JP5647529B2 - Numerical control information creation device - Google Patents

Numerical control information creation device Download PDF

Info

Publication number
JP5647529B2
JP5647529B2 JP2011013094A JP2011013094A JP5647529B2 JP 5647529 B2 JP5647529 B2 JP 5647529B2 JP 2011013094 A JP2011013094 A JP 2011013094A JP 2011013094 A JP2011013094 A JP 2011013094A JP 5647529 B2 JP5647529 B2 JP 5647529B2
Authority
JP
Japan
Prior art keywords
spindle
cutting
machining
speed
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011013094A
Other languages
Japanese (ja)
Other versions
JP2012155473A (en
Inventor
浩紀 冨田
浩紀 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2011013094A priority Critical patent/JP5647529B2/en
Publication of JP2012155473A publication Critical patent/JP2012155473A/en
Application granted granted Critical
Publication of JP5647529B2 publication Critical patent/JP5647529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主軸の変速機構を備えた加工機の数値制御情報作成装置に関する。   The present invention relates to a numerical control information creation device for a processing machine provided with a transmission mechanism for a spindle.

図7は、従来の数値制御情報作成装置200を示す。数値制御情報の作成にあたり、従来装置200では、データ入力部2が、外部のデータ入力装置1により入力された加工形状(部品形状)PF及び素材形状MFを加工形状格納部5と素材形状格納部3にそれぞれ格納する。また、データ入力部2は、工具種類、刃先角、切刃角、工具長などを含む工具データDTを工具データ格納部4に格納する。   FIG. 7 shows a conventional numerical control information creation device 200. In creating the numerical control information, in the conventional apparatus 200, the data input unit 2 receives the machining shape (part shape) PF and the material shape MF input by the external data input device 1 as the machining shape storage unit 5 and the material shape storage unit. 3 respectively. Further, the data input unit 2 stores tool data DT including a tool type, a cutting edge angle, a cutting edge angle, a tool length, and the like in the tool data storage unit 4.

加工工程情報作成部6は、素材形状MF、加工形状PF及び工具データDTを入力し、素材形状MFと加工形状PFとの差から切削領域を抽出し、工具データDTに基づいて切削領域を複数の領域に分割し、工具毎に異なる切削領域を算出することで、素材形状MFを加工形状PFに仕上げるに必要な加工工程情報MPを作成する。切削条件決定部7は、作成された加工工程情報MPを順に読み出し、それぞれに切削条件MCを決定し、工程データ格納部8に格納する。   The machining process information creation unit 6 inputs the material shape MF, the machining shape PF, and the tool data DT, extracts a cutting area from the difference between the material shape MF and the machining shape PF, and creates a plurality of cutting areas based on the tool data DT. The machining process information MP necessary for finishing the material shape MF into the machining shape PF is created by dividing the material shape MF and calculating different cutting areas for each tool. The cutting condition determination unit 7 sequentially reads the created machining process information MP, determines the cutting condition MC for each, and stores it in the process data storage unit 8.

主軸回転数算出部10は、主軸が一定の周速度で回転する定周速切削の場合に、加工工程情報MPに含まれる切削領域の最大及び最小加工径と切削速度などの切削条件MCから、加工工程毎の主軸回転数Sn(最大及び最小回転数)を算出する。また、主軸が一定の回転数で駆動される定回転切削の場合は、切削条件MCに含まれる回転数が主軸回転数Snとして求められる。   In the case of constant peripheral speed cutting in which the main spindle rotates at a constant peripheral speed, the main spindle rotational speed calculation unit 10 determines the cutting conditions MC such as the maximum and minimum processing diameters and cutting speeds included in the machining process information MP, The spindle rotation speed Sn (maximum and minimum rotation speed) for each machining process is calculated. In the case of constant rotation cutting in which the main shaft is driven at a constant rotational speed, the rotational speed included in the cutting condition MC is obtained as the main spindle rotational speed Sn.

一方、データ入力部2は、データ入力装置1により入力された主軸モータの定格出力やギヤレンジなどの機械固有の動力線図データPOを動力線図データ格納部9に格納する。動力線図データ格納部9は動力線図データPOを主軸ギヤ決定部11に提供し、主軸ギヤ決定部11が動力線図データと主軸回転数Snとに基づいて加工工程毎に主軸ギヤを決定し、決定したギヤ情報SGを工程データ格納部8に格納する。   On the other hand, the data input unit 2 stores the power diagram data PO unique to the machine, such as the rated output of the spindle motor and the gear range, input by the data input device 1 in the power diagram data storage unit 9. The power diagram data storage unit 9 provides the power diagram data PO to the main shaft gear determination unit 11, and the main shaft gear determination unit 11 determines the main shaft gear for each machining process based on the power diagram data and the main shaft rotation speed Sn. The determined gear information SG is stored in the process data storage unit 8.

数値制御情報作成部12は、素材形状格納部3から素材形状MFを入力するとともに、工程データ格納部8から加工工程情報MP、切削条件MC、ギヤ情報SGなどを含む工程データDMを読み出し、数値制御情報NCを作成する。そして、作成された数値制御情報NCが数値制御情報出力部13より通信回線、リムーバブルメディアなどの伝送媒体14を介して外部に出力される。   The numerical control information creation unit 12 inputs the material shape MF from the material shape storage unit 3 and reads the process data DM including the machining process information MP, the cutting conditions MC, the gear information SG, and the like from the process data storage unit 8. Create control information NC. The created numerical control information NC is output from the numerical control information output unit 13 to the outside via a transmission medium 14 such as a communication line or a removable medium.

図8は、従来装置200において主軸ギヤを決定する方法を示す。まず、加工工程情報MPと切削条件MCを生成する(S51)。例えば、図3に示すように、素材形状MFと加工形状PFの差分から切削領域を抽出し、その形状から旋削加工方法として「端面荒引き加工」を判断し、工具データDTに基づいて干渉の有無を確認し、干渉なく加工できる場合に、切削領域全体を含む一つの加工工程情報MPを生成し、合わせて切削条件MCを決定する。   FIG. 8 shows a method of determining the main shaft gear in the conventional apparatus 200. First, machining process information MP and cutting conditions MC are generated (S51). For example, as shown in FIG. 3, a cutting region is extracted from the difference between the material shape MF and the machining shape PF, and “end surface roughing” is determined as a turning method from the shape, and interference based on the tool data DT. When the presence or absence is confirmed and machining can be performed without interference, one machining process information MP including the entire cutting region is generated, and the cutting condition MC is determined together.

