JP5647436B2 - Stepping actuator - Google Patents

Stepping actuator Download PDF

Info

Publication number
JP5647436B2
JP5647436B2 JP2010117286A JP2010117286A JP5647436B2 JP 5647436 B2 JP5647436 B2 JP 5647436B2 JP 2010117286 A JP2010117286 A JP 2010117286A JP 2010117286 A JP2010117286 A JP 2010117286A JP 5647436 B2 JP5647436 B2 JP 5647436B2
Authority
JP
Japan
Prior art keywords
driven member
driving member
driving
slide surface
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010117286A
Other languages
Japanese (ja)
Other versions
JP2011241970A (en
Inventor
健純 土肥
健純 土肥
賢 正宗
賢 正宗
浩之 佐嶌
浩之 佐嶌
Original Assignee
有限会社ディー・エッチ・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ディー・エッチ・エス filed Critical 有限会社ディー・エッチ・エス
Priority to JP2010117286A priority Critical patent/JP5647436B2/en
Publication of JP2011241970A publication Critical patent/JP2011241970A/en
Application granted granted Critical
Publication of JP5647436B2 publication Critical patent/JP5647436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Actuator (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、医用工学におけるMRI(magnetic resonance imaging)などの高磁場環境下での手術用ロボットの動力源や、電磁波による影響を受けやすい評価研究環境において使用できるステッピング・アクチュエータに関する。   The present invention relates to a power source for a surgical robot under a high magnetic field environment such as MRI (Magnetic Resonance Imaging) in medical engineering, and a stepping actuator that can be used in an evaluation research environment that is easily affected by electromagnetic waves.

MRIは、放射能被曝の危険性がなく、多様な可視化機能を有する医用画像撮像法として普及している。近年、MRIの開口部を大きくしたタイプのOpenMRIが登場したことで、手術中のMRI画像を取得することが可能となった。これにより、MRIによって患部を可視化しながら手術を行うことで、精確な手術を実現する、MRI誘導下手術が提案されてきている。   MRI has no danger of radioactive exposure, and is widely used as a medical imaging method having various visualization functions. In recent years, the opening of MRI with an enlarged MRI opening has made it possible to acquire MRI images during surgery. As a result, an MRI-guided operation has been proposed that realizes an accurate operation by performing an operation while visualizing an affected area by MRI.

MRI誘導下手術のためのシステムを実現するためには、以下に示すMR Compatibilityと呼ばれる3つの制約条件(課題)を満たす必要がある。   In order to realize a system for MRI-guided surgery, it is necessary to satisfy the following three constraints (problems) called MR Compatibility.

1)MRIの発する磁場環境の影響でシステムが安全上の問題を呈さない(MRIの静磁場磁石に引き寄せられてしまわないことなど)。
2)MRIの発する磁場や電磁波にシステムの動作が阻害されない。
3)システムがMRIの取得画像にノイズやゆがみなどの悪影響を及ぼさない。
1) The system does not present a safety problem due to the influence of the magnetic field environment generated by the MRI (such as being not attracted to the MRI static magnetic field magnet).
2) System operation is not hindered by magnetic fields and electromagnetic waves generated by MRI.
3) The system does not adversely affect the acquired image of MRI such as noise and distortion.

この制約条件に対し、システムを構築時に特に問題となるのがアクチュエータ部である。通常の電磁気力を利用した電気モータ(整流子電動機や同期電動機など)は、MRIの発する強磁場により動作することができない。   With respect to this constraint, the actuator part is particularly problematic when constructing a system. An electric motor using a normal electromagnetic force (such as a commutator motor or a synchronous motor) cannot be operated by a strong magnetic field generated by MRI.

そのため、強磁場中でも動作が可能な非磁性超音波モータが多く用いられてきた。しかしながら、動力源となる電流に起因する電磁波がMRI画像に悪影響を及ぼすという問題がある。また、精確で再現性のある位置決めが困難である。そこで、水圧や空圧等の流体圧を用いたステッピングモータが近年報告されている。しかし、非特許文献1や非特許文献2などに代表される流体圧式のステッピングモータは動作機構が複雑であるため、多くの部品を必要とし、メンテナンス性や実用性に欠けるという問題点がある。さらに非特許文献2のステッピングモータは高磁場環境下での使用を目的としておらず非磁性化が行われていない。また、より簡便な機構で動作を実現した非特許文献3のステッピングモータも提案されているが、その機構では回転精度および回転速度、回転トルクが他の物に比べ劣ってしまうため、構造の簡単さと性能とを両立した流体圧を用いたステッピングモータが存在しない。   Therefore, many nonmagnetic ultrasonic motors that can operate even in a strong magnetic field have been used. However, there is a problem that an electromagnetic wave caused by a current as a power source adversely affects the MRI image. In addition, accurate and reproducible positioning is difficult. Therefore, a stepping motor using fluid pressure such as water pressure or air pressure has been recently reported. However, the hydraulic pressure stepping motor represented by Non-Patent Document 1, Non-Patent Document 2, and the like has a problem that it requires a lot of parts and lacks maintainability and practicality because its operation mechanism is complicated. Furthermore, the stepping motor of Non-Patent Document 2 is not intended for use in a high magnetic field environment and is not demagnetized. In addition, the stepping motor of Non-Patent Document 3 that has realized the operation with a simpler mechanism has also been proposed, but the rotational accuracy, rotational speed, and rotational torque of the mechanism are inferior to those of other products, so the structure is simple. There is no stepping motor that uses fluid pressure that balances performance with performance.

