J. Electrochem. Soc., 149, A1184 (2002)Zhaohui Chen and J. R. Dahn, J. Electrochem. Soc., 149, A1184 (2002) Prosini, P. P., Zane, D. & Pasquali, M. Electrochim. Acta., 46, 3517 (2001)Prosini, P. P., Zane, D. & Pasquali, M. Electrochim. Acta., 46, 3517 (2001) G. Heywang and F. Jonas, Adv. Mater., 4, 116 (1992)G. Heywang and F. Jonas, Adv. Mater., 4, 116 (1992) L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater. Weinheim, Ger., 12, 481 (2000)L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater. Weinheim, Ger., 12, 481 (2000) H. Yamato, M. Ohwa and W. Wernet. J. Electroanal. Chem., 397, 136 (1995)H. Yamato, M. Ohwa and W. Wernet. J. Electroanal. Chem., 397, 136 (1995) I. Winter, C. Reese, J. Hormes, G. Heywang and F. Jonas. Chem. Phys., 194, 207 (1995)I. Winter, C. Reese, J. Hormes, G. Heywang and F. Jonas. Chem. Phys., 194, 207 (1995)

したがって、本発明が解決しようとする課題は、サイクル中の分極が低いかまたは分極を示さず、好ましくは良好な電気化学応答/高放電容量を有し、また好ましくは比較的環境適合性でもある、アノードおよびカソードの双方、好ましくはカソード用の電極材料を提供することである。   Therefore, the problem to be solved by the present invention is that the polarization during the cycle is low or non-polar, preferably has a good electrochemical response / high discharge capacity, and is also preferably relatively environmentally compatible It is to provide an electrode material for both the anode and the cathode, preferably for the cathode.

この課題は、ナノ複合材であり、改善された電解質およびイオン、例えばリチウムの移動のための大きな細孔を有する電極材料により解決され、前記ナノ複合材は、
−−細孔、好ましくは少なくともナノ粒子の寸法を有する細孔、好ましくは200nmから500nmの範囲内、特に300nmから500nmの範囲内の細孔を有する、開放多孔質材料であり、
−−電子伝導性である。
This problem is a nanocomposite, solved by an improved electrolyte and an electrode material having large pores for the transfer of ions, e.g. lithium, said nanocomposite comprising:
An open porous material having pores, preferably pores having at least nanoparticle dimensions, preferably in the range of 200 nm to 500 nm, in particular in the range of 300 nm to 500 nm,
-Electronic conductivity.

一実施形態において、ナノ複合材電極材料は、充電式リチウム電池の陽極または陰極用であり、前記電極材料はナノ複合材であり、前記ナノ複合材は、一様に分布したナノ粒子状電子活性材料と、ナノ粒子状電子伝導性結合剤材料とを備える開放多孔質材料であり、電子活性材料のナノ粒子の平均粒径およびナノ粒子状電子伝導性結合剤材料の平均粒径は、
ともに+100%/−50%以下で異なり、および/または
ともに500nm未満の範囲内であり、
前記ナノ複合材電極材料は、200nmから500nmの範囲内、特に300nmから500nmの範囲内の細孔を備える。
In one embodiment, the nanocomposite electrode material is for an anode or cathode of a rechargeable lithium battery, the electrode material is a nanocomposite, and the nanocomposite is a uniformly distributed nanoparticulate electronic activity An open porous material comprising a material and a nanoparticulate electronically conductive binder material, wherein the average particle size of the nanoparticles of the electronically active material and the average particle size of the nanoparticulate electronically conductive binder material are:
Both differ by less than +100% /-50% and / or both are in the range of less than 500 nm,
Said nanocomposite electrode material comprises pores in the range of 200 nm to 500 nm, in particular in the range of 300 nm to 500 nm.

開放多孔質材料とは、電解質およびLi+の拡散が容易に可能となるほど細孔が大きく、また相互接続されていることを意味する。材料の多孔性、例えば犠牲粒子の除去による大きな細孔の存在等は、例えば電子顕微鏡法等で決定することができる。 By open porous material is meant that the pores are so large and interconnected that diffusion of the electrolyte and Li + is readily possible. The porosity of the material, such as the presence of large pores due to the removal of the sacrificial particles, can be determined, for example, by electron microscopy.

現在、驚くべきことに、電子活性材料(EAM)、例えば電子およびLi+放出または電子およびLi+受容材料が、ほぼ同じ粒径の電子伝導性結合剤(CB)のナノ粒子により相互接続されたナノ粒子の形態である場合、ならびに、前記ナノ粒子が、最終的に電極を生成する際に除去されるさらなる種類のナノ粒子と混合されている場合に、開放多孔質材料を容易に得ることができることが判明している。本発明の文脈において、そのような追加的粒子は犠牲粒子(SP)と呼ばれる。そのようなナノ複合材は、導電性充填剤および導電性ナノ繊維等のさらなる成分を含有してもよい。 Currently, surprisingly, electron active materials (EAM), such as electrons and Li + emitting or electron and Li + accepting materials, were interconnected by nanoparticles of an electron conductive binder (CB) of approximately the same particle size. An open porous material can be easily obtained when in the form of nanoparticles, and when the nanoparticles are mixed with additional types of nanoparticles that are ultimately removed in creating the electrode. It has been found that it can be done. In the context of the present invention, such additional particles are called sacrificial particles (SP). Such nanocomposites may contain additional components such as conductive fillers and conductive nanofibers.

犠牲ナノ粒子の除去後、細孔は材料中に残存し、電解質およびLi+イオンの拡散を促進する。 After removal of the sacrificial nanoparticles, the pores remain in the material and promote the diffusion of electrolyte and Li + ions.

本発明のカソード用のEAMとして、粗大粒子の形態では導電性が低い、またはさらに絶縁体である材料も使用することができるが、ただしそれらがナノ粒子の形態(以降ナノ粒子状と呼ばれる)で使用され、またそれらが導電性被覆を施されている場合に、それらが電子およびLi+イオンを放出することができる場合に限る。 As the EAM for the cathode of the present invention, materials having low conductivity in the form of coarse particles, or even insulators can be used, provided that they are in the form of nanoparticles (hereinafter referred to as nanoparticulate). Used only if they can emit electrons and Li + ions if they are provided with a conductive coating.

好適なEAMは、Li+イオンをすでに備えている、または第1の負荷サイクル中にLi含有化合物を形成し得る、すべての化合物である。負荷中のLi含有化合物の生成は、安定性が不十分な、またはさらに不安定なLi含有化合物の場合には有利である。 Suitable EAMs are all compounds that already have Li + ions or that can form Li-containing compounds during the first duty cycle. The production of Li-containing compounds during loading is advantageous in the case of Li-containing compounds that are poorly stable or more unstable.

EAMの例は、遷移金属および主族金属の酸化物、窒化物、炭化物、ホウ酸塩、リン酸塩、硫化物、ハロゲン化物等、ならびにこれらの混合物だけでなく、最新技術において、例えばWO01/41238に挙げられているすべてのEAMである。   Examples of EAM are not only transition metal and main group metal oxides, nitrides, carbides, borates, phosphates, sulfides, halides, etc., and mixtures thereof, but also in the state of the art, eg WO01 / All EAMs listed in 41238.

本明細書において使用されるナノ粒子は、一般に、5nmから500nmの範囲内、好ましくは5nmから400nmの範囲内、より好ましくは20nmから300nmの範囲内の平均一次粒径を有する。   Nanoparticles used herein generally have an average primary particle size in the range of 5 nm to 500 nm, preferably in the range of 5 nm to 400 nm, more preferably in the range of 20 nm to 300 nm.

好ましいEAMは、Lix38、Lixn38であり、LiFePO4が現在特に好ましい。 Preferred EAMs are Li x V 3 O 8 and Li x H n V 3 O 8 , with LiFePO 4 being particularly preferred at present.

アノード材料に好適なEAMは、ケイ素、LixAlSin、LixSiSnn等の合金、およびLixVN等の窒化物である。 Suitable EAMs for the anode material are silicon, alloys such as Li x AlSi n , Li x SiSn n and nitrides such as Li x VN.

本発明によれば、ナノ粒子状形態のこれらのEAMが、これもまたナノ粒子状形態であり同様の平均粒径を有する電子伝導性結合剤、および任意選択で同様の粒径を有する導電性充填剤と混合される。繊維、ナノチューブ等の形態のCBを有することが可能であるが、費用上の理由から、現在ナノスタブまたは略球状のナノ粒子が好ましい。   According to the present invention, these EAMs in nanoparticulate form are electrically conductive binders which are also in nanoparticulate form and have a similar average particle size, and optionally have a similar particle size. Mixed with filler. Although it is possible to have CB in the form of fibers, nanotubes, etc., nanostubs or substantially spherical nanoparticles are currently preferred for cost reasons.

本発明のナノ複合材は、互いに十分に混合され、好ましくは混合貯蔵および使用温度での結合剤の十分な粘性により、加熱ありもしくはなしでの圧力処理により、または溶媒蒸発により安定化された、EAMおよびCBナノ粒子、ならびに任意選択で犠牲ナノ粒子ならびに/または導電性充填剤ナノ粒子ならびに/または導電性ナノ繊維を含む。導電性結合剤のガラス転移点が低い熱可塑性材料が、粒子の結合だけでなく、導電体、通常はアルミニウム電極/基板へのナノ複合材の結合にとっても好ましい。   The nanocomposites of the present invention are well mixed with each other, preferably stabilized by mixed storage and sufficient viscosity of the binder at the temperature of use, by pressure treatment with or without heating, or by solvent evaporation, EAM and CB nanoparticles, and optionally sacrificial nanoparticles and / or conductive filler nanoparticles and / or conductive nanofibers. A thermoplastic material with a low glass transition point of the conductive binder is preferred not only for particle bonding, but also for bonding the nanocomposite to a conductor, usually an aluminum electrode / substrate.