次に、切削領域を定回転切削と定周速切削のどちらの方法で加工するかを確認する(S52)。旋削加工の場合、主軸切削速度を一定にして加工する定周速切削がしばしば用いられる。定周速切削の場合は、対象工程加工時の主軸最大回転数と主軸最小回転数を算出する(S53)。続いて、主軸回転数の範囲と動力線図データとから主軸ギヤを決定する(S54)。   Next, it is confirmed whether the cutting region is processed by constant rotation cutting or constant peripheral speed cutting (S52). In the case of turning, constant circumferential cutting is often used in which machining is performed with a constant spindle cutting speed. In the case of constant circumferential speed cutting, the maximum spindle speed and the minimum spindle speed at the time of machining the target process are calculated (S53). Subsequently, the main shaft gear is determined from the range of the main shaft rotation speed and the power diagram data (S54).

一般に、加工径の大きいワークの端面部を定周速切削で加工する場合、例えば図3に示す切削領域において、素材形状MFの最外径部の最大加工径Dmaxと素材形状MFの最小径部の最小加工径Dminとの差が大きくなり、加工時における主軸最大回転数と主軸最小回転数との差も大きくなることから、切削に用いる加工機が変速機構を装備している場合に、どの主軸ギヤを選択するかが重要になる。   In general, when the end surface portion of a workpiece having a large machining diameter is machined by constant circumferential speed cutting, for example, in the cutting region shown in FIG. 3, the maximum machining diameter Dmax of the outermost diameter portion of the material shape MF and the minimum diameter portion of the material shape MF. When the processing machine used for cutting is equipped with a speed change mechanism, the difference between the minimum machining diameter Dmin and the difference between the maximum spindle speed and the minimum spindle speed during machining increases. It is important to select the main shaft gear.

この点に関し、特許文献1には、高低2段の変速機を搭載したNC旋盤において、要求される主軸回転数から低速域と高速域のどちらを使用するかを判断し、ギヤレンジ(速度域)を決める方法が提案されている。特許文献2には、多段の変速機を搭載したNC旋盤において、被加工物の加工工程情報を基にして使用するギヤレンジを選択する技術が開示されている。特許文献3には、主軸回転数の低速/高速レンジを切り換える境界となる素材径を設定することで切削領域を分割する自動プログラミング装置が記載されている。   In this regard, Patent Document 1 determines whether to use a low-speed range or a high-speed range based on the required spindle speed in an NC lathe equipped with a high and low two-stage transmission, and a gear range (speed range). A method has been proposed. Patent Document 2 discloses a technique for selecting a gear range to be used based on machining process information of a workpiece in an NC lathe equipped with a multi-stage transmission. Patent Document 3 describes an automatic programming device that divides a cutting region by setting a material diameter that becomes a boundary for switching between a low speed / high speed range of the spindle rotation speed.

特開昭59−1136号公報JP 59-1136 A 特公昭62−36824号公報Japanese Patent Publication No.62-36824 実開昭62−72044号公報Japanese Utility Model Publication No. 62-72044

ところで、従来の数値制御情報作成装置200では、主軸ギヤが複数段ある加工機において、オペレータが主軸回転数とモータ出力値との関係を示す動力線図に基づいて主軸ギヤを選択していた。しかし、定周速切削の場合、加工径の大きな部位に着目して低速ギヤを選択すると、加工が進んで加工径が小さくなった箇所で、主軸回転数が上限に達し、切削効率が低下することがある。逆に高速ギヤを選択すると、加工径が大きくなる箇所で、切削に必要な動力が主軸モータの出力値を超え、加工できなくなることもあった。   By the way, in the conventional numerical control information creation device 200, in a processing machine having a plurality of main shaft gears, the operator selects the main shaft gear based on a power diagram showing the relationship between the main shaft rotation speed and the motor output value. However, in the case of constant peripheral speed cutting, if low speed gears are selected by focusing on a part with a large machining diameter, the spindle speed reaches the upper limit and the cutting efficiency decreases at the part where the machining diameter has become smaller due to machining. Sometimes. Conversely, when a high-speed gear is selected, the power required for cutting exceeds the output value of the spindle motor at the location where the machining diameter increases, and machining may not be possible.

また、切削条件(切削速度、送り、切込量)を変更しようとしても、ギヤと加工形状の両方を勘案して数値制御情報を作成しなければならず、加工の初心者には困難であった。特許文献3には、切削領域を分割する技術について示唆されているが、高速/低速レンジを切り換える境界を素材形状のどの部位にいかにして設定するかについて触れられていない。従って、従来技術によると、素材形状や加工形状が複雑になるほど、数値制御情報の作成が困難になるという問題点があった。   Moreover, even if it was going to change cutting conditions (cutting speed, feed, cutting depth), numerical control information had to be created in consideration of both gear and machining shape, which was difficult for machining beginners. . Patent Document 3 suggests a technique for dividing a cutting region, but does not mention how to set a boundary for switching between a high speed / low speed range in which part of the material shape. Therefore, according to the prior art, there is a problem that it becomes more difficult to create numerical control information as the material shape and the processed shape become more complicated.

そこで、本発明の目的は、加工の初心者でも加工機の能力に適合した数値制御情報を容易に作成することができる装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus capable of easily creating numerical control information adapted to the capability of a processing machine even for beginners of processing.

上記課題を解決するために、本発明は、素材形状と加工形状に基づき、変速機構により主軸が複数の異なる出力特性を有する加工機において、次のような数値制御情報作成装置を提供する。   In order to solve the above-mentioned problems, the present invention provides the following numerical control information generating device in a processing machine having a spindle having a plurality of different output characteristics by a speed change mechanism based on a material shape and a processing shape.

(1)主軸回転数と主軸モータの出力値により出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、切削条件に基づき、所定工具により加工するときの所要動力を算出する所要動力算出手段と、切削領域と切削条件に基づき、所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、複数の動力線図データ、所要動力および主軸の回転数変動幅を同一画面に重ねて表示する動力関連データ表示手段とを備えたことを特徴とする数値制御情報作成装置。 (1) Power diagram data storage means for storing a plurality of power diagram data representing output characteristics according to the spindle rotational speed and the output value of the spindle motor, and a cutting area to be machined by a predetermined tool based on the material shape and the machining shape Machining process information creating means for generating cutting conditions, required power calculating means for calculating the required power when machining with a predetermined tool based on the cutting conditions, and when machining with a predetermined tool based on the cutting area and cutting conditions A spindle rotational speed calculation means for calculating the rotational speed fluctuation range of the main spindle, and power related data display means for displaying a plurality of power diagram data, required power, and the rotational speed fluctuation width of the spindle on the same screen. An apparatus for creating numerical control information characterized by

(2)主軸回転数と主軸モータの出力値により出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、切削条件に基づき、所定工具により加工するときの所要動力を算出する所要動力算出手段と、切削領域と切削条件に基づき、所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、主軸の回転数変動幅が複数の異なる出力特性に跨る場合、いずれの出力特性においても所要動力が得られる主軸回転数範囲を算出する主軸回転数範囲算出手段と、主軸回転数範囲と切削領域に基づき出力特性を切り換える切換点を算出し、切換点により切削領域を分割する加工工程分割手段と、分割された切削領域に基づき加工情報を作成する数値制御情報作成手段とを備えたことを特徴とする数値制御情報作成装置。 (2) Power diagram data storage means for storing a plurality of power diagram data representing output characteristics according to the spindle rotational speed and the output value of the spindle motor, and a cutting area to be machined by a predetermined tool based on the material shape and the machining shape Machining process information creating means for generating cutting conditions, required power calculating means for calculating the required power when machining with a predetermined tool based on the cutting conditions, and when machining with a predetermined tool based on the cutting area and cutting conditions When the main shaft rotation speed calculation means for calculating the main shaft rotation speed fluctuation range and the main shaft rotation speed fluctuation width spans a plurality of different output characteristics, the main shaft rotation speed range in which the required power can be obtained in any output characteristics is calculated. A spindle speed range calculating means, a process point dividing means for calculating a switching point for switching output characteristics based on the spindle speed range and the cutting area, and dividing the cutting area by the switching point; Numerical control information generating apparatus being characterized in that a numerical control information generation means for generating machining information based on the divided cutting region.

(3)主軸回転数と主軸モータの出力値により出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、切削条件に基づき、所定工具により加工するときの所要動力を算出する所要動力算出手段と、切削領域と切削条件に基づき、所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、主軸の回転数変動幅が複数の異なる出力特性に跨る場合、いずれかの出力特性における主軸モータの上限出力値を算出し、上限出力値を超えることがないよう切削条件を変更する切削条件変更手段と、変更された切削条件に基づき加工情報を作成する数値制御情報作成手段とを備えたことを特徴とする数値制御情報作成装置。 (3) Power diagram data storage means for storing a plurality of power diagram data representing output characteristics by the spindle rotational speed and the output value of the spindle motor, and a cutting region to be machined by a predetermined tool based on the material shape and the machining shape Machining process information creating means for generating cutting conditions, required power calculating means for calculating the required power when machining with a predetermined tool based on the cutting conditions, and when machining with a predetermined tool based on the cutting area and cutting conditions If the spindle speed calculation means for calculating the spindle speed fluctuation range and the spindle speed fluctuation width spans multiple different output characteristics, calculate the upper limit output value of the spindle motor for any output characteristic, and set the upper limit output. The cutting condition changing means for changing the cutting conditions so as not to exceed the value and the numerical control information creating means for creating machining information based on the changed cutting conditions are provided. Numerical control information generating apparatus for the.

本発明の数値制御情報作成装置によれば、動力線図データ、主軸の所要動力および主軸回転数の変動幅を含む動力関連データに基づいて変速機構の出力を決めるので、加工に習熟していないオペレータでも加工機の能力に適合した数値制御情報を容易に作成できるという効果がある。特に、動力関連データ表示手段が動力線図データに主軸の所要動力と主軸回転数の変動幅とを重ねて表示するので、オペレータは変速機構の出力が適切かどうかをビジュアルに判定できるという効果もある。   According to the numerical control information creation device of the present invention, since the output of the speed change mechanism is determined based on power diagram data, power related data including the required power of the main shaft and the fluctuation range of the main shaft rotation speed, it is not familiar with machining. There is an effect that the operator can easily create numerical control information suitable for the capability of the processing machine. In particular, the power related data display means displays the required power of the main shaft and the fluctuation range of the main shaft rotation speed on the power diagram data, so that the operator can visually determine whether the output of the speed change mechanism is appropriate. is there.

本発明の一実施形態を示す数値制御情報作成装置のブロック図である。It is a block diagram of the numerical control information creation device showing an embodiment of the present invention. 数値制御情報作成装置の特徴的な処理を示すフローチャートである。It is a flowchart which shows the characteristic process of a numerical control information creation apparatus. 端面荒引き加工を示す加工モデル図である。It is a process model figure which shows an end surface roughing process. 端面荒引き分割加工を示す加工モデル図である。It is a process model figure which shows an end surface roughing division | segmentation process. 加工工程分割処理を示す動力関連データ表示部の表示モデル図である。It is a display model figure of the power related data display part which shows processing process division processing. 切削条件変更処理を示す動力関連データ表示部の表示モデル図である。It is a display model figure of the power related data display part which shows cutting condition change processing. 従来の数値制御情報作成装置を示すブロック図である。It is a block diagram which shows the conventional numerical control information preparation apparatus. 従来装置による処理を示すフローチャートである。It is a flowchart which shows the process by the conventional apparatus.

以下、本発明の実施形態を図面に基づいて説明する。図1に示すように、この実施形態の数値制御情報作成装置100は、従来装置200(図7参照)の構成要素に加え、切削条件変更部15、加工工程分割部16、所要動力算出部17、主軸回転数範囲算出部18、動力関連データ表示部19を備えている。なお、従来装置200と同様に機能する構成要素については、図1に図7と同じ符号が付されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the numerical control information creating apparatus 100 of this embodiment includes a cutting condition changing unit 15, a machining process dividing unit 16, and a required power calculating unit 17 in addition to the components of the conventional apparatus 200 (see FIG. 7). , A spindle rotation speed range calculation unit 18 and a power related data display unit 19 are provided. Components that function in the same manner as the conventional device 200 are denoted by the same reference numerals as those in FIG.

動力線図データ格納部9は、主軸回転数と主軸モータの出力値との関係を示す複数の動力線図データPOを格納し、主軸回転数範囲算出部18に提供する。主軸回転数算出部10は、工程データ格納部8から読み出した加工工程情報MPと切削条件MCとに基づいて、対象工程加工時の主軸最大回転数Smaxと主軸最小回転数Sminを算出し、算出値を主軸回転数範囲算出部18に提供する。例えば、対象工程が定周速切削の端面荒引き加工ならば、加工工程情報MPに含まれる加工形状と素材形状から取得される最小加工径と、切削条件MCに含まれる主軸切削速度とから主軸最大回転数Smax を算出し、加工工程情報MPから取得される最大加工径と、切削条件MCに含まれる主軸切削速度とから主軸最小回転数Sminを算出する。また、対象工程が定回転切削ならば、切削条件MCに含まれる回転数が主軸回転数となる。この場合、主軸最大回転数Smaxおよび主軸最小回転数Sminは切削条件MCに含まれる回転数と等しい。   The power diagram data storage unit 9 stores a plurality of power diagram data PO indicating the relationship between the spindle rotational speed and the output value of the spindle motor, and provides it to the spindle rotational speed range calculation unit 18. Based on the machining process information MP read from the process data storage unit 8 and the cutting conditions MC, the main spindle speed calculation unit 10 calculates the main spindle maximum speed Smax and the main spindle minimum speed Smin during the target process machining. The value is provided to the spindle speed range calculation unit 18. For example, if the target process is rough edge machining for constant peripheral speed cutting, the spindle is determined from the machining shape included in the machining process information MP and the minimum machining diameter acquired from the material shape, and the spindle cutting speed contained in the cutting condition MC. The maximum rotation speed Smax is calculated, and the spindle minimum rotation speed Smin is calculated from the maximum machining diameter acquired from the machining process information MP and the spindle cutting speed included in the cutting condition MC. If the target process is constant rotation cutting, the rotation speed included in the cutting condition MC is the spindle rotation speed. In this case, the maximum spindle speed Smax and the minimum spindle speed Smin are equal to the rotational speed included in the cutting condition MC.