Dan Stoianovici, et.al.,A New Type of Motor: Pneumatic Step Motor, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL.12, NO.1:98-106, FEBRUARY 2007Dan Stoianovici, et.al., A New Type of Motor: Pneumatic Step Motor, IEEE / ASME TRANSACTIONS ON MECHATRONICS, VOL.12, NO.1: 98-106, FEBRUARY 2007 Kazuo Uzuki, et.al.,Comparative Assessment of Several NutationMotor Types, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL.14, NO. 1:82-92, FEBRUARY 2009Kazuo Uzuki, et.al., Comparative Assessment of Several NutationMotor Types, IEEE / ASME TRANSACTIONS ON MECHATRONICS, VOL.14, NO. 1: 82-92, FEBRUARY 2009 櫨田知樹,他:空圧式鋸歯回転アクチュエータを用いたMRI画像誘導下穿刺術支援マニピュレータの基礎開発,J JSCAS, vol.10, no.3:337-338,JANUARY 2008Tomoki Hamada, et al .: Basic development of MRI image-guided puncture support manipulator using pneumatic sawtooth rotary actuator, J JSCAS, vol.10, no.3: 337-338, JANUARY 2008

本発明は、MRI等に代表される高磁場かつ電磁波を嫌う環境下で用いることを目標とした、非磁性の流体圧式ステッピング・アクチュエータを提供することを目的とする。さらに、小型化が可能で部品点数が少なくメンテナンス性に優れた動作機構を考案し、性能と製作の容易さを両立した新たな流体圧式ステッピング・アクチュエータを提供することを目的としている。   An object of the present invention is to provide a non-magnetic fluid pressure type stepping actuator that is intended to be used in an environment where high magnetic fields such as MRI and the like do not like electromagnetic waves. Another object of the present invention is to devise an operation mechanism that can be reduced in size, has a small number of parts, and is easy to maintain, and provides a new hydraulic stepping actuator that achieves both performance and ease of manufacture.

下記の本発明の構成により、上記目的を実現するステッピング・アクチュエータが提供される。   A stepping actuator that achieves the above object is provided by the following configuration of the present invention.

(1)少なくとも3つ以上のN個の第1駆動部材、第2駆動部材、第3駆動部材...第N駆動部材から成る複数の駆動部材と1つの従動部材を備え、前記複数の駆動部材は中間ハウジングのそれぞれの収納部に収められ、前記従動部材は上部ハウジングに収められ、
前記それぞれの駆動部材は複数の傾斜した第1スライド面と前記第1スライド面と同数の第2スライド面を備え、隣合った第スライド面と第2スライド面により頂部又は谷部が形成され、
前記従動部材は傾斜した第1被スライド面と前記第1被スライド面と同数の第2被スライド面を備え、隣合った第被スライド面と第2被スライド面により頂部又は谷部が形成され、
前記第1スライド面と前記第1被スライド面は同一の方向に傾斜し、且つ前記第2スライド面と前記第2被スライド面は同一の方向に傾斜し、前記駆動部材における隣接する頂部の間隔と、前記従動部材における隣接する谷部の間隔は同一であり、
前記第1駆動部材が流体圧により前記従動部材の方向に押されることにより、前記従動部材の第1被スライド面が前記第1駆動部材の第1スライド面上をスライドし、前記従動部材の谷部と前記第1駆動部材の頂部がかみ合うか又は前記従動部材の頂部と前記第1部材の谷部がかみ合うまで、前記従動部材が回転され、
この流体圧による駆動部材の前記従動部材方向への押し込みを、前記第1駆動部材から前記第2駆動部材、前記第2駆動部材から前記第3駆動部材、前記第3駆動部材から...第N駆動部材、前記第N駆動部材から前記第1駆動部材へと順次行うことにより従動部材は同一方向に回転されることを特徴とする、ステッピング・アクチュエータ。
(1) At least three or more N first drive members, second drive members, third drive members. . . A plurality of driving members comprising an Nth driving member and one driven member, wherein the plurality of driving members are housed in respective housing portions of the intermediate housing, and the driven member is housed in the upper housing;
Wherein each of the drive member comprises a second sliding surface in the same number as that of said first sliding surface and the first slide surface inclined in multiple, top or valley by the first sliding surface and the second sliding surface Tonaria' is formed And
The driven member comprises a first second object slide surface of the same number as the first target slide surface and the slide surface that is inclined obliquely, top or valley by the first target slide surface and the second object slide surface which Tonaria' Formed,
The first slide surface and the first slide surface are inclined in the same direction, and the second slide surface and the second slide surface are inclined in the same direction. And the interval between adjacent valleys in the driven member is the same,
When the first driving member is pushed in the direction of the driven member by fluid pressure, the first sliding surface of the driven member slides on the first sliding surface of the first driving member, and the valley of the driven member. The driven member is rotated until the top of the first drive member is engaged or the top of the driven member is engaged with the trough of the first member ;
The pushing of the driving member in the direction of the driven member by the fluid pressure is performed from the first driving member to the second driving member, from the second driving member to the third driving member, from the third driving member . . . The stepping actuator is characterized in that the driven member is rotated in the same direction by sequentially performing the N-th driving member and the N-th driving member to the first driving member.

(2)前記複数の駆動部材の数の増減により、前記従動部材の回転量が調整されることを特徴とする前記(1)に記載のステッピング・アクチュエータ。
(3)前記第1駆動部材に次いで前記第2駆動部材を押し込むと、前記従動部材の回転に伴い、前記第1駆動部材の第1スライド面が前記従動部材第1被スライド面上をスライドすることで、自動的に第1駆動部材が押し戻され、同様に第2駆動部材から第N駆動部材も順次、自動的に押し戻されることを特徴とする、前記(1)又は(2)に記載のステッピング・アクチュエータ。
(2) The stepping actuator according to (1), wherein the amount of rotation of the driven member is adjusted by increasing or decreasing the number of the plurality of driving members.
(3) When the second driving member is pushed in after the first driving member, the first sliding surface of the first driving member slides on the driven member first sliding surface as the driven member rotates. it is, automatically the first drive member is pushed back, Similarly, successively the N-th driving member from the second driving member, automatically pushed back and said Rukoto, according to (1) or (2) Stepping actuator.

本発明によれば、電磁気力を使用せず、流体圧のみで動作し、回転精度・回転速度の高いステッピング・アクチュエータを、製作が容易な部品のみで、少ない構成部品により提供することが可能になる。   According to the present invention, it is possible to provide a stepping actuator that operates with only fluid pressure and does not use electromagnetic force and has high rotational accuracy and high rotational speed with only a few parts that are easy to manufacture. Become.

本発明によるステッピング・アクチュエータの原理的な構成を示す説明図Explanatory drawing which shows the fundamental structure of the stepping actuator by this invention ステッピング・アクチュエータの動作を説明するための説明図Explanatory diagram for explaining the operation of the stepping actuator ステッピング・アクチュエータの斜視図Stepper actuator perspective view 図3のA−A線に沿う断面図Sectional drawing which follows the AA line of FIG. ステッピング・アクチュエータの分解斜視図Disassembled perspective view of stepping actuator 中間ハウジングの正面図Front view of intermediate housing 従動部材の斜め下方からの斜視図Perspective view of the driven member from obliquely below 駆動部材の斜視図Perspective view of drive member

以下、本発明によるステッピング・アクチュエータついて、添付の図面に基づいて説明する。   Hereinafter, a stepping actuator according to the present invention will be described with reference to the accompanying drawings.

まず、本実施形態に係るステッピング・アクチュエータの動作原理を図に基づいて説明する。   First, the operation principle of the stepping actuator according to this embodiment will be described with reference to the drawings.

図1に示すように、本実施例のステッピング・アクチュエータでは、第1駆動部材2、第2駆動部材3、第3駆動部材4及び従動部材1を備えている。   As shown in FIG. 1, the stepping actuator of this embodiment includes a first drive member 2, a second drive member 3, a third drive member 4, and a driven member 1.

第1駆動部材〜第3駆動部材は、中間ハウジング6の第1収納部61〜第3収納部63に1つずつ収められており(図6参照)、直動方向のみに動作が限定されている。従動部材1は上部ハウジンング5に収められており(図5参照)、回転動作のみを行うことができる。   The first drive member to the third drive member are housed one by one in the first housing portion 61 to the third housing portion 63 of the intermediate housing 6 (see FIG. 6), and the operation is limited only in the linear motion direction. Yes. The driven member 1 is housed in the upper housing 5 (see FIG. 5), and can only perform a rotating operation.

それぞれの駆動部材2〜4は複数で且つ同一数の傾斜した第1スライド面21、31、41と第2スライド面22、32、42を備え、隣合った第1スライド面と第2スライド面により頂部又は谷部が形成されている。同様に、従動部材1は複数で且つ同一数の傾斜した第1被スライド面11と第2被スライド面12を備え、隣合った第1被スライド面11と第2被スライド面12により頂部又は谷部が形成される。 Each of the driving members 2 to 4 includes a plurality of and the same number of inclined first slide surfaces 21, 31, 41 and second slide surfaces 22, 32, 42, and the adjacent first slide surface and second slide surface. The top part or trough part is formed. Similarly, the driven member 1 comprises a first target slide surface 11 which is and inclination of the same number of a plurality of second object slide surface 12, the first to be sliding surface 11 which Tonaria' top by a second object slide surface 12 or A valley is formed.