さらに犠牲ナノ粒子を含む本発明のナノ複合材は、さらに反応して犠牲ナノ粒子の除去、例えば熱的または化学的除去により最終ナノ複合材となり得る中間ナノ複合材である。   The nanocomposites of the present invention that further comprise sacrificial nanoparticles are intermediate nanocomposites that can further react to become final nanocomposites by removal of the sacrificial nanoparticles, eg, thermal or chemical removal.

電子伝導性ポリマーは、ポリアセチレン、ポリアニリン、ポリピロールおよびポリチオフェンを包含する。これらのポリマーは、所望の特徴に依存して置換されていても置換されていなくてもよい。現在好ましい結合剤は、以下でPEDOTと呼ばれるポリ(3,4−エチレンジオキシチオフェン)である。このポリマーは導電性であり、好適な粘性を有し、容易にナノ粒子状形態で生成され得る。   Electroconductive polymers include polyacetylene, polyaniline, polypyrrole and polythiophene. These polymers may be substituted or unsubstituted depending on the desired characteristics. A presently preferred binder is poly (3,4-ethylenedioxythiophene), hereinafter referred to as PEDOT. This polymer is electrically conductive, has a suitable viscosity and can be easily produced in nanoparticulate form.

ある特定の実施形態において、CBナノ粒子は、最終、すなわち犠牲粒子を含まないナノ複合材の重量を基準として、4%から10%の量で存在する。   In certain embodiments, CB nanoparticles are present in an amount of 4% to 10%, based on the weight of the final, i.e., nanocomposite free of sacrificial particles.

すでに上述したように、EAM粒子が絶縁材料の粒子である場合、またはその導電性を改善するためには、ナノ粒子は導電層、特に炭素/グラファイト/グラフェン層で被覆される。   As already mentioned above, if the EAM particles are particles of an insulating material, or in order to improve their conductivity, the nanoparticles are coated with a conductive layer, in particular a carbon / graphite / graphene layer.

犠牲ナノ粒子は、そのような材料が一般に200nmから500nm、好ましくは300nmから500nmの粒径を有するナノ粒子として形成され得る限り、また残りのナノ複合材に影響を与えない熱および/または化学反応により除去され得る限り、いかなる材料の粒子であってもよい。   The sacrificial nanoparticles are thermal and / or chemical reactions that do not affect the rest of the nanocomposite as long as such materials can be formed as nanoparticles having a particle size generally from 200 nm to 500 nm, preferably 300 nm to 500 nm. Any material particles can be used as long as they can be removed.

ナノ粒子状犠牲材料の限定されない例は、例えば、ポリスチレン、ポリエチレン、ポリビニルアセタール、およびポリエチレングリコールである。   Non-limiting examples of nanoparticulate sacrificial materials are, for example, polystyrene, polyethylene, polyvinyl acetal, and polyethylene glycol.

ポリスチレンは、所望の範囲のいくつかの粒径で市販されており、上述のように可溶である。ポリスチレンは、アセトンなどのいくつかの有機溶媒に可溶である。   Polystyrene is commercially available in several particle sizes in the desired range and is soluble as described above. Polystyrene is soluble in some organic solvents such as acetone.

ポリエチレングリコールは異なる鎖長で入手可能であり、その溶解度を適合させるために任意選択でエーテル化および/またはエステル化することができる。   Polyethylene glycol is available in different chain lengths and can optionally be etherified and / or esterified to match its solubility.

ポリビニルブチラール等のポリビニルアセタールは、硝酸、例えば硝酸蒸気で処理することにより除去することができる。   Polyvinyl acetals such as polyvinyl butyral can be removed by treatment with nitric acid, for example nitric acid vapor.

ポリエチレンは、酸素が豊富な雰囲気下の300℃での酸化により除去することができる。   Polyethylene can be removed by oxidation at 300 ° C. in an oxygen rich atmosphere.

ポリスチレンおよびポリエチレングリコールは、多くの電子伝導性ポリマーと適合するが、ポリアセチレンとの併用にはポリエチレンが、ポリピロールとの併用にはポリビニルアセタールが好ましい。   Polystyrene and polyethylene glycol are compatible with many electron conducting polymers, but polyethylene is preferred for use with polyacetylene and polyvinyl acetal is preferred for use with polypyrrole.

通常非常に多孔質の構造が望ましいため、多量の犠牲粒子が有利となり得る。中間複合材を基準とした犠牲ポリマーの好ましい量は40重量%から60重量%であるが、より少ない量、例えば0.5%から10%の範囲内でも、すでに多孔性を高めながら小体積中に高密度のEAMを提供する。したがって、0.5%から60%のすべての量を使用して、異なる特徴の最適化をもたらすことができる。   A large amount of sacrificial particles can be advantageous because a very porous structure is usually desirable. The preferred amount of sacrificial polymer, based on the intermediate composite, is 40% to 60% by weight, but even in smaller amounts, for example in the range 0.5% to 10%, already in a small volume with increased porosity. Provides high density EAM. Thus, all amounts from 0.5% to 60% can be used to provide different feature optimizations.

ナノ粒子状EAMを生成するための方法、ナノ粒子状EAMを被覆するための方法、ナノ粒子状CBを生成するための方法、ならびに本発明の中間および最終ナノ複合材を生成するための方法を、以下に説明する。   A method for producing nanoparticulate EAM, a method for coating nanoparticulate EAM, a method for producing nanoparticulate CB, and a method for producing the intermediate and final nanocomposites of the present invention. This will be described below.

EAMは、酸化物、窒化物等の場合は熱分解により、または特にLiFePO4の場合はソルボサーマル合成により調製することができる。ソルボサーマルプロセスは、合成された粒子の形態および粒度分布の改変の制御等、多くの利点を提供する。物質を保護するために必要な不活性ガスは、ソルボサーマル合成においては不要であるかまたは無視することができ、プロセスは一般に、通常の簡便な合成よりもずっと迅速でエネルギー効率的であり、ナノ粒子形成に関して良好である。LiFePO4試料は、好ましくは、以下の反応を使用して、Nusplらの特許文献2のにより説明されるような最適化されたソルボサーマル合成により調製される。
FeSO4+H3PO4+3LiOH・H2O→LiFePO4+Li2SO4+11H2
EAM can be prepared by thermal decomposition in the case of oxides, nitrides, etc., or by solvothermal synthesis, especially in the case of LiFePO 4 . The solvothermal process offers many advantages, such as controlling the modification of the synthesized particle morphology and size distribution. The inert gas required to protect the material is unnecessary or negligible in solvothermal synthesis, and the process is generally much faster and more energy efficient than conventional convenient synthesis, Good for particle formation. LiFePO 4 samples are preferably prepared by optimized solvothermal synthesis as described by Nuspl et al. US Pat.
FeSO 4 + H 3 PO 4 + 3LiOH.H 2 O → LiFePO 4 + Li 2 SO 4 + 11H 2 O

ナノ粒子状EAMの炭素被覆は、例えば糖またはケトン等の様々な有機前駆体の熱分解による炭素堆積により行うことができる。   Carbon coating of nanoparticulate EAM can be performed by carbon deposition by pyrolysis of various organic precursors such as sugars or ketones.

PEDOT等のナノ粒子状電子伝導性ポリマーは、Sunらの非特許文献3により説明されるような逆マイクロエマルジョン技術を使用して調製することができる。PEDOT合成の場合、重合補助剤としてのFeCl3/ビス(2−エチルヘキシル)スルホスクシネート粒子等の粒子/液滴を含む乳化された酸化剤を含むマイクロエマルジョンが調製される。 Nanoparticulate electronically conductive polymers such as PEDOT can be prepared using the reverse microemulsion technique as described by Sun et al. For PEDOT synthesis, a microemulsion is prepared containing an emulsified oxidant containing particles / droplets such as FeCl 3 / bis (2-ethylhexyl) sulfosuccinate particles as polymerization aids.

本発明のナノ複合材を形成するために、ナノ粒子状CPは、任意選択でカーボンブラックおよびグラファイト等のナノ粒子状電子伝導性充填剤、導電性ナノ繊維ならびに犠牲ナノ粒子とともに、好ましくはアセトニトリル等の好適な溶媒に懸濁され、次いでナノ粒子状の(EAM自体も十分電子伝導性でない場合)炭素被覆EAMが添加され、混合物が均質化され、乾燥され、任意選択で加熱ありまたはなしで圧縮される。代替として、犠牲ナノ粒子がEAMとともに、またはその後で添加されてもよい。   In order to form the nanocomposites of the present invention, the nanoparticulate CP is optionally combined with nanoparticulate electronically conductive fillers such as carbon black and graphite, conductive nanofibers and sacrificial nanoparticles, preferably acetonitrile or the like. Suspended in a suitable solvent, then nanoparticulate (if EAM itself is not sufficiently electronically conductive) carbon-added EAM is added, the mixture is homogenized, dried and optionally compressed with or without heating Is done. Alternatively, sacrificial nanoparticles may be added with or after the EAM.

以下の本発明の詳細な説明から、本発明がよりよく理解され、また上に記載したもの以外の目的が明らかとなる。そのような説明は添付の図面を参照する。   From the following detailed description of the invention, the invention will be better understood and objects other than those set forth above will become apparent. Such description refers to the accompanying drawings.

