JP5649312B2 - Vacuum insulation tube and superconducting cable - Google Patents

Vacuum insulation tube and superconducting cable Download PDF

Info

Publication number
JP5649312B2
JP5649312B2 JP2010042318A JP2010042318A JP5649312B2 JP 5649312 B2 JP5649312 B2 JP 5649312B2 JP 2010042318 A JP2010042318 A JP 2010042318A JP 2010042318 A JP2010042318 A JP 2010042318A JP 5649312 B2 JP5649312 B2 JP 5649312B2
Authority
JP
Japan
Prior art keywords
vacuum
tube
heat insulating
spacer
outgas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010042318A
Other languages
Japanese (ja)
Other versions
JP2011179543A (en
Inventor
西村 崇
崇 西村
濱田 啓司
啓司 濱田
幸郎 川喜田
幸郎 川喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2010042318A priority Critical patent/JP5649312B2/en
Publication of JP2011179543A publication Critical patent/JP2011179543A/en
Application granted granted Critical
Publication of JP5649312B2 publication Critical patent/JP5649312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、真空引き時の真空度の向上と真空度の長期維持ができる真空断熱管及びこの真空断熱管を備える超電導ケーブルに関するものである。   The present invention relates to a vacuum heat insulating tube capable of improving the degree of vacuum during vacuum evacuation and maintaining the degree of vacuum for a long time, and a superconducting cable including the vacuum heat insulating tube.

真空断熱管の代表的な構成として、内管と外管とからなる二重構造管で、その内管と外管との間隔を中実の長尺でなるスペーサで保ち、その内管と外管との間を真空引きしたものが挙げられる。また、この真空断熱管の断熱性能をより高めるために、内管の外周に断熱材を巻回配置させた構成もある。   A typical structure of a vacuum heat insulating tube is a double-structured tube consisting of an inner tube and an outer tube. The inner tube and the outer tube are maintained at a solid long spacer, and the inner tube and the outer tube are separated from each other. The thing which evacuated between pipes is mentioned. There is also a configuration in which a heat insulating material is wound around the outer periphery of the inner tube in order to further improve the heat insulating performance of the vacuum heat insulating tube.

真空断熱管内の真空度は、断熱性が維持できる真空度を常に保つ必要がある。その真空度は、断熱性を規定基準で維持するときの真空度(規定真空度)以上である。真空度が高ければ高い程、優れた断熱性が得られる。真空断熱管を長期使用すると、経時的に真空度は低下していくので、真空引きを行った初期の真空度(到達真空度)は高いことが望ましい。この経時的に低下した真空度(止め真空度)は、規定真空度以上でなければならない。   The degree of vacuum in the vacuum heat insulating tube must always be maintained at a degree that allows heat insulation to be maintained. The degree of vacuum is equal to or higher than the degree of vacuum (predetermined degree of vacuum) when maintaining the heat insulation property according to a prescribed standard. The higher the degree of vacuum, the better the heat insulation. If the vacuum heat insulating tube is used for a long period of time, the degree of vacuum decreases with time. Therefore, it is desirable that the initial degree of vacuum (attainment degree of vacuum) after evacuation is high. The degree of vacuum (stopping vacuum) that has decreased over time must be equal to or greater than the specified degree of vacuum.

上記真空断熱管では、真空引きを行う際、二重構造管やスペーサなどの構成部材から放出されるアウトガスや構成部材に付着した水分(水蒸気)など(以下、総称して単にアウトガスと呼ぶ)が存在すると、所望の到達真空度に達するのに時間がかかり、更に到達真空度を向上させることは難しい。また、長期の使用中に構成部材から放出されるアウトガスが存在すると、経時的に真空度が到達真空度から低下していく割合が大きい。   In the vacuum heat insulating tube, when evacuation is performed, outgas discharged from a structural member such as a double structure tube or a spacer, moisture (water vapor) attached to the structural member (hereinafter, simply referred to as “outgas”) If it exists, it takes time to reach the desired ultimate vacuum, and it is difficult to further improve the ultimate vacuum. In addition, if there is outgas released from the component during long-term use, the rate at which the degree of vacuum decreases from the ultimate degree of vacuum over time is large.

このアウトガスを除去して真空度を高めるために、真空引きを行う際、断熱管を加熱することで構成部材に含まれるアウトガス成分を活性化させて排出させるベーキングと呼ばれる熱処理が行われる。更に、このベーキング処理時に、二重構造管内の排気と共に多孔質材料の吸着材を用いてアウトガスの吸着を行うことで、排気のみとする場合と比較して、より短時間で高真空にできる真空断熱管が特許文献1に開示されている。また、長期の使用に亘り構成部材から放出されるアウトガスを水素吸蔵合金などの吸着材で吸着することで、真空度の長期維持ができる真空断熱管も特許文献1に開示されている。   In order to remove this outgas and increase the degree of vacuum, when performing evacuation, a heat treatment called baking is performed to activate and discharge the outgas component contained in the structural member by heating the heat insulating tube. Furthermore, during this baking process, by using the porous material adsorbent together with the exhaust in the double-structured tube, outgas is adsorbed, so that the vacuum can be increased to a high vacuum in a shorter time than when only exhaust is used. A heat insulating tube is disclosed in Patent Document 1. Further, Patent Document 1 discloses a vacuum heat insulating tube that can maintain the degree of vacuum for a long period of time by adsorbing an outgas released from a component member over a long period of time with an adsorbent such as a hydrogen storage alloy.