所要動力算出部17は、工程データ格納部8から読み出した加工工程情報MPと切削条件MCとに基づいて、対象工程を加工するために所要動力PNを算出し、算出値を主軸回転数範囲算出部18に格納する。そして、主軸回転数範囲算出部18が動力線図データPO、所要動力PN、主軸回転数Smax,Sminを含むデータを動力関連データ表示部19に提供し、この表示部19が同一画面に低速ギヤ動力線図PLと高速ギヤ動力線図PH(図3,4参照)を重ねて表示する。なお、主軸回転数範囲算出部18では、所要動力PNおよび主軸最大回転数Smaxと主軸最小回転数Sminとの差分である主軸回転数の変動幅が複数の動力線図データPO(出力特性)に跨るかどうかを判定する。更に、主軸回転数範囲算出部18は、主軸回転数の変動幅が複数の出力特性に跨った場合、いずれの出力特性においても、対象工程を加工するために必要な所要動力PNを得ることができる主軸回転数の範囲を、加工工程の分割、または、切削条件を変更する方法により取得できるかどうかを判定する。   The required power calculation unit 17 calculates the required power PN for machining the target process based on the machining process information MP and the cutting condition MC read from the process data storage unit 8, and calculates the calculated value of the spindle speed range. Stored in the unit 18. Then, the spindle speed range calculation unit 18 provides the power-related data display unit 19 with data including the power diagram data PO, the required power PN, and the spindle speeds Smax and Smin, and the display unit 19 displays the low speed gear on the same screen. The power diagram PL and the high-speed gear power diagram PH (see FIGS. 3 and 4) are superimposed and displayed. In the spindle speed range calculation unit 18, the fluctuation range of the spindle speed, which is the difference between the required power PN and the maximum spindle speed Smax and the minimum spindle speed Smin, is converted into a plurality of power diagram data PO (output characteristics). Determine whether to straddle. Further, when the fluctuation range of the spindle rotational speed extends over a plurality of output characteristics, the spindle rotational speed range calculation unit 18 can obtain the required power PN necessary for processing the target process in any output characteristics. It is determined whether or not the range of the spindle speed that can be obtained can be obtained by dividing the machining process or changing the cutting conditions.

また、動力線図データPO、所要動力PN、主軸最小回転数Smin、主軸最大回転数Smaxは主軸回転数範囲算出部18から主軸ギヤ決定部11にも提供される。主軸ギヤ決定部11は主軸変速機構の出力を決める出力決定手段として機能し、主軸ギヤ決定部11において動力関連データに基づく自動選択またはオペレータの手動選択により主軸ギヤが決定される。手動選択による場合は、データ入力部2にて指定された選択条件MGが主軸ギヤ決定部11に提供される。主軸回転数の変動幅が複数の動力線図データPOに跨らず、主軸ギヤが一意に決まる場合は、そのギヤ情報SGが工程データ格納部8に格納される。   The power diagram data PO, the required power PN, the minimum spindle speed Smin, and the maximum spindle speed Smax are also provided from the spindle speed range calculation unit 18 to the spindle gear determination unit 11. The main shaft gear determination unit 11 functions as an output determination unit that determines the output of the main shaft transmission mechanism, and the main shaft gear determination unit 11 determines the main shaft gear by automatic selection based on power-related data or manual selection by an operator. In the case of manual selection, the selection condition MG designated by the data input unit 2 is provided to the main shaft gear determination unit 11. When the fluctuation range of the main shaft rotational speed does not extend over a plurality of power diagram data PO and the main shaft gear is uniquely determined, the gear information SG is stored in the process data storage unit 8.

一方、主軸回転数の変動幅が複数の動力線図データPOに跨るときで、主軸回転数範囲算出部18が加工工程を分割する方法で必要な動力を得ると判断し、一つの加工工程を加工するために複数のギヤレンジが必要となる場合には、主軸ギヤ決定部11が各ギヤレンジの境界を指定する分割径PD(図4参照)を決定する。加工工程分割部16は、加工工程がギヤレンジと一対一で対応するように、主軸ギヤ決定部11から入力された分割径PDとギヤ情報SGを用いて、工程データ格納部8から読み出した加工工程(切削領域)を分割し、分割後の加工工程情報MPAと対応するギヤ情報SGとを工程データ格納部8に格納する。   On the other hand, when the fluctuation range of the spindle rotational speed extends over a plurality of power diagram data PO, the spindle rotational speed range calculating unit 18 determines that the necessary power is obtained by a method of dividing the machining process, and one machining process is performed. When a plurality of gear ranges are required for processing, the main shaft gear determination unit 11 determines a split diameter PD (see FIG. 4) that specifies the boundary of each gear range. The machining process division unit 16 reads the machining process read from the process data storage unit 8 using the division diameter PD and the gear information SG input from the spindle gear determination unit 11 so that the machining process has a one-to-one correspondence with the gear range. (Cutting area) is divided, and the divided machining process information MPA and the corresponding gear information SG are stored in the process data storage unit 8.

また、主軸回転数の変動幅が複数の動力線図データPOに跨るときで、主軸回転数範囲算出部18が加工工程の分割よりも切削条件を変更する方法で必要な動力を得る方が有利と判断した場合は、切削条件変更部15が、主軸ギヤ決定部11にて決定したギヤ情報SGの動力線図データPOと主軸回転数Smin,Smaxから取得したモータ出力値の上限値Poを超えないように、切削条件MCの送り速度や切込量を再計算し、新たに算出した切削条件MCAをギヤ情報SGと共に工程データ格納部8に格納する。そして、数値制御情報作成部12が、素材形状MF、加工工程情報MPA、切削条件MCA、ギヤ情報SG等を含む工程データDMを総合して数値制御情報NCを作成する。   In addition, when the fluctuation range of the spindle rotation speed extends over a plurality of power diagram data PO, it is advantageous that the spindle rotation speed range calculation unit 18 obtains necessary power by a method of changing cutting conditions rather than dividing the machining process. Is determined, the cutting condition changing unit 15 exceeds the upper limit Po of the motor output value acquired from the power diagram data PO of the gear information SG determined by the main shaft gear determining unit 11 and the main shaft rotation speeds Smin, Smax. Then, the feed speed and the cutting depth of the cutting condition MC are recalculated, and the newly calculated cutting condition MCA is stored in the process data storage unit 8 together with the gear information SG. Then, the numerical control information creating unit 12 creates the numerical control information NC by integrating the process data DM including the material shape MF, the machining process information MPA, the cutting condition MCA, the gear information SG, and the like.