EAM(黒く塗りつぶした丸)、導電性結合剤(灰色に塗りつぶした五角形)、犠牲粒子(点線の楕円)、および導電性繊維(黒線)の同様の粒径の粒子による複合材の概略図である。Schematic of a composite with particles of similar particle size of EAM (black filled circles), conductive binder (pentagon shaded gray), sacrificial particles (dotted ellipses), and conductive fibers (black lines) is there. 犠牲粒子を破壊した後の複合材の概略図である。It is the schematic of the composite material after destroying a sacrificial particle. 炭素被覆ありおよびなしのLiFePO4のXRDパターンである。It is an XRD pattern of LiFePO 4 with and without carbon coating. 炭素被覆および未処理LiFePO4の粒度分布の比較を示す図である。It shows a comparison of the particle size distribution of carbon coated and untreated LiFePO 4. 炭素被覆LiFePO4、グラファイトおよび標準的結合剤からなる電池複合材のSEM写真である。Carbon-coated LiFePO 4, it is a SEM photograph of the battery composite consisting of graphite and a standard binder. 個々のPEDOTナノスタブの凝集から形成される多孔質構造を有するナノサイズメッシュの形成が得られる、PEDOTの逆マイクロエマルジョンによる合成の生成物を示す図である。FIG. 3 shows the product of synthesis by reverse microemulsion of PEDOT resulting in the formation of a nano-sized mesh with a porous structure formed from the aggregation of individual PEDOT nanostubs. 3つの試料、つまり従来の結合剤および充填剤と合わせたLiFePO4、従来の結合剤および充填剤と合わせた炭素被覆LiFePO4、ならびに本発明の組成物の、20mA(約0.1C)の比電流でのサイクル後の初期放電容量を示す。Ratio of 20 mA (about 0.1 C) of three samples: LiFePO 4 combined with conventional binder and filler, carbon-coated LiFePO 4 combined with conventional binder and filler, and composition of the present invention The initial discharge capacity after cycling with current is shown. 従来(LC)および本発明(LP)の結合剤と合わせた炭素被覆LiFePO4の、135mA(約0.8C)の比電流での性能を比較した図であり、図7aは、LCに対する10回目、50回目および100回目のサイクル後の放電曲線を示し、そして、図7bは、LPに対する10回目、50回目および100回目のサイクル後の放電曲線を示す。FIG. 7a compares the performance of carbon-coated LiFePO 4 combined with conventional (LC) and inventive (LP) binders at a specific current of 135 mA (approximately 0.8 C), FIG. The discharge curves after the 50th and 100th cycles are shown, and FIG. 7b shows the discharge curves after the 10th, 50th and 100th cycles for LP. LCの56mAh/gと比較した、次の100サイクルに対するLC試料およびLP試料双方を示す。Both LC and LP samples for the next 100 cycles compared to LC of 56 mAh / g are shown. 様々な電流でのサイクル数の関数としての放電電位を示す図である。FIG. 4 shows the discharge potential as a function of the number of cycles at various currents.

ここで、LiFePO4、PEDOT、犠牲ナノ粒子および導電性充填剤粒子(ナノ繊維を含む)の系に関して、本発明をさらに説明する。そのような組成物、すなわち中間複合材および最終複合材は、図1に概略的に示される。 The invention will now be further described with respect to a system of LiFePO 4 , PEDOT, sacrificial nanoparticles and conductive filler particles (including nanofibers). Such compositions, i.e. intermediate composite and final composite, are shown schematically in FIG.

LiFePO4は、安価な前駆体から生成可能であり、非毒性であり、環境に優しく、また卓越した化学的および熱的安定性を有するため、非常に有望なEAMである。この材料は、極めて速いリチウムイオン移動度を促進し、それにより高電力用途に望ましいものとなっている(非特許文献4)。しかしながら、この材料の低い固有電子伝導性は、電気化学応答を大きく制限する(非特許文献4)。その粒径の低下(非特許文献5〜7)、極薄炭素による被覆、超多価イオン(非特許文献8,9)によるドーピング、電極複合材への金属粒子の添加(非特許文献10)等、その特性を改善するためのいくつかの試みがなされたが、これらはすべて、良好な結果は言うまでもなく、許容される結果に結びつかなかった方法のいくつかである。 LiFePO 4 is a very promising EAM because it can be produced from inexpensive precursors, is non-toxic, environmentally friendly and has excellent chemical and thermal stability. This material promotes extremely fast lithium ion mobility, which makes it desirable for high power applications (Non-Patent Document 4). However, the low intrinsic electronic conductivity of this material greatly limits the electrochemical response (Non-Patent Document 4). Reduction of particle size (Non-Patent Documents 5 to 7), coating with ultra-thin carbon, doping with super multivalent ions (Non-Patent Documents 8 and 9), addition of metal particles to electrode composite (Non-Patent Document 10) Several attempts have been made to improve its properties, all of which are some of the methods that have not led to acceptable results, let alone good results.

LiFePO4の性能の最も大きな向上は、糖等の各種有機前駆体の熱分解により堆積された炭素でそれを表面被覆することにより得られている。また、電池の定格容量は、電極材料中のリチウムの固体拡散を向上させる結果となる粒径の低下により大きく改善することができる(非特許文献11)ことが知られている。しかしながら、小さい粒径に起因して増加した表面により、電極複合材中の炭素/グラファイトおよび結合剤がさらに多量に必要とされ、これは電池のタップ密度の著しい減少につながるため、ナノ構造化EAMの使用によって問題が生じる(非特許文献11〜13)。したがって、最適な電極組成物を設計するには、粒径と、添加される導電性添加剤およびその他の添加剤の量との間をうまく調整する必要がある。ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイソブテン等のポリマー結合剤が、現在、グラファイト、カーボンブラックおよび活性材料(例えばLiFePO4)を互いに、および電流コレクタに結合するために採用されている。ナノ球形粒子のための結合剤およびその他の導電性添加剤の正味量は、典型的には、電極中20質量%超までに至る。まして、現在使用されている結合剤は電気化学的および電子的に不活性であり、したがって、さらなる重量の追加、およびカソード複合材の導電性の低下のそれぞれにより、カソードの比エネルギーおよび反応速度を実質的に低下させる。全体として、これは、高電力用途に対する材料の魅力を減退させる結果となる。 The greatest improvement in the performance of LiFePO 4 is obtained by surface coating it with carbon deposited by pyrolysis of various organic precursors such as sugars. It is also known that the rated capacity of a battery can be greatly improved by a decrease in particle size that results in improved solid diffusion of lithium in the electrode material (Non-Patent Document 11). However, due to the increased surface due to the small particle size, a greater amount of carbon / graphite and binder in the electrode composite is required, which leads to a significant reduction in battery tap density, so nanostructured EAM Problems arise from the use of (Non-Patent Documents 11 to 13). Therefore, in order to design an optimal electrode composition, it is necessary to make a good adjustment between the particle size and the amount of conductive additive and other additives added. Polymeric binders such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyisobutene are currently employed to bind graphite, carbon black and active materials (eg LiFePO 4 ) to each other and to the current collector. ing. The net amount of binder and other conductive additives for nanospherical particles typically amounts to greater than 20% by weight in the electrode. In addition, the binders currently used are electrochemically and electronically inert, and therefore the specific energy and reaction rate of the cathode can be reduced by adding additional weight and reducing the conductivity of the cathode composite, respectively. Substantially lower. Overall, this results in diminishing the attractiveness of the material for high power applications.

本発明者らは、電極複合材中の効果的な導電性添加剤および結合剤として二重に利用することができるナノ構造化ポリマー結合剤が、この問題を軽減し、さらに電池の高率性能を高める可能性があると考えた。そのようなナノ構造化ポリマー結合剤は、現在、いくつかの利点を有することが判明している。好適なナノ粒子径および形状が使用されれば、結合剤はナノ粒子状EAMと一様に混合する。粒子状構造に起因して、Li+拡散を促進する細孔が形成され、ナノ粒子または細孔の存在のそれぞれによって、必要とされる結合剤の量が低減され、それにより重量が低減されるとともに電気化学的特性、すなわち電力密度および比エネルギーが向上することとなる。 The inventors have found that nanostructured polymer binders, which can be double utilized as effective conductive additives and binders in electrode composites, alleviate this problem and further increase the battery's high rate performance. I thought that there is a possibility to increase. Such nanostructured polymer binders have now been found to have several advantages. If a suitable nanoparticle size and shape is used, the binder will mix uniformly with the nanoparticulate EAM. Due to the particulate structure, pores that promote Li + diffusion are formed, and the presence of nanoparticles or pores, respectively, reduces the amount of binder required, thereby reducing weight. At the same time, electrochemical characteristics, that is, power density and specific energy are improved.

後に除去されて、電解質およびイオンの拡散を促進し、それによりこれまで可能であったものよりも厚い電極の形成を可能とする向上した多孔性を備える構造を残す犠牲ナノ粒子を追加的に含むナノ複合材で電極が最初に形成されれば、追加的な改善を行うことができる。   Includes additional sacrificial nanoparticles that are later removed to leave the structure with improved porosity that facilitates diffusion of electrolytes and ions, thereby allowing the formation of thicker electrodes than previously possible Additional improvements can be made if the electrodes are first formed with nanocomposites.

ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)は、導電性ポリマー結合剤としての魅力的な候補である。高い化学的および環境的安定性という長所に加え、様々な粒径および形態でのPEDOTの合成が、これまで広範囲にわたり研究されている(非特許文献13〜17)。モノマー3,4−エチレンジオキシチオフェンは、ピロールよりも高い疎水性および遅い反応速度を示し、これにより、チューブ状構造の形成とは対照的に、ナノスタブまたはナノ粒子としてのPEDOTの比較的単純な合成がもたらされる。この形態は、同じ粒径および立体構造で合成され、したがって均一な複合材中で互いに混合し得るLiFePO4粒子等のナノ粒子に有益であることが判明した。 Poly (3,4-ethylenedioxythiophene) (PEDOT) is an attractive candidate as a conductive polymer binder. In addition to the advantages of high chemical and environmental stability, the synthesis of PEDOT in various particle sizes and forms has been extensively studied so far (Non-Patent Documents 13-17). The monomer 3,4-ethylenedioxythiophene exhibits higher hydrophobicity and slower reaction rate than pyrrole, which makes it relatively simple for PEDOT as nanostubs or nanoparticles, as opposed to forming a tubular structure Synthesis is brought about. This form has been found to be beneficial for nanoparticles such as LiFePO 4 particles that are synthesized with the same particle size and conformation and thus can be mixed together in a uniform composite.

さらなる利点はPEDOTの粘性であり、0.5バールから2バール、すなわちそれぞれ5・104Paから2・105Paの圧力、および20℃から90℃の温度で加圧すると良好な粒子間接着および十分な基板接着が得られる。 A further advantage is the viscosity of PEDOT, good interparticle adhesion when pressed at pressures from 0.5 bar to 2 bar, ie from 5 · 10 4 Pa to 2 · 10 5 Pa and from 20 ° C. to 90 ° C., respectively. And sufficient substrate adhesion is obtained.

微小粒子は高められた表面反応性およびファンデルワールス力により粘着性であるため、所望の安定性に依存して加熱は不必要となり得る。   Depending on the desired stability, heating can be unnecessary because the microparticles are sticky due to increased surface reactivity and van der Waals forces.

PEDOT、犠牲ナノ粒子およびLiFePO4のナノ複合材等のナノ複合材は、逆マイクロエマルジョンの技術を使用してうまく合成することができる。逆マイクロエマルジョンにより合成されたナノ構造化ポリ(3,4−エチレンジオキシチオフェン)の独特の有益な効果およびそのような複合材の構造的特性が研究されており、その電気化学的特性が裸および炭素被覆LiFePO4と比較されている。 Nanocomposites such as PEDOT, sacrificial nanoparticles and LiFePO 4 nanocomposites can be successfully synthesized using the inverse microemulsion technique. The unique beneficial effects of nanostructured poly (3,4-ethylenedioxythiophene) synthesized by inverse microemulsion and the structural properties of such composites have been studied and their electrochemical properties are bare And carbon coated LiFePO 4 .

それにより、ナノ粒子状形態の導電性被覆が施されたEAM、つまりLiFePO4の、ナノ粒子形態の導電性ポリマー結合剤との複合材によって、さらに改善された特徴が得られることが判明した。 Thereby, it has been found that a further improved characteristic is obtained by a composite of a nanoparticle-form conductive coating with EAM, ie LiFePO 4 , with a nanoparticle-form conductive polymer binder.

これらの特徴は、以前に添加された犠牲粒子を除去することにより構造がより多孔質となれば、さらに向上し得る。   These features can be further improved if the structure becomes more porous by removing previously added sacrificial particles.

特徴のさらなる改善のために、ナノ粒子状結合剤は、カーボンブラックおよび/またはグラファイト等の電子伝導性ナノ粒子状充填剤と、例えば全電極材料の2重量%から10重量%、好ましくは約5%の量で混合することもできる。さらに、導電性ナノ繊維を、好ましくは0.1%から2%の量で添加することができる。   For further improvement of the characteristics, the nanoparticulate binder can be combined with an electronically conductive nanoparticulate filler such as carbon black and / or graphite, for example 2% to 10% by weight of the total electrode material, preferably about 5%. % Can also be mixed. Furthermore, conductive nanofibers can be added, preferably in an amount of 0.1% to 2%.

実験
I.材料調製
I.1.リチウム鉄リン酸塩
最適化されたソルボサーマル合成によりリチウム鉄リン酸塩試料を調製した。出発材料は、化学量論比1:1:3のFeSO4・7H2O(Aldrich社製、純度99%)、H3PO4(Aldrich社製、純度>85%)、LiOH(Aldrich社製、純度>98%)であった。まず、FeSO4およびH3PO4の水溶液を調製し、互いに混合した。混合物をParrオートクレーブに移し、これを窒素で数回洗浄する。LiOHの溶液を徐々に反応混合物中にポンプで注入してから、オートクレーブを封止する。反応混合物を解凝集し、160℃で一晩加熱する。得られた沈殿物を濾過し、水で十分洗浄して過剰な塩等をすべて除去する。次いで、湿潤した沈殿物を真空中で一晩乾燥させると、LiFePO4の乾燥したオリーブグリーンの固体粉末が形成される。
Experiment I. Material Preparation I. 1. Lithium iron phosphate Lithium iron phosphate samples were prepared by optimized solvothermal synthesis. Starting materials were FeSO 4 .7H 2 O (Aldrich, purity 99%) with a stoichiometric ratio of 1: 1: 3, H 3 PO 4 (Aldrich, purity> 85%), LiOH (Aldrich) , Purity> 98%). First, aqueous solutions of FeSO 4 and H 3 PO 4 were prepared and mixed together. The mixture is transferred to a Parr autoclave, which is washed several times with nitrogen. A solution of LiOH is slowly pumped into the reaction mixture and then the autoclave is sealed. The reaction mixture is deagglomerated and heated at 160 ° C. overnight. The resulting precipitate is filtered and washed thoroughly with water to remove any excess salt. The wet precipitate is then dried in vacuo overnight to form a dry olive green solid powder of LiFePO 4 .

I.2.炭素被覆試料
いくつかの炭素含有有機前駆体を使用して、LiFePO4を炭素で被覆した。ポリアクリロニトリル(PAN)、1,2,4,5−ベンゼンテトラカルボン酸(ピロメリット酸)および乳糖をそれぞれ使用して、別個のバッチの炭素被覆LiFePO4を合成した。典型的な実験において、特定量の前駆体(表1)を液体媒体中でLiFePO4100mgと混合し、高分散懸濁液を形成した。懸濁液を乾燥させ、続いて2.5℃/minの速度で650℃まで加熱して該温度に維持することにより焼成した。全焼成時間(昇温時間を除く)は6時間であった。Fe+2のFe+3への酸化を回避するために、熱処理は不活性窒素環境下または真空下で行った。
I. 2. Carbon coated samples LiFePO 4 was coated with carbon using several carbon-containing organic precursors. Separate batches of carbon-coated LiFePO 4 were synthesized using polyacrylonitrile (PAN), 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid) and lactose, respectively. In a typical experiment, a certain amount of precursor (Table 1) was mixed with 100 mg LiFePO 4 in a liquid medium to form a highly dispersed suspension. The suspension was dried and subsequently calcined by heating to 650 ° C. at a rate of 2.5 ° C./min and maintaining at that temperature. The total firing time (excluding the heating time) was 6 hours. In order to avoid oxidation of Fe +2 to Fe +3 , the heat treatment was performed under an inert nitrogen environment or under vacuum.

表1は、LiFePO4の重量に対する添加した有機前駆体の初期量の重量、および被覆された試料の最終炭素含量を示す。炭素の量は、熱重量分析により決定された。 Table 1 shows the weight of the initial amount of organic precursor added relative to the weight of LiFePO 4 and the final carbon content of the coated sample. The amount of carbon was determined by thermogravimetric analysis.

さらに、フロー・オーブン内でプロピレンガスを熱的に分解して炭素をLiFePO4上に堆積させた。オーブンの温度は700℃に設定した。ガスの流速は20ml/分であり、プロセスは4時間行った。堆積させた炭素の量は、約0.1重量%であった。すべての炭素被覆試料のXRDパターンは、未処理LiFePO4と完全に一致し、炭素の存在は結晶化度をまったく阻害しない。図1は、乳糖により炭素被覆されたLiFePO4の、未処理LiFePO4と比較したRDパターンを示す。アニール後に得られた炭素被覆試料の粒度分布は、合成されたままの未処理LiFePO4のものよりも広い。これは、高温での一次粒子のオストワルド熟成に起因して生じた可能性がある。しかしながら、粒度分布は、LiFePO4/FePO4体積によりリチウムイオンがまだ効果的に拡散し得る程十分狭い状態を保っており、放電容量は高い交換率であっても影響されない。 In addition, propylene gas was thermally decomposed in a flow oven to deposit carbon on LiFePO 4 . The oven temperature was set at 700 ° C. The gas flow rate was 20 ml / min and the process was carried out for 4 hours. The amount of carbon deposited was about 0.1% by weight. The XRD patterns of all carbon coated samples are completely consistent with the untreated LiFePO 4 and the presence of carbon does not interfere with the crystallinity at all. FIG. 1 shows the RD pattern of LiFePO 4 carbon coated with lactose compared to untreated LiFePO 4 . The particle size distribution of the carbon-coated sample obtained after annealing is wider than that of the as-synthesized untreated LiFePO 4 . This may have occurred due to Ostwald ripening of primary particles at high temperatures. However, the particle size distribution remains sufficiently narrow so that lithium ions can still be effectively diffused by the LiFePO 4 / FePO 4 volume, and the discharge capacity is not affected even at a high exchange rate.

乳糖の組成物により調製された炭素被覆試料の粒度分布の、未処理の被覆なしLiFePO4との比較を、図2に示す。炭素被覆試料のD80値は、30μm以下であることが判明したが、これは元の試料と比較して約3倍成長している。 A comparison of the particle size distribution of the carbon-coated sample prepared with the lactose composition with untreated uncoated LiFePO 4 is shown in FIG. The D80 value of the carbon-coated sample was found to be 30 μm or less, but it has grown about 3 times compared to the original sample.