これらの吸着材は、大気中に放置させると短時間で吸着能力が低減するため、真空状態でケースに密閉収納されている。そのケースの中には所定の温度で形状変形してケース内の真空状態を破る破断部材が収納されており、ベーキング処理時や真空断熱管の使用時の温度によって、破断部材が変形してケースを破り、吸着材がアウトガスを吸着できる構造となっている。   These adsorbents are hermetically housed in a case in a vacuum state because their adsorption capacity decreases in a short time when left in the atmosphere. The case contains a rupture member that deforms at a predetermined temperature and breaks the vacuum inside the case. The rupture member deforms depending on the temperature during baking or when the vacuum insulation tube is used. The adsorbent can adsorb outgas.

特開2006−153245号公報JP 2006-153245 A

上記の従来技術を用いると、二重構造管内の排気と共にアウトガスの吸着を行うことでより短時間で高真空にできるが、その吸着を行うための装置(吸着材を収納するケースやそのケースを破る破断部材)が必要となる。また、真空断熱管が長尺の場合、全長にわたって均一にアウトガスの吸着を行おうとすると、長手方向に非常に多くの装置を分散させて設置する必要がある。しかも、その装置が二重構造管内の真空度を低下させるアウトガスの発生原因となることが考えられる。そこで、アウトガスの発生原因となる真空断熱管の構成部材自体の改良が望まれる。   Using the above-mentioned conventional technology, it is possible to achieve a high vacuum in a shorter time by adsorbing the outgas together with the exhaust in the double-structured tube, but the device for the adsorption (the case for storing the adsorbent and the case) The breaking member to be broken) is required. Further, when the vacuum heat insulating tube is long, in order to uniformly adsorb outgas over the entire length, it is necessary to disperse and install a great number of devices in the longitudinal direction. Moreover, it is conceivable that the apparatus causes outgas generation that lowers the degree of vacuum in the double structure tube. Therefore, it is desired to improve the structural members of the vacuum heat insulating tube that cause outgassing.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、真空引き時の真空度の向上と真空度の長期維持ができる真空断熱管を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a vacuum heat insulating tube capable of improving the degree of vacuum during vacuum evacuation and maintaining the degree of vacuum for a long period of time.

また、本発明の別の目的は、上記真空断熱管を備える超電導ケーブルを提供することにある。   Another object of the present invention is to provide a superconducting cable including the vacuum heat insulating tube.

本発明は、真空断熱管の構成部材の一つであるスペーサの少なくとも一部を多孔質材料で形成することで上記目的を達成する。   The present invention achieves the above object by forming at least a part of a spacer, which is one of constituent members of a vacuum heat insulating tube, from a porous material.

本発明の真空断熱管は、内管と外管とからなる二重構造管と、上記内管と外管との間隔を保つためのスペーサと、上記内管と外管との間に形成される真空層とを備え、上記スペーサの少なくとも一部が多孔質材料で形成される。   The vacuum heat insulating tube of the present invention is formed between a double structure tube composed of an inner tube and an outer tube, a spacer for maintaining a space between the inner tube and the outer tube, and the inner tube and the outer tube. And at least a part of the spacer is formed of a porous material.

多孔質材料は、内部に無数の微小な気孔を有しており、それら複数の気孔の少なくとも一部が連なって存在することで、微小な気孔の各々で構成される排気経路を多く有する構造となり、アウトガスを排出し易いという性質を有する。 The porous material has innumerable minute pores inside, and at least a part of the plurality of pores is connected to form a structure having many exhaust passages each composed of minute pores. , It has the property of easily discharging outgas.

この多孔質材料をスペーサの少なくとも一部に用いることで、真空引きを行う際に、スペーサに含まれるアウトガスを従来に比べてより多く排出することができる。真空断熱管の構成部材であるスペーサからのアウトガスをより多く排出できることで、到達真空度を向上させることができる。   By using this porous material for at least a part of the spacer, it is possible to discharge more outgas contained in the spacer when evacuating than in the past. Since the outgas from the spacer which is a constituent member of the vacuum heat insulating tube can be discharged more, the ultimate vacuum can be improved.

また、真空断熱管を長期使用する場合、構成部材からアウトガスが徐々に放出されてくるが、スペーサのアウトガスは真空引きの際に多く排出されているため、経時的に放出されるアウトガスは従来に比べて少ない。また、初期の到達真空度を高くすることができるので、従来に比べて止め真空度の低下を防止したり、経時的に真空度が低下する速度を緩和することができ、真空度の長期維持ができる。   In addition, when the vacuum heat insulating tube is used for a long time, the outgas is gradually released from the constituent members. However, since the outgas of the spacer is largely exhausted during evacuation, the outgas released over time is conventionally There are few compared. In addition, since the initial ultimate vacuum can be increased, it can be stopped compared to the prior art to prevent a decrease in vacuum, or the rate at which the vacuum decreases over time can be reduced, and the vacuum can be maintained for a long time. Can do.

本発明の一形態として、多孔質材料の気孔率が1%以上60%以下であることが挙げられる。   One aspect of the present invention is that the porosity of the porous material is 1% or more and 60% or less.

多孔質材料の気孔率が1%以上であると、スペーサの単位体積当たりの表面積が大きくなり、それに伴い上記排気経路が更に多くなるので、真空引きを行う際、スペーサに含まれるアウトガスをより多く排出することができる。よって、真空断熱管を長期使用する場合、スペーサから経時的に放出されるアウトガスも少なくなる。初期の到達真空度を高くすることができ、止め真空度の低下も防止することができるので、真空度の長期維持もできる。   When the porosity of the porous material is 1% or more, the surface area per unit volume of the spacer is increased, and the exhaust path is further increased accordingly, so that more outgas is contained in the spacer when evacuating. Can be discharged. Therefore, when the vacuum heat insulating tube is used for a long period of time, the outgas discharged from the spacer with time is also reduced. Since the initial ultimate vacuum can be increased and the stop vacuum can be prevented from being lowered, the vacuum can be maintained for a long time.