図2は、上記構成の数値制御情報作成装置100の特徴的処理を示す。まず、加工形状(部品形状)PFと素材形状MFの差から切削領域を抽出し、工具データDTを用いて切削領域を加工するための加工工程情報MPと切削条件MCを生成する(S1)。続いて、加工工程情報MPに対応する切削条件MCから主軸切削速度V、送り速度F、切込量T、ワークの材質に応じた比切削抵抗Kを読み出し、工程毎の所要動力Pnを次式により算出する(S2)。
所要動力Pn=主軸切削速度V×比切削抵抗K×切込量T×送り速度F
FIG. 2 shows a characteristic process of the numerical control information creating apparatus 100 having the above configuration. First, a cutting area is extracted from the difference between the machining shape (part shape) PF and the material shape MF, and machining process information MP and a cutting condition MC for machining the cutting area are generated using the tool data DT (S1). Subsequently, the spindle cutting speed V, the feed speed F, the cutting depth T, and the specific cutting resistance K corresponding to the material of the workpiece are read from the cutting conditions MC corresponding to the machining process information MP, and the required power Pn for each process is expressed by the following equation. (S2).
Required power Pn = Spindle cutting speed V × Specific cutting resistance K × Cutting amount T × Feeding speed F

次に、切削条件MCに基づいて定回転切削か定周速切削かを判別する(S3)。主軸回転数を指令して加工する定回転切削の場合は、指令値どおりの数値を主軸回転数として求める。主軸切削速度を指令して加工する定周速切削の場合は、切削領域の加工に要する主軸の最大回転数と最小回転数を算出する(S4)。例えば、図3において、素材形状MFの最小加工径Dminにおける主軸回転数が主軸最大回転数Smaxとなり、素材形状MFの最大加工径Dmaxにおける主軸回転数が主軸最小回転数Sminとなり、次式より求められる。
主軸最大回転数Smax=主軸切削速度V÷(π×最小加工径Dmin)
主軸最小回転数Smin=主軸切削速度V÷(π×最大加工径Dmax)
Next, it is determined based on the cutting condition MC whether it is constant rotation cutting or constant circumferential speed cutting (S3). In the case of constant rotation cutting in which the spindle speed is commanded, a numerical value as the command value is obtained as the spindle speed. In the case of constant circumferential speed cutting in which the spindle cutting speed is commanded, the maximum and minimum rotation speeds of the spindle required for machining in the cutting area are calculated (S4). For example, in FIG. 3, the spindle speed at the minimum machining diameter Dmin of the material shape MF is the maximum spindle speed Smax, and the spindle speed at the maximum machining diameter Dmax of the material shape MF is the minimum spindle speed Smin. It is done.
Maximum spindle speed Smax = Spindle cutting speed V ÷ (π × Minimum machining diameter Dmin)
Spindle minimum rotation speed Smin = Spindle cutting speed V ÷ (π × Maximum machining diameter Dmax)

続いて、主軸ギヤ毎の動力線図データPO、主軸の所要動力Pnおよび主軸回転数の変動幅(Smin〜Smax)を含む動力関連データを作成し(S5)、動力関連データ表示部19の同一画面に重ねて表示させる(S6)。図5は高低2段の主軸変速機構を装備した加工機の動力関連データの表示例を示し、低速ギヤ動力線図PLと高速ギヤ動力線図PHが重ねて表示されるとともに、2本の動力線図PL,PHに主軸の所要動力Pnと主軸回転数の変動幅(Smin〜Smax)とが重ねて表示されている。   Subsequently, power related data including power diagram data PO for each main shaft gear, required power Pn of the main shaft, and fluctuation range (Smin to Smax) of the main shaft rotation speed is created (S5). It is displayed so as to overlap the screen (S6). FIG. 5 shows a display example of power-related data of a processing machine equipped with a high and low two-stage spindle transmission mechanism, and a low-speed gear power diagram PL and a high-speed gear power diagram PH are superimposed and displayed. The required power Pn of the main shaft and the fluctuation range (Smin to Smax) of the main shaft rotation speed are superimposed on the diagrams PL and PH.

ここで、低速ギヤ動力線図PLは、低速ギヤの有効回転数を最小回転数SLminから最大回転数SLmaxまでの範囲で示している。高速ギヤ動力線図PHは、高速ギヤの有効回転数を最小回転数SHminから最大回転数SHmaxまでの範囲で示している。そして、計算により求めた主軸回転数の変動幅(Smin〜Smax)と主軸の所要動力Pnとが、互いに重なり合う状態で、機械仕様値である動力線図PL,PHに関連付けて表示されている。   Here, the low-speed gear power diagram PL shows the effective rotational speed of the low-speed gear in the range from the minimum rotational speed SLmin to the maximum rotational speed SLmax. The high-speed gear power diagram PH shows the effective rotational speed of the high-speed gear in the range from the minimum rotational speed SHmin to the maximum rotational speed SHmax. Then, the fluctuation range (Smin to Smax) of the spindle rotational speed obtained by calculation and the required power Pn of the spindle are displayed in association with the power diagrams PL and PH which are machine specification values in a state where they overlap each other.

従って、オペレータは動力関連データ表示部19の画面表示に基づいてどの主軸ギヤを選択すればよいかがビジュアルに分かる。例えば図5において、主軸回転数の変動幅を示す線分Lが低速ギヤ動力線図PLが示す低速域または高速ギヤ動力線図PHが示す高速域のどちらか一方に含まれている場合は、その一方の主軸ギヤが一意に決まる。しかし、線分Lが低速域および高速域の両方に跨っている場合は、一方の主軸ギヤだけでは効率よく加工できないことが分かる。   Therefore, the operator can visually recognize which spindle gear to select based on the screen display of the power related data display unit 19. For example, in FIG. 5, when the line segment L indicating the fluctuation range of the main shaft rotational speed is included in either the low speed range indicated by the low speed gear power diagram PL or the high speed range indicated by the high speed gear power diagram PH, One of the main shaft gears is uniquely determined. However, it can be seen that when the line segment L extends over both the low speed range and the high speed range, machining cannot be efficiently performed with only one main shaft gear.