炭素被覆LiFePO4粒子の周囲の炭素の極めて薄いアモルファス層は、高分解能TEM(図示せず)により描写され得る。層の平均厚さは、約2nmであることが判明した。層は極めて多孔性であるようであったが、これは活性材料への、および該材料からのリチウムイオンの容易な拡散を促進するはずである。また、鮮明なTEM画像において、オリビン型LiFePO4の[301]分離部分の間の約3Åの距離が観察される。 A very thin amorphous layer of carbon around the carbon coated LiFePO 4 particles can be delineated by high resolution TEM (not shown). The average layer thickness was found to be about 2 nm. The layer appeared to be very porous, but this should facilitate the easy diffusion of lithium ions into and out of the active material. In a clear TEM image, a distance of about 3 mm between the [301] separated portions of olivine-type LiFePO 4 is observed.

好ましい手順において、炭素被覆試料は、不活性環境における乳糖(15重量%)の存在下での熱処理により作製された。乾燥後、粉末を650℃で6時間(2.5℃/分の速度での昇温時間を除く)焼成し、次に粉砕または解凝集プロセスを行った。炭素の量は、熱重量分析により、3重量%未満であると決定された。   In a preferred procedure, carbon coated samples were made by heat treatment in the presence of lactose (15% by weight) in an inert environment. After drying, the powder was calcined at 650 ° C. for 6 hours (excluding the heating time at a rate of 2.5 ° C./min) and then subjected to a grinding or deagglomeration process. The amount of carbon was determined to be less than 3 wt% by thermogravimetric analysis.

I.3.逆エマルジョンによる合成によるPEDOTナノスタブの調製
PEDOTナノ粒子の合成には、Sunらの非特許文献3の記述における逆マイクロエマルジョンの技術を使用した。まず、ビス(2‐エチルヘキシル)スルホコハク酸ナトリウム(AOT)8.5g(19.12mmol)を、100%出力(410W)の超音波浴中でn−ヘキサン70mlに溶解した。次いで、蒸留水1ml中無水FeCl31.6g(10.00mmol)の混合物を、パスツールピペットで滴下により添加した。すべての酸化剤を添加したら、得られた溶液を超音波浴から取り出し、白濁した黄色の沈殿物が現れるまで穏やかに手で振盪した。次いでエチレンジオキシチオフェン(EDOT)0.38mlをエマルジョンに一度に添加した。次いで得られた混合物をロータリーエバポレータ中で1時間、10℃に維持した。水浴の温度が約20℃となったら重合が開始した。その後、水浴の温度を3時間、30℃に維持した。その間、反応混合物は緑色に、続いて黒色に変化した。次いで生成物を吸引濾過してエタノールおよびアセトンで洗浄した。100℃で一晩乾燥させると、青/黒色のPEDOTナノ粉末を得た。
I. 3. Preparation of PEDOT nanostubs by synthesis with inverse emulsion PEDOT nanoparticles were synthesized using the inverse microemulsion technique described in Sun et al. First, 8.5 g (19.12 mmol) of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) was dissolved in 70 ml of n-hexane in an ultrasonic bath with 100% output (410 W). A mixture of 1.6 g (10.00 mmol) anhydrous FeCl 3 in 1 ml distilled water was then added dropwise with a Pasteur pipette. Once all the oxidizing agent was added, the resulting solution was removed from the ultrasonic bath and gently shaken by hand until a cloudy yellow precipitate appeared. Then 0.38 ml of ethylenedioxythiophene (EDOT) was added to the emulsion all at once. The resulting mixture was then maintained at 10 ° C. for 1 hour in a rotary evaporator. Polymerization started when the temperature of the water bath reached about 20 ° C. Thereafter, the temperature of the water bath was maintained at 30 ° C. for 3 hours. Meanwhile, the reaction mixture turned green and subsequently black. The product was then filtered off with suction and washed with ethanol and acetone. When dried at 100 ° C. overnight, a blue / black PEDOT nanopowder was obtained.

II.化学的、電気化学的および構造的特性決定
鉄の強い蛍光性のため、λCuKα1=1.54056Å照射(40mA、40kV)およびゲルマニウム単色光分光器を用いたBragg−Bentano型配置粉末X線回折装置Bruker AXS mod.D8Advanceを使用した。試料は、回転平板ホルダ上に載せた。石英試料を外部標準物質として使用した。
II. Chemical, electrochemical and structural characterization Due to the strong fluorescence of iron, a Bragg-Bentano type arranged powder X-ray diffractometer Bruker using λCuKα1 = 1.54056 Å irradiation (40 mA, 40 kV) and a germanium monochromator AXS mod. D8 Advance was used. The sample was placed on a rotating plate holder. A quartz sample was used as an external standard.

動作電圧1kVのZeiss Gemini1530を使用して走査型電子顕微鏡(SEM)分析を行った。透過型電子顕微鏡(TEM)による測定のために、銅グリッド上に支持された穴の開いた炭素箔上に材料を堆積させた。TEM検査は、C30ST顕微鏡(Philips社製;LaB6カソード、動作電圧300kV、点解像度約2Å)を使用して行った。導電性は、4点導電性試験法を使用して測定した。   Scanning electron microscope (SEM) analysis was performed using a Zeiss Gemini 1530 with an operating voltage of 1 kV. The material was deposited on a perforated carbon foil supported on a copper grid for measurement by transmission electron microscopy (TEM). The TEM inspection was performed using a C30ST microscope (manufactured by Philips; LaB6 cathode, operating voltage 300 kV, point resolution about 2 mm). Conductivity was measured using a four point conductivity test method.

III.電気化学的測定
分析した3つの試料の組成は表2に要約されるが、表中、L1は未処理の被覆なしLiFePO4で得られた参照材料を示し、LCは炭素被覆LiFePO4による参照材料を示し、LPは本発明の材料である炭素被覆LiFePO4およびPEDOTナノ粒子の混合物を示す。
III. Electrochemical measurements The composition of the three samples analyzed is summarized in Table 2, where L1 indicates the reference material obtained with untreated LiFePO 4 and LC is the reference material with carbon-coated LiFePO 4 And LP represents a mixture of carbon-coated LiFePO 4 and PEDOT nanoparticles, which are materials of the present invention.

電気化学的測定のために、L1およびLCをカーボンブラック、グラファイトおよびポリイソブテン系ポリマー結合剤と混合することにより、それらの電極を作製した。活性材料:Ensaco250(TIMCAL社製):グラファイトSFG6(TIMCAL社製):Oppanol(BASF社製)=75:18:6:2の比率で成分を混合した。活性材料および添加剤は、見た目の機械的均質化が得られるまで(35分)、乳鉢内で手作業により互いに混合および粉砕した。乳鉢を90℃に昇温し、n−ヘキサン中0.2%のOppanol溶液を混合物に添加した。n−ヘキサンが完全に蒸発するまで懸濁液を混合した。次いで、15mgから30mgの試料を丸薬(直径13mm)状に手で圧縮し、次いで作製されたカソードを乾燥さた。電極として使用される混合LPには、5%のみの炭素を使用し、グラファイトは使用しない。   For electrochemical measurements, the electrodes were made by mixing L1 and LC with carbon black, graphite and polyisobutene-based polymer binders. Active materials: Ensaco 250 (manufactured by TIMCAL): Graphite SFG6 (manufactured by TIMCAL): Oppanol (manufactured by BASF) = 75: 18: 6: 2 The components were mixed. The active material and additives were mixed and ground together by hand in a mortar until an apparent mechanical homogenization was obtained (35 minutes). The mortar was warmed to 90 ° C. and a 0.2% Opanol solution in n-hexane was added to the mixture. The suspension was mixed until n-hexane was completely evaporated. Next, 15 to 30 mg of sample was manually compressed into a pill (diameter 13 mm), and then the prepared cathode was dried. The mixed LP used as the electrode uses only 5% carbon and no graphite.

LP試料の調製のために、PEDOTナノ粒子をアセトニトリル溶液に分散させ、次いで10重量%で未処理LiFePO4と混合した。より高い細孔容積を得るために、犠牲粒子を混合し、「前電極」が乾燥したらすぐに除去することができる。 For the preparation of LP samples, PEDOT nanoparticles were dispersed in acetonitrile solution and then mixed with untreated LiFePO 4 at 10% by weight. To obtain a higher pore volume, the sacrificial particles can be mixed and removed as soon as the “front electrode” is dry.

アルゴン充填グローブ・ボックス内で、対極としてリチウム金属箔を使用してセルを組み立てた。使用した電解質は、エチレンカーボネートおよびジメチルカーボネートの1:1(重量比)混合物中のLiPF6の1M溶液からなる、MERCK社製Selectipur、LP30であった。 The cell was assembled in an argon filled glove box using lithium metal foil as the counter electrode. The electrolyte used was MERCK Selectipur, LP30, consisting of a 1M solution of LiPF 6 in a 1: 1 (weight ratio) mixture of ethylene carbonate and dimethyl carbonate.

電気化学的測定はすべて、Astrol Electronic AG(スイス)により提供されたコンピュータ制御充電システムを使用して行った。セルには、複合材中の活性材料(LiFePO4)の重量を基準とした比電流における1.5〜4.0V対Li/Li+の範囲内での定電流サイクルを課した。 All electrochemical measurements were performed using a computer controlled charging system provided by Astrol Electronic AG (Switzerland). The cell was subjected to a constant current cycle in the range of 1.5 to 4.0 V vs. Li / Li + at a specific current based on the weight of the active material (LiFePO 4 ) in the composite.