また、多孔質材料の気孔率が60%以下であることで、スペーサとして要求される機械的強度が保たれる。例えば、真空断熱管を曲げたとしても、スペーサがある程度の機械的強度を有していれば、二重構造管の間で押し潰されることはなく、それらの間隔を常に一定に保つことができる。   Moreover, the mechanical strength requested | required as a spacer is maintained because the porosity of a porous material is 60% or less. For example, even if the vacuum insulation tube is bent, if the spacer has a certain degree of mechanical strength, it is not crushed between the double structure tubes, and the distance between them can always be kept constant. .

本発明の一形態として、多孔質材料がフッ素樹脂であることが挙げられる。   One embodiment of the present invention is that the porous material is a fluororesin.

フッ素樹脂は、金属に比べて熱伝導率が小さいため、内管と外管との間のスペーサを介した熱伝導を抑制することができる。また、フッ素樹脂は、融点が高いため耐熱性に優れ、極低温でも硬化して脆化せず、真空断熱管内に流通される媒体の温度に幅広く対応することができる。   Since the fluororesin has a smaller thermal conductivity than that of a metal, it is possible to suppress thermal conduction through a spacer between the inner tube and the outer tube. In addition, since the fluororesin has a high melting point, it has excellent heat resistance, does not harden even at extremely low temperatures, and does not become brittle, and can cope with a wide range of temperatures of the medium distributed in the vacuum heat insulating tube.

上記の真空断熱管は、その内部に収納されるケーブルコアを備えることを特徴とする超電導ケーブルに利用することができる。   Said vacuum heat insulation pipe | tube can be utilized for the superconducting cable characterized by providing the cable core accommodated in the inside.

超電導ケーブルの代表的な構成として、超電導導体を有するケーブルコアと、そのケーブルコアを収納する本発明真空断熱管と、ケーブルコアと上記内管の間に超電導導体を冷却する冷媒流路とを備えるものが挙げられる。   A typical configuration of a superconducting cable includes a cable core having a superconducting conductor, a vacuum heat insulating tube of the present invention that houses the cable core, and a refrigerant flow path that cools the superconducting conductor between the cable core and the inner tube. Things.

本発明真空断熱管を上記超電導ケーブルに利用すると、本発明真空断熱管は高い断熱性を維持できるので、断熱管内に流す冷媒の温度維持に必要なエネルギーの省力化が期待できる。   When the vacuum heat insulating tube of the present invention is used for the superconducting cable, the vacuum heat insulating tube of the present invention can maintain high heat insulating properties, so that energy saving necessary for maintaining the temperature of the refrigerant flowing in the heat insulating tube can be expected.

本発明真空断熱管は、真空断熱管の構成部材の一つであるスペーサの少なくとも一部を多孔質材料で形成することで、初期の到達真空度を向上させ、止め真空度の低下を防止して真空度の長期維持ができる。   The vacuum heat insulating tube of the present invention improves the initial ultimate vacuum by preventing the lowering of the stop vacuum by forming at least a part of the spacer which is one of the components of the vacuum heat insulating tube with a porous material. Can maintain the vacuum for a long time.

また、本発明真空断熱管を備える超電導ケーブルは、真空断熱管の断熱性能が向上され、冷媒の温度維持に必要なエネルギーの省力化が期待できる。   Moreover, the superconducting cable provided with the vacuum heat insulating tube of the present invention is expected to improve the heat insulating performance of the vacuum heat insulating tube and save energy necessary for maintaining the temperature of the refrigerant.

図1は、実施形態に係る本発明真空断熱管の概略模式図である。FIG. 1 is a schematic diagram of a vacuum heat insulating tube of the present invention according to an embodiment. 図2は、図1の真空断熱管で用いたスペーサの概略模式図である。FIG. 2 is a schematic diagram of the spacer used in the vacuum heat insulating tube of FIG. 図3は、図1の真空断熱管を備える超電導ケーブルの断面図である。FIG. 3 is a cross-sectional view of a superconducting cable including the vacuum heat insulating tube of FIG.

以下、本発明についての実施形態を図面に基づいて説明する。図面において同一符号は同一部材を示す。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals denote the same members.

<実施形態1>
本発明に係る真空断熱管1について、図1に基づいて説明する。この真空断熱管1は、内管21と外管22とからなる二重構造管2と、内管21と外管22との間隔を保つためのスペーサ3と、その内管21と外管22との間に形成される真空層4とを備える。本例では、断熱性能をより高めるために、内管21の外周に断熱材を巻回配置させた断熱材層5を形成している。以下、真空断熱管1の各構成をより詳細に説明する。
<Embodiment 1>
A vacuum heat insulating tube 1 according to the present invention will be described with reference to FIG. The vacuum heat insulating tube 1 includes a double-structure tube 2 composed of an inner tube 21 and an outer tube 22, a spacer 3 for maintaining a space between the inner tube 21 and the outer tube 22, and the inner tube 21 and the outer tube 22. And a vacuum layer 4 formed therebetween. In this example, in order to further improve the heat insulating performance, the heat insulating material layer 5 in which the heat insulating material is wound around the outer periphery of the inner tube 21 is formed. Hereinafter, each structure of the vacuum heat insulation pipe | tube 1 is demonstrated in detail.

[真空断熱管]
(二重構造管)
二重構造管2は、内管21、外管22からなり、屈曲しやすいように長手方向に蛇腹形状をしたステンレス製のコルゲート管である。内管21内には、通常流体が流れる。この流体の温度は、流体の種類や使用用途によって異なり、極低温から高温まで幅広い温度が用いられる。
[Vacuum insulation pipe]
(Double structure pipe)
The double-structure tube 2 is a stainless corrugated tube made of an inner tube 21 and an outer tube 22 and having a bellows shape in the longitudinal direction so as to be easily bent. In the inner tube 21, a normal fluid flows. The temperature of the fluid varies depending on the type of fluid and the intended use, and a wide range of temperatures from extremely low to high is used.