この実施形態の数値制御情報作成装置100は、オペレータによる主軸ギヤの選択を支援する表示に加え、主軸ギヤを自動的に選択するために、主軸回転数が低速域と高速域の両方に跨って変動するかどうかを判定する(S7)。具体的には、主軸回転数範囲算出部18において、動力線図データPO、所要動力Pn、主軸回転数変動幅(Smin〜Smax)を含む動力関連データを用い、主軸回転数の変動幅を示す線分Lが高速ギヤ動力線図PHと交差するか否かを判定する。   The numerical control information creation device 100 according to this embodiment has a display that supports the selection of the main shaft gear by the operator, and in addition to automatically selecting the main shaft gear, the main shaft rotation speed extends over both the low speed range and the high speed range. It is determined whether it fluctuates (S7). Specifically, in the spindle speed range calculation unit 18, power-related data including power diagram data PO, required power Pn, and spindle speed fluctuation range (Smin to Smax) is used to indicate the fluctuation range of the main spindle speed. It is determined whether or not the line segment L intersects with the high speed gear power diagram PH.

そして、主軸回転数の変動幅が低速域と高速域の両方に跨る場合に、切削条件を変更するための処理と加工工程を分割するための処理のどちらを優先するかを確認する(S8)。加工工程を分割する場合は(S8:No)、加工形状のどの部位で切削領域を分割するかを示す分割径PDを求める(S9)。分割径PDは、主軸回転数の変動幅のうち、低速域と高速域の両方に跨る範囲、つまり主軸ギヤが低速から高速に切り換わっても主軸の所要動力Pnが主軸モータの出力値を超えない範囲、すなわち、図5に示す範囲CEの主軸回転数と対応する加工形状範囲内に好ましく求めることができる。   Then, when the fluctuation range of the spindle rotation speed extends over both the low speed range and the high speed range, it is confirmed which of the processing for changing the cutting conditions and the processing for dividing the machining step is prioritized (S8). . When the machining process is divided (S8: No), a division diameter PD indicating which part of the machining shape is to be divided is obtained (S9). The split diameter PD is a range that spans both the low speed range and the high speed range of the fluctuation range of the main shaft rotation speed, that is, the required power Pn of the main shaft exceeds the output value of the main shaft motor even if the main shaft gear switches from low speed to high speed. It can be preferably obtained within a non-existent range, that is, a machining shape range corresponding to the spindle rotational speed in the range CE shown in FIG.

具体的には、範囲CEの最大回転数Sce maxに対応する分割候補径の最小値Dce minと、範囲CEの最小回転数Sce minに対応する分割候補径の最大値Dce maxとを次式より求め、最小値Dminと最大値Dmaxの間において加工形状に分割径PDを求めることができる。
分割候補径の最小値Dce min=主軸切削速度V÷(π×最大回転数Sce max)
分割候補径の最大値Dce max=主軸切削速度V÷(π×最小回転数Sce min)
Specifically, the minimum value Dce min of the candidate division diameter corresponding to the maximum rotation speed Sce max of the range CE and the maximum value Dce max of the candidate division diameter corresponding to the minimum rotation speed Sce min of the range CE are expressed by the following equations. The division diameter PD can be obtained for the machining shape between the minimum value Dmin and the maximum value Dmax.
Minimum value of division candidate diameter Dce min = Spindle cutting speed V ÷ (π × Maximum rotation speed Sce max)
Maximum value of division candidate diameter Dce max = spindle cutting speed V ÷ (π × minimum rotation speed Sce min)

ただし、図3に示す「端面荒引き加工」のように、加工形状は、直線要素のみで構成されることもあるし、円弧を含むこともある。円弧や直線要素の途中に分割径PDを設定すると、加工面の仕上がりに悪影響が及ぶおそれがある。このため、分割径PDは、加工形状の交点または端点に設定するのが望ましい。図4の例では、2直線の交点のX座標を分割径PDとして求めている。もちろん、範囲CEに含まれる任意の主軸回転数と対応する部位に分割径PDを設定することも可能である。   However, as in “end surface roughing” shown in FIG. 3, the processed shape may be composed of only linear elements or may include an arc. If the division diameter PD is set in the middle of an arc or a straight line element, there is a possibility that the finish of the machined surface will be adversely affected. For this reason, it is desirable to set the division diameter PD at the intersection or end point of the processed shape. In the example of FIG. 4, the X coordinate of the intersection of two straight lines is obtained as the division diameter PD. Of course, it is also possible to set the division diameter PD at a portion corresponding to an arbitrary spindle speed included in the range CE.

次に、図4に示すように、分割径PDとして指定された加工形状PFの交点から水平線を引いて、対象の加工工程(切削領域)を分割する(S10)。そして、分割後の複数の加工工程にそれぞれ適切な主軸ギヤを割り当てる(S11)。なお、図4は、図3に示した切削領域を分割径PDにて切削領域Aと切削領域Bとに2分割した「端面荒引き分割加工」を示す。   Next, as shown in FIG. 4, a target machining process (cutting region) is divided by drawing a horizontal line from the intersection of the machining shape PF designated as the division diameter PD (S10). Then, an appropriate spindle gear is assigned to each of the plurality of divided machining steps (S11). FIG. 4 shows “end surface roughing division processing” in which the cutting region shown in FIG. 3 is divided into a cutting region A and a cutting region B by a divided diameter PD.

一方、図6に示すように、主軸回転数の変動幅を示す線分Lが高速ギヤ動力線図PHを僅かに越えるような場合は、加工工程を分割するよりも、切削条件を変更した方が効率よく加工できる場合もある(S8:Yes)。この場合、まず、高低2つの主軸ギヤのうち加工工程の大部分で使用する主軸ギヤを選定し、その動力線図データを読み出す(S12)。次に、高速ギヤ動力線図PHから主軸最小回転数(Smin)に対応するモータ出力値Poを主軸モータの上限出力値として求め、その出力値Poを超えることがないように、切削条件MCを変更する(S13)。   On the other hand, as shown in FIG. 6, when the line segment L indicating the fluctuation range of the spindle rotational speed slightly exceeds the high-speed gear power diagram PH, the cutting conditions are changed rather than dividing the machining process. May be processed efficiently (S8: Yes). In this case, first, the main shaft gear to be used in most of the machining steps is selected from the two main and lower main shaft gears, and the power diagram data is read (S12). Next, a motor output value Po corresponding to the minimum spindle speed (Smin) is obtained from the high-speed gear power diagram PH as an upper limit output value of the spindle motor, and the cutting condition MC is set so as not to exceed the output value Po. Change (S13).

切削条件MCとして、例えば、工具の送り速度Fを変更することができる。変更後の送り速度F’は、次式より求まる。
変更後の送り速度F’=Po÷(主軸切削速度V×比切削抵抗K×切込量T)
また、切削条件MCとして、切込み量Tを変更することも可能である。変更後の切込み量T’は、次式より求まる。
変更後の切込み量T’=Po÷(主軸切削速度V×比切削抵抗K×送り速度F)
As the cutting condition MC, for example, the feed rate F of the tool can be changed. The changed feed speed F ′ is obtained from the following equation.
Feed speed after change F ′ = Po ÷ (Spindle cutting speed V × Specific cutting resistance K × Cutting amount T)
Further, the cutting amount T can be changed as the cutting condition MC. The cutting depth T ′ after the change is obtained from the following equation.
Cutting depth after change T ′ = Po ÷ (Spindle cutting speed V × Specific cutting resistance K × Feed rate F)

以上詳述したように、この実施形態の数値制御情報作成装置100によれば、主軸回転数が低速域と高速域の両方に跨って変動する場合に、加工工程の分割で対処する方法と、切削条件の変更で対処する方法の二通りを採用できる。前者の方法は、特に、最大加工径Dmaxと最小加工径Dminとの差が大きい加工形状の場合に、加工機の能力に応じ、加工工程を所要数に分割し、各工程に最適な主軸ギヤを選定できる利点がある。   As described above in detail, according to the numerical control information creation device 100 of this embodiment, when the spindle speed fluctuates across both the low speed range and the high speed range, a method of dealing with the division of the machining process, Two methods of dealing with changes in cutting conditions can be adopted. The former method divides the machining process into the required number according to the capability of the machining machine, especially in the case of a machining shape with a large difference between the maximum machining diameter Dmax and the minimum machining diameter Dmin, and the optimum spindle gear for each process. There is an advantage that can be selected.

また、後者の方法は、予め主軸ギヤを選定するので、選定した主軸ギヤの動力線図に基づき、加工機の能力を超えることがないように切削条件を自動的に変更でき、特に、加工径差の小さい加工形状の場合に、効率よく加工できる利点がある。さらに、何れの方法を採用する場合も、複数種の動力関連データが表示部19の同一画面上に重ねて表示されるので、経験の浅いオペレータでも最適な主軸ギヤを容易に選択することができる。   In the latter method, since the main shaft gear is selected in advance, the cutting conditions can be automatically changed based on the power diagram of the selected main shaft gear so as not to exceed the capacity of the processing machine. In the case of a machining shape with a small difference, there is an advantage that machining can be performed efficiently. Furthermore, in any case, since multiple types of power-related data are displayed on the same screen of the display unit 19, even an inexperienced operator can easily select the optimum spindle gear. .

なお、上記実施形態では、低速ギヤと高速ギヤを用いた2段変速機構を例示したが、低速、中速、高速の3段またはそれ以上の変速ギヤ機構を採用することもでき、ギヤ機構に限定されず、主軸モータの巻線を切換可能な変速機構も採用でき、さらには、ギヤと巻線の両方を切換可能な複合型変速機構も採用可能である。その他、本発明は上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で、各部の構成や手順を適宜に変更して実施することも可能である。   In the above embodiment, a two-speed transmission mechanism using a low-speed gear and a high-speed gear has been exemplified. However, a transmission gear mechanism having three or more speeds of low speed, medium speed, and high speed can also be adopted. There is no limitation, and a transmission mechanism that can switch the windings of the spindle motor can also be adopted. Furthermore, a composite transmission mechanism that can switch both the gear and the windings can also be adopted. In addition, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the configuration and procedure of each part without departing from the spirit of the invention.

1 データ入力装置
2 データ入力部
3 素材形状格納部
4 工具データ格納部
5 加工形状格納部
6 加工工程情報作成部
7 切削条件決定部
8 工程データ格納部
9 動力線図データ格納部
10 主軸回転数算出部
11 主軸ギヤ決定部
12 数値制御情報作成部
13 数値制御情報出力部
14 伝送媒体
15 切削条件変更部
16 加工工程分割部
17 所要動力算出部
18 主軸回転数範囲算出部
19 動力関連データ表示部
DESCRIPTION OF SYMBOLS 1 Data input device 2 Data input part 3 Material shape storage part 4 Tool data storage part 5 Machining shape storage part 6 Machining process information creation part 7 Cutting condition determination part 8 Process data storage part 9 Power diagram data storage part 10 Spindle speed Calculation unit 11 Spindle gear determination unit 12 Numerical control information creation unit 13 Numerical control information output unit 14 Transmission medium 15 Cutting condition change unit 16 Machining process division unit 17 Required power calculation unit 18 Spindle speed range calculation unit 19 Power related data display unit

Claims (3)

素材形状と加工形状に基づき、変速機構により主軸が複数の異なる出力特性を有する加工機の数値制御情報を作成する数値制御情報作成装置において、
主軸回転数と主軸モータの出力値により前記出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、
前記素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、
前記切削条件に基づき、前記所定工具により加工するときの所要動力を算出する所要動力算出手段と、
前記切削領域と切削条件に基づき、前記所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、
前記複数の動力線図データ、所要動力および主軸の回転数変動幅を同一画面に重ねて表示する動力関連データ表示手段と
を備えたことを特徴とする数値制御情報作成装置。
In the numerical control information creation device that creates numerical control information of a processing machine having a plurality of different output characteristics of the main shaft by the speed change mechanism based on the material shape and the machining shape
Power diagram data storage means for storing a plurality of power diagram data representing the output characteristics according to the spindle rotation speed and the output value of the spindle motor;
Based on the material shape and the machining shape, machining process information creating means for creating a cutting region and cutting conditions to be machined by a predetermined tool,
Based on the cutting conditions, required power calculating means for calculating required power when machining with the predetermined tool;
Based on the cutting area and cutting conditions, a spindle rotation speed calculation means for calculating a rotation speed fluctuation range of the spindle when machining with the predetermined tool;
A numerical control information creating apparatus comprising: power related data display means for displaying the plurality of power diagram data, the required power, and the rotational speed fluctuation range of the main shaft on the same screen.
素材形状と加工形状に基づき、変速機構により主軸が複数の異なる出力特性を有する加工機の数値制御情報を作成する数値制御情報作成装置において、
主軸回転数と主軸モータの出力値により前記出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、
前記素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、
前記切削条件に基づき、前記所定工具により加工するときの所要動力を算出する所要動力算出手段と、
前記切削領域と切削条件に基づき、前記所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、
前記主軸の回転数変動幅が複数の異なる出力特性に跨る場合、いずれの出力特性においても前記所要動力が得られる主軸回転数範囲を算出する主軸回転数範囲算出手段と、
前記主軸回転数範囲と切削領域に基づき出力特性を切り換える切換点を算出し、該切換点により切削領域を分割する加工工程分割手段と、
前記分割された切削領域に基づき加工情報を作成する数値制御情報作成手段と
を備えたことを特徴とする数値制御情報作成装置。
In the numerical control information creation device that creates numerical control information of a processing machine having a plurality of different output characteristics of the main shaft by the speed change mechanism based on the material shape and the machining shape
Power diagram data storage means for storing a plurality of power diagram data representing the output characteristics according to the spindle rotation speed and the output value of the spindle motor;
Based on the material shape and the machining shape, machining process information creating means for creating a cutting region and cutting conditions to be machined by a predetermined tool,
Based on the cutting conditions, required power calculating means for calculating required power when machining with the predetermined tool;
Based on the cutting area and cutting conditions, a spindle rotation speed calculation means for calculating a rotation speed fluctuation range of the spindle when machining with the predetermined tool;
When the rotational speed fluctuation range of the main spindle extends over a plurality of different output characteristics, the main spindle speed range calculating means for calculating the main spindle speed range in which the required power can be obtained in any output characteristics;
A process step dividing means for calculating a switching point for switching output characteristics based on the spindle rotational speed range and the cutting area, and dividing the cutting area by the switching point;
A numerical control information creating apparatus comprising: numerical control information creating means for creating machining information based on the divided cutting regions.
素材形状と加工形状に基づき、変速機構により主軸が複数の異なる出力特性を有する加工機の数値制御情報を作成する数値制御情報作成装置において、
主軸回転数と主軸モータの出力値により前記出力特性を表す複数の動力線図データを記憶する動力線図データ格納手段と、
前記素材形状と加工形状に基づき、所定工具により加工する切削領域と切削条件を生成する加工工程情報作成手段と、
前記切削条件に基づき、前記所定工具により加工するときの所要動力を算出する所要動力算出手段と、
前記切削領域と切削条件に基づき、前記所定工具により加工するときの主軸の回転数変動幅を算出する主軸回転数算出手段と、
前記主軸の回転数変動幅が複数の異なる出力特性に跨る場合、高速側の出力特性を表わす動力線図データと前記主軸の回転数変動幅における最小回転数とから主軸モータの上限出力値を算出し、切削条件に基いて算出される前記所要動力が前記上限出力値を超えることがないよう切削条件を変更する切削条件変更手段と、
前記変更された切削条件に基づき加工情報を作成する数値制御情報作成手段と
を備えたことを特徴とする数値制御情報作成装置。
In the numerical control information creation device that creates numerical control information of a processing machine having a plurality of different output characteristics of the main shaft by the speed change mechanism based on the material shape and the machining shape
Power diagram data storage means for storing a plurality of power diagram data representing the output characteristics according to the spindle rotation speed and the output value of the spindle motor;
Based on the material shape and the machining shape, machining process information creating means for creating a cutting region and cutting conditions to be machined by a predetermined tool,
Based on the cutting conditions, required power calculating means for calculating required power when machining with the predetermined tool;
Based on the cutting area and cutting conditions, a spindle rotation speed calculation means for calculating a rotation speed fluctuation range of the spindle when machining with the predetermined tool;
When the rotation speed fluctuation range of the main spindle extends over a plurality of different output characteristics, the upper limit output value of the main spindle motor is calculated from the power diagram data representing the output characteristics on the high speed side and the minimum rotation speed in the main spindle rotation speed fluctuation range. Cutting condition changing means for changing the cutting condition so that the required power calculated based on the cutting condition does not exceed the upper limit output value;
A numerical control information creating apparatus comprising: numerical control information creating means for creating machining information based on the changed cutting conditions.
JP2011013094A 2011-01-25 2011-01-25 Numerical control information creation device Active JP5647529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013094A JP5647529B2 (en) 2011-01-25 2011-01-25 Numerical control information creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013094A JP5647529B2 (en) 2011-01-25 2011-01-25 Numerical control information creation device

Publications (2)

Publication Number Publication Date
JP2012155473A JP2012155473A (en) 2012-08-16
JP5647529B2 true JP5647529B2 (en) 2014-12-24

Family

ID=46837156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013094A Active JP5647529B2 (en) 2011-01-25 2011-01-25 Numerical control information creation device

Country Status (1)

Country Link
JP (1) JP5647529B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353884B2 (en) * 2016-10-04 2018-07-04 Dmg森精機株式会社 Machining condition determination device and cutting tool selection device
JP6473772B2 (en) * 2017-03-24 2019-02-20 Dmg森精機株式会社 Machining condition setting method and machining condition setting apparatus
JP6499707B2 (en) * 2017-04-03 2019-04-10 ファナック株式会社 Simulation device, program generation device, control device, and computer display method
CN109507952B (en) * 2018-12-12 2021-07-30 成都飞机工业(集团)有限责任公司 Method for monitoring abnormal state of numerical control machining of complex part based on cutting load

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169933U (en) * 1982-05-07 1983-11-12 三菱電機株式会社 Electromagnetic coupling device for machine tool spindle speed change
JPS591136A (en) * 1982-06-23 1984-01-06 Daihatsu Motor Co Ltd Control method of main shaft speed change gear for nc lathe
JPS591135A (en) * 1982-06-23 1984-01-06 Daihatsu Motor Co Ltd Control method of main shaft speed change gear for nc lathe
JPS6272044U (en) * 1985-10-24 1987-05-08
JP2506206B2 (en) * 1989-11-20 1996-06-12 オークマ株式会社 Method and apparatus for selecting gear ratio of machine tool
JPH04160502A (en) * 1990-10-24 1992-06-03 Okuma Mach Works Ltd Numerical controller for main shaft motor provided with speed change mechanism
JPH07290180A (en) * 1994-04-27 1995-11-07 Shinko Eng Kk Device for form-rolling fin on outside surface of pipe

Also Published As

Publication number Publication date
JP2012155473A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
CN101866166B (en) Control device for machine tool
JP5647529B2 (en) Numerical control information creation device
CN106863007B (en) Machine tool
JP5886656B2 (en) Numerical controller
US4922440A (en) Tool profile automatic graphic display system
JP5674449B2 (en) Machine Tools
CN110597186B (en) Automatic setting method for flexible cutting parameters of numerical control device
CN112783088B (en) Device and method for monitoring spindle rotation speed in machine tool, and machine tool
JP5726041B2 (en) Tool path generation apparatus and method
JP7300369B2 (en) MONITORING DEVICE AND MONITORING METHOD FOR SPINDLE SPEED IN MACHINE TOOL, MACHINE TOOL
JP5174933B2 (en) Gear processing device and gear processing condition setting device
JP5177495B2 (en) Numerical control device, computer program, and storage medium
CN108693831B (en) Simulation device, program generation device, control device, and computer display method
JPH11300578A (en) Numerical control device of machine tool
JP2003177810A (en) Automatic programming device
JPH05324043A (en) Numerical controller provided with work simulation display function
JP2022126459A (en) Control device of machine tool
JP6353884B2 (en) Machining condition determination device and cutting tool selection device
JP6415623B2 (en) Control method and control device for tapping
JPH0418323B2 (en)
KR20180036480A (en) Apparatus and method for automatically controlling a flow rate of cutting oil
JP2008023691A (en) Grinding device and control program, and grinding method
JPH0839396A (en) Override mechanism of numerical control device
JPH07171737A (en) Method for controlling cutting data
JPH05146944A (en) Cutting margin determining method for lathe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5647529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150