第1スライド面(21、31又は41)と前記第1被スライド面11は同一の方向に傾斜し、且つ前記第2スライド面(22、32又は42)と前記第2被スライド面12は同一の方向に傾斜し、駆動部材(2〜3)における隣接する頂部の間隔と、前記従動部材における隣接する谷部の間隔は同一であり、駆動部材と従動部材がかみ合うように構成されている。   The first slide surface (21, 31 or 41) and the first slide surface 11 are inclined in the same direction, and the second slide surface (22, 32 or 42) and the second slide surface 12 are the same. The distance between adjacent top portions of the drive members (2 to 3) and the distance between adjacent valley portions of the driven member are the same, and the drive member and the driven member are configured to engage with each other.

第3駆動部材4と従動部材1が完全にかみ合った状態である図2(a)の状態において、第1ピストン81(図5参照)が第1チューブ接続部71(図3参照)を通って送られる流体圧により押し込まれると、第1ピストン81は中間ハウジング6の第1ピストン通路64(図6参照)を通って、第1駆動部材2の押圧面を従動部材1の方へと押し込む。   In the state of FIG. 2A in which the third driving member 4 and the driven member 1 are completely engaged, the first piston 81 (see FIG. 5) passes through the first tube connecting portion 71 (see FIG. 3). When pushed by the fluid pressure sent, the first piston 81 pushes the pressing surface of the first drive member 2 toward the driven member 1 through the first piston passage 64 (see FIG. 6) of the intermediate housing 6.

この駆動部材とピストンとは一体化して構成することも可能である。   The drive member and the piston can be integrated with each other.

第1駆動部材2が押し込まれると、図2(b)に示すように第1駆動部材2の第2スライド面22と従動部材の第2被スライド面12(図1参照)が接触する。さらに、第1駆動部材2が押し込まれると第1駆動部材2の第2スライド面22に従動部材の第2スライド面12が沿うように、従動部材1が回転を始め、従動部材の谷部と第1駆動部材の頂部が一致するまで、つまり、従動部材1と第1駆動部材2が完全にかみ合うまで従動部材1が右回転する(図2(c)参照)。   When the first drive member 2 is pushed in, as shown in FIG. 2B, the second slide surface 22 of the first drive member 2 and the second slide surface 12 of the driven member (see FIG. 1) contact each other. Further, when the first drive member 2 is pushed in, the driven member 1 starts to rotate so that the second slide surface 12 of the driven member of the second drive surface 2 of the first drive member 2 follows. The driven member 1 rotates clockwise until the tops of the first driving members coincide, that is, until the driven member 1 and the first driving member 2 are completely engaged (see FIG. 2C).

また同様に、図2(a)の状態から第2ピストン82により第2駆動部材3を押し込むと、それに伴い従動部材は左回転することになる。このように、押し込むピストンを切り変えることで、回転方向の切り替えが可能となる。ただし、以降では右回転に限って説明することとする。   Similarly, when the second driving member 3 is pushed in by the second piston 82 from the state of FIG. 2A, the driven member rotates counterclockwise. Thus, the direction of rotation can be switched by switching the piston to be pushed. However, only the right rotation will be described below.

第1チューブ接続部71に流体圧が送られているときに、第2チューブ接続部72および第3チューブ接続部73には流体圧は送られておらず、そのため、従動部材の回転に伴い、第2駆動部材3および第3駆動部材4は従動部材1の第1被スライド面11を沿うように押し戻されることになる。   When the fluid pressure is being sent to the first tube connecting portion 71, the fluid pressure is not being sent to the second tube connecting portion 72 and the third tube connecting portion 73, and therefore, with the rotation of the driven member, The second drive member 3 and the third drive member 4 are pushed back along the first sliding surface 11 of the driven member 1.

ここで、第2駆動部材3は押し戻されることで従動部材1と完全に離れることとなる(図2(c)参照)。   Here, the second drive member 3 is completely separated from the driven member 1 by being pushed back (see FIG. 2C).

次に、今度は第2チューブ接続部72に対して流体圧が送り込まれると、先ほどと同様に従動部材1の第2被スライド面と第2駆動部材3の第2スライド面32が接触し(図2(d)参照)、さらに押し込むことで従動部材1の谷部と第2駆動部材3の頂部が一致するまで従動部材は右回転することになる(図2(e)参照)。   Next, when the fluid pressure is sent to the second tube connection portion 72 this time, the second slide surface of the driven member 1 and the second slide surface 32 of the second drive member 3 come into contact with each other as before ( By further pushing, the driven member rotates clockwise until the valley of the driven member 1 coincides with the top of the second drive member 3 (see FIG. 2 (e)).