二重構造管2の材質は、ステンレス以外にも、可撓性のあるアルミなどの金属が利用できる。   As the material of the double structure tube 2, a metal such as flexible aluminum can be used in addition to stainless steel.

二重構造管2の形状は、コルゲート管以外にも、屈曲の必要がない場合や真空断熱管の使用距離が短い場合、直線区間用に表面に凹凸がないストレート管が利用できる。   In addition to the corrugated pipe, the double-structure pipe 2 can be a straight pipe having no irregularities on the surface for straight sections when it is not necessary to bend or when the distance of the vacuum heat insulating pipe is short.

二重構造管2を構成する内外管の各々の厚さは、内管21の内側に流体が流れることで二重構造管2がその周方向に膨張しようとする圧力と、二重構造管2を屈曲することでその長手方向にかかる張力に耐えることができる厚さとする。   The thickness of each of the inner and outer tubes constituting the double structure tube 2 is determined by the pressure at which the double structure tube 2 expands in the circumferential direction due to the fluid flowing inside the inner tube 21, and the double structure tube 2 Is made to have a thickness capable of withstanding the tension applied in the longitudinal direction.

(スペーサ)
上記内管21と外管22との間隔を保つためにスペーサ3を設置する。
(Spacer)
A spacer 3 is installed in order to keep the distance between the inner tube 21 and the outer tube 22.

スペーサ3を多孔質材料で形成することで、スペーサ3から放出されるアウトガスを減少させることができる。以下に、その多孔質材料の気孔率の定義と、その測定方法について説明する。   By forming the spacer 3 with a porous material, the outgas emitted from the spacer 3 can be reduced. Hereinafter, the definition of the porosity of the porous material and the measurement method will be described.

≪気孔率≫
気孔率とは、中実材料に対する質量減少の割合のことをいう。気孔率が1%以上であると、スペーサ3の単位体積当たりの表面積が大きくなり、それに伴い真空引きの際の排気経路が多くなるので、スペーサ3に含まれるアウトガスをより多く排出することができる。一方、気孔率が60%を超えると、スペーサ3として要求される機械的強度が保たれ難くなるので、気孔率は60%以下が好ましい。より好ましくは、気孔率は20%以上40%以下である。
≪Porosity≫
Porosity refers to the rate of mass loss relative to solid material. When the porosity is 1% or more, the surface area per unit volume of the spacer 3 is increased, and as a result, the number of exhaust paths during evacuation is increased, so that more outgas contained in the spacer 3 can be discharged. . On the other hand, if the porosity exceeds 60%, it is difficult to maintain the mechanical strength required for the spacer 3, so the porosity is preferably 60% or less. More preferably, the porosity is 20% or more and 40% or less.

≪気孔率の測定方法≫
気孔率は、次のようにして測定する。
(1)一定の体積(長さ)を有する中実材料の質量M1を測定する。
(2)上記と同体積(長さ)を有する多孔質材料の質量M2を測定する。
(3){(M1-M2)/M1}×100(%)をその多孔質材料の気孔率とする。
≪Measurement method of porosity≫
The porosity is measured as follows.
(1) The mass M1 of a solid material having a constant volume (length) is measured.
(2) The mass M2 of the porous material having the same volume (length) as above is measured.
(3) Let {(M1-M2) / M1} × 100 (%) be the porosity of the porous material.

多孔質材料は、スペーサ3の少なくとも一部に形成されることで、初期の到達真空度を向上させ、止め真空度の低下を防止して真空度の長期維持ができる。特に、スペーサ3に占める多孔質の領域は多ければ多い程、真空引きを行う際に、スペーサ3に含まれるアウトガスをより多く排出することができる。下記に、スペーサ3の構成の例を挙げる。ここでスペーサ3は長尺材からなり、内管21の外周にらせん状に巻回する構成である。   By forming the porous material on at least a part of the spacer 3, it is possible to improve the initial ultimate vacuum, prevent the lowering of the stop vacuum, and maintain the vacuum for a long time. In particular, the more porous regions in the spacer 3, the more outgas contained in the spacer 3 can be discharged when evacuating. Examples of the configuration of the spacer 3 are given below. Here, the spacer 3 is made of a long material and is wound around the outer periphery of the inner tube 21 in a spiral shape.

第一形態として、1本の長尺材の長手方向に沿って多孔質の領域が複数箇所に分散された形態が挙げられる。真空断熱管1の長手方向に沿って多孔質材料で形成されたスペーサ3を配置できるので、真空断熱管1の全長にわたって均一にスペーサ3のアウトガスの排出ができ、経時的に放出されるアウトガスが局在することを防止できる。   As a 1st form, the form by which the porous area | region was disperse | distributed to multiple places along the longitudinal direction of one elongate material is mentioned. Since the spacer 3 formed of a porous material can be disposed along the longitudinal direction of the vacuum heat insulating tube 1, the outgas of the spacer 3 can be discharged uniformly over the entire length of the vacuum heat insulating tube 1, and the outgas released over time can be Localization can be prevented.

第二形態として、1本の長尺材の径方向の中心側の一部が無孔質、外周側残部が多孔質である形態が挙げられる。上記第一形態と同様、真空断熱管1の全長にわたって均一にスペーサ3のアウトガスの排出ができ、経時的に放出されるアウトガスが局在することを防止できる。   As a 2nd form, the part by which the one part of the radial direction center side of one elongate material is nonporous and the outer peripheral side remainder is porous is mentioned. As in the first embodiment, the outgas of the spacer 3 can be discharged uniformly over the entire length of the vacuum heat insulating tube 1, and the outgas released over time can be prevented from being localized.

第三形態として、複数本の長尺材を用いる場合、長尺材の数本が多孔質、残りが無孔質である形態が挙げられる。上記第一形態と同様、スペーサ3から経時的に放出されるアウトガスが局所的になることを防止でき、更に、複数の長尺材を用いることにより、スペーサ3全体としての機械的強度を保つことができる。   As a third form, in the case where a plurality of long materials are used, a form in which some of the long materials are porous and the rest is nonporous. As in the first embodiment, it is possible to prevent local outgas emitted from the spacer 3 with time, and to maintain the mechanical strength of the spacer 3 as a whole by using a plurality of long materials. Can do.

第四形態として、複数本の長尺材を撚り合わせて用いる場合、長尺材の数本が多孔質、残りが無孔質である形態が挙げられる。上記第三形態と同様、スペーサ3から経時的に放出されるアウトガスが局所的になることを防止でき、更に、スペーサ3全体としての機械的強度を保つことができる。   As a fourth form, when a plurality of long materials are twisted together, a form in which several of the long materials are porous and the rest are nonporous is mentioned. As in the third embodiment, it is possible to prevent the outgas released from the spacer 3 from being localized over time, and to maintain the mechanical strength of the spacer 3 as a whole.

スペーサ3の材料は、ポリテトラフルオロエチレン(PTFE)や、パーフルオロアルコキシアルカン(PFA)、エチレン-テトラフルオロエチレンコポリマー(ETFE)などのフッ素樹脂を用いることができる。フッ素樹脂以外にも、金属多孔体を用いることもできる。また、それらの複合材料を用いることもできる。   As the material of the spacer 3, a fluororesin such as polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), ethylene-tetrafluoroethylene copolymer (ETFE) can be used. In addition to the fluororesin, a metal porous body can also be used. Moreover, those composite materials can also be used.

スペーサ3の形状は、図2に示すように、複数の長尺材31を用いて、その長尺材31の各々を連結部材32で等間隔にて平行に保持した梯子状のものを用いることが好ましい。長尺材31が多孔質材料で構成される。連結部材32は長尺材31と同じ材質でもよいし、ポリアミドなどの線材でもよい。このスペーサ3を、内管21の外周にらせん状に巻回することで、長いピッチで巻回してもスペーサ3で内外管を支持する箇所を十分に確保することができ、巻回数を少なくできる。また、長尺材31の各々を連結部材32で平行に保持していることにより、各長尺材31の向きとそれらの隣接間隔を保持することができる。スペーサ3の配置方法として、らせん状に巻回する以外に、縦添えしてもよい。   As shown in FIG. 2, the shape of the spacer 3 is such that a plurality of long materials 31 are used, and each of the long materials 31 is held in parallel by connecting members 32 at equal intervals. Is preferred. The long material 31 is made of a porous material. The connecting member 32 may be the same material as the long material 31 or may be a wire such as polyamide. By winding this spacer 3 around the outer periphery of the inner tube 21 in a spiral manner, even if the spacer 3 is wound at a long pitch, a sufficient place to support the inner and outer tubes with the spacer 3 can be secured, and the number of turns can be reduced. . Further, by holding each of the long members 31 in parallel by the connecting member 32, the direction of the respective long members 31 and their adjacent intervals can be maintained. As a method of arranging the spacers 3, in addition to winding in a spiral shape, the spacers 3 may be vertically attached.

(真空層)
上記スペーサ3で保たれた内管21と外管22との間を真空引きし、真空層4を形成する。この真空層4の真空度は、高ければ高い程断熱性能がより高くなる。なお、図1に示す二重構造管2は、左端部を開放させた状態で図示しているが、実際には、真空引き後密閉される。
(Vacuum layer)
A vacuum is formed between the inner tube 21 and the outer tube 22 held by the spacer 3 to form a vacuum layer 4. The higher the degree of vacuum of the vacuum layer 4, the higher the heat insulation performance. Note that the double-structure tube 2 shown in FIG. 1 is shown with the left end open, but in practice it is sealed after evacuation.

(断熱材層)
内管21の外周でスペーサ3の内側には、断熱性能をより高めるために断熱材を巻回した断熱材層5を形成する。断熱材層5は、流体温度が断熱管の外気温よりも低い場合は外部からの輻射熱を防ぎ、流体温度が断熱管の外気温よりも高い場合は流体からの輻射熱を防ぐために、スーパーインシュレーション(商品名)などの断熱材を用いる。この断熱材は、内管21の外側を全周にわたって巻回することで、内管21の内側への輻射熱の侵入又は内管21の内側からの輻射熱の放散を防ぐ。断熱材の設置方法として、らせん状に巻回する以外にも、縦添えしてもよい。
(Insulation layer)
A heat insulating material layer 5 in which a heat insulating material is wound is formed on the outer periphery of the inner tube 21 on the inner side of the spacer 3 in order to further improve the heat insulating performance. Insulation layer 5 is super-insulated to prevent radiant heat from outside when the fluid temperature is lower than the outside temperature of the insulation tube, and to prevent radiant heat from the fluid when the fluid temperature is higher than the outside temperature of the insulation tube. Use a heat insulating material such as (trade name). This heat insulating material is wound around the entire outer circumference of the inner tube 21 to prevent the penetration of radiant heat into the inner tube 21 or the radiant heat from the inner tube 21. As an installation method of the heat insulating material, in addition to winding in a spiral shape, it may be added vertically.

[作用効果]
真空断熱管1の構成部材の一つであるスペーサ3の少なくとも一部を多孔質材料で形成することで、真空引きを行う際に、スペーサ3に含まれるアウトガスをより多く排出することができ、到達真空度を向上させることができる。また、真空断熱管1を長期使用する場合、スペーサ3のアウトガスは真空引きの際に多く排出されているため、経時的に放出されるアウトガスを少なくでき、止め真空度の低下を防止して真空度の長期維持ができる。また、真空度の向上に必要となる構成部材は新たに必要としない。
[Function and effect]
By forming at least a part of the spacer 3 that is one of the constituent members of the vacuum heat insulating tube 1 with a porous material, more outgas contained in the spacer 3 can be discharged when evacuating, The ultimate vacuum can be improved. In addition, when the vacuum insulation tube 1 is used for a long time, the outgas from the spacer 3 is exhausted during evacuation, so the outgas released over time can be reduced, and the vacuum can be reduced by preventing the stop vacuum from being lowered. Can be maintained for a long time. In addition, a new component necessary for improving the degree of vacuum is not required.

<実施形態2>
次に、本発明真空断熱管1を備える超電導ケーブル10の概略構成を図3に基づいて説明する。この超電導ケーブル10は、三心のケーブルコア11を上記真空断熱管1の内部に収納した構成である。以下、超電導ケーブル10の各構成を詳細に説明する。
<Embodiment 2>
Next, a schematic configuration of the superconducting cable 10 including the vacuum heat insulating tube 1 of the present invention will be described with reference to FIG. The superconducting cable 10 has a configuration in which a three-core cable core 11 is housed in the vacuum heat insulating tube 1. Hereinafter, each configuration of the superconducting cable 10 will be described in detail.

[超電導ケーブル]
(ケーブルコア)
ケーブルコア11は、代表的には、中心から順にフォーマ12、導体層13、電気絶縁層14、磁気遮蔽層15、保護層16を備える。これらの各層のうち、導体層13と磁気遮蔽層15に超電導体が用いられる。
[Superconducting cable]
(Cable core)
The cable core 11 typically includes a former 12, a conductor layer 13, an electrical insulating layer 14, a magnetic shielding layer 15, and a protective layer 16 in order from the center. Of these layers, superconductors are used for the conductor layer 13 and the magnetic shielding layer 15.

フォーマ12は、金属線を撚り合わせた中実のものや、金属パイプを用いた中空のものが利用される。中空のフォーマ12を用いた場合、その内部を冷媒の流路にすることができる。導体層13は、酸化物超電導体を備えるテープ状線材、例えば、Bi2223系超電導テープ線(Ag-Mnシース線)を単層又は多層に螺旋状に巻回した構成が挙げられる。その他、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど)も導体層13に利用できる。電気絶縁層14は、クラフト紙などの絶縁紙テープや、クラフト紙とプラスチックとを複合した半合成絶縁テープ、例えば、住友電気工業株式会社製PPLP(登録商標)といったテープ状の絶縁性材料を巻回した構成が挙げられる。磁気遮蔽層15は、導体層13と同じ超電導線材を巻回した構成である。保護層16は、クラフト紙などを巻回した構成が挙げられる。そして、外管22の上には、ポリ塩化ビニル等による防食層18が形成されている。   As the former 12, a solid one obtained by twisting metal wires or a hollow one using a metal pipe is used. When the hollow former 12 is used, the inside thereof can be used as a refrigerant flow path. The conductor layer 13 has a configuration in which a tape-like wire rod having an oxide superconductor, for example, a Bi2223 superconducting tape wire (Ag-Mn sheath wire) is spirally wound in a single layer or multiple layers. In addition, RE123-based thin film wires (RE: rare earth elements such as Y, Ho, Nd, Sm, and Gd) can also be used for the conductor layer 13. The electrical insulation layer 14 is formed by winding an insulating paper tape such as kraft paper, or a semi-synthetic insulating tape obtained by combining kraft paper and plastic, for example, a tape-like insulating material such as PPLP (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. Configuration. The magnetic shielding layer 15 has a configuration in which the same superconducting wire as the conductor layer 13 is wound. The protective layer 16 may be configured by winding kraft paper or the like. An anticorrosion layer 18 made of polyvinyl chloride or the like is formed on the outer tube 22.

(冷媒流路)
真空断熱管1の内部と各ケーブルコア11との間には、冷媒流路17が形成される。この冷媒流路17に、超電導体を冷却する冷媒が流れる。
(Refrigerant flow path)
A refrigerant flow path 17 is formed between the inside of the vacuum heat insulating tube 1 and each cable core 11. A coolant for cooling the superconductor flows through the coolant channel 17.

上記冷媒は、外部からの侵入熱などによって温度上昇し、導体層13や磁気遮蔽層15の超電導状態に影響を及ぼす。しかし、本発明真空断熱管1は、多孔質材料のスペーサ3を用いているため高い断熱性を維持できるので、外部からの侵入熱を従来より減少できる。   The refrigerant rises in temperature due to heat entering from the outside and affects the superconducting state of the conductor layer 13 and the magnetic shielding layer 15. However, since the vacuum heat insulating tube 1 according to the present invention uses the spacer 3 made of a porous material and can maintain a high heat insulating property, it is possible to reduce the heat of penetration from the outside.

[作用効果]
本発明真空断熱管1を備える超電導ケーブル10は、真空断熱管1の断熱性能が向上され、冷媒の温度維持に必要なエネルギーの省力化が期待できる。
[Function and effect]
The superconducting cable 10 provided with the vacuum heat insulating tube 1 of the present invention is expected to improve the heat insulating performance of the vacuum heat insulating tube 1 and save energy necessary for maintaining the temperature of the refrigerant.

<試験例>
気孔率の異なるスペーサを用いた上記二重構造管2を真空引きし、得られた実施例及び比較例に係る真空断熱管1の真空度を経時的に測定した。測定した真空度は、到達真空度(真空引きを行った初期の真空度)と、止め真空度(真空層を封じ切った後経時的に低下した真空度)である。具体的試験条件を以下に示す。
<Test example>
The above-mentioned double structure tube 2 using spacers having different porosities was evacuated, and the degree of vacuum of the obtained vacuum heat insulating tube 1 according to Example and Comparative Example was measured over time. The measured degree of vacuum is an ultimate degree of vacuum (an initial degree of vacuum after evacuation) and a stop degree of vacuum (a degree of vacuum that decreases with time after the vacuum layer is sealed). Specific test conditions are shown below.

[実施例1]
二重構造管
材質:ステンレス
形状:コルゲート管
寸法:内管外径105mm、内径95mm
外管外径129mm、内径119mm
長さ1000mm
スペーサ
材質:ポリテトラフルオロエチレン
気孔率:30%
寸法:直径3mm、長さ1000mm
構成:上記材質、気孔率、寸法の長尺材15本を二重構造管内に投入
真空層
真空層の条件については、後述する[測定条件]にて記載
[Example 1]
Double structure tube Material: Stainless steel Shape: Corrugated tube Dimensions: Inner tube outer diameter 105mm, inner diameter 95mm
Outer tube outer diameter 129mm, inner diameter 119mm
1000mm length
Spacer Material: Polytetrafluoroethylene Porosity: 30%
Dimensions: Diameter 3mm, length 1000mm
Configuration: 15 long materials with the above materials, porosity, and dimensions are placed in a double-structured tube. Vacuum layer The conditions for the vacuum layer are described in [Measurement conditions] described later.

[実施例2]
スペーサの長尺材の気孔率を60%とした点を除き、実施例1と同様の真空断熱管とする。
[Example 2]
A vacuum heat insulating tube similar to that of Example 1 except that the porosity of the long spacer material is 60%.

[比較例]
スペーサの長尺材の気孔率を0%とした点を除き、実施例1と同様の形態とする。
[Comparative example]
The configuration is the same as that of Example 1 except that the porosity of the long spacer material is 0%.

[測定条件]
到達真空度:常温(15℃)で4時間真空引き直後に測定
止め真空度:ポンプを切り離して真空層を封じ切って4時間放置後に測定
[Measurement condition]
Ultimate vacuum: Measured immediately after evacuation at room temperature (15 ° C) for 4 hours Stopped vacuum: Measured after leaving pump for 4 hours after closing the vacuum layer

[結果]
上記到達真空度、止め真空度を表1に示す。また、到達真空度測定時から止め真空度測定時までの間に、経時的に放出された真空断熱管1内全てのアウトガス放出量も合わせて表1に示す。そのアウトガス放出量は、気体の状態方程式を用いて、真空度からアウトガス(水分)のモル数を求めて計算する。
[result]
The ultimate vacuum and stop vacuum are shown in Table 1. Table 1 also shows all outgas discharge amounts in the vacuum heat insulating tube 1 released over time from the time of measurement of the ultimate vacuum to the time of measurement of the stop vacuum. The outgas release amount is calculated by obtaining the number of moles of outgas (moisture) from the degree of vacuum using the gas equation of state.

Figure 0005649312
Figure 0005649312

表1に示すように、実施例1は比較例に比べて、到達真空度が約96.2%向上し、止め真空度が約97.6%向上した。それに伴って、真空断熱管1内全てのアウトガス放出量が約1/100に減少した。実施例2は比較例に比べて、到達真空度が約97.8%向上し、止め真空度が約99.9%向上した。それに伴って、真空断熱管1内全てのアウトガス放出量が約1/1000に減少した。 As shown in Table 1, Example 1 improved the ultimate vacuum by about 96.2% and the stop vacuum by about 97.6% compared to the comparative example. Along with this, the amount of all outgas emission in the vacuum heat insulating tube 1 was reduced to about 1/100. In Example 2, the ultimate vacuum was improved by about 97.8% and the stop vacuum was improved by about 99.9% compared to the comparative example. Along with this, the amount of outgas emission in the vacuum insulation pipe 1 was reduced to about 1/1000 .

測定終了後、真空断熱管1内の真空を破り、スペーサ3における水分の付着状態を分析した。この分析は、試験前後でのスペーサ3の質量を比較することにより行なった。その結果、スペーサ3の気孔には水分は吸着されていなかった。よって、初期の到達真空度の向上と、止め真空度の低下防止による真空度の長期維持は、多孔質材料の微小な気孔の各々で構成される排気経路により、アウトガスを排出し易いという性質によるものであると考えられる。   After the measurement, the vacuum in the vacuum heat insulating tube 1 was broken, and the adhesion state of moisture on the spacer 3 was analyzed. This analysis was performed by comparing the mass of the spacer 3 before and after the test. As a result, moisture was not adsorbed in the pores of the spacer 3. Therefore, the improvement of the initial ultimate vacuum level and the long-term maintenance of the vacuum level by preventing the reduction of the stop vacuum level are due to the property that the outgas is easily discharged by the exhaust path constituted by the microscopic pores of the porous material. It is thought to be a thing.

従来、多孔質材料は、多くの気孔により表面積が大きいため、真空度を低下させるアウトガスが多く、またその気孔に水分が吸着され易く、真空断熱管の構成部材には不適切であると考えられていたが、上記排気経路により、気孔に水分が吸着される一方排出され易く、アウトガスは十分に排出されることがわかった。真空引きの際に、スペーサ3からのアウトガスをより多く排出することで到達真空度を向上させることができ、経時的に放出されるアウトガスも少なくできるので、止め真空度の低下防止になり真空度の長期維持が実現できる。   Conventionally, a porous material has a large surface area due to many pores, so there are many outgasses that lower the degree of vacuum, and moisture is easily adsorbed into the pores, which is considered inappropriate for the components of vacuum insulation tubes. However, it was found that by the exhaust path, moisture was adsorbed in the pores while being easily discharged, and the outgas was sufficiently discharged. When evacuating, it is possible to improve the ultimate vacuum by discharging more outgas from the spacer 3, and the amount of outgas released over time can be reduced. Long-term maintenance can be realized.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した構成に限定されるものではない。   The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and the scope of the present invention is not limited to the above-described configuration.

本発明真空断熱管は、真空断熱管内に流通される流体の温度に幅広く対応できる流体輸送管などとして利用することができる。本発明真空断熱管を備える超電導ケーブルは、送電線路の構成部材として好適に利用することができる。   The vacuum heat insulation pipe of the present invention can be used as a fluid transport pipe that can widely cope with the temperature of the fluid flowing in the vacuum heat insulation pipe. The superconducting cable provided with the vacuum heat insulating tube of the present invention can be suitably used as a constituent member of a power transmission line.

1 真空断熱管
2 二重構造管
21 内管 22 外管
3 スペーサ
31 長尺材 32 連結部材
4 真空層
5 断熱材層
10 超電導ケーブル
11 ケーブルコア 12 フォーマ
13 導体層 14 電気絶縁層 15 磁気遮蔽層 16 保護層
17 冷媒流路 18 防食層
1 Vacuum insulation tube
2 Double structure pipe
21 Inner pipe 22 Outer pipe
3 Spacer
31 Long material 32 Connecting member
4 Vacuum layer
5 Insulation layer
10 Superconducting cable
11 Cable core 12 Former
13 Conductor layer 14 Electrical insulation layer 15 Magnetic shielding layer 16 Protective layer
17 Refrigerant flow path 18 Anticorrosion layer

Claims (3)

内管と外管とからなる長尺の二重構造管と、
前記内管と前記外管との間隔を保つための長尺のスペーサと、
前記内管と前記外管との間に形成される真空層とを備える真空断熱管であって、
前記スペーサは、全長に亘って多孔質材料で形成されており、
前記多孔質材料は、
気孔率が20%以上60%以下であり、
内部に無数の微小な気孔を有し、前記気孔の少なくとも一部が連なって構成される無数の排気経路を有する真空断熱管。
A long double-structured tube consisting of an inner tube and an outer tube;
A long spacer for maintaining a distance between the inner tube and the outer tube;
A vacuum heat insulating tube comprising a vacuum layer formed between the inner tube and the outer tube,
The spacer is formed of a porous material over its entire length ,
The porous material is
Ri der porosity of 60% or less than 20%
Has innumerable fine pores inside, the vacuum thermal insulating pipe that have a myriad of exhaust path formed at least a part of the pores continuous.
前記多孔質材料がフッ素樹脂である請求項1に記載の真空断熱管。   The vacuum heat insulating tube according to claim 1, wherein the porous material is a fluororesin. 請求項1又は請求項2に記載の真空断熱管と、
この真空断熱管の内部に収納されるケーブルコアとを備える超電導ケーブル。
The vacuum heat insulating tube according to claim 1 or 2,
A superconducting cable comprising a cable core housed inside the vacuum heat insulating tube.
JP2010042318A 2010-02-26 2010-02-26 Vacuum insulation tube and superconducting cable Active JP5649312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042318A JP5649312B2 (en) 2010-02-26 2010-02-26 Vacuum insulation tube and superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042318A JP5649312B2 (en) 2010-02-26 2010-02-26 Vacuum insulation tube and superconducting cable

Publications (2)

Publication Number Publication Date
JP2011179543A JP2011179543A (en) 2011-09-15
JP5649312B2 true JP5649312B2 (en) 2015-01-07

Family

ID=44691267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042318A Active JP5649312B2 (en) 2010-02-26 2010-02-26 Vacuum insulation tube and superconducting cable

Country Status (1)

Country Link
JP (1) JP5649312B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126389A (en) * 1995-10-30 1997-05-13 Sumitomo Electric Ind Ltd Extremely low temperature thermal insulation pipe
JP2003194267A (en) * 2001-12-27 2003-07-09 Fujikura Ltd Flexible coolant transporting pipe and superconducting power cable
JP2005214228A (en) * 2004-01-27 2005-08-11 Furukawa Electric Co Ltd:The Composite tube and its manufacturing method
JP2008075852A (en) * 2006-09-25 2008-04-03 Sekisui Chem Co Ltd Heat insulating material for piping

Also Published As

Publication number Publication date
JP2011179543A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
US20070209516A1 (en) Vacuum heat insulation tube
KR101148684B1 (en) Super-conducting cable
US6730851B2 (en) Superconducting cable and current transmission and/or distribution network including the superconducting cable
US20090229848A1 (en) Superconducting cable
JP5505865B2 (en) Insulated tube and superconducting cable
EP2399264B1 (en) Cryostat for a high-temperature superconducting power cable
JP5649312B2 (en) Vacuum insulation tube and superconducting cable
JP2006164571A (en) Superconductive cable
WO2014132765A1 (en) Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
JP4704931B2 (en) Low temperature maintenance device for superconducting cable including net layer with adsorbent
JP2006216507A (en) Superconductive cable
KR100496996B1 (en) Structure of maintaining high vacuum rate in the superconduction cable
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
GB2139311A (en) Concentric pipe system
KR100729924B1 (en) Superconductor cable cryostat having adsorbent pad
EP1195777B1 (en) Superconducting cable
KR100750063B1 (en) Superconductor cable cryostat having adsorbent film
KR100641344B1 (en) Structure of cryostat for super-conduction cable
KR100560189B1 (en) A structure and manufacturing device of superconducting cable
JP2001325839A (en) Superconducting cable
US20220187025A1 (en) Heat pipe, method for manufacturing the same, and device
JP2013143247A (en) Method for manufacturing normal temperature insulation type superconducting cable
JP2005150469A (en) Heat-insulating tube for superconducting cable
JPS60113892A (en) Vacuum evacuating method of refrigerant transport pipe
JP2006253043A (en) Chilling device for superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5649312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250