結果および考察
I.構造および形態の影響
図2は、L1のXRDパターンを示しており、これは空間群Pnmaを有する斜方晶系結晶構造と一致する。パターンは、LiFePO4の理論的パターンに完全に対応しており、不純物は検出されなかった。炭素被覆試料LCのXRDパターンは、裸の試料L1と完全に一致し、炭素の存在は結晶化度をまったく阻害しない。一次粒径はScherrerの式d=0.9λ/βcosθを用いて計算され、式中βはXRD線の半値幅であり、λはオングストローム単位の波長である。XRD(020)線から得られる幅を用いて推定される単結晶径は、31.6nmである。LC1のSEM画像(図示せず)は、粒子が平均粒径200nmの明確な楕円形態を有していたことを示す。LCの形態は、L1との有意な相違を示さなかった。LCの高分解能TEM画像(図示せず)は、LiFePO4粒子の周りの炭素の極めて薄いアモルファス層を示す。層の平均厚さは、約2nmと測定された。層は極めて多孔性であるようであったが、これは活性材料内のリチウムイオンの容易な拡散を促進するはずである。面間距離は約3Åと読み取れたが、これはオリビンの[301]面間隔と極めて類似している。炭素被覆試料は、10-4S/cmの範囲内の導電性を有していたが、これは未処理LiFePO4(10-9S/cm)よりも数桁高い。LC、グラファイトおよび標準的結合剤からなる電池複合材のSEM写真(図示せず、または図4)は、理想的には絶縁性LiFePO4粒子間の導電的相互接続としての役割を果たすべきであるマイクロサイズのグラファイトが、ナノサイズの活性材料と比較して完全に範囲外であることを示す。これはマトリックス内の隔離されたアイランドとして残留し、電子パーコレーション・ネットワークに有益となり難く、一方で電極複合材の重量に大きく寄与する。この問題はLPにおいて無事に解決された。PEDOTの逆マイクロエマルジョンによる合成は、ナノサイズのメッシュ(図5に示される)の形成をもたらす。個々のPEDOTナノスタブの凝集から、多孔質構造が形成されている。PEDOT粒子の導電性多孔質ナノメッシュ(Nanomesh)はLiFePO4粒子を完全に包み込んでおり、これにより複合材全体がさらにより導電性となる。PEDOT粒子はまた、電極成分を互いに、および電流コレクタに結合する結合剤として機能する。これにより、任意の別個の結合剤の使用が不要となり、したがって電極のバルクから不活性分が削減される。
Results and discussion Effect of Structure and Morphology FIG. 2 shows the XRD pattern of L1, which is consistent with an orthorhombic crystal structure with space group Pnma. The pattern perfectly corresponds to the theoretical pattern of LiFePO 4 and no impurities were detected. The XRD pattern of the carbon-coated sample LC is completely consistent with the naked sample L1, and the presence of carbon does not inhibit the crystallinity at all. The primary particle size is calculated using the Scherrer equation d = 0.9λ / βcos θ, where β is the half width of the XRD line and λ is the wavelength in angstroms. The single crystal diameter estimated using the width obtained from the XRD (020) line is 31.6 nm. The LC1 SEM image (not shown) shows that the particles had a clear elliptical shape with an average particle size of 200 nm. The LC form showed no significant difference from L1. A high resolution TEM image of LC (not shown) shows a very thin amorphous layer of carbon around the LiFePO 4 particles. The average layer thickness was measured to be about 2 nm. The layer appeared to be very porous, but this should facilitate easy diffusion of lithium ions within the active material. The inter-surface distance was found to be about 3 mm, which is very similar to olivine's [301] inter-surface distance. The carbon coated sample had a conductivity in the range of 10 −4 S / cm, which is several orders of magnitude higher than that of untreated LiFePO 4 (10 −9 S / cm). A SEM photo (not shown or FIG. 4) of a battery composite consisting of LC, graphite and standard binder should ideally serve as a conductive interconnect between insulating LiFePO 4 particles. It shows that micro-sized graphite is completely out of range compared to nano-sized active materials. This remains as isolated islands in the matrix and is unlikely to be beneficial to the electronic percolation network, while greatly contributing to the weight of the electrode composite. This problem was successfully solved in LP. Synthesis of PEDOT with a reverse microemulsion results in the formation of a nano-sized mesh (shown in FIG. 5). A porous structure is formed from the aggregation of individual PEDOT nanostubs. The PEDOT particle conductive porous nanomesh (Nanomesh) completely encapsulates the LiFePO 4 particles, which makes the entire composite even more conductive. PEDOT particles also function as a binder that bonds the electrode components to each other and to the current collector. This eliminates the need for the use of any separate binder, thus reducing the inert content from the bulk of the electrode.

II.電気化学に関する結果
すべての試料のこの電気化学的特性を系統的に調査した。図6は、20mA(約0.1C)の比電流でサイクルに課した3つすべての試料の初期放電容量を示す。試料はすべて、著しい平坦な電圧水平域を有する。この比較的低い電流では、炭素被覆試料(LC)およびポリマー複合材試料(LP)の両方が、LiFePO4の理論容量170mAh/gに非常に近い、約166mAh/gの容量を有する。被覆なし試料(L1)は、他の2つの試料より極めて低い110mAh/gの開始容量を有する。3つすべての試料において、この電流での放電容量は、非常に多くのサイクル数に対し安定性を維持している。この性能の相違は、電極の性能に対する導電性の影響を明確に示す。
II. Electrochemical results This electrochemical property of all samples was systematically investigated. FIG. 6 shows the initial discharge capacities of all three samples imposed on the cycle at a specific current of 20 mA (about 0.1 C). All samples have a significant flat voltage level. At this relatively low current, both the carbon coated sample (LC) and the polymer composite sample (LP) have a capacity of about 166 mAh / g, very close to the theoretical capacity of LiFePO 4 170 mAh / g. The uncoated sample (L1) has a starting capacity of 110 mAh / g which is much lower than the other two samples. In all three samples, the discharge capacity at this current remains stable for a very large number of cycles. This difference in performance clearly shows the effect of conductivity on the performance of the electrode.

被覆ありおよび被覆なしの活性材料の性能の差が明瞭かつ顕著であったため、本発明者らはLCおよびLPのより高い電流での試験のみを進めた。図7aおよび図7bは、135mA(約0.8C)の比電流でのLCおよびLPの性能を比較している。LPの初期放電容量は158.5mAh/gである。図7aは、10回目、50回目および100回目のサイクル後の放電曲線を示す。これらのサイクルにおける容量は、それぞれ、158mAh/g、159mAh/gおよび141mAh/gである。これはサイクル当たり約0.17mAh/gの降下を表しており、100サイクル後に初期放電容量の90%が維持されることを示唆している。一方、試料LCは、145mAh/gの初期放電容量を有するが、これは10回目、50回目および100回目のサイクルに対し、それぞれ128mAh/g、112mAh/gおよび97mAh/gとなっている。これはサイクル当たり約0.33mAh/gの降下を表しており、100サイクル後には元の容量の67%しか維持されない。したがって、LPの場合、開始容量および容量保持の両方がLCよりも著しく良好である。図8に示されるように、次の100サイクルに対しては、両試料ともに同じ割合でほぼ直線的な低下を示す。200サイクル後のLPの最終放電容量は、LCの56mAh/gに対し、130mAh/gである。   Since the difference in performance between the coated and uncoated active materials was clear and significant, we proceeded only with the higher current tests of LC and LP. Figures 7a and 7b compare the performance of LC and LP at a specific current of 135mA (about 0.8C). The initial discharge capacity of LP is 158.5 mAh / g. FIG. 7a shows the discharge curves after the 10th, 50th and 100th cycles. The capacities in these cycles are 158 mAh / g, 159 mAh / g and 141 mAh / g, respectively. This represents a drop of about 0.17 mAh / g per cycle, suggesting that 90% of the initial discharge capacity is maintained after 100 cycles. On the other hand, sample LC has an initial discharge capacity of 145 mAh / g, which is 128 mAh / g, 112 mAh / g and 97 mAh / g for the 10th, 50th and 100th cycles, respectively. This represents a drop of about 0.33 mAh / g per cycle and only 67% of the original capacity is maintained after 100 cycles. Thus, for LP, both the starting capacity and capacity retention are significantly better than LC. As shown in FIG. 8, for the next 100 cycles, both samples show a substantially linear drop at the same rate. The final discharge capacity of LP after 200 cycles is 130 mAh / g against 56 mAh / g of LC.

図7aの挿入図は、対応する10回目、50回目および100回目の放電サイクルにおけるこれら両試料の微分比容量プロット(DSCP)を示す。これらの微分比容量プロットのピークは、活性材料からのリチウム・インターカレーション/脱インターカレーションのアノードおよびカソードの水平域に対応する。アノードおよびカソード両方のピークが、LiFePO4におけるリチウム抽出/挿入電位である3.4V近傍で生じている。2つのプロット間の主な差は、アノードおよびカソードピーク間の分極ギャップおよびピークの強度である。LPの場合、間隔は約0.1Vであり、一方LCでは0.6Vである。この間隔は、電極ミックス内での過電位の量を示し、LCにおけるより高い電極抵抗を主に示唆している。ポリマー複合材LPのピーク強度はLCよりも非常に高く、これは後者よりも良好なLi挿入反応速度を示す。 The inset of FIG. 7a shows the differential specific capacity plot (DSCP) of both these samples in the corresponding 10th, 50th and 100th discharge cycles. The peaks of these differential specific capacity plots correspond to the anode and cathode horizontal regions of lithium intercalation / deintercalation from the active material. Both anode and cathode peaks occur around 3.4 V, which is the lithium extraction / insertion potential in LiFePO 4 . The main difference between the two plots is the polarization gap between the anode and cathode peaks and the intensity of the peaks. For LP, the spacing is about 0.1V, while for LC it is 0.6V. This spacing indicates the amount of overpotential in the electrode mix and mainly suggests higher electrode resistance in the LC. The peak intensity of the polymer composite LP is much higher than that of LC, indicating a better Li insertion reaction rate than the latter.

LPに対するさらに厳しい条件の影響を調べるために、ある範囲の電流密度において試料を試験した。図9は、様々な電流でのサイクル数の関数としての放電電位を示す。C/5では、試料はほぼ理論容量である170mAh/gを示す。この値は、電流の増加と共に徐々に減少するが、10Cに対応する高電流下であっても、比較的安定した約130mAh/gの放電容量が観察される。電流がその初期値まで降下した後は、元の容量のほとんどが保持される。   Samples were tested at a range of current densities to investigate the effects of more stringent conditions on LP. FIG. 9 shows the discharge potential as a function of the number of cycles at various currents. At C / 5, the sample shows a theoretical capacity of 170 mAh / g. This value gradually decreases with increasing current, but a relatively stable discharge capacity of about 130 mAh / g is observed even under high current corresponding to 10C. After the current drops to its initial value, most of the original capacity is retained.

PEDOTおよびLiFePO4の複合材の性能は、裸のおよび炭素被覆LiFePO4と比較して著しく良好であった。導電性ポリマーを含有する複合材は、他の2つの試料よりも性能が優れていると同時に、電極の重量に対するその総添加剤含量はわずか50%である。 The performance of the PEDOT and LiFePO 4 composites was significantly better compared to bare and carbon coated LiFePO 4 . The composite containing the conductive polymer outperforms the other two samples, while its total additive content is only 50% of the electrode weight.

本発明の現在好ましい実施形態を示し説明してきたが、本発明はこれらに制限されず、以下の特許請求の範囲内において、その他様々な様式で具現化され実践され得ることを明確に理解されたい。   While presently preferred embodiments of the invention have been shown and described, it should be clearly understood that the invention is not limited thereto and can be embodied and practiced in various other ways within the scope of the following claims. .

L1 未処理の被覆なしLiFePO4で得られた参照材料;
LC 炭素被覆LiFePO4による参照材料;
LP 本発明の材料である炭素被覆LiFePO4およびPEDOTナノ粒子の混合物。
L1 Reference material obtained with untreated LiFePO 4 uncoated;
Reference material with LC carbon coated LiFePO 4 ;
LP A mixture of carbon-coated LiFePO 4 and PEDOT nanoparticles, the material of the present invention.

Claims (20)

充電式リチウム電池の陽極または陰極用の中間体ナノ複合材であって、前記ナノ複合材は、一様に分布したナノ粒子状電子活性材料(EAM)と、ナノ粒子状電子伝導性結合剤材料(CB)と、最終的に電極を生成する際に除去される犠牲ナノ粒子とを備える開放多孔質材料であり、EAMのナノ粒子の平均粒径およびナノ粒子状CBの平均粒径は、
ともに+100%/−50%以下で異なり、および/または
ともに5nmから500nmの範囲内であり、そして、ここで、
犠牲ナノ粒子は、200nmから500nmの範囲内であり、
ここで、ナノ粒子状CBは、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)であり、上記中間体ナノ複合材は当該ナノ粒子状CB以外に結合剤を含まず、
AMのナノ粒子は、導電層で被覆されている、ナノ複合材。
An intermediate nanocomposite for an anode or cathode of a rechargeable lithium battery, the nanocomposite comprising a uniformly distributed nanoparticulate electroactive material (EAM) and a nanoparticulate electronically conductive binder material (CB) and sacrificial nanoparticles that are finally removed when generating the electrode, and the average particle size of the EAM nanoparticles and the average particle size of the nanoparticulate CB are:
Both differ by +100% /-50% or less, and / or both are in the range of 5 nm to 500 nm, and
The sacrificial nanoparticles are in the range of 200 nm to 500 nm;
Here, the nanoparticulate CB is poly (3,4-ethylenedioxythiophene) (PEDOT), and the intermediate nanocomposite contains no binder other than the nanoparticulate CB,
Nanoparticles E AM is coated with a conductive layer, nanocomposite.
電極が陽極であり、EAMが、遷移金属および主族金属の酸化物、窒化物、炭化物、ホウ酸塩、リン酸塩、硫化物、ハロゲン化物、ならびにこれらの混合物から選択される、請求項1に記載の中間体ナノ複合材。   2. The electrode is an anode and the EAM is selected from transition metal and main group metal oxides, nitrides, carbides, borates, phosphates, sulfides, halides, and mixtures thereof. The intermediate nanocomposite described in 1. EAMがLiFePO4である、請求項2に記載の中間体ナノ複合材。 EAM is LiFePO 4, the intermediate nanocomposite of claim 2. 電極が陰極であり、ナノ粒子状EAMが、ケイ素およびLixVNから選択されるアノードEAMである、請求項1に記載の中間体ナノ複合材。 The intermediate nanocomposite of claim 1, wherein the electrode is a cathode and the nanoparticulate EAM is an anode EAM selected from silicon and Li x VN. 導電層が炭素またはグラファイト/グラフェン層である、請求項1から4のいずれか1項に記載の中間体ナノ複合材。   The intermediate nanocomposite according to any one of claims 1 to 4, wherein the conductive layer is a carbon or graphite / graphene layer. CBのナノ粒子の平均粒径およびEAMのナノ粒子の平均粒径が、ともに5nmから400nmの範囲内である、請求項1から5のいずれか1項に記載の中間体ナノ複合材。   The intermediate nanocomposite according to any one of claims 1 to 5, wherein both the average particle diameter of the CB nanoparticles and the average particle diameter of the EAM nanoparticles are in the range of 5 nm to 400 nm. CBナノ粒子の平均粒径およびEAMナノ粒子の平均粒径が、ともに20nmから300nmの範囲内である、請求項6に記載の中間体ナノ複合材。   The intermediate nanocomposite according to claim 6, wherein the average particle size of the CB nanoparticles and the average particle size of the EAM nanoparticles are both in the range of 20 nm to 300 nm. ナノ粒子状電子伝導性充填剤材料としてカーボンブラックを含む、請求項1から7のいずれか1項に記載の中間体ナノ複合材。   The intermediate nanocomposite according to any one of claims 1 to 7, comprising carbon black as a nanoparticulate electronically conductive filler material. カーボンブラックの量が犠牲ナノ粒子を含まないナノ複合材の重量を基準として2%から10%の範囲内である、請求項8に記載の中間体ナノ複合材。   9. The intermediate nanocomposite of claim 8, wherein the amount of carbon black is in the range of 2% to 10% based on the weight of the nanocomposite that does not include sacrificial nanoparticles. カーボンブラックの量が5%である、請求項9に記載の中間体ナノ複合材。   The intermediate nanocomposite according to claim 9, wherein the amount of carbon black is 5%. CBナノ粒子が、犠牲ナノ粒子を含まないナノ複合材の重量を基準として4%から10%の量で存在する、請求項1から10のいずれか1項に記載の中間体ナノ複合材。   11. The intermediate nanocomposite according to any one of claims 1 to 10, wherein the CB nanoparticles are present in an amount of 4% to 10%, based on the weight of the nanocomposite free of sacrificial nanoparticles. 犠牲ナノ粒子の粒径が、300nmから500nmの範囲内である、請求項1から11のいずれか1項に記載の中間体ナノ複合材。   The intermediate nanocomposite according to any one of claims 1 to 11, wherein the sacrificial nanoparticles have a particle size in the range of 300 nm to 500 nm. 犠牲ナノ粒子が、ポリエチレン粒子、ポリエチレングリコール粒子、ポリビニルアセタール粒子、ポリスチレン粒子およびこれらの混合物から選択される、請求項1から12のいずれか1項に記載の中間体ナノ複合材。   The intermediate nanocomposite according to any one of claims 1 to 12, wherein the sacrificial nanoparticles are selected from polyethylene particles, polyethylene glycol particles, polyvinyl acetal particles, polystyrene particles and mixtures thereof. 犠牲ナノ粒子が、少なくとも0.5重量%の量で存在する、請求項1から13のいずれか1項に記載の中間体ナノ複合材。   14. The intermediate nanocomposite according to any one of claims 1 to 13, wherein the sacrificial nanoparticles are present in an amount of at least 0.5% by weight. 犠牲ナノ粒子が、0.5重量%から10重量%の量で存在する、請求項14に記載の中間体ナノ複合材。   15. The intermediate nanocomposite according to claim 14, wherein the sacrificial nanoparticles are present in an amount of 0.5 wt% to 10 wt%. 犠牲ナノ粒子が、40重量%から60重量%の量で存在する、請求項14に記載の中間体ナノ複合材。   The intermediate nanocomposite of claim 14, wherein the sacrificial nanoparticles are present in an amount of 40 wt% to 60 wt%. 犠牲ナノ粒子を除去することにより請求項1から16のいずれか1項に記載の中間体ナノ複合材から得られる、充電式リチウム電池の陽極または陰極用の電極材料であって、前記電極材料はナノ複合材であり、前記ナノ複合材は、一様に分布したナノ粒子状EAMと、ナノ粒子状CBとを備える開放多孔質材料であり、EAMのナノ粒子の平均粒径およびナノ粒子状CBの平均粒径は、
ともに+100%/−50%以下で異なり、および/または
ともに5nmから500nmの範囲内であり、
電極材料は、200nmから500nmの範囲内の細孔を備える、
ことを特徴とする電極材料。
An electrode material for an anode or cathode of a rechargeable lithium battery obtained from the intermediate nanocomposite according to any one of claims 1 to 16 by removing sacrificial nanoparticles, wherein the electrode material is A nanocomposite, the nanocomposite being an open porous material comprising uniformly distributed nanoparticulate EAM and nanoparticulate CB, wherein the mean particle size and nanoparticulate CB of EAM nanoparticles The average particle size of
Both differ by less than +100% /-50%, and / or both are in the range of 5 nm to 500 nm,
The electrode material comprises pores in the range of 200 nm to 500 nm,
An electrode material characterized by that.
請求項1〜16のいずれか1項に記載の中間体ナノ複合材から請求項17に記載の電極材料を生成するための方法であって、電極が形成された後、または電極が形成されている間に、犠牲ナノ粒子が熱処理または化学反応により除去される方法。   A method for producing the electrode material according to claim 17 from the intermediate nanocomposite according to any one of claims 1 to 16, wherein the electrode is formed or after the electrode is formed. During which the sacrificial nanoparticles are removed by heat treatment or chemical reaction. ナノ粒子状電子活性材料(EAM)と、ナノ粒子状電子伝導性結合剤材料(CB)と、最終的に電極を生成する際に除去される犠牲ナノ粒子とを含む、充電式リチウム電池の陽極または陰極用の中間体ナノ複合材を生成するための方法であって、ナノ粒子状CB、ナノ粒子状EAMおよび犠牲ナノ粒子を混合するステップと、混合物を圧力および熱に曝露するステップとを含み、
ここで、ナノ粒子状CBは、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)であり、上記中間体ナノ複合材は当該ナノ粒子状CB以外に結合剤を含まない、方法。
Rechargeable lithium battery anode comprising a nanoparticulate electroactive material (EAM), a nanoparticulate electronically conductive binder material (CB), and sacrificial nanoparticles that are ultimately removed in forming the electrode or a method for generating an intermediate nanocomposite for the cathode, comprising the steps of mixing the nanoparticulate CB, the nanoparticulate EAM and sacrificial nanoparticles, and exposing the mixture to pressure and heat ,
Here, the nanoparticulate CB is poly (3,4-ethylenedioxythiophene) (PEDOT), the intermediate nanocomposite contains no binder other than the nanoparticulate CB, Methods.
圧力が0.5バールから2バール(5・104から2・105Pa)であり、熱が室温に相当する、請求項19に記載の方法。 The process according to claim 19, wherein the pressure is from 0.5 bar to 2 bar (5 · 10 4 to 2 · 10 5 Pa) and the heat corresponds to room temperature.
JP2010056719A 2009-03-12 2010-03-12 Electrically conductive nanocomposites containing sacrificial nanoparticles and open porous nanocomposites produced therefrom Active JP5650418B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP09155039 2009-03-12
EP09155039.2 2009-03-12
EP09157135.6 2009-04-01
EP09157135.6A EP2237346B1 (en) 2009-04-01 2009-04-01 Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof

Publications (2)

Publication Number Publication Date
JP2010219047A JP2010219047A (en) 2010-09-30
JP5650418B2 true JP5650418B2 (en) 2015-01-07

Family

ID=42977620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056719A Active JP5650418B2 (en) 2009-03-12 2010-03-12 Electrically conductive nanocomposites containing sacrificial nanoparticles and open porous nanocomposites produced therefrom

Country Status (2)

Country Link
JP (1) JP5650418B2 (en)
KR (1) KR101316413B1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228854B1 (en) * 2009-03-12 2014-03-05 Belenos Clean Power Holding AG Nitride and carbide anode materials
WO2011141486A1 (en) * 2010-05-14 2011-11-17 Basf Se Method for encapsulating metals and metal oxides with graphene and use of said materials
US20130177784A1 (en) * 2010-09-29 2013-07-11 Ocean's King Lighting Science & Technology Co, Ltd Lithium iron phosphate composite material, production method and use thereof
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
US8980126B2 (en) 2010-10-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
US20120088151A1 (en) * 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device
KR102545455B1 (en) 2010-10-08 2023-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing positive electrode active material for energy storage device and energy storage device
KR101225879B1 (en) 2010-11-18 2013-01-24 주식회사 엘지화학 Polar material of lithium secondary battery for a large output and lithium secondary battery comprising thereof
CN102074692B (en) * 2010-12-31 2013-10-30 深圳大学 Preparation method for similar graphene doped lithium ion battery positive electrode material
JP2012204278A (en) * 2011-03-28 2012-10-22 Kanagawa Prefecture Electrode for lithium secondary battery and secondary battery using the same
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
TWI643814B (en) * 2011-06-03 2018-12-11 半導體能源研究所股份有限公司 Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US8499445B1 (en) * 2011-07-18 2013-08-06 Endicott Interconnect Technologies, Inc. Method of forming an electrically conductive printed line
CA2752844A1 (en) * 2011-09-19 2013-03-19 Hydro-Quebec Method for preparing a particulate of si or siox-based anode material, and material thus obtained
KR20230047202A (en) * 2011-09-30 2023-04-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Anode, lithium secondary battery, electric vehicle, hybrid vehicle, moving bodies, system, and electrical devices
CA2754372A1 (en) 2011-10-04 2013-04-04 Hydro-Quebec Positive-electrode material for lithium-ion secondary battery and method of producing same
EP2677569B1 (en) 2012-04-24 2016-05-25 LG Chem, Ltd Active material for composite electrode of lithium secondary battery for increased output, and lithium secondary battery including same
KR20140121953A (en) * 2013-04-08 2014-10-17 주식회사 엘지화학 Negative electrode for secondary battery, the preparation method thereof and secondary battery comprising the same
WO2019022318A1 (en) * 2017-07-24 2019-01-31 엠케이전자 주식회사 Anode active material for secondary battery, and preparation method therefor
US10985407B2 (en) 2017-11-21 2021-04-20 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11437643B2 (en) 2018-02-20 2022-09-06 Samsung Electronics Co., Ltd. All-solid-state secondary battery
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040047780A (en) * 2001-07-27 2004-06-05 메사추세츠 인스티튜트 오브 테크놀로지 Battery structures, self-organizing structures and related methods
JP2002100345A (en) * 2001-08-03 2002-04-05 Kao Corp Manufacturing method of positive electrode for nonaqueous secondary battery
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
JP2005340165A (en) * 2004-03-23 2005-12-08 Shirouma Science Co Ltd Positive electrode material for lithium secondary cell
KR100682862B1 (en) * 2005-01-11 2007-02-15 삼성에스디아이 주식회사 Electrode for electrochemical cell, manufacturing method thereof, and electrochemical cell containing the electrode
US20090095942A1 (en) * 2005-01-26 2009-04-16 Shuichiro Yamaguchi Positive Electrode Material for Lithium Secondary Battery
EP2124272B1 (en) * 2006-12-28 2015-06-03 GS Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
KR100854540B1 (en) * 2007-01-30 2008-08-26 재단법인서울대학교산학협력재단 Carbon nanotubes complex and the process of manufacturing thereof

Also Published As

Publication number Publication date
KR101316413B1 (en) 2013-10-08
JP2010219047A (en) 2010-09-30
KR20100103426A (en) 2010-09-27

Similar Documents

Publication Publication Date Title
JP5650418B2 (en) Electrically conductive nanocomposites containing sacrificial nanoparticles and open porous nanocomposites produced therefrom
JP5702073B2 (en) Open porous electrically conductive nanocomposites
TWI458165B (en) Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
JP6302249B2 (en) Sulfur-containing nanoporous materials, nanoparticles, methods and applications
Ren et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries
US9515310B2 (en) V2O5 electrodes with high power and energy densities
Yin et al. Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries
Yan et al. Synergetic Fe substitution and carbon connection in LiMn1− xFexPO4/C cathode materials for enhanced electrochemical performances
TWI594945B (en) Metal tin-carbon composite, use thereof, negative electrode active material for non-aqueous lithium battery using the same, negative electrode containing non-aqueous lithium-ion battery and non-aqueous lithium secondary battery
Yang et al. Li3V2 (PO4) 3/C composite materials synthesized using the hydrothermal method with double-carbon sources
Kim et al. Effect of synthetic conditions on the electrochemical properties of LiMn0. 4Fe0. 6PO4/C synthesized by sol–gel technique
CN115152053A (en) Silicon-nanographitic aerogel-based negative electrode for battery
US10374215B2 (en) Centrifugation-assisted preparation of additive-free carbon-decorated magnetite electrodes
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries
WO2018156355A1 (en) Core-shell electrochemically active particles with modified microstructure and use for secondary battery electrodes
US20150037674A1 (en) Electrode material for lithium-based electrochemical energy stores
Bresser et al. Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance
Wang et al. Enhanced electrochemical performance of Li3V2 (PO4) 3 structurally converted from LiVOPO4 by graphite nanofiber addition
Lu et al. Cesium-doped graphene grown in situ with ultra-small TiO 2 nanoparticles for high-performance lithium-ion batteries
Zhou et al. Direct synthesis of carbon sheathed tungsten oxide nanoparticles via self-assembly route for high performance electrochemical charge storage electrode
Murugan et al. Microwave-irradiated solvothermal synthesis of LiFePO4 nanorods and their nanocomposites for lithium ion batteries

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130719

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140310

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250