この第1駆動部材2と従動部材1が完全にかみ合った状態から(図2(c))から、第2駆動部材3と従動部材1が完全にかみ合う状態(図2(e))までの、従動部材の回転における変位量を1ステップ分の回転量とみなす事が出来る。   From the state in which the first driving member 2 and the driven member 1 are completely engaged (FIG. 2 (c)) to the state in which the second driving member 3 and the driven member 1 are completely engaged (FIG. 2 (e)), The amount of displacement in the rotation of the driven member can be regarded as the amount of rotation for one step.

前述のように、駆動部材の頂部と従動部材の谷部がかみ合うように構成されているので、従動部材1と駆動部材(2、3又は4)の歯先の間隔(隣り合う頂部の間隔)はともに一致しており、前記従動部材が持つ歯の数をT、この歯先の間隔をD度とするとD=360/Tが成り立つ。また、本ステッピング・アクチュエータは前記従動部材1つと前記駆動部材3つ以上から構成される。前記駆動部材の数をN(整数N≧3)とし、隣り合う前記駆動部材がD/N度の間隔を隔てて、中間ハウジング内の収納部に配置される。この時点で前記駆動部材が持つ歯の数は(T−1)/Nとなる。これにより、全ての前記駆動部材が順番に押し込まれ一巡した時点で、前記従動部材はD度分回転することになる。よって、前記駆動部材が1回押し込まれるごとに前記従動部材が回転する変位量はD/N度となり、これが1ステップ分の変位量であるとみなせる。   As described above, since the top of the drive member and the valley of the driven member are engaged with each other, the distance between the tooth tips of the driven member 1 and the drive member (2, 3 or 4) (the distance between the adjacent tops). Are equal to each other, and if the number of teeth of the driven member is T and the distance between the tooth tips is D degrees, D = 360 / T is established. The stepping actuator includes one driven member and three or more driving members. The number of the drive members is N (integer N ≧ 3), and the adjacent drive members are arranged in the storage portion in the intermediate housing with an interval of D / N degrees. At this time, the number of teeth of the drive member is (T-1) / N. As a result, when all the driving members are pushed in order and complete a cycle, the driven member rotates by D degrees. Therefore, the displacement amount that the driven member rotates every time the driving member is pushed once becomes D / N degrees, and this can be regarded as the displacement amount for one step.

よって、上記の関係を満たすために、第1駆動部材2と第2駆動部材3および第3駆動部材4では、中間ハウジング内において歯先間隔(駆動部材における隣り合う頂部の間隔)の3分の1の間隔をずらして配置されることになり(図6参照)、1ステップの回転量は歯先間隔の3分の1となる。   Therefore, in order to satisfy the above relationship, the first drive member 2, the second drive member 3, and the third drive member 4 have a tooth tip interval (interval between adjacent top portions of the drive member) of 3 minutes in the intermediate housing. Therefore, the amount of rotation in one step is one third of the tooth tip interval.

この1ステップ分の回転量は3つの駆動部材を用いた場合、歯先間隔の3分の1となり、N(N≧3)個の駆動部材を用いた場合は1ステップ分の回転量を歯先間隔のN分の1とすることができる。   The amount of rotation for one step is one third of the tooth tip interval when three drive members are used, and the amount of rotation for one step is calculated when N (N ≧ 3) drive members are used. It can be 1 / N of the previous interval.

例えばT=10、N=3の場合、図1のように前記駆動部材の歯数は3つとなり、3つの前記駆動部材が前記中間ハウジング内に12度の間隔を空けて配置される。前記第1駆動部材の次に前記第2駆動部材を押し込んだ際の前記従動部材の回転する変位量は、12度となり、これが1ステップ分の変位量であるとみなせる。   For example, when T = 10 and N = 3, the number of teeth of the drive member is three as shown in FIG. 1, and the three drive members are arranged in the intermediate housing with an interval of 12 degrees. The amount of rotation of the driven member when the second driving member is pushed in after the first driving member is 12 degrees, which can be regarded as the amount of displacement for one step.

よって、構成する駆動部材の数を増やすことで、回転の精度を高めることができる。当然、駆動部材および従動部材の歯数を増やすことでも回転精度向上を実現可能である。   Therefore, the accuracy of rotation can be increased by increasing the number of driving members to be configured. Of course, it is also possible to improve the rotation accuracy by increasing the number of teeth of the driving member and the driven member.

よって、歯先の間隔を小さくする(Tを大きくする)ことで、さらに回転精度を高めることができる。また、構成される駆動部材の数を増やす(Nを大きくする)事でも、回転精度を高めることが可能である。   Therefore, the rotation accuracy can be further increased by reducing the interval between the tooth tips (increasing T). Further, the rotational accuracy can be increased by increasing the number of drive members configured (increasing N).

図2(e)の状態から、さらに第3駆動部材4を押し込むと図2(f)に示すように、第1駆動部材2が従動部材1から完全に離れ、第2駆動部材3は従動部材1の回転に伴い、完全にかみ合っていた状態から押し戻されることになる。この図2(f)の状態が図2(a)の状態と同じであり、一連の第1駆動部材2から第3駆動部材4までの流体圧により押し込み動作を繰り返すことで従動部材1の同一方向への回転を実現している。   When the third driving member 4 is further pushed in from the state of FIG. 2 (e), the first driving member 2 is completely separated from the driven member 1 as shown in FIG. 2 (f), and the second driving member 3 is driven member. With the rotation of 1, it is pushed back from the state of being completely engaged. The state of FIG. 2 (f) is the same as the state of FIG. 2 (a), and the driven member 1 is the same by repeating the pushing operation by the fluid pressure from the first drive member 2 to the third drive member 4 in a series. Rotation in the direction is realized.

また、駆動部材と従動部材が完全にかみ合った状態で、停止することができ、保持トルクを発生することができる。   Further, the driving member and the driven member can be stopped in a state where they are completely engaged, and a holding torque can be generated.

本発明によれば、駆動部材の押し込み動作を、第1駆動部材、第2駆動部材、第3駆動部材、の順番に繰り返せば従動部材は時計回りに回転し、第3駆動部材、第2駆動部材、第1駆動部材、の順番に繰り返せば従動部材は反時計回りに回転する。つまり、駆動部材の押し込む順番を切り替えることで、従動部材の回転方向を切り替えることできる。   According to the present invention, if the pushing operation of the drive member is repeated in the order of the first drive member, the second drive member, and the third drive member, the driven member rotates clockwise, and the third drive member and the second drive If it repeats in order of a member and the 1st drive member, a follower member will rotate counterclockwise. That is, the rotation direction of the driven member can be switched by switching the order in which the driving member is pushed.

さらに、駆動部材の押し込み動作は流体圧によって実現可能であり、MRI環境下において使用した場合であっても、MRI機器の動作に影響を及ぼしにくいという利点がある。   Further, the pushing operation of the driving member can be realized by fluid pressure, and even when used in an MRI environment, there is an advantage that the operation of the MRI apparatus is hardly affected.

かつ、その際の押し込み動作における駆動部材の変位量は、駆動部材の頂部が従動部材の頂部より下にある状態(初期状態)から、駆動部材の頂部が従動部材の谷部に完全にかみ合うまで(完了状態)である。この初期状態の駆動部材の頂部と従動部材の頂部との隙間の距離を最小にすることで、駆動部材の変位量を必要最小限に抑えることができる。これにより、高速な動作が可能である。   And the displacement amount of the drive member in the pushing operation at that time is from the state where the top of the drive member is below the top of the driven member (initial state) until the top of the drive member completely engages with the valley of the driven member. (Completed state). By minimizing the distance of the gap between the top of the driving member and the top of the driven member in the initial state, the amount of displacement of the driving member can be minimized. Thereby, high-speed operation is possible.

また、完全に駆動部材と従動部材が完全にかみ合うため、回転におけるバックラッシがほとんどない。   Further, since the driving member and the driven member are completely engaged with each other, there is almost no backlash in rotation.

前記第1駆動部材の次に前記第2駆動部材を押し込むと、前記従動部材の回転に伴い、前記第1駆動部材の第1スライド面が前記従動部材第1被スライド面上をスライドすることで、第1駆動部材が押し戻される。そのため、前記駆動部材を流体圧の正圧のみで順番に押し込むだけで、前記従動部材の回転動作を実現することが可能である。   When the second driving member is pushed in after the first driving member, the first sliding surface of the first driving member slides on the driven member first sliding surface as the driven member rotates. The first drive member is pushed back. Therefore, it is possible to realize the rotational operation of the driven member simply by pushing the driving member in order only with the positive pressure of the fluid pressure.

このように、駆動部材の押し戻される動作は従動部材の回転に伴い行われることで、駆動部材の押し戻される量は最小に抑えられる。   As described above, the operation of pushing back the driving member is performed with the rotation of the driven member, so that the amount of pushing back of the driving member can be minimized.

また、駆動部材の押し戻し動作は従動部材の回転に伴い行われ、駆動部材には押し込み動作の駆動力のみを与えれば良い。これにより、流体圧を用いた場合、動力源として正圧を発生する装置(コンプレッサーなど)のみでシステムの構築が可能となる。もちろん、駆動部材に負圧を与えることで、押し戻し動作を実現することも可能である。   Further, the pushing-back operation of the driving member is performed with the rotation of the driven member, and only the driving force of the pushing operation needs to be given to the driving member. As a result, when fluid pressure is used, a system can be constructed only with a device (such as a compressor) that generates positive pressure as a power source. Of course, it is also possible to realize a push-back operation by applying a negative pressure to the drive member.

既存の空気圧式アクチュエータは低速・高精度で再現性のある動作が困難である。これは主に空気の圧縮性やアクチュエータの動作原理に起因するものである。また、既存の流体圧式のステッピング・アクチュエータはその機構が複雑であり構成部品が多いことからメンテナンス性や実用性が悪く、簡素な機構の場合は回転精度・回転速度が損なわれるなどの問題があった。本アクチュエータはこれらの問題を解決するものであり、従来不可能であった分野に対しても応用可能な流体圧アクチュエータということで産業上の利用価値は高いと考えられる。構造が単純であるため実用化の障壁は低く、今後広く用いられる可能性がある。   Existing pneumatic actuators are difficult to operate with low speed, high accuracy and reproducibility. This is mainly due to the compressibility of air and the operating principle of the actuator. In addition, existing fluid pressure type stepping actuators have complicated mechanisms and many components, so they are poor in maintainability and practicality. In the case of simple mechanisms, there are problems such as impaired rotation accuracy and rotation speed. It was. The present actuator solves these problems, and is considered to have a high industrial utility value because it is a fluid pressure actuator that can be applied to fields that were impossible in the past. Since the structure is simple, the barrier to practical use is low and it may be widely used in the future.

1 従動部材
11 第1被スライド面
12 第2被スライド面
13 頂部
14 谷部
2 第1駆動部材
21 第1スライド面
22 第2スライド面
23 頂部
24 谷部
25 押圧面
3 第2駆動部材
31 第1スライド面
32 第2スライド面
33 頂部
34 谷部
35 押圧面
4 第3駆動部材
41 第1スライド面
42 第2スライド面
43 頂部
44 谷部
45 押圧面
5 上部ハウジング
6 中間ハウジング
61 第1収納部
62 第2収納部
63 第3収納部
64 第1ピストン通路
65 第2ピストン通路
66 第3ピストン通路
7 下部ハウジング
71 第1チューブ接続部
72 第2チューブ接続部
73 第3チューブ接続部
81 第1ピストン
82 第2ピストン
83 第3ピストン
9 回転軸
1 driven member 11 first slide surface 12 second slide surface 13 top 14 valley 2 first drive member 21 first slide surface 22 second slide surface 23 top 24 valley 25 pressing surface 3 second drive member 31 first 1 slide surface 32 2nd slide surface 33 top portion 34 valley portion 35 pressing surface 4 third drive member 41 first slide surface 42 second slide surface 43 top portion 44 valley portion 45 pressing surface 5 upper housing 6 intermediate housing 61 first storage portion 62 Second storage portion 63 Third storage portion 64 First piston passage 65 Second piston passage 66 Third piston passage 7 Lower housing 71 First tube connection portion 72 Second tube connection portion 73 Third tube connection portion 81 First piston 82 Second piston 83 Third piston 9 Rotating shaft

Claims (3)

少なくとも3つ以上のN個の第1駆動部材、第2駆動部材、第3駆動部材...第N駆動部材から成る複数の駆動部材と1つの従動部材を備え、前記複数の駆動部材は中間ハウジングのそれぞれの収納部に収められ、前記従動部材は上部ハウジングに収められ、
前記それぞれの駆動部材は複数の傾斜した第1スライド面と前記第1スライド面と同数の第2スライド面を備え、隣合った第スライド面と第2スライド面により頂部又は谷部が形成され、
前記従動部材は傾斜した第1被スライド面と前記第1被スライド面と同数の第2被スライド面を備え、隣合った第被スライド面と第2被スライド面により頂部又は谷部が形成され、
前記第1スライド面と前記第1被スライド面は同一の方向に傾斜し、且つ前記第2スライド面と前記第2被スライド面は同一の方向に傾斜し、前記駆動部材における隣接する頂部の間隔と、前記従動部材における隣接する谷部の間隔は同一であり、
前記第1駆動部材が流体圧により前記従動部材の方向に押されることにより、前記従動部材の第1被スライド面が前記第1駆動部材の第1スライド面上をスライドし、前記従動部材の谷部と前記第1駆動部材の頂部がかみ合うか又は前記従動部材の頂部と前記第1部材の谷部がかみ合うまで、前記従動部材が回転され、
この流体圧による駆動部材の前記従動部材方向への押し込みを、前記第1駆動部材から前記第2駆動部材、前記第2駆動部材から前記第3駆動部材、前記第3駆動部材から...第N駆動部材、前記第N駆動部材から前記第1駆動部材へと順次行うことにより従動部材は同一方向に回転されることを特徴とする、ステッピング・アクチュエータ。
At least three or more N first drive members, second drive members, third drive members. . . A plurality of driving members comprising an Nth driving member and one driven member, wherein the plurality of driving members are housed in respective housing portions of the intermediate housing, and the driven member is housed in the upper housing;
Wherein each of the drive member comprises a second sliding surface in the same number as that of said first sliding surface and the first slide surface inclined in multiple, top or valley by the first sliding surface and the second sliding surface Tonaria' is formed And
The driven member comprises a first second object slide surface of the same number as the first target slide surface and the slide surface that is inclined obliquely, top or valley by the first target slide surface and the second object slide surface which Tonaria' Formed,
The first slide surface and the first slide surface are inclined in the same direction, and the second slide surface and the second slide surface are inclined in the same direction. And the interval between adjacent valleys in the driven member is the same,
When the first driving member is pushed in the direction of the driven member by fluid pressure, the first sliding surface of the driven member slides on the first sliding surface of the first driving member, and the valley of the driven member. The driven member is rotated until the top of the first drive member is engaged or the top of the driven member is engaged with the trough of the first member ;
The pushing of the driving member in the direction of the driven member by the fluid pressure is performed from the first driving member to the second driving member, from the second driving member to the third driving member, from the third driving member . . . The stepping actuator is characterized in that the driven member is rotated in the same direction by sequentially performing the N-th driving member and the N-th driving member to the first driving member.
前記複数の駆動部材の数の増減により、前記従動部材の回転量が調整されることを特徴とする請求項1に記載のステッピング・アクチュエータ。   The stepping actuator according to claim 1, wherein the amount of rotation of the driven member is adjusted by increasing or decreasing the number of the plurality of driving members. 前記第1駆動部材に次いで前記第2駆動部材を押し込むと、前記従動部材の回転に伴い、前記第1駆動部材の第1スライド面が前記従動部材第1被スライド面上をスライドすることで、自動的に第1駆動部材が押し戻され、同様に第2駆動部材から第N駆動部材も順次、自動的に押し戻されることを特徴とする、請求項1又は2に記載のステッピング・アクチュエータ。 When the second driving member is pushed in after the first driving member, the first sliding surface of the first driving member slides on the driven member first sliding surface as the driven member rotates. automatically the first driving member is pushed back, Similarly, successively the N-th driving member from the second driving member, automatically pushed back and said Rukoto, stepping actuator according to claim 1 or 2.
JP2010117286A 2010-05-21 2010-05-21 Stepping actuator Expired - Fee Related JP5647436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117286A JP5647436B2 (en) 2010-05-21 2010-05-21 Stepping actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117286A JP5647436B2 (en) 2010-05-21 2010-05-21 Stepping actuator

Publications (2)

Publication Number Publication Date
JP2011241970A JP2011241970A (en) 2011-12-01
JP5647436B2 true JP5647436B2 (en) 2014-12-24

Family

ID=45408828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117286A Expired - Fee Related JP5647436B2 (en) 2010-05-21 2010-05-21 Stepping actuator

Country Status (1)

Country Link
JP (1) JP5647436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3504445B1 (en) 2016-08-23 2022-10-05 Universiteit Twente Pneumatic stepper motor and device comprising at least one such pneumatic stepper motor
CN112424448B (en) * 2018-06-20 2023-03-24 埃因霍温医疗机器人有限公司 Gas or fluid driven mechanical stepping motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089773A (en) * 1973-12-17 1975-07-18
JPH0453476Y2 (en) * 1986-09-11 1992-12-16
JP5116021B2 (en) * 2007-11-01 2013-01-09 国立大学法人 東京大学 Stepping actuator

Also Published As

Publication number Publication date
JP2011241970A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Stoianovici et al. A new type of motor: pneumatic step motor
Park et al. Standing wave brass-PZT square tubular ultrasonic motor
Hong et al. Magnetically actuated gearbox for the wireless control of millimeter-scale robots
Chen et al. A 10-mm MR-conditional unidirectional pneumatic stepper motor
US20240151249A1 (en) Pneumatic stepper motor and device comprising at least one such pneumatic stepper motor
JP2018523458A (en) Improved granularity encoderless motor and usage
JP5647436B2 (en) Stepping actuator
Wang et al. Magnetic field computation of a PM spherical stepper motor using integral equation method
Hunstig et al. Stick-slip and slip-slip operation of piezoelectric inertia drives—Part II: Frequency-limited excitation
JP2010106940A (en) Magnetic wave gear device and magnetic transmission reduction gear
Simi et al. Magnetic link design for a robotic laparoscopic camera
Boland et al. High speed pneumatic stepper motor for MRI applications
RU2584359C2 (en) Engine system, engine and robot module incorporating said engine
JP5164062B2 (en) Multi-degree-of-freedom electromagnetic actuator
JP2009108993A (en) Stepping actuator
JP2008206335A (en) Cylindrical linear motor
Pan et al. Cornerstone for MRI-compatible robots: A continuous pneumatic actuator with easy-to-connect prismatic/revolute and bidirectional encoder modules
Zhang et al. A multi-degree-of-freedom ultrasonic motor using in-plane deformation of planar piezoelectric elements
Lu et al. Development of a novel rotor-embedded-type multidegree-of-freedom spherical ultrasonic motor
WO2014142242A1 (en) Actuator using enlargement mechanism
Liang et al. An opposed piston driving pneumatic stepper motor for MR Intervention robotics
Lu et al. Examination of an outer-rotor-type multidegree-of-freedom spherical ultrasonic motor
CN105162354A (en) Giant magnetostrictive material-based rocking head type micromotor
JP6317096B2 (en) Double rotor stepper motor
JP5555981B2 (en) Sample changer and X-ray diffractometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5647436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees