JP5642324B2 - Vehicle approach notification device - Google Patents

Vehicle approach notification device Download PDF

Info

Publication number
JP5642324B2
JP5642324B2 JP2014530836A JP2014530836A JP5642324B2 JP 5642324 B2 JP5642324 B2 JP 5642324B2 JP 2014530836 A JP2014530836 A JP 2014530836A JP 2014530836 A JP2014530836 A JP 2014530836A JP 5642324 B2 JP5642324 B2 JP 5642324B2
Authority
JP
Japan
Prior art keywords
signal
value
vehicle
acquired
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014530836A
Other languages
Japanese (ja)
Other versions
JPWO2014033809A1 (en
Inventor
朝子 表
朝子 表
谷口 琢也
琢也 谷口
智能 小城戸
智能 小城戸
加藤 陽一
陽一 加藤
邦彦 荒木
邦彦 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5642324B2 publication Critical patent/JP5642324B2/en
Publication of JPWO2014033809A1 publication Critical patent/JPWO2014033809A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • B60Q5/005Arrangement or adaptation of acoustic signal devices automatically actuated
    • B60Q5/008Arrangement or adaptation of acoustic signal devices automatically actuated for signaling silent vehicles, e.g. for warning that a hybrid or electric vehicle is approaching

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッド自動車、電気自動車、電動バイクなど静粛性の高い電動移動体において、音を発生させて歩行者などにその存在を知らせるための車両接近通報装置に関するものである。   The present invention relates to a vehicle approach notification device for generating a sound and notifying a pedestrian or the like of an electric mobile body having high quietness such as a hybrid vehicle, an electric vehicle, and an electric motorcycle.

近年、電動自転車、電動カート等の開発実用化に続き、電動バイクや電動自動車等、各種移動体としての乗り物が電動化されつつある。具体的には、内燃機関を動力源とする自動車に代わって、ガソリンエンジンと電動モータとを動力源とするハイブリッド自動車や、家庭電源もしくはガソリンスタンドや電力供給スタンドなどに設置された充電器により充電される電池によって動作する電動モータを動力源とした電気自動車、もしくは、水素ガスなどを燃料とする燃料電池で発電しながら走行する燃料電池自動車などが順次開発され、ハイブリッド自動車や電気自動車などは、その一部が既に実用化され、普及し始めている。   In recent years, following the development and practical use of electric bicycles and electric carts, vehicles such as electric motorcycles and electric automobiles are being electrified. Specifically, instead of a vehicle using an internal combustion engine as a power source, charging is performed by a hybrid vehicle using a gasoline engine and an electric motor as a power source, or a charger installed at a household power source or a gasoline station or power supply station. Electric vehicles powered by electric motors powered by batteries, or fuel cell vehicles that run while generating power from fuel cells that use hydrogen gas or the like as fuel, are being developed sequentially. Some of them have already been put into practical use and are beginning to spread.

従来の内燃機関を動力源とするガソリン車やディーゼル車などは、動力源自身が放出するエンジン音や排気音、更には走行中のロードノイズ等が発生するため、街中を歩行する歩行者や自転車に乗っている人などは自動車のエンジン音や排気音などにより、車両の接近を認識することができる。しかし、ハイブリッド自動車の場合、低速走行時には、エンジンによる走行ではなく電動モータによる走行モードとなり、エンジン音や排気音等が発生せず、また、電気自動車や燃料電池自動車等に至っては全運転領域において電動モータによって走行することから、いずれの自動車も、非常に静粛性の優れた電動移動体となっている。しかしながら、このような静粛性の優れた移動体の周辺に存在する歩行者や自転車運転者等は、音の発生が少なく静粛性の高い電動モータにより走行するハイブリッド自動車や電気自動車や燃料電池自動車などの電動移動体の接近を音によって認識することができないことから、静粛性の高い移動体と歩行者等との接触事故などが発生する原因となる。   Conventional gasoline and diesel vehicles that use an internal combustion engine as a power source generate engine noise and exhaust noise emitted by the power source itself, and road noise while driving. A person on the road can recognize the approach of the vehicle by the engine sound or exhaust sound of the automobile. However, in the case of a hybrid vehicle, when driving at a low speed, it is not a driving mode by an engine but a driving mode by an electric motor, so that no engine noise or exhaust noise is generated. Since the vehicle is driven by the electric motor, any of the automobiles is an electric mobile body that is extremely quiet. However, pedestrians, bicycle drivers, etc. that exist around such moving bodies with excellent quietness, such as hybrid cars, electric cars, fuel cell cars, etc. that run with an electric motor with low noise generation and high quietness Since the approach of the electric vehicle cannot be recognized by sound, a contact accident between a highly quiet moving body and a pedestrian or the like may occur.

このため、ハイブリッド自動車、燃料電池自動車、電気自動車などが備えている静粛性が弊害となる上記のような問題を解決するため、従来の自動車などに備えられ運転者の意思で警報を発するクラクション以外の、運転者の意思とは関係なく動作する車両接近通報装置が種々提案されている。   For this reason, in order to solve the above-mentioned problems in which the quietness of hybrid vehicles, fuel cell vehicles, electric vehicles, etc. is harmful, other than the horn that is provided in conventional vehicles etc. and issues a warning at the driver's will Various vehicle approach notification devices have been proposed that operate independently of the driver's intention.

車両接近通報装置において、歩行者などに自車両の存在を報知するための報知音を、従来のエンジン音を疑似した音として発生させるようにしたものがある。例えば、特許文献1では、モータ回転数に応じた周波数を有し、アクセル開度に応じた振幅の疑似音信号と、車速センサとにより検出された車速に応じた周波数を有し、アクセル開度に応じた振幅の疑似音信号と、をコンピュータで生成し、アンプを経てスピーカより出力する。モータ回転数に基づく疑似音とするか車速に基づく疑似音とするかは、スイッチにより選択する。また、モータ回転数に基づく周波数と車速に基づく周波数とを有する疑似音を発してもよい旨が記載されている。また、特許文献2では、アクセルとブレーキの情報を基に、特にブレーキ操作の緊急度を判断して警報音を制御する技術が記載されている。   In some vehicle approach notification devices, a notification sound for notifying a pedestrian or the like of the presence of the host vehicle is generated as a sound simulating a conventional engine sound. For example, Patent Document 1 has a frequency according to the motor speed, a pseudo sound signal having an amplitude according to the accelerator opening, and a frequency according to the vehicle speed detected by the vehicle speed sensor, and the accelerator opening. A pseudo sound signal having an amplitude corresponding to the frequency is generated by a computer and output from a speaker via an amplifier. Whether to use a pseudo sound based on the motor speed or a pseudo sound based on the vehicle speed is selected by a switch. Further, it is described that a pseudo sound having a frequency based on the motor speed and a frequency based on the vehicle speed may be generated. Patent Document 2 describes a technique for controlling an alarm sound by determining an emergency level of a brake operation based on information on an accelerator and a brake.

特開平7−32948号公報JP-A-7-32948 特開2005−75182号公報JP 2005-75182 A

従来の車両接近通報装置から発生する報知音は、車速信号、アクセル開度信号やブレーキの情報といった車両から得られる信号に連動させて、ピッチと音量を変化させる。これらの車両信号は取得する周期の時間分解能が悪い、すなわち車両信号の取得する周期が長いと、報知音の変化が滑らかでなく、段階的になる問題がある。それを解決する方法として、内挿や外挿といった演算処理を用いることが考えられる。しかし、それらの方法には次の課題が存在する。内挿は、より誤差の小さい値を推定することができるが、少なくとも1周期以上の大幅な遅延が発生する。一方、外挿は、遅延は発生しないが推定誤差が大きいため、音とび現象が発生する。ここでの音とびとは、音量や音程の変化が不連続になることを指す。車両接近通報装置については種々提案されているが、車両接近通報装置に取得された取得信号の時間分解能を改善し、且つ、従来の内挿や外挿の課題を解決する車両接近通報装置は提案されていない。   The notification sound generated from the conventional vehicle approach notification device changes the pitch and volume in conjunction with signals obtained from the vehicle such as a vehicle speed signal, an accelerator opening signal, and brake information. When these vehicle signals have poor time resolution of the acquisition period, that is, when the acquisition period of the vehicle signal is long, there is a problem that the change of the notification sound is not smooth and becomes stepwise. As a method for solving this, it is conceivable to use arithmetic processing such as interpolation and extrapolation. However, these methods have the following problems. Interpolation can estimate a value with a smaller error, but causes a significant delay of at least one period. On the other hand, the extrapolation does not cause a delay, but the estimation error is large, so that a sound skip phenomenon occurs. The sound skip here means that the change in volume and pitch becomes discontinuous. Various vehicle approach reporting devices have been proposed, but a vehicle approach reporting device that improves the time resolution of the acquired signal acquired by the vehicle approach reporting device and solves the problems of conventional interpolation and extrapolation is proposed. It has not been.

本発明は、上記のような課題を解決するためになされたものであり、車両接近通報装置の取得信号の時間分解能が悪い場合でも、時間分解能を改善し、且つ、時間遅延や音とびの問題を解決することを目的としている。   The present invention has been made in order to solve the above-described problems. Even when the time resolution of the acquisition signal of the vehicle approach notification device is poor, the time resolution is improved, and there is a problem of time delay and skipping. The purpose is to solve.

本発明に係る車両接近通報装置は、電動移動体の車両信号を取得周期毎に取得し、取得信号を出力する車両信号取得部と、取得信号の信号処理を行う信号処理部と、を備え、信号処理部は、車両信号の傾きに基づいて次回取得する車両信号の推定値を算出し、今回算出された推定値である次回推定値と、前回算出された推定値である今回推定値とを用いて内挿処理を行うことを特徴とする。   A vehicle approach notification device according to the present invention includes a vehicle signal acquisition unit that acquires a vehicle signal of an electric vehicle for each acquisition cycle and outputs an acquisition signal, and a signal processing unit that performs signal processing of the acquisition signal, The signal processing unit calculates an estimated value of the vehicle signal to be acquired next time based on the inclination of the vehicle signal, and calculates the next estimated value that is the estimated value calculated this time and the current estimated value that is the previously calculated estimated value. And performing an interpolation process.

本発明に係る車両接近通報装置によれば、車両信号の傾きに基づいて次回取得する車両信号の推定値を算出し、次回推定値と今回推定値とを用いて内挿処理を行うので、取得信号の時間分解能が悪い場合でも、時間分解能を改善し、且つ、時間遅延や音とびの問題を解決することができる。   According to the vehicle approach notification device according to the present invention, the estimated value of the vehicle signal to be acquired next time is calculated based on the inclination of the vehicle signal, and the interpolation process is performed using the next estimated value and the current estimated value. Even when the time resolution of the signal is poor, the time resolution can be improved and the problems of time delay and skipping can be solved.

本発明の実施の形態1による車両接近通報装置の構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of a structure of the vehicle approach notification apparatus by Embodiment 1 of this invention. 電動移動体に搭載された車両接近通報装置を示す概念図である。It is a conceptual diagram which shows the vehicle approach notification apparatus mounted in the electrically-driven moving body. 車両信号波形及び車両信号の取得波形の例を示す図である。It is a figure which shows the example of the acquisition waveform of a vehicle signal waveform and a vehicle signal. 内挿処理波形の例を示す図である。It is a figure which shows the example of an interpolation process waveform. 内挿処理のフローチャートである。It is a flowchart of an interpolation process. 外挿処理波形の例を示す図である。It is a figure which shows the example of an extrapolation process waveform. 外挿処理のフローチャートである。It is a flowchart of an extrapolation process. 本発明の実施の形態1による信号処理波形の例を示す図である。It is a figure which shows the example of the signal processing waveform by Embodiment 1 of this invention. 本発明の実施の形態1による信号処理のフローチャートである。It is a flowchart of the signal processing by Embodiment 1 of this invention. 本発明の実施の形態2による信号処理波形の例を示す図である。It is a figure which shows the example of the signal processing waveform by Embodiment 2 of this invention. 本発明の実施の形態2による信号処理のフローチャートである。It is a flowchart of the signal processing by Embodiment 2 of this invention. 本発明の実施の形態3による信号処理波形の例を示す図である。It is a figure which shows the example of the signal processing waveform by Embodiment 3 of this invention. 本発明の実施の形態3による信号処理のフローチャートである。It is a flowchart of the signal processing by Embodiment 3 of this invention. 本発明の実施の形態4による車両接近通報装置の構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of a structure of the vehicle approach notification apparatus by Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1による車両接近通報装置の構成の概要を示すブロック図であり、図2は電動移動体に搭載された車両接近通報装置を示す概念図である。車両接近通報装置100は、電気自動車やハイブリッド自動車などのように、少なくとも一部の駆動力を電動機によって発生する電動移動体200に備えられている。車両接近通報装置100は、報知音信号を出力する報知音制御ユニット10と、その報知音信号によって報知音を車外に発生するスピーカなどの発音体40を備えている。ここでの報知音は車両の走行状態を想起させる音を示す。報知音は従来の自動車のエンジン音を想起させる音でも良いし、そうでなくても良い。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an outline of the configuration of a vehicle approach notification device according to Embodiment 1 of the present invention, and FIG. 2 is a conceptual diagram showing a vehicle approach notification device mounted on an electric vehicle. The vehicle approach notification device 100 is provided in an electric vehicle 200 that generates at least a part of driving force by an electric motor, such as an electric vehicle or a hybrid vehicle. The vehicle approach notification device 100 includes a notification sound control unit 10 that outputs a notification sound signal, and a sounding body 40 such as a speaker that generates notification sound outside the vehicle by the notification sound signal. The notification sound here indicates a sound reminiscent of the running state of the vehicle. The notification sound may or may not be a sound reminiscent of a conventional automobile engine sound.

報知音制御ユニット10は、車両信号20を取得し、車両信号20の取得信号を出力する車両信号取得部1と、取得信号の信号処理を行う信号処理部2と、調整情報テーブル3から調整情報を取得して、報知音を変化させるためのピッチや音量の倍率を算出する調整情報取得部4と、報知音データ5をピッチや音量の倍率に基づいて報知音を生成する報知音生成部6と、報知音生成部6により生成した報知音を発音体40に出力する報知音出力部7とを備える。車両信号20は、車両から取得される車両の挙動を示す情報である。車両信号20は、車速信号やアクセル開度信号、ブレーキ信号の各信号、もしくはこれら複数の信号を表す。車両信号20は、ハードワイヤから取得される信号でも良いし、CAN(Controller Area Network)バスやLIN(Local Interconnect Network)バスなどといった車載通信から取得される信号でも良い。車両信号20は車両信号取得部1により取得される。   The notification sound control unit 10 acquires the vehicle signal 20 and outputs the acquisition signal of the vehicle signal 20, the signal processing unit 2 that performs signal processing of the acquisition signal, and the adjustment information from the adjustment information table 3. And an adjustment information acquisition unit 4 that calculates a pitch and volume magnification for changing the notification sound, and a notification sound generation unit 6 that generates notification sound from the notification sound data 5 based on the pitch and volume magnification. And a notification sound output unit 7 that outputs the notification sound generated by the notification sound generation unit 6 to the sounding body 40. The vehicle signal 20 is information indicating the behavior of the vehicle acquired from the vehicle. The vehicle signal 20 represents a vehicle speed signal, an accelerator opening signal, a brake signal, or a plurality of these signals. The vehicle signal 20 may be a signal acquired from a hard wire or a signal acquired from in-vehicle communication such as a CAN (Controller Area Network) bus or a LIN (Local Interconnect Network) bus. The vehicle signal 20 is acquired by the vehicle signal acquisition unit 1.

車両接近通報装置100の動作を説明する。車両信号取得部1は、車両信号20を取得周期T毎に取得する。信号処理部2は車両信号取得部1により取得した車両信号20の取得信号の時間分解能を向上させる信号処理を行う。信号処理部2は、取得した車両信号20の傾きにより、次回の車両信号の信号値を推定し、この推定値と前回の推定値の内挿処理を行うことにより、車両信号20の取得信号の時間分解能を改善させる。調整情報取得部4は、信号処理部2から得られた情報(処理信号値)に連動して報知音を変化させるためのピッチや音量の倍率を調整情報テーブル3から算出する。また、調整情報取得部4は、報知音生成部6にピッチや音量の倍率を出力する。   The operation of the vehicle approach notification device 100 will be described. The vehicle signal acquisition unit 1 acquires the vehicle signal 20 every acquisition period T. The signal processing unit 2 performs signal processing for improving the time resolution of the acquisition signal of the vehicle signal 20 acquired by the vehicle signal acquisition unit 1. The signal processing unit 2 estimates the signal value of the next vehicle signal based on the inclination of the acquired vehicle signal 20, and performs an interpolation process between the estimated value and the previous estimated value, thereby obtaining the acquired signal of the vehicle signal 20. Improve time resolution. The adjustment information acquisition unit 4 calculates, from the adjustment information table 3, a pitch and a volume magnification for changing the notification sound in conjunction with the information (processed signal value) obtained from the signal processing unit 2. The adjustment information acquisition unit 4 also outputs the pitch and volume magnifications to the notification sound generation unit 6.

報知音データ5は、報知音を生成するための元となる音素を指し、これは1つでも複数でも良い。音素は、従来のエンジン音を想起するものだけに制限されず、正弦波やホワイトノイズ、メロディ音など、どのようなものでも良い。また報知音データは、内部メモリや外部メモリのROM(Read Only Memory)やRAM(Random Access Memory)に保存されたデータでも良いし、リアルタイムに入力されるデータでも良い。   The notification sound data 5 indicates a phoneme that is a source for generating the notification sound, and may be one or more. The phonemes are not limited to those reminiscent of conventional engine sounds, and may be anything such as sine waves, white noise, and melody sounds. The notification sound data may be data stored in a ROM (Read Only Memory) or a RAM (Random Access Memory) of an internal memory or an external memory, or may be data input in real time.

報知音生成部6は、調整情報取得部4から取得したピッチや音量の倍率から報知音データ5のピッチや音量を調整し、報知音出力部7に出力する。報知音データ5が複数の場合、報知音生成部6はピッチや音量の調整のほか、音素の合成処理を行っても良い。報知音出力部7は、報知音生成部6により生成された報知音の最終的な音圧の調整を行い、報知音を発音体40に出力する。発音体40は、報知音を再生ための車外に取り付けられたスピーカを示す。発音体40は1つでも良いし、複数あっても良い。   The notification sound generation unit 6 adjusts the pitch and volume of the notification sound data 5 from the pitch and volume magnification acquired from the adjustment information acquisition unit 4, and outputs them to the notification sound output unit 7. When there are a plurality of notification sound data 5, the notification sound generation unit 6 may perform phoneme synthesis processing in addition to adjustment of pitch and volume. The notification sound output unit 7 adjusts the final sound pressure of the notification sound generated by the notification sound generation unit 6 and outputs the notification sound to the sounding body 40. The sounding body 40 indicates a speaker attached outside the vehicle for reproducing the notification sound. There may be one sounding body 40 or a plurality of sounding bodies 40.

信号処理部2について詳しく説明する。図3を用いて、車両信号20の取得信号を説明する。車両信号20の取得信号は、車両信号20を取得周期T毎に取得した信号値(適宜、取得値とも称する)の集合である。図3は、車両信号波形及び車両信号の取得波形の例を示す図である。横軸は時間であり、縦軸は信号値である。図3は、車両信号20の取得周期Tが200msの例であり、この場合の取得信号の時間分解能は200msである。図3の黒丸は、車両信号取得部1により取得した車両信号20の信号値である。車両信号20の波形は、本来車両信号波形51のように滑らかであるが、車両信号取得部1における取得信号の時間分解能が悪い場合、取得信号の波形は、取得波形52のように段階的な変化となる。この段階的な変化は最終的に報知音に現れる。そのため信号処理部2では、取得した車両信号20の信号値から得られる情報に基づいて取得信号の時間分解能を良くして、車両信号波形51の形(理想値)に近づける処理を行う。   The signal processing unit 2 will be described in detail. The acquisition signal of the vehicle signal 20 will be described with reference to FIG. The acquisition signal of the vehicle signal 20 is a set of signal values (also referred to as acquisition values as appropriate) acquired from the vehicle signal 20 every acquisition period T. FIG. 3 is a diagram illustrating an example of a vehicle signal waveform and a vehicle signal acquisition waveform. The horizontal axis is time, and the vertical axis is signal value. FIG. 3 shows an example in which the acquisition period T of the vehicle signal 20 is 200 ms, and the time resolution of the acquisition signal in this case is 200 ms. The black circles in FIG. 3 are signal values of the vehicle signal 20 acquired by the vehicle signal acquisition unit 1. The waveform of the vehicle signal 20 is essentially smooth like the vehicle signal waveform 51, but when the time resolution of the acquisition signal in the vehicle signal acquisition unit 1 is poor, the waveform of the acquisition signal is stepwise like the acquisition waveform 52. It becomes a change. This gradual change finally appears in the notification sound. Therefore, the signal processing unit 2 performs a process of improving the time resolution of the acquired signal based on the information obtained from the signal value of the acquired vehicle signal 20 to approximate the shape (ideal value) of the vehicle signal waveform 51.

車両信号20の取得信号の時間分解能が悪い場合における内挿処理(補間処理とも呼ばれる)について説明する。図4は内挿処理波形の例を示す図であり、図5は内挿処理のフローチャートである。図4において、横軸は時間であり、縦軸は信号値である。内挿処理波形53は、車両信号20の信号値を時間遅延54だけ遅延させて内挿処理を行った波形である。内挿処理は、図5のステップS001、S002、S003の処理を行う。ステップS001にて、車両信号取得部1から現在(nサンプル目)の信号値x(n)と、前回(n−1サンプル目)の信号値x(n−1)を取得する。ステップS002にて、処理信号値の変化量δを計算し、変化量δを更新する。取得周期T毎に車両信号20のデータ数を拡張する拡張データ数をmとすると、変化量δは式(1)のように表せる。
δ=(x(n)−x(n−1))/(m+1) ・・・(1)
An interpolation process (also referred to as an interpolation process) when the time resolution of the acquisition signal of the vehicle signal 20 is poor will be described. FIG. 4 is a diagram showing an example of an interpolation processing waveform, and FIG. 5 is a flowchart of the interpolation processing. In FIG. 4, the horizontal axis is time, and the vertical axis is signal value. The interpolation processing waveform 53 is a waveform obtained by performing the interpolation processing by delaying the signal value of the vehicle signal 20 by the time delay 54. In the interpolation process, the processes in steps S001, S002, and S003 in FIG. 5 are performed. In step S001, the current (n-th sample) signal value x (n) and the previous (n-1 sample) signal value x (n-1) are acquired from the vehicle signal acquisition unit 1. In step S002, the change amount δ of the processing signal value is calculated, and the change amount δ is updated. If the number of expansion data that expands the number of data of the vehicle signal 20 for each acquisition period T is m, the amount of change δ can be expressed as in equation (1).
δ = (x (n) −x (n−1)) / (m + 1) (1)

例えば、取得周期T毎に車両信号20のデータ数を拡張する拡張データ数mを3とすると、変化量δは式(2)のように表せる。
δ=(x(n)−x(n−1))/4 ・・・(2)
For example, when the expansion data number m that expands the number of data of the vehicle signal 20 for each acquisition period T is 3, the amount of change δ can be expressed as Equation (2).
δ = (x (n) −x (n−1)) / 4 (2)

ステップS003にて、現在(nサンプル目)の処理信号値の数を以下のように、拡張する。拡張データ数mを3とすると、処理信号値の数は、m+1、すなわち4になる。4つの処理信号値0(x0(n))、処理信号値1(x1(n))、処理信号値2(x2(n))、処理信号値3(x3(n))は、それぞれ式(3)〜(6)のように表せる。
x0(n)=x(n−1) ・・・(3)
x1(n)=x(n−1)+(m−2)*δ
=x(n−1)+δ ・・・(4)
x2(n)=x(n−1)+(m−1)*δ
=x(n−1)+2*δ ・・・(5)
x3(n)=x(n−1)+m*δ
=x(n−1)+3*δ ・・・(6)
In step S003, the number of current processing signal values (n-th sample) is expanded as follows. When the number of extended data m is 3, the number of processed signal values is m + 1, that is, 4. Four processing signal values 0 (x0 (n)), processing signal value 1 (x1 (n)), processing signal value 2 (x2 (n)), and processing signal value 3 (x3 (n)) are respectively expressed by the formulas ( It can be expressed as 3) to (6).
x0 (n) = x (n-1) (3)
x1 (n) = x (n-1) + (m-2) * δ
= X (n-1) + δ (4)
x2 (n) = x (n-1) + (m-1) * δ
= X (n-1) + 2 * δ (5)
x3 (n) = x (n-1) + m * δ
= X (n-1) + 3 * δ (6)

図4は、車両信号20の取得周期Tが200msであり、拡張データ数mが3である例である。信号処理部2で内挿処理を行うことにより、取得信号の時間分解能を改善している。内挿処理は、車両信号20の取得値を1周期分遅らせて、信号値の間の値を線形補間しているため、誤差が小さい。しかし1周期分、信号値を遅らせるため、車両信号20の取得信号の時間分解能が悪い場合、例えば図3、図4のように取得周期Tが200msの場合には、大幅な時間遅延が発生してしまう。このことから、内挿処理は可能な限り早いレスポンスが要求されるアクセル開度などの信号を取得し、この取得信号の時間分解能の改善処理には不向きである。   FIG. 4 shows an example in which the acquisition period T of the vehicle signal 20 is 200 ms and the number of extended data m is 3. By performing the interpolation process in the signal processing unit 2, the time resolution of the acquired signal is improved. The interpolation process delays the acquired value of the vehicle signal 20 by one cycle and linearly interpolates the value between the signal values, so that the error is small. However, since the signal value is delayed by one period, when the time resolution of the acquisition signal of the vehicle signal 20 is poor, for example, when the acquisition period T is 200 ms as shown in FIGS. End up. For this reason, the interpolation process acquires a signal such as an accelerator opening that requires a response as fast as possible, and is not suitable for improving the time resolution of the acquired signal.

車両信号20の取得信号の時間分解能が悪い場合における外挿処理(補外処理とも呼ばれる)について説明する。図6は外挿処理波形の例を示す図であり、図7は外挿処理のフローチャートである。図6において、横軸は時間であり、縦軸は信号値である。外挿処理波形55は、車両信号20の信号値に対して外挿処理を行った波形である。外挿処理は、図7のステップS001、S002、S004の処理を行う。外挿処理のステップS001、S002は、図5の内挿処理と同様である。   An extrapolation process (also called extrapolation process) when the time resolution of the acquisition signal of the vehicle signal 20 is poor will be described. FIG. 6 is a diagram illustrating an example of an extrapolation processing waveform, and FIG. 7 is a flowchart of the extrapolation processing. In FIG. 6, the horizontal axis is time, and the vertical axis is signal value. The extrapolation processing waveform 55 is a waveform obtained by performing extrapolation processing on the signal value of the vehicle signal 20. In the extrapolation process, the processes of steps S001, S002, and S004 in FIG. 7 are performed. Steps S001 and S002 of the extrapolation process are the same as the interpolation process of FIG.

ステップS004にて、現在(nサンプル目)の処理信号値の数を以下のように、拡張する。拡張データ数mを3とすると、処理信号値の数は、m+1、すなわち4になる。4つの処理信号値0(x0(n))、処理信号値1(x1(n))、処理信号値2(x2(n))、処理信号値3(x3(n))は、それぞれ式(7)〜(10)のように表せる。
x0(n)=x(n) ・・・(7)
x1(n)=x(n)+(m−2)*δ
=x(n)+δ ・・・(8)
x2(n)=x(n)+(m−1)*δ
=x(n)+2*δ ・・・(9)
x3(n)=x(n)+m*δ
=x(n)+3*δ ・・・(10)
In step S004, the number of current processing signal values (n-th sample) is expanded as follows. When the number of extended data m is 3, the number of processed signal values is m + 1, that is, 4. Four processing signal values 0 (x0 (n)), processing signal value 1 (x1 (n)), processing signal value 2 (x2 (n)), and processing signal value 3 (x3 (n)) are respectively expressed by the formulas ( 7) to (10).
x0 (n) = x (n) (7)
x1 (n) = x (n) + (m−2) * δ
= X (n) + δ (8)
x2 (n) = x (n) + (m−1) * δ
= X (n) + 2 * δ (9)
x3 (n) = x (n) + m * δ
= X (n) + 3 * δ (10)

図6は、図4と同様に車両信号20の取得周期Tが200msであり、拡張データ数mが3である例である。信号処理部2で外挿処理を行うことにより、取得信号の時間分解能を改善している。外挿処理は1周期前(前回)に取得した信号値と今回の信号値から1周期後(次回)の信号値を推定し、その推定値と今回の取得値の間を線形補間している。そのため、内挿処理とは異なり、時間遅延は発生しない。しかし1周期後の信号値を推定することから誤差が大きく、図6の破線図形56、57で示した領域のように不連続な値、特に車両信号波形51が下がり傾向の場合における信号値の下降から上昇する値(傾向外上昇値)が発生してしまう。この不連続の値は、音とび現象として報知音にあらわれる。このことから、外挿処理は、車両信号20の車両信号波形51が急激に変化するような車両信号に対して、車両信号20の取得信号の時間分解能を改善する処理には不向きである。   FIG. 6 is an example in which the acquisition cycle T of the vehicle signal 20 is 200 ms and the number of extended data m is 3, as in FIG. By performing extrapolation processing in the signal processing unit 2, the time resolution of the acquired signal is improved. The extrapolation process estimates the signal value after one cycle (next) from the signal value acquired one cycle before (previous) and the current signal value, and linearly interpolates between the estimated value and the current acquired value. . Therefore, unlike the interpolation process, no time delay occurs. However, since the signal value after one cycle is estimated, the error is large, and the signal value in the case where the signal value is discontinuous as shown by the broken lines 56 and 57 in FIG. A value that rises from a descent (an out-of-trend rise value) occurs. This discontinuous value appears in the notification sound as a skipping phenomenon. For this reason, the extrapolation process is not suitable for the process of improving the time resolution of the acquisition signal of the vehicle signal 20 with respect to the vehicle signal in which the vehicle signal waveform 51 of the vehicle signal 20 changes abruptly.

上記で説明した内挿処理と外挿処理のそれぞれの欠点を解決する方法を説明する。図8は本発明の実施の形態1による信号処理波形の例を示す図であり、図9は本発明の実施の形態1による信号処理のフローチャートである。本発明で実施する信号処理を、推定値補間処理と呼ぶことにする。図8において、横軸は時間であり、縦軸は信号値である。信号処理波形58は、車両信号20の信号値に対して実施の形態1の推定値補間処理を行った波形である。実施の形態1の推定値補間処理は、図9のステップS101、S102、S103、S104の処理を行う。推定値補間処理のステップS101は、内挿処理及び外挿処理のステップS001と同様である。   A method for solving the respective disadvantages of the interpolation processing and extrapolation processing described above will be described. FIG. 8 is a diagram showing an example of signal processing waveforms according to the first embodiment of the present invention, and FIG. 9 is a flowchart of signal processing according to the first embodiment of the present invention. The signal processing performed in the present invention will be referred to as estimated value interpolation processing. In FIG. 8, the horizontal axis is time, and the vertical axis is signal value. The signal processing waveform 58 is a waveform obtained by performing the estimated value interpolation processing of the first embodiment on the signal value of the vehicle signal 20. In the estimated value interpolation process of the first embodiment, the processes of steps S101, S102, S103, and S104 in FIG. 9 are performed. Step S101 of the estimated value interpolation process is the same as step S001 of the interpolation process and the extrapolation process.

ステップS101にて、車両信号取得部1から現在(nサンプル目)の信号値x(n)(今回取得値)と、前回(n−1サンプル目)の信号値x(n−1)(前回取得値)を取得する。ステップS102にて、次回(n+1サンプル目)の信号値を推定した推定値est_x(n+1)(次回推定値)を、式(11)のように算出する。
est_x(n+1)=(x(n)−x(n−1))+x(n)
=2*x(n)−x(n−1) ・・・(11)
なお、信号値x(n−1)の初回(初期値)については、車両信号20が車速信号であれば0km/h、車両信号20がアクセル開度であれば0%とする。車両信号20がその他の車両信号である場合についても、車両を起動させたときの初期状態を信号値x(n−1)の初期値とすればよい。信号値x(n)や信号値x(n−1)は一定の取得周期T毎に取得されるので、推定値est_x(n+1)は、車両信号20の傾き(x(n)−x(n−1))/Tや周期当たりの傾き(x(n)−x(n−1))に基づくものである。周期当たりの傾きは、今回取得した取得信号の今回取得値(x(n))と前回取得した取得信号の前回取得値(x(n−1))との差分と同じである。
In step S101, the current (n-th sample) signal value x (n) (current acquisition value) and the previous (n-1 sample) signal value x (n-1) (previous time) are obtained from the vehicle signal acquisition unit 1. Acquired value). In step S102, an estimated value est_x (n + 1) (next estimated value) obtained by estimating the next (n + 1 sample) signal value is calculated as in Expression (11).
est_x (n + 1) = (x (n) −x (n−1)) + x (n)
= 2 * x (n) -x (n-1) (11)
Note that the initial value (initial value) of the signal value x (n−1) is 0 km / h if the vehicle signal 20 is a vehicle speed signal, and 0% if the vehicle signal 20 is an accelerator opening. Also in the case where the vehicle signal 20 is another vehicle signal, the initial state when the vehicle is started may be set as the initial value of the signal value x (n−1). Since the signal value x (n) and the signal value x (n−1) are acquired every certain acquisition period T, the estimated value est_x (n + 1) is the slope (x (n) −x (n) of the vehicle signal 20. -1)) / T and the gradient per cycle (x (n) -x (n-1)). The inclination per period is the same as the difference between the current acquired value (x (n)) of the acquired signal acquired this time and the previous acquired value (x (n-1)) of the acquired signal acquired last time.

ステップS103にて、処理信号値の変化量δを計算し、変化量δを更新する。取得周期T毎に車両信号20のデータ数を拡張する拡張データ数をmとすると、次回推定値である推定値est_x(n+1)と前回に算出された今回推定値である推定値est_x(n)を用いて、変化量δは式(12)のように表せる。
δ=(est_x(n+1)−est_x(n))/(m+1)・・・(12)
In step S103, the change amount δ of the processing signal value is calculated, and the change amount δ is updated. Assuming that the number of extended data that expands the number of data of the vehicle signal 20 for each acquisition period T is m, the estimated value est_x (n + 1) that is the next estimated value and the estimated value est_x (n) that is the current estimated value calculated last time The amount of change δ can be expressed as shown in Equation (12).
δ = (est_x (n + 1) −est_x (n)) / (m + 1) (12)

例えば、取得周期T毎に車両信号20のデータ数を拡張する拡張データ数mを3とすると、変化量δは式(13)のように表せる。
δ=(est_x(n+1)−est_x(n))/4 ・・・(13)
For example, if the number of expansion data m that expands the number of data of the vehicle signal 20 for each acquisition period T is 3, the amount of change δ can be expressed as in Expression (13).
δ = (est_x (n + 1) −est_x (n)) / 4 (13)

ステップS104にて、現在(nサンプル目)の処理信号値の数を以下のように、拡張する。拡張データ数mを3とすると、処理信号値の数は、m+1、すなわち4になる。4つの処理信号値0(x0(n))、処理信号値1(x1(n))、処理信号値2(x2(n))、処理信号値3(x3(n))は、それぞれ式(14)〜(17)のように表せる。
x0(n)=est_x(n) ・・・(14)
x1(n)=est_x(n)+(m−2)*δ
=est_x(n)+δ ・・・(15)
x2(n)=est_x(n)+(m−1)*δ
=est_x(n)+2*δ ・・・(16)
x3(n)=est_x(n)+m*δ
=est_x(n)+3*δ ・・・(17)
In step S104, the number of processing signal values at the present time (nth sample) is expanded as follows. When the number of extended data m is 3, the number of processed signal values is m + 1, that is, 4. Four processing signal values 0 (x0 (n)), processing signal value 1 (x1 (n)), processing signal value 2 (x2 (n)), and processing signal value 3 (x3 (n)) are respectively expressed by the formulas ( 14) to (17).
x0 (n) = est_x (n) (14)
x1 (n) = est_x (n) + (m−2) * δ
= Est_x (n) + δ (15)
x2 (n) = est_x (n) + (m−1) * δ
= Est_x (n) + 2 * δ (16)
x3 (n) = est_x (n) + m * δ
= Est_x (n) + 3 * δ (17)

図8は、図4及び図6と同様に車両信号20の取得周期Tが200msであり、拡張データ数mが3である例である。信号処理部2で推定値補間処理を行うことにより、取得信号の時間分解能を改善すると共に、内挿処理のような遅延が発生せず、外挿処理のような音とび現象も発生していない。推定値補間処理は、外挿処理のように将来の信号値を推定するが、1周期前(前回)に取得した信号値と今回の信号値から1周期後(次回)の信号値を推定する。推定値補間処理は、外挿処理と異なり、今回の推定値est_x(n)との前回の推定値est_x(n−1)を用いて線形補間する。これにより、実施の形態1の信号処理は、取得信号の時間分解能を改善すると共に、内挿処理のような遅延が発生せず、外挿処理のような音とび現象の発生も防ぐことができる。すなわち、実施の形態1の信号処理は、取得信号の時間分解能が悪い場合でも、時間分解能を改善し、且つ、時間遅延や音とびの問題を解決することができる。そのため、この実施の形態1の信号処理(推定値補間処理)は早いレスポンスが必要だったり、急激な変化があったりするような車両信号20にも対応することができる。   FIG. 8 shows an example in which the acquisition period T of the vehicle signal 20 is 200 ms and the number of extended data m is 3, as in FIGS. 4 and 6. By performing the estimated value interpolation process in the signal processing unit 2, the time resolution of the acquired signal is improved, the delay as in the interpolation process does not occur, and the sound skip phenomenon as in the extrapolation process does not occur. . The estimated value interpolation process estimates the future signal value as in the extrapolation process, but estimates the signal value after one period (next) from the signal value acquired one period before (previous) and the current signal value. . Unlike the extrapolation process, the estimated value interpolation process performs linear interpolation using the previous estimated value est_x (n−1) with the current estimated value est_x (n). Thereby, the signal processing of the first embodiment improves the time resolution of the acquired signal, does not cause a delay as in the interpolation process, and can prevent the occurrence of a sound skip phenomenon as in the extrapolation process. . That is, the signal processing of the first embodiment can improve the time resolution and solve the problems of time delay and skipping even when the time resolution of the acquired signal is poor. For this reason, the signal processing (estimated value interpolation processing) of the first embodiment can cope with a vehicle signal 20 that requires a quick response or has a sudden change.

推定値補間処理について、外挿処理の推定と比較して詳しく説明する。実施の形態1における次回(n+1サンプル目)の推定値est_x(n+1)は、式(11)に示したように、今回(nサンプル目)取得した信号値と前回(n−1サンプル目)取得した信号値との差分(x(n)−x(n−1))に今回(nサンプル目)取得した信号値x(n)を加えることにより算出される。外挿処理では、実際には次回(n+1サンプル目)の信号値は推定しないが、次回(n+1サンプル目)の信号値を、外挿処理方法を適用して推定すると、次のような仮推定値が計算できる。この仮推定値は、x(n)+4*((x(n)−x(n−1))/4)=x(n)+(x(n)−x(n−1))となる。この仮推定値は、推定値補間処理の推定値est_x(n+1)と同じである。   The estimated value interpolation process will be described in detail in comparison with the extrapolation process estimation. The estimated value est_x (n + 1) for the next time (n + 1 sample) in the first embodiment is obtained as the signal value acquired this time (n sample) and the previous time (n-1 sample) as shown in the equation (11). It is calculated by adding the signal value x (n) acquired this time (nth sample) to the difference (x (n) −x (n−1)) from the measured signal value. In the extrapolation process, the next (n + 1 sample) signal value is not actually estimated, but when the next (n + 1 sample) signal value is estimated by applying the extrapolation processing method, the following temporary estimation is performed: The value can be calculated. This temporary estimated value is x (n) +4 * ((x (n) −x (n−1)) / 4) = x (n) + (x (n) −x (n−1)). . This temporary estimated value is the same as the estimated value est_x (n + 1) of the estimated value interpolation process.

外挿処理では、この仮推定値を使わずに、仮推定値に該当する回に取得した信号値x(n+1)を処理信号値0にするので、仮推定値と信号値x(n+1)の差が大きい場合には、急な変化が生じてしまう。また車両信号波形51の傾きの符号が変化する際には、図6の破線図形56、57で示したように、今回(nサンプル目)と次回(n+1サンプル目)の変化量δが共にプラス(もしくはマイナス)であるにもかかわらず、今回(nサンプル目)の処理信号値3と次回(n+1サンプル目)の処理信号値0の傾きがマイナス(もしくはプラス)となり、図6の破線図形56、57で示したような、処理後信号の傾きにおける符号の不連続が生じてしまう。これに対して、推定値補間処理では、今回(nサンプル目)の処理信号値0を前回(n−1サンプル目)に推定した推定値est_x(n)とするので、前回(n−1サンプル目)の処理信号値3と今回(nサンプル目)の処理信号値0との変化は、外挿処理と比較して緩くなる。また処理後信号(信号処理波形)の傾きにおける符号の不連続は発生しない。したがって、推定値補間処理では、外挿処理のような音とび現象の発生を防ぐことができる。   In the extrapolation process, since the signal value x (n + 1) acquired at the time corresponding to the temporary estimated value is set to the processing signal value 0 without using the temporary estimated value, the temporary estimated value and the signal value x (n + 1) are If the difference is large, a sudden change will occur. When the sign of the slope of the vehicle signal waveform 51 changes, as shown by the broken line graphics 56 and 57 in FIG. 6, both the current (n-th sample) and the next (n + 1 sample) change amount δ are positive. Despite being (or minus), the slope of the processing signal value 3 of this time (n-th sample) and the processing signal value 0 of the next time (n + 1-th sample) becomes minus (or plus), and the broken line diagram 56 in FIG. , 57, the discontinuity of the code occurs in the slope of the processed signal. On the other hand, in the estimated value interpolation processing, the current process signal value 0 (n-th sample) is set to the estimated value est_x (n) estimated last time (n-1 sample), so the previous (n-1 sample) The change between the processing signal value 3 of (eye) and the processing signal value 0 of the current time (n-th sample) is less than that of the extrapolation processing. Further, there is no sign discontinuity in the slope of the processed signal (signal processing waveform). Therefore, in the estimated value interpolation processing, it is possible to prevent the occurrence of a sound skip phenomenon such as extrapolation processing.

実施の形態1の車両接近通報装置100によれば、電動移動体200の車両信号20を取得周期T毎に取得し、取得信号を出力する車両信号取得部1と、取得信号の信号処理を行う信号処理部2と、を備え、信号処理部2は、車両信号20の傾きに基づいて次回取得する車両信号20の推定値(推定値est_x(n+1))を算出し、今回算出された推定値である次回推定値(推定値est_x(n+1))と、前回算出された推定値である今回推定値(推定値est_x(n))とを用いて内挿処理を行うことを特徴とするので、取得信号の時間分解能が悪い場合でも、時間分解能を改善し、且つ、時間遅延や音とびの問題を解決することができる。   According to the vehicle approach notification device 100 of the first embodiment, the vehicle signal 20 of the electric vehicle 200 is acquired at every acquisition cycle T, and the acquisition signal is processed by the vehicle signal acquisition unit 1 that outputs the acquisition signal. The signal processing unit 2 calculates an estimated value (estimated value est_x (n + 1)) of the vehicle signal 20 to be acquired next time based on the inclination of the vehicle signal 20, and the estimated value calculated this time Since the next estimated value (estimated value est_x (n + 1)) and the current estimated value (estimated value est_x (n)) which is the previously calculated estimated value are subjected to interpolation processing, Even when the time resolution of the acquired signal is poor, the time resolution can be improved and the problems of time delay and skipping can be solved.

実施の形態2.
図10は本発明の実施の形態2による信号処理波形の例を示す図であり、図11は本発明の実施の形態2による信号処理のフローチャートである。実施の形態2の信号処理では、推定値導出の際に係数を追加することにより、推定値誤差を実施の形態1よりも小さくすることができる。図10において、横軸は時間であり、縦軸は信号値である。信号処理波形59は、車両信号20の信号値に対して、後述する係数Coefを0.8とした場合における実施の形態2の推定値補間処理を行った波形である。実施の形態2の推定値補間処理は、図11のステップS101、S102、S103、S104の処理を行う。実施の形態2の推定値補間処理のステップS101、S103、S104は、実施の形態1の推定値補間処理と同様である。
Embodiment 2. FIG.
FIG. 10 is a diagram showing an example of signal processing waveforms according to the second embodiment of the present invention, and FIG. 11 is a flowchart of signal processing according to the second embodiment of the present invention. In the signal processing of the second embodiment, the estimated value error can be made smaller than that of the first embodiment by adding a coefficient when deriving the estimated value. In FIG. 10, the horizontal axis is time, and the vertical axis is signal value. The signal processing waveform 59 is a waveform obtained by performing the estimated value interpolation processing of the second embodiment on the signal value of the vehicle signal 20 when a coefficient Coef described later is set to 0.8. In the estimated value interpolation process of the second embodiment, the processes of steps S101, S102, S103, and S104 in FIG. 11 are performed. Steps S101, S103, and S104 of the estimated value interpolation process of the second embodiment are the same as the estimated value interpolation process of the first embodiment.

ステップS102にて、次回(n+1サンプル目)の信号値を推定した推定値est_x(n+1)を、式(18)のように算出する。
est_x(n+1)
=(x(n)−x(n−1))*Coef+x(n)
=(1+Coef)*x(n)−x(n−1) ・・・(18)
ここでCoefは、係数であり、0より大きく1よりも小さい数である。
In step S102, an estimated value est_x (n + 1) obtained by estimating the next (n + 1 sample) signal value is calculated as in Expression (18).
est_x (n + 1)
= (X (n) -x (n-1)) * Coef + x (n)
= (1 + Coef) * x (n) -x (n-1) (18)
Here, Coef is a coefficient and is a number larger than 0 and smaller than 1.

実施の形態2における推定値est_x(n+1)は、今回取得した取得信号の今回取得値(x(n))と前回取得した取得信号の前回取得値(x(n−1))との差分に係数Coefを乗算した補正差分に、今回取得値(x(n))を加える演算により求めている。また、実施の形態2における推定値est_x(n+1)は、車両信号20の傾き(x(n)−x(n−1))/Tや周期当たりの傾き(x(n)−x(n−1))に係数Coefを乗算した補正傾きに基づくものである。   The estimated value est_x (n + 1) in Embodiment 2 is the difference between the current acquired value (x (n)) of the acquired signal acquired this time and the previous acquired value (x (n-1)) of the acquired signal acquired last time. It is obtained by an operation of adding the current acquired value (x (n)) to the correction difference multiplied by the coefficient Coef. Further, the estimated value est_x (n + 1) in the second embodiment is the slope (x (n) −x (n−1)) / T of the vehicle signal 20 or the slope per cycle (x (n) −x (n−)). This is based on a correction slope obtained by multiplying 1)) by the coefficient Coef.

実施の形態2の推定値補間処理における次回(n+1サンプル目)の推定値est_x(n+1)は、係数無しの場合である実施の形態1と比較して追従性が少し劣化するが、すなわち信号処理波形58よりも遅延時間が多少長い信号処理波形59になるが、取得した信号値が大きく変化した場合の推定値誤差を小さくすることができる。実施の形態2の車両接近通報装置100は、実施の形態1と比較して追従性が少し劣化するが、取得した信号値が大きく変化した場合の推定値誤差を小さくすることができる。なお、係数Coefは、例えば、想定される車両の使用状況から決定すればよい。係数Coefの値が小さくなるほど、誤差は小さくなるものの時間遅延が発生する。そのため、係数Coefは想定される車両信号の変化とそれに連動する報知音の変化の許容可能な最大時間遅延から算出すると良い。0.8は、ある車両における時間遅延と誤差のバランスが良い係数Coefの一例である。   The next-time (n + 1 sample) estimated value est_x (n + 1) in the estimated value interpolation process of the second embodiment is slightly less trackable than the first embodiment in which there is no coefficient, ie, signal processing. Although the signal processing waveform 59 has a delay time slightly longer than that of the waveform 58, it is possible to reduce the estimated value error when the acquired signal value changes greatly. The vehicle approach notification device 100 according to the second embodiment is slightly less trackable than the first embodiment, but can reduce the estimated value error when the acquired signal value changes greatly. Note that the coefficient Coef may be determined from, for example, an assumed use situation of the vehicle. The smaller the value of the coefficient Coef, the smaller the error, but a time delay occurs. Therefore, the coefficient Coef is preferably calculated from the maximum allowable time delay of the assumed change in the vehicle signal and the change in the notification sound associated therewith. 0.8 is an example of a coefficient Coef having a good balance between time delay and error in a certain vehicle.

実施の形態3.
図12は本発明の実施の形態3による信号処理波形の例を示す図であり、図13は本発明の実施の形態3による信号処理のフローチャートである。実施の形態1の推定値補間処理により算出する推定値は、本来の車両信号20が取りうる範囲よりも大きい値を推定する可能性がある。そこで、実施の形態3では、推定値が所定の閾値よりも大きい値とならないように、または所定の閾値よりも小さい値とならないように、リミッタ処理を行う。図12において、横軸は時間であり、縦軸は信号値である。信号処理波形60は、車両信号20の信号値に対して、信号値の閾値を10とし、信号値が10よりも大きくならないようにした場合における実施の形態3の推定値補間処理を行った波形である。実施の形態3の推定値補間処理は、図13のステップS101、S102、S103、S104、S105の処理を行う。実施の形態3の推定値補間処理のステップS101、S102、S103、S104は、実施の形態1の推定値補間処理と同様である。
Embodiment 3 FIG.
FIG. 12 is a diagram showing an example of signal processing waveforms according to the third embodiment of the present invention, and FIG. 13 is a flowchart of signal processing according to the third embodiment of the present invention. There is a possibility that the estimated value calculated by the estimated value interpolation process of the first embodiment is larger than the range that the original vehicle signal 20 can take. Therefore, in the third embodiment, the limiter process is performed so that the estimated value does not become a value larger than the predetermined threshold value or does not become a value smaller than the predetermined threshold value. In FIG. 12, the horizontal axis is time, and the vertical axis is signal value. The signal processing waveform 60 is a waveform obtained by performing the estimated value interpolation processing of the third embodiment when the signal value threshold is set to 10 with respect to the signal value of the vehicle signal 20 and the signal value is not larger than 10. It is. In the estimated value interpolation process of the third embodiment, the processes of steps S101, S102, S103, S104, and S105 of FIG. 13 are performed. Steps S101, S102, S103, and S104 of the estimated value interpolation process of the third embodiment are the same as the estimated value interpolation process of the first embodiment.

ステップS105において、リミッタ処理を行う。例えば、信号値に上限を設ける場合を説明する。信号値の閾値を上限閾値s1とし、ステップS104で算出した各処理信号値が上限閾値s1より大きくなった場合に各処理信号値を上限閾値s1にする。また、信号値に下限を設ける場合には、例えば以下のようにする。信号値の閾値を下限閾値s2とし、ステップS104で算出した各処理信号値が下限閾値s2より小さくなった場合に各処理信号値を下限閾値s2にする。信号値に上限及び下限を設ける場合には、例えば以下のようにする。信号値の大きい側の閾値を上限閾値s1とし、小さい側の閾値を下限閾値s2とし、リミッタ処理を行う。このリミッタ処理は、ステップS104で算出した各処理信号値が上限閾値s1より大きくなった場合に各処理信号値を上限閾値s1にすると共に、ステップS104で算出した各処理信号値が下限閾値s2より小さくなった場合に各処理信号値を下限閾値s2にする。これにより、実施の形態3の車両接近通報装置100は、車両信号20の取得信号の時間分解能を向上させる信号処理後に、異常値が出力されるのを防ぐことができる。   In step S105, limiter processing is performed. For example, a case where an upper limit is set for the signal value will be described. The threshold value of the signal value is set to the upper limit threshold value s1, and when each processed signal value calculated in step S104 is larger than the upper limit threshold value s1, each processed signal value is set to the upper limit threshold value s1. Moreover, when providing a lower limit in a signal value, it carries out as follows, for example. The threshold value of the signal value is set to the lower limit threshold value s2, and when each processed signal value calculated in step S104 is smaller than the lower limit threshold value s2, each processed signal value is set to the lower limit threshold value s2. When an upper limit and a lower limit are provided for the signal value, for example, the following is performed. The limiter process is performed by setting the threshold value on the side with the larger signal value as the upper limit threshold value s1 and the threshold value on the smaller side as the lower limit threshold value s2. In the limiter process, when each processing signal value calculated in step S104 becomes larger than the upper limit threshold s1, each processing signal value is set to the upper limit threshold s1, and each processing signal value calculated in step S104 is more than the lower limit threshold s2. When it becomes smaller, each processing signal value is set to the lower limit threshold s2. Thereby, the vehicle approach notification apparatus 100 of Embodiment 3 can prevent an abnormal value from being output after the signal processing for improving the time resolution of the acquisition signal of the vehicle signal 20.

例えば、車両信号20がアクセル開度の場合、本来の入力範囲の最小値は0%であり、また本来の入力範囲の最大値は100%である。この場合は、上限閾値s1は100%であり、下限閾値s2は0%である。したがって、ステップS104で算出した処理信号値が、本来の入力範囲の最小値である0%よりも小さい値を推定した場合は、0%になるように処理すれば良い。また、ステップS104で算出した処理信号値が、本来の入力範囲の最大値である100%よりも大きい値を推定した場合は、100%になるように処理すれば良い。車速信号も同様に、本来の入力範囲の最小値である0km/hよりも小さい値を推定した場合は、0km/hになるように処理すれば良い。   For example, when the vehicle signal 20 is the accelerator opening, the minimum value of the original input range is 0%, and the maximum value of the original input range is 100%. In this case, the upper limit threshold s1 is 100% and the lower limit threshold s2 is 0%. Therefore, if the processing signal value calculated in step S104 is estimated to be smaller than 0%, which is the minimum value of the original input range, the processing signal value may be processed to be 0%. Further, when the processing signal value calculated in step S104 is estimated to be larger than 100% which is the maximum value of the original input range, the processing signal value may be processed to be 100%. Similarly, when the vehicle speed signal is estimated to be smaller than 0 km / h, which is the minimum value of the original input range, the vehicle speed signal may be processed to be 0 km / h.

実施の形態4.
図14は、本発明の実施の形態4による車両接近通報装置の構成の概要を示すブロック図である。実施の形態4の車両接近通報装置100は、信号処理部2と調整情報取得部4の間にフィルタ処理部11が設けられた点で、実施の形態1〜3の車両接近通報装置100と異なる。フィルタ処理部11は、FIR(Finite Impulse Response)やIIR(Infinite Impulse Response)といったフィルタ処理を行う。実施の形態4の車両接近通報装置100は、取得信号の時間分解能を向上させる信号処理後の処理信号値にフィルタ処理を行うことにより、実施の形態1〜3よりも滑らかで自然な車両信号の変化を模擬することができる。ただし、ディジタルフィルタは処理負荷が高いため、処理能力の高いCPU(Central Processing Unit)で実施する必要がある。
Embodiment 4 FIG.
FIG. 14 is a block diagram showing an outline of the configuration of the vehicle approach notification device according to Embodiment 4 of the present invention. The vehicle approach notification device 100 of the fourth embodiment differs from the vehicle approach notification device 100 of the first to third embodiments in that a filter processing unit 11 is provided between the signal processing unit 2 and the adjustment information acquisition unit 4. . The filter processing unit 11 performs filter processing such as FIR (Finite Impulse Response) and IIR (Infinite Impulse Response). The vehicle approach notification device 100 according to the fourth embodiment performs a filtering process on the processed signal value after the signal processing for improving the time resolution of the acquired signal, so that the vehicle signal is smoother and more natural than the first to third embodiments. Can simulate change. However, since the digital filter has a high processing load, it must be implemented by a CPU (Central Processing Unit) having a high processing capability.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1…車両信号取得部、2…信号処理部、11…フィルタ処理部、20…車両信号、40…発音体、100…車両接近通報装置、200…電動移動体、x(n)、x(n−1)…信号値、x0(n)、x1(n)、x2(n)、x3(n)…処理信号値、est_x(n+1)、est_x(n)…推定値、Coef…係数、T…取得周期、s1…上限閾値、s2…下限閾値。 DESCRIPTION OF SYMBOLS 1 ... Vehicle signal acquisition part, 2 ... Signal processing part, 11 ... Filter processing part, 20 ... Vehicle signal, 40 ... Sound generator, 100 ... Vehicle approach notification apparatus, 200 ... Electric vehicle, x (n), x (n -1) ... signal value, x0 (n), x1 (n), x2 (n), x3 (n) ... processed signal value, est_x (n + 1), est_x (n) ... estimated value, Coef ... coefficient, T ... Acquisition cycle, s1... Upper limit threshold, s2.

Claims (7)

少なくとも一部の駆動力を電動機によって発生する電動移動体に備えられ、この電動移動体の外部へ発音体から報知音を放射する車両接近通報装置であって、
前記電動移動体の車両信号を取得周期毎に取得し、取得信号を出力する車両信号取得部と、
前記取得信号の信号処理を行う信号処理部と、を備え、
前記信号処理部は、
前記車両信号の傾きに基づいて次回取得する前記車両信号の推定値を算出し、
今回算出された前記推定値である次回推定値と、前回算出された前記推定値である今回推定値とを用いて内挿処理を行うことを特徴とする車両接近通報装置。
A vehicle approach notification device that is provided in an electric mobile body that generates at least a part of driving force by an electric motor and emits a notification sound from a sounding body to the outside of the electric mobile body,
A vehicle signal acquisition unit that acquires a vehicle signal of the electric vehicle for each acquisition period and outputs an acquisition signal;
A signal processing unit that performs signal processing of the acquired signal,
The signal processing unit
Calculate an estimated value of the vehicle signal to be acquired next time based on the slope of the vehicle signal,
A vehicle approach notification device characterized in that an interpolation process is performed using a next estimated value that is the estimated value calculated this time and a current estimated value that is the estimated value calculated last time.
前記信号処理部は、今回取得した前記取得信号の今回取得値と前回取得した前記取得信号の前回取得値との差分に、前記今回取得値を加える演算により前記車両信号の前記推定値を算出することを特徴とする請求項1記載の車両接近通報装置。   The signal processing unit calculates the estimated value of the vehicle signal by an operation of adding the current acquired value to the difference between the current acquired value of the acquired signal acquired this time and the previous acquired value of the acquired signal acquired last time. The vehicle approach notification device according to claim 1. 前記信号処理部は、前記車両信号の傾きに係数を乗算した補正傾きに基づいて次回取得する前記車両信号の前記推定値を算出することを特徴とする請求項1記載の車両接近通報装置。   The vehicle approach notification device according to claim 1, wherein the signal processing unit calculates the estimated value of the vehicle signal to be acquired next time based on a corrected inclination obtained by multiplying the inclination of the vehicle signal by a coefficient. 前記信号処理部は、今回取得した前記取得信号の今回取得値と前回取得した前記取得信号の前回取得値との差分に係数を乗算した補正差分に、前記今回取得値を加える演算により前記車両信号の前記推定値を算出することを特徴とする請求項3記載の車両接近通報装置。   The signal processing unit is configured to add the current acquired value to a correction difference obtained by multiplying a difference between a current acquired value of the acquired signal acquired this time and a previous acquired value of the acquired signal acquired last time by a coefficient. The vehicle approach notification device according to claim 3, wherein the estimated value is calculated. 前記信号処理部は、
前記内挿処理を実行して算出した処理信号値が上限閾値より大きくなった場合に、前記処理信号値を前記上限閾値より大きくならないように制限し、または、前記処理信号値が下限閾値より小さくなった場合に、前記処理信号値を前記下限閾値より小さくならないように制限することを特徴とする請求項1乃至4のいずれか1項に記載の車両接近通報装置。
The signal processing unit
When the processing signal value calculated by executing the interpolation processing is larger than the upper threshold, the processing signal value is limited so as not to be larger than the upper threshold, or the processing signal value is smaller than the lower threshold. The vehicle approach notification device according to any one of claims 1 to 4, wherein the processing signal value is limited so as not to become smaller than the lower limit threshold when the value becomes.
前記信号処理部は、
前記内挿処理を実行して算出した処理信号値が上限閾値より大きくなった場合に、前記処理信号値を前記上限閾値より大きくならないように制限し、かつ、前記処理信号値が下限閾値より小さくなった場合に、前記処理信号値を前記下限閾値より小さくならないように制限することを特徴とする請求項1乃至4のいずれか1項に記載の車両接近通報装置。
The signal processing unit
When the processing signal value calculated by executing the interpolation processing is larger than an upper threshold, the processing signal value is limited so as not to be larger than the upper threshold, and the processing signal value is smaller than the lower threshold. The vehicle approach notification device according to any one of claims 1 to 4, wherein the processing signal value is limited so as not to become smaller than the lower limit threshold when the value becomes.
前記信号処理部にて前記取得信号が処理された処理信号に対してフィルタ処理を行うフィルタ処理部を、さらに備えたことを特徴とする請求項1乃至6のいずれか1項に記載の車両接近通報装置。   The vehicle approach according to any one of claims 1 to 6, further comprising a filter processing unit that performs a filtering process on a processing signal obtained by processing the acquired signal by the signal processing unit. Notification device.
JP2014530836A 2012-08-27 2012-08-27 Vehicle approach notification device Expired - Fee Related JP5642324B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071580 WO2014033809A1 (en) 2012-08-27 2012-08-27 Vehicle approach alert apparatus

Publications (2)

Publication Number Publication Date
JP5642324B2 true JP5642324B2 (en) 2014-12-17
JPWO2014033809A1 JPWO2014033809A1 (en) 2016-08-08

Family

ID=50182660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014530836A Expired - Fee Related JP5642324B2 (en) 2012-08-27 2012-08-27 Vehicle approach notification device

Country Status (2)

Country Link
JP (1) JP5642324B2 (en)
WO (1) WO2014033809A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6827284B2 (en) * 2016-08-31 2021-02-10 パイオニア株式会社 Engine sound output device and engine sound output method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298111A (en) * 2005-04-19 2006-11-02 Yamaha Motor Co Ltd Engine sound synthesizer, vehicle having the same, and engine sound synthetic method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298111A (en) * 2005-04-19 2006-11-02 Yamaha Motor Co Ltd Engine sound synthesizer, vehicle having the same, and engine sound synthetic method

Also Published As

Publication number Publication date
JPWO2014033809A1 (en) 2016-08-08
WO2014033809A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5579339B2 (en) Notification sound control unit of vehicle approach notification device
US9434306B2 (en) Notification sound control unit of approaching vehicle audible system
CN102892627A (en) Vehicle travel warning device
US9681240B2 (en) Sound quality adjustment apparatus of approaching vehicle audible system, approaching vehicle audible system simulator, and approaching vehicle audible system
US9073477B2 (en) Vehicle approach notification device
JP2011207390A (en) Sound producing apparatus for vehicle
WO2013035167A1 (en) Approaching vehicle alerting apparatus, and electric moving body provided with same
JP5642324B2 (en) Vehicle approach notification device
JP5573766B2 (en) Vehicle approach warning device
JP5678878B2 (en) Vehicle approach notification device
JP5642321B2 (en) Vehicle approach notification device
JP4944284B1 (en) Acoustic device and output sound control method
CN105992101A (en) Apparatus and method for outputting protecting sound in quieting vehicle
JP5614088B2 (en) Vehicle sound generator
CN109756827B (en) Audio control system for attenuating structural noise from a tire of a vehicle
JP2010036604A (en) Fuel saving driving diagnostic equipment, in-vehicle system, drive control apparatus, and fuel saving driving diagnostic program
JP4456631B2 (en) Eco driving support device
US9604570B2 (en) Sound generating device for vehicle
JP2012201135A (en) Device and method for generating artificial sound
JP2012218661A (en) Vehicle approach warning device
JP2011230724A (en) Sound emitting device for vehicle
JP5287911B2 (en) Vehicle classification device for vehicle and operation notification sound generator
JP6203482B2 (en) Vehicle approach notification device
JP2012187975A (en) Vehicular distinction system for vehicle rank and operation notifying sound generation system
JP5287910B2 (en) Vehicle classification device for vehicle and operation notification sound generator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R151 Written notification of patent or utility model registration

Ref document number: 5642324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees