JP5642082B2 - Chrome-free surface-treated galvanized steel sheet - Google Patents

Chrome-free surface-treated galvanized steel sheet Download PDF

Info

Publication number
JP5642082B2
JP5642082B2 JP2011537333A JP2011537333A JP5642082B2 JP 5642082 B2 JP5642082 B2 JP 5642082B2 JP 2011537333 A JP2011537333 A JP 2011537333A JP 2011537333 A JP2011537333 A JP 2011537333A JP 5642082 B2 JP5642082 B2 JP 5642082B2
Authority
JP
Japan
Prior art keywords
steel sheet
group
compound
mass
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011537333A
Other languages
Japanese (ja)
Other versions
JPWO2011049238A1 (en
Inventor
森下 敦司
敦司 森下
俊之 勝見
俊之 勝見
優貴 鈴木
優貴 鈴木
森 陽一郎
陽一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011537333A priority Critical patent/JP5642082B2/en
Publication of JPWO2011049238A1 publication Critical patent/JPWO2011049238A1/en
Application granted granted Critical
Publication of JP5642082B2 publication Critical patent/JP5642082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0809Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups
    • C08G18/0814Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups containing ammonium groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4875Polyethers containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Description

本発明は、カチオン系クロムフリー表面処理剤にて表面処理を施した、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、耐汗性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、且つ加工性および摺動性にも優れるクロムフリー表面処理を施した亜鉛系めっき鋼板に関する。   The present invention is a surface treatment with a cationic chromium-free surface treatment agent, such as corrosion resistance, alkali resistance, solvent resistance, and other detergent resistance, sweat resistance, film adhesion, paint adhesion, and print adhesion. The present invention relates to a zinc-based plated steel sheet having a chromium-free surface treatment which is excellent in water resistance such as adhesion, moisture discoloration resistance and dew condensation resistance, and also excellent in workability and slidability.

一般的に金属材料表面への密着性に優れ、金属材料表面に耐食性や耐指紋性などを付与する技術として、金属材料表面に、クロム酸、重クロム酸又はそれらの塩を主成分として含有する処理液によりクロメート処理を施す方法、リン酸塩処理を施す方法、有機樹脂皮膜処理を施す方法、などが知られており、実用に供されている。   In general, it has excellent adhesion to the metal material surface, and as a technology for imparting corrosion resistance, fingerprint resistance, etc. to the metal material surface, the metal material surface contains chromic acid, dichromic acid or a salt thereof as a main component. A method of performing a chromate treatment with a treatment solution, a method of performing a phosphate treatment, a method of carrying out an organic resin film treatment, and the like are known and put into practical use.

従来、実用に供されているクロメート処理には、クロム酸クロメート等のクロムを含有する処理液に該金属材料表面を接触させてクロメート皮膜を析出させる、或いは塗布して乾燥させる等して金属表面にクロメート皮膜を形成させる方法が挙げられる。しかしながら、これらの無機系のクロメート皮膜単独では、皮膜が硬質で脆く潤滑性に乏しいため、皮膜が脱落し外観を損ねるだけでなく、充分な加工ができず、素材に亀裂が生じ、割れてしまうという不具合が生じる。また、さらに、作業時に作業者の指紋が付着し、脱脂洗浄してもその痕跡が残るため、外観を損ねる不具合もある。そこで一般には、高耐食性、耐指紋性、耐傷付き性、潤滑性、塗装密着性等のすべての性能を満足するためには、金属材料表面にクロメート皮膜を形成し、形成されたクロメート皮膜上に、さらに樹脂皮膜を設ける2層処理が行われている。   In the conventional chromate treatment, the metal surface is brought into contact with a treatment liquid containing chromium such as chromate chromate to deposit the chromate film, or coated and dried. And a method of forming a chromate film. However, these inorganic chromate coatings alone are hard, brittle and poor in lubricity, so that not only the coating will fall off and the appearance will be impaired, but also sufficient processing will not be possible, and the material will crack and crack. The problem that occurs. In addition, the operator's fingerprint is attached during the work, and the trace remains even after degreasing and cleaning. Therefore, in general, in order to satisfy all performances such as high corrosion resistance, fingerprint resistance, scratch resistance, lubricity, and paint adhesion, a chromate film is formed on the surface of the metal material, and the chromate film is formed on the formed chromate film. Further, a two-layer process for providing a resin film is performed.

1層処理ですべての性能を満足させようとする試みとしては、クロメートと樹脂皮膜とを一度に形成させる樹脂クロメートが検討され、特許文献1には、アルミニウム−亜鉛めっき鋼板の表面に、特定の水分散系又は水溶性樹脂と特定量の6価クロムを配合した樹脂組成物を塗布する処理方法、特許文献2には、無機化合物の6価クロムイオン又は6価クロムイオンと3価クロムイオン、及び特定の乳化重合条件で重合したアクリルエマルジョンを含有する金属表面処理組成物が開示されている。   As an attempt to satisfy all the performances by one-layer treatment, resin chromate that forms chromate and a resin film at the same time has been studied. Patent Document 1 discloses a specific method on the surface of an aluminum-galvanized steel sheet. A treatment method for applying a water dispersion or a resin composition containing a water-soluble resin and a specific amount of hexavalent chromium, Patent Document 2, includes hexavalent chromium ions of inorganic compounds or hexavalent chromium ions and trivalent chromium ions, And a metal surface treatment composition containing an acrylic emulsion polymerized under specific emulsion polymerization conditions.

しかしながら、上記クロメート処理は、皮膜中に含有される6価クロムが、徐々に解け出す性質を持っており、環境面、安全面に問題を有している。   However, the chromate treatment has a property that the hexavalent chromium contained in the film gradually dissolves, and has problems in terms of environment and safety.

クロムを有さないノンクロメート処理液を用いる方法としては、特許文献3に、特定構造のフェノール樹脂系重合体と酸性化合物とを含有する金属材料表面処理用重合体組成物及び表面処理方法、特許文献4に、互いに異種でかつ互いに反応し得る特定構造の反応性官能基を有する2種以上のシランカップリング剤を含有する耐指紋性等に優れた金属表面処理剤及び処理方法、特許文献5に、特定構造のシランカップリング剤と特定構造のフェノール樹脂系重合体とを含有する金属表面処理剤及び処理方法、特許文献6に、少なくとも1個の窒素原子を有するエポキシ樹脂、アクリル樹脂、ウレタン樹脂等の有機高分子と特定の多価アニオンとを含有する金属表面処理剤、処理方法及び処理金属材料、特許文献7に、(1)特定構造のビスフェノールAエポキシ系樹脂を含有する防錆剤、(2)フェノール系樹脂とそれ以外のポリエステル等の特定の樹脂とを特定比で含有する防錆剤、(1)と(2)とを用いる処理方法及び処理金属材料が開示されている。   As a method of using a non-chromate treatment liquid that does not have chromium, Patent Document 3 discloses a polymer composition for surface treatment of a metal material containing a phenol resin polymer having a specific structure and an acidic compound, and a surface treatment method. Document 4 discloses a metal surface treatment agent and a treatment method excellent in fingerprint resistance and the like, containing two or more silane coupling agents having reactive functional groups having specific structures that are different from each other and capable of reacting with each other, Patent Document 5 In addition, a metal surface treatment agent and treatment method containing a silane coupling agent having a specific structure and a phenol resin polymer having a specific structure, Patent Document 6, an epoxy resin having at least one nitrogen atom, an acrylic resin, and a urethane Metal surface treatment agent containing organic polymer such as resin and specific polyvalent anion, treatment method and treated metal material, Patent Document 7, (1) Bisph having a specific structure Treatment using rust inhibitor containing Nord A epoxy-based resin, (2) rust inhibitor containing specific resin such as phenolic resin and other polyester, and (1) and (2) Methods and treated metal materials are disclosed.

しかしながら、これらのクロムを含有しない技術は、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、極めて加工性および摺動性の全てを満足するものではなく、実用化に至って依然として問題を抱えている。   However, these chromium-free technologies are resistant to cleaning, such as corrosion resistance, alkali resistance and solvent resistance, film adhesion, adhesion such as paint adhesion and printing adhesion, moisture discoloration resistance and condensation resistance. It is excellent in water resistance and does not satisfy all the workability and slidability.

このようにいずれの方法でもクロメート皮膜の代替として使用できるような表面処理剤を得られていないのが現状であり、これらを総合的に満足できる表面処理剤および処理方法の開発が強く要求されているのである。   As described above, the surface treatment agent that can be used as an alternative to the chromate film has not been obtained by any of these methods, and there is a strong demand for the development of a surface treatment agent and a treatment method that can satisfy these conditions comprehensively. It is.

特公平4−2672号公報Japanese Patent Publication No.4-2672 特公平7−6070号公報Japanese Patent Publication No. 7-6070 特開平7−278410号公報JP 7-278410 A 特開平8−73775号公報JP-A-8-73775 特開平9−241576号公報JP-A-9-241576 特開平10−1789号公報Japanese Patent Laid-Open No. 10-1789 特開平10−60233号公報Japanese Patent Laid-Open No. 10-60233

本発明は、従来技術の上記問題点を解決して、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、耐汗性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、且つ加工性および摺動性にも優れるクロムフリー表面処理亜鉛系めっき鋼板を提供することを目的とするものである。   The present invention solves the above-mentioned problems of the prior art, and has anti-corrosion, alkali resistance, solvent resistance and other cleaning resistance, sweat resistance, film adhesion, paint adhesion and printing adhesion, An object of the present invention is to provide a chromium-free surface-treated galvanized steel sheet having excellent water resistance such as moisture discoloration resistance and dew condensation resistance, and excellent workability and slidability.

すなわち、本発明は、(1)分子中にアミノ基を1つ含有するシランカップリング剤(A)と、分子中にグリシジル基を1つ含有するシランカップリング剤(B)を固形分質量比〔(A)/(B)〕で0.50〜0.75の割合で配合して得られる、分子内に下記一般式[1]で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)およびアミノ基から選ばれる少なくとも1種の親水性官能基(b)を1個以上含有し、平均の分子量が1000〜10000であり、骨格中に環状シロキサン結合を有し、環状シロキサン結合と鎖状シロキサン結合の存在割合が、FT−IR反射法による環状シロキサン結合を示す1090〜1100cm −1 の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm −1 の吸光度(C2)の比〔C1/C2〕が1.0〜2.0である有機ケイ素化合物(C)と、

Figure 0005642082
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表し、少なくとも1つはアルコキシ基を表す)
(2)分子中にポリエーテルポリオールに由来する構造単位を有すポリエーテルポリウレタン樹脂(E)と、
を含有する造膜成分(c)と、
(3)チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)を必須成分とするインヒビター成分(d)と、
(4)水性媒体、
を含有する水系金属表面処理剤を塗布し乾燥することにより各成分を含有する複合皮膜を形成した亜鉛系めっき鋼板であり、且つ、該水系処理剤の造膜成分(c)における
(5)有機ケイ素化合物(C)とポリエーテルポリウレタン樹脂(E)の固形分質量比〔(E)/(C)〕が0.33〜0.90であることを特徴とする、表面処理亜鉛系めっき鋼板に関する。 That is, the present invention comprises (1) a silane coupling agent (A) containing one amino group in the molecule and a silane coupling agent (B) containing one glycidyl group in the molecule. Two or more functional groups (a) represented by the following general formula [1] in the molecule, obtained by blending at a ratio of 0.50 to 0.75 in [(A) / (B)], It contains at least one hydrophilic functional group (b) selected from a hydroxyl group (separate from those which can be included in the functional group (a)) and an amino group, and has an average molecular weight of 1,000 to 10,000. There, in the backbone have a cyclic siloxane bonds, cyclic siloxane bond and the presence proportion of chain siloxane bond, the absorbance of 1090~1100Cm -1 indicating the cyclic siloxane bond by FT-IR reflection method (C1) and chain siloxane 1030 indicating binding The ratio [C1 / C2] is 1.0 to 2.0 der Ru organosilicon compound in absorbance 1040 cm -1 (C2) (C), and
Figure 0005642082
(Wherein R1, R2 and R3 each independently represent an alkoxy group or a hydroxyl group, and at least one represents an alkoxy group)
(2) a polyether polyurethane resin (E) having a structural unit derived from a polyether polyol in the molecule;
A film-forming component (c) containing:
(3) an inhibitor component (d) having a fluoro metal complex compound (H) having at least one selected from titanium and zirconium as an essential component;
(4) an aqueous medium,
(5) Organic in the film-forming component (c) of the water-based treatment agent, which is a zinc-based plated steel sheet in which a composite film containing each component is formed by applying and drying a water-based metal surface treatment agent containing The present invention relates to a surface-treated zinc-based plated steel sheet, wherein the solid content mass ratio [(E) / (C)] of the silicon compound (C) and the polyether polyurethane resin (E) is 0.33 to 0.90. .

前記有機ケイ素化合物(C)における環状シロキサン結合と鎖状シロキサン結合の存在割合が、FT−IR反射法による環状シロキサン結合を示す1090〜1100cm−1の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm−1の吸光度(C2)の比〔C1/(C1+C2)〕が1.0〜2.0であることが好ましい。The ratio of the cyclic siloxane bond and the chain siloxane bond in the organosilicon compound (C) is 1030 indicating the absorbance (C1) of 1090 to 1100 cm −1 indicating the cyclic siloxane bond by the FT-IR reflection method and the chain siloxane bond. The ratio [C1 / (C1 + C2)] of absorbance (C2) at 1040 cm −1 is preferably 1.0 to 2.0.

また、本発明のポリエーテルポリウレタン樹脂(E)が分子中に芳香環および/又は炭素数が4〜6の脂環構造を有することが好ましく、前記ポリエーテルポリウレタン樹脂(E)が分子中にアミノ基を含有し、該アミノ基の総量に対する4級アンモニウム塩の割合がモル比で0.7〜1.0であることが好ましい。また、前記ポリエーテルポリウレタン樹脂(E)が分子中に下記一般式[2]で表される構造単位(D)を有することが好ましい。

Figure 0005642082
(式中、R9は水素原子、アルキル基、アリール基およびアラルキル基からなる群より選ばれる一価の有機残基、R10、R11は互いに独立に、アルコキシル基、アシロキシ基、水酸基およびハロゲン原子からなる群から選ばれる官能基を、mは1〜5の整数を表す。)Moreover, it is preferable that the polyether polyurethane resin (E) of the present invention has an aromatic ring and / or an alicyclic structure having 4 to 6 carbon atoms in the molecule, and the polyether polyurethane resin (E) has an amino acid in the molecule. It is preferable that the ratio of the quaternary ammonium salt to the total amount of the amino group is 0.7 to 1.0 in terms of molar ratio. Moreover, it is preferable that the said polyether polyurethane resin (E) has a structural unit (D) represented by following General formula [2] in a molecule | numerator.
Figure 0005642082
(Wherein R9 is a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R10 and R11 are independently of each other an alkoxyl group, an acyloxy group, a hydroxyl group and a halogen atom. (In the functional group selected from the group, m represents an integer of 1 to 5.)

また本発明の造膜成分(c)は、更にビスフェノールA骨格を有するカチオン性フェノール樹脂(F)を含有し、前記ポリエーテルポリウレタン樹脂(E)とカチオン性フェノール樹脂(F)の固形分質量比[(F)/(E)]が0.010〜0.030であることが好ましい。   The film-forming component (c) of the present invention further contains a cationic phenol resin (F) having a bisphenol A skeleton, and the solid content mass ratio between the polyether polyurethane resin (E) and the cationic phenol resin (F). [(F) / (E)] is preferably 0.010 to 0.030.

前記インヒビター成分(d)が、
(6)リン酸化合物(J)
を更に含有することが好ましく、
(6)リン酸化合物(J)と(7)バナジウム(IV)化合物(K)
の両方を更に含有することがより好ましく、
(8)前記有機ケイ素化合物(C)由来のSi(Si)と前記チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)の金属成分(M)の質量比〔(M)/(Si)〕が0.08〜0.20であり、
(9)前記有機ケイ素化合物(C)と前記リン酸化合物(J)の固形分質量比〔(J)/(C)〕が0.02〜0.11であり、
(10)前記有機ケイ素化合物(C)と前記バナジウム(IV)化合物(K)の固形分質量比〔(K)/(C)〕が0.02〜0.06であることが好ましい。
The inhibitor component (d) is
(6) Phosphate compound (J)
It is preferable to further contain
(6) Phosphate compound (J) and (7) Vanadium (IV) compound (K)
It is more preferable to further contain both,
(8) Mass ratio of metal component (M) of Si (Si) derived from organosilicon compound (C) and fluorometal complex compound (H) having at least one selected from titanium and zirconium [(M) / (Si)] is 0.08-0.20,
(9) The solid content mass ratio [(J) / (C)] of the organosilicon compound (C) and the phosphate compound (J) is 0.02 to 0.11;
(10) The solid content mass ratio [(K) / (C)] of the organosilicon compound (C) and the vanadium (IV) compound (K) is preferably 0.02 to 0.06.

また、本発明のフルオロ金属錯化合物(H)の金属成分(M)がチタン(M)とジルコニウム(M)の双方を含有し、各々の金属成分比〔(M)/(M)〕が0.50〜0.80であることが好ましく、前記インヒビター成分(d)が、更にMg、CoおよびWから選ばれる少なくとも1種の金属成分を含有することが好ましい。In addition, the metal component (M) of the fluorometal complex compound (H) of the present invention contains both titanium (M T ) and zirconium (M Z ), and each metal component ratio [(M T ) / (M Z ]] Is preferably 0.50 to 0.80, and the inhibitor component (d) preferably further contains at least one metal component selected from Mg, Co and W.

前記水系金属表面処理剤が、更にポリエチレンワックス(L)を含有し、前記有機ケイ素化合物(C)とポリエチレンワックス(L)の固形分質量比〔(L)/(C)〕が0.05〜0.30であることが好ましい。   The water-based metal surface treatment agent further contains a polyethylene wax (L), and the solid content mass ratio [(L) / (C)] of the organosilicon compound (C) and the polyethylene wax (L) is 0.05 to It is preferably 0.30.

前記表面処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板の表面に、前記水系金属表面処理剤を塗布し、50℃〜250℃の到達温度で乾燥を行い、乾燥後の皮膜重量が0.2〜5.0g/mであることが好ましい。The surface-treated galvanized steel sheet is coated with the aqueous metal surface treatment agent on the surface of the galvanized steel sheet, dried at an ultimate temperature of 50 ° C. to 250 ° C., and the coating weight after drying is 0.2 to It is preferably 5.0 g / m 2 .

本発明の表面処理亜鉛系めっき鋼板は、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、耐汗性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れるとともに、加工性および摺動性にも極めて優れる。   The surface-treated zinc-based plated steel sheet of the present invention has corrosion resistance, alkali resistance, solvent resistance and other detergent resistance, sweat resistance, film adhesion, paint adhesion and printing adhesion, moisture discoloration resistance, In addition to excellent water resistance such as condensation resistance, it is extremely excellent in workability and slidability.

本発明のクロムフリー表面処理亜鉛系めっき鋼板の水系金属表面処理剤は、造膜成分(c)として有機ケイ素化合物(C)と、ポリエーテルポリウレタン樹脂(E)の2つを必須成分とする。   The water-based metal surface treating agent for the chromium-free surface-treated zinc-based plated steel sheet according to the present invention contains two components, ie, the organosilicon compound (C) and the polyether polyurethane resin (E) as the film-forming component (c).

前記有機ケイ素化合物(C)は、分子中にアミノ基を1つ含有するシランカップリング剤(A)と、分子中にグリシジル基を1つ含有するシランカップリング剤(B)を固形分質量比〔(A)/(B)〕で0.50〜0.75の割合で配合して得られるものである。シランカップリング剤(A)とシランカップリング剤(B)の配合比率としては、固形分質量比〔(A)/(B)〕で0.50〜0.75の割合である必要があり、0.50〜0.65であることが好ましく、0.55〜0.65であることが最も好ましい。固形分質量比〔(A)/(B)〕が0.50未満であると、有機ケイ素化合物(C)の疎水性および自己架橋性が高くなるため、処理剤安定性が著しく低下し好ましくない。逆に固形分質量比〔(A)/(B)〕が0.75を超えると、有機ケイ素化合物(C)の親水性およびカチオン性が高くなりすぎ、得られる皮膜の耐水性および耐汗性が著しく低下するため好ましくない。   The organosilicon compound (C) includes a silane coupling agent (A) containing one amino group in the molecule and a silane coupling agent (B) containing one glycidyl group in the molecule. [(A) / (B)] is blended at a ratio of 0.50 to 0.75. As a compounding ratio of the silane coupling agent (A) and the silane coupling agent (B), it is necessary that the solid content mass ratio [(A) / (B)] is a ratio of 0.50 to 0.75, It is preferably 0.50 to 0.65, and most preferably 0.55 to 0.65. When the solid content mass ratio [(A) / (B)] is less than 0.50, the hydrophobicity and the self-crosslinking property of the organosilicon compound (C) are increased, so that the stability of the treating agent is remarkably lowered, which is not preferable. . On the other hand, if the solid content mass ratio [(A) / (B)] exceeds 0.75, the hydrophilicity and cationicity of the organosilicon compound (C) become too high, and the water resistance and sweat resistance of the resulting film are increased. Is not preferable because of drastically lowering.

また、前記有機ケイ素化合物(C)は、骨格中に環状シロキサン結合を有する必要がある。骨格中にSiを含む環状構造を有していないと、造膜成分(c)のバリア性や密着性が低くなり、耐食性や耐洗浄剤性、皮膜密着性など全ての性能が低下する。   The organosilicon compound (C) needs to have a cyclic siloxane bond in the skeleton. If the skeleton does not have a cyclic structure containing Si, the barrier property and adhesion of the film-forming component (c) are lowered, and all the performances such as corrosion resistance, detergent resistance, and film adhesion are lowered.

また、本発明中における前記分子中にアミノ基を1つ含有するシランカップリング剤(A)としては、特に限定するものではないが、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシランなどを例示することができ、分子中にグリシジル基を1つ含有するシランカップリング剤(B)としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシランなどを例示することができる。   In the present invention, the silane coupling agent (A) containing one amino group in the molecule is not particularly limited, but 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane. Examples of the silane coupling agent (B) containing one glycidyl group in the molecule include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane. can do.

また、前記有機ケイ素化合物(C)における官能基(a)の数は2個以上であることが必要である。官能基(a)の数が1個である場合には、亜鉛系めっき鋼板表面との密着性、有機ケイ素化合物(C)の自己架橋性、後述のポリエーテルポリウレタン樹脂(E)との結合性が低下し、皮膜が充分に形成されないため、本発明の効果全てが得られない。官能基(a)のR1、R2及びR3の定義におけるアルキル基及びアルコキシ基の炭素数は、特に制限されないが、1から6であるのが好ましく、1から4であるのがより好ましく、1又は2であるのがもっとも好ましい。   The number of functional groups (a) in the organosilicon compound (C) needs to be 2 or more. When the number of functional groups (a) is one, the adhesion to the surface of the zinc-based plated steel sheet, the self-crosslinking property of the organosilicon compound (C), and the binding property to the polyether polyurethane resin (E) described later And the film is not sufficiently formed, so that all the effects of the present invention cannot be obtained. The number of carbon atoms of the alkyl group and alkoxy group in the definition of R1, R2, and R3 of the functional group (a) is not particularly limited, but is preferably 1 to 6, more preferably 1 to 4, and 1 or 2 is most preferred.

さらに、前記有機ケイ素化合物(C)における官能基(b)の存在割合としては、一分子内一個以上であれば良く、また平均の分子量が1000〜10000であることが必要であり、1300〜6000であることが好ましい。ここでいう分子量は、特に限定するものではないが、TOF−MS法による直接測定およびクロマトグラフィー法による換算測定のいずれかを用いて良く、GFC(ゲルフィルタレーションクロマトグラフィー)を用い、分子量標準物質としてエチレングリコールを用いることが好ましい。同法で求めた平均の分子量が1000未満であると、有機ケイ素化合物の水溶解性が高くなるため、形成された皮膜の耐水性が著しく低くなる。一方、平均の分子量が10000を超えると、前記有機ケイ素化合物(C)を水中で安定に溶解または分散させることが困難になる。   Furthermore, the abundance ratio of the functional group (b) in the organosilicon compound (C) may be one or more in one molecule, and the average molecular weight needs to be 1000 to 10,000, and 1300 to 6000. It is preferable that Although molecular weight here is not specifically limited, either direct measurement by TOF-MS method or conversion measurement by chromatography method may be used, and molecular weight standard substance using GFC (gel filtration chromatography). It is preferable to use ethylene glycol. When the average molecular weight determined by the same method is less than 1000, the water solubility of the organosilicon compound is increased, so that the water resistance of the formed film is significantly reduced. On the other hand, when the average molecular weight exceeds 10,000, it is difficult to stably dissolve or disperse the organosilicon compound (C) in water.

前記有機ケイ素化合物(C)は、環状シロキサン構造を有する必要があり、その存在割合が、FT−IR反射法による環状シロキサン結合を示す1090〜1100cm−1の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm−1の吸光度(C2)の比〔C1/C2〕が1.0〜2.0ことが最も好ましい。前記比〔C1/C1〕が1.0〜2.0であると、環状構造によるバリア性と鎖構造による柔軟性の双方をバランスよく備えることができ、耐食性や耐洗浄剤性、皮膜密着性など全ての性能が向上する。また、樹脂分子と環状シロキサン結合部の絡合により、より強靭で緻密な皮膜が形成される。The organosilicon compound (C) needs to have a cyclic siloxane structure, and the abundance ratio of the organic silicon compound (C) is an absorbance (C1) of 1090 to 1100 cm −1 showing a cyclic siloxane bond by FT-IR reflection method and a chain siloxane bond. It is most preferable that the ratio [C1 / C2] of the absorbance (C2) of 1030 to 1040 cm −1 shown is 1.0 to 2.0. When the ratio [C1 / C1] is 1.0 to 2.0, both the barrier property due to the cyclic structure and the flexibility due to the chain structure can be provided in a well-balanced manner, and the corrosion resistance, the detergent resistance, and the film adhesion All the performances are improved. Moreover, a tougher and denser film is formed by the entanglement between the resin molecule and the cyclic siloxane bond.

また、本発明の有機ケイ素化合物(C)の製造方法は、特に限定するものではないが、pH4に調整した水に、前記シランカップリング剤(A)と、前記シランカップリング剤(B)を順次添加し、所定時間攪拌する方法が挙げられる。ここで、前記シランカップリング剤(A)を添加すると水溶液が発熱するため、前もって水を冷却しておき、加えて所定時間冷却し続け、一定の温度範囲にて製造することによって前記有機ケイ素化合物(C)における環状シロキサン結合と鎖状シロキサン結合の存在比を制御することができる。   Moreover, the manufacturing method of the organosilicon compound (C) of the present invention is not particularly limited, but the silane coupling agent (A) and the silane coupling agent (B) are added to water adjusted to pH 4. The method of adding sequentially and stirring for predetermined time is mentioned. Here, since the aqueous solution generates heat when the silane coupling agent (A) is added, the organosilicon compound is prepared by cooling the water in advance, continuing to cool for a predetermined time, and producing in a certain temperature range. The abundance ratio of the cyclic siloxane bond and the chain siloxane bond in (C) can be controlled.

本発明の必須成分である前記ポリエーテルポリウレタン樹脂(E)は、ポリエーテル系であることが必要である。ポリエステルポリウレタン樹脂は、酸やアルカリにより加水分解を生じるため好ましくなく、ポリカーボネートポリウレタンは、硬くて脆い皮膜を形成しやすく、加工時の密着性や加工部の耐食性に劣るため好ましくない。   The polyether polyurethane resin (E) which is an essential component of the present invention needs to be a polyether. Polyester polyurethane resin is not preferable because it is hydrolyzed by acid or alkali, and polycarbonate polyurethane is not preferable because it is easy to form a hard and brittle film and is inferior in adhesion during processing and corrosion resistance of processed parts.

また、前記ポリエーテルポリウレタン樹脂(E)が分子中に芳香環および/又は炭素数が4〜6の脂環構造を有することが好ましい。芳香環や脂環構造を有することで前述の有機ケイ素化合物(C)の環状構造との絡合が生じるため、皮膜のバリア性が改善する。また、前記ポリエーテルポリウレタン樹脂(E)が分子中にアミノ基を含有し、該アミノ基の総量に対する4級アンモニウム塩の割合がモル比で0.7〜1.0であることが好ましい。該アミノ基の総量に対する4級アンモニウム塩の割合がこの範囲であると、前記ポリエーテルポリウレタン樹脂(E)のディスパージョン安定性と造膜後の耐水性の双方を満足できる。   The polyether polyurethane resin (E) preferably has an aromatic ring and / or an alicyclic structure having 4 to 6 carbon atoms in the molecule. By having an aromatic ring or an alicyclic structure, entanglement with the cyclic structure of the organosilicon compound (C) described above occurs, so that the barrier property of the film is improved. Moreover, it is preferable that the said polyether polyurethane resin (E) contains an amino group in a molecule | numerator, and the ratio of the quaternary ammonium salt with respect to the total amount of this amino group is 0.7-1.0 by molar ratio. When the ratio of the quaternary ammonium salt to the total amount of the amino groups is within this range, both the dispersion stability of the polyether polyurethane resin (E) and the water resistance after film formation can be satisfied.

さらに、前記ポリエーテルポリウレタン樹脂(E)が分子中に下記一般式[2]で表される構造単位(D)を有することが好ましい。構造単位(D)を含有することで、前記有機ケイ素化合物(C)との反応点と自己架橋点を有するため、架橋度が上がり耐食性や耐洗浄剤性が著しく改善する。また、前記構造単位(D)中のR9、R10、R11は、特に限定するものではないが、R9は水素原子、アルキル基、アリール基およびアラルキル基からなる群より選ばれる一価の有機残基、R10、R11は互いに独立に、アルコキシル基、アシロキシ基、水酸基およびハロゲン原子からなる群から選ばれる官能基であることが好ましく、R9はアルキル基であることが最も好ましく、R10、R11は水酸基であることが最も好ましい。また、構造単位(D)のエチレン鎖数mは、特に限定するものではないが、1〜5であることが好ましく、2又は3であることが最も好ましい。   Furthermore, the polyether polyurethane resin (E) preferably has a structural unit (D) represented by the following general formula [2] in the molecule. By containing the structural unit (D), since it has a reaction point with the organosilicon compound (C) and a self-crosslinking point, the degree of crosslinking is increased and the corrosion resistance and the detergent resistance are remarkably improved. R9, R10, and R11 in the structural unit (D) are not particularly limited, but R9 is a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, and an aralkyl group. , R10 and R11 are each independently a functional group selected from the group consisting of an alkoxyl group, an acyloxy group, a hydroxyl group and a halogen atom, R9 is most preferably an alkyl group, and R10 and R11 are hydroxyl groups. Most preferably it is. The number of ethylene chains m in the structural unit (D) is not particularly limited, but is preferably 1 to 5, and most preferably 2 or 3.

また、本発明のポリエーテルポリウレタン樹脂(E)は、特に限定するものではないが、ポリエーテルポリオールと脂肪族、脂環式もしくは芳香族ポリイソシアネートとの縮重合物であるポリウレタン樹脂であって、用いるポリオールの一部として、(置換)アミノ基を有するポリオールを用いることによって得られるポリウレタンである。ポリエーテルポリオールとしては、開始剤としてエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ヘキサメチレングリコール、(脂肪族ジオールの追加)、サッカロース、メチレングリコール、グリセリンなどを用い、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトロヒドロフラン、シクロヘキシレンなどの化合物の1種以上を付加重合することによって得られるものを使用することができ、ポリイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。   The polyether polyurethane resin (E) of the present invention is a polyurethane resin that is a polycondensation product of a polyether polyol and an aliphatic, alicyclic or aromatic polyisocyanate, although not particularly limited, It is a polyurethane obtained by using a polyol having a (substituted) amino group as a part of the polyol to be used. As polyether polyols, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, (aliphatic diol) as initiators Obtained by addition polymerization of one or more compounds such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrohydrofuran, and cyclohexylene using saccharose, methylene glycol, glycerin, etc. Polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexyl Tan diisocyanate, cyclohexylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, and the like.

また、本発明の造膜成分(c)における有機ケイ素化合物(C)と、ポリエーテルポリウレタン樹脂(E)の固形分に対する配合比に関しては、有機ケイ素化合物(C)とポリエーテルポリウレタン樹脂(E)の固形分質量比〔(E)/(C)〕が0.33〜0.90である必要があり、0.33〜0.80であることがより好ましく、0.35〜0.70であることが最も好ましい。当該固形分質量比〔(E)/(C)〕が0.33未満であると、造膜成分(c)のバリア性が低下するため好ましくなく、逆に0.90を超えると、有機ケイ素化合物(C)に起因した素材との密着性が著しく低下し、諸性能全般が低下するため好ましくない。   Moreover, regarding the compounding ratio with respect to solid content of the organosilicon compound (C) and the polyether polyurethane resin (E) in the film-forming component (c) of the present invention, the organosilicon compound (C) and the polyether polyurethane resin (E). The solid content mass ratio [(E) / (C)] must be 0.33 to 0.90, more preferably 0.33 to 0.80, and 0.35 to 0.70. Most preferably it is. If the solid content mass ratio [(E) / (C)] is less than 0.33, it is not preferable because the barrier property of the film-forming component (c) is lowered. Conversely, if it exceeds 0.90, organosilicon Adhesiveness with the material resulting from the compound (C) is remarkably lowered, and various performances are lowered, which is not preferable.

また、本発明の造膜成分(c)には、更にビスフェノールA骨格を有するカチオン性フェノール樹脂(F)を含有することが耐食性や耐溶剤性を改善する上で好ましい。前記ポリエーテルポリウレタン樹脂(E)と、前記カチオン性フェノール樹脂(F)の固形分に対する配合比に関しては、ポリエーテルポリウレタン樹脂(E)とカチオン性フェノール樹脂(F)の固形分質量比[(F)/(E)]が0.010〜0.030である必要があり、0.010〜0.025であることがより好ましく、0.010〜0.022であることが最も好ましい。当該質量比[(F)/(E)]が0.010未満であると、カチオン性フェノール樹脂(F)の添加効果が発現せず、耐食性や耐溶剤性が低下するため好ましくなく、0.030を超えると、皮膜がカチオン性フェノール樹脂により微黄色に着色されるとともに、高湿環境下や紫外線暴露環境下において、著しい黄変を生じるため好ましくない。   Moreover, it is preferable that the film-forming component (c) of the present invention further contains a cationic phenol resin (F) having a bisphenol A skeleton in order to improve corrosion resistance and solvent resistance. Regarding the blending ratio of the polyether polyurethane resin (E) and the cationic phenol resin (F) to the solid content, the solid content mass ratio of the polyether polyurethane resin (E) and the cationic phenol resin (F) [(F ) / (E)] must be 0.010 to 0.030, more preferably 0.010 to 0.025, and most preferably 0.010 to 0.022. If the mass ratio [(F) / (E)] is less than 0.010, the addition effect of the cationic phenol resin (F) is not exhibited, and the corrosion resistance and solvent resistance are lowered. If it exceeds 030, the film is colored slightly yellow with the cationic phenol resin, and it is not preferable because significant yellowing occurs in a high-humidity environment or an ultraviolet exposure environment.

本発明のクロムフリー表面処理亜鉛系めっき鋼板の水系金属表面処理剤は、インヒビター成分(d)として、チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)を必須成分として含有する必要がある。   The aqueous metal surface treatment agent for the chromium-free surface-treated zinc-based plated steel sheet according to the present invention contains, as an essential component, a fluoro metal complex compound (H) having at least one selected from titanium and zirconium as an inhibitor component (d). There is a need.

前記チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)としては、特に限定するものではないが、チタンフッ化水素酸、ジルコンフッ化水素酸やそれらのアンモニウム塩、アルカリ金属塩などを例示することができる。   The fluorometal complex compound (H) having at least one selected from titanium and zirconium is not particularly limited, but includes titanium hydrofluoric acid, zircon hydrofluoric acid, ammonium salts thereof, and alkali metal salts. It can be illustrated.

本発明のインヒビター成分(d)における前記有機ケイ素化合物(C)と前記チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)の配合比に関して、前記有機ケイ素化合物(C)由来のSi(Si)と前記チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)の金属成分(M)の質量比〔(Si)/(M)〕が0.08〜0.20であることが好ましく、0.12〜0.20であることがより好ましく、0.14〜0.18であることが最も好ましい。当該金属成分(M)の質量比〔(Si)/(M)〕が0.08未満であると、皮膜形成時において前記金属成分から形成される酸化物皮膜の生成量が少なくなり、耐食性が低くなるため好ましくなく、0.20を超えると、前記金属成分から形成される酸化物皮膜の素材表面被覆率が高くなり、前記有機ケイ素化合物(C)の素材との反応点が少なくなるため、有機ケイ素化合物(C)による密着性付与効果が小さくなり、本発明の効果全般が低下するため好ましくない。   Regarding the compounding ratio of the organosilicon compound (C) and the fluorometal complex compound (H) having at least one selected from titanium and zirconium in the inhibitor component (d) of the present invention, it is derived from the organosilicon compound (C). The mass ratio [(Si) / (M)] of the metal component (M) of the fluorometal complex compound (H) having at least one selected from Si (Si) and titanium and zirconium is 0.08 to 0.20. It is preferable that it is 0.12-0.20, and it is most preferable that it is 0.14-0.18. When the mass ratio [(Si) / (M)] of the metal component (M) is less than 0.08, the amount of oxide film formed from the metal component during film formation is reduced, and the corrosion resistance is improved. Since it becomes low, it is not preferable, and when it exceeds 0.20, the material surface coverage of the oxide film formed from the metal component increases, and the reaction point with the material of the organosilicon compound (C) decreases, The adhesion imparting effect by the organosilicon compound (C) is reduced, and the overall effect of the present invention is lowered, which is not preferable.

また、前記フルオロ金属錯化合物(H)の金属成分(M)がチタン(M)とジルコニウム(M)の双方を含有することが耐食性や耐アルカリ性を両立する上で好ましい。各々の金属成分質量比〔(M)/(M)〕は0.50〜0.80であることが好ましく、0.60〜0.80であることがより好ましく、0.60〜0.70であることが最も好ましい。当該金属成分質量比〔(M)/(M)〕が0.50未満であるとチタンの酸化物皮膜が少なくなり、相対的に硬いジルコニウムの酸化物の存在割合が高くなるため、素材の塑性変形に付随した皮膜の変形に対して脆くなり、皮膜欠陥が生じ耐食性が低下するため好ましくなく、逆に0.80を超えると、相対的に耐アルカリ性の低いチタンの酸化物皮膜の存在割合が高くなるため、皮膜の耐アルカリ性が低下し、アルカリ試験後の耐食性が低下するため好ましくない。Moreover, it is preferable that the metal component (M) of the said fluoro metal complex compound (H) contains both titanium (M T ) and zirconium (M Z ) in order to achieve both corrosion resistance and alkali resistance. Each metal component mass ratio [(M T ) / (M Z )] is preferably 0.50 to 0.80, more preferably 0.60 to 0.80, and 0.60 to 0. Most preferred is .70. If the metal component mass ratio [(M T ) / (M Z )] is less than 0.50, the titanium oxide film decreases, and the abundance ratio of the relatively hard zirconium oxide increases. It is not preferable because it becomes brittle with respect to the deformation of the film accompanying the plastic deformation of the film, resulting in film defects and a decrease in corrosion resistance. Conversely, when it exceeds 0.80, there is a relatively low alkali resistance titanium oxide film. Since the ratio becomes high, the alkali resistance of the film is lowered, and the corrosion resistance after the alkali test is lowered.

また、本発明のインヒビター成分(d)は、耐食性を改善するために、リン酸化合物(J)を更に含有することが好ましく、リン酸化合物(J)とバナジウム(IV)化合物(K)の両方を更に含有することがより好ましい。リン酸化合物(J)としては、特に限定するものではないが、リン酸、リン酸のアンモニウム塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩などが挙げられる。これらは主に耐食性を付与する効果があり、リン酸化合物(J)の塩の種類により、リン酸の溶出性を制御することができ、耐食性保持時間を長くすることができる。このなかでもリン酸、または重リン酸マグネシウムがより大きな耐食性改善効果が得られるため好ましく、リン酸と重リン酸マグネシウムを併用することがより好ましい。   In addition, the inhibitor component (d) of the present invention preferably further contains a phosphoric acid compound (J) in order to improve corrosion resistance. Both the phosphoric acid compound (J) and the vanadium (IV) compound (K) It is more preferable to contain further. Although it does not specifically limit as a phosphoric acid compound (J), Phosphoric acid, the ammonium salt of phosphoric acid, the alkali metal salt of phosphoric acid, the alkaline-earth metal salt of phosphoric acid, etc. are mentioned. These are mainly effective in imparting corrosion resistance, and the elution property of phosphoric acid can be controlled and the corrosion resistance retention time can be extended depending on the type of salt of the phosphoric acid compound (J). Among these, phosphoric acid or magnesium diphosphate is preferable because a larger effect of improving corrosion resistance is obtained, and it is more preferable to use phosphoric acid and magnesium magnesium phosphate in combination.

また、本発明のインヒビター成分(d)における有機ケイ素化合物(C)とリン酸化合物(J)の配合比に関して、有機ケイ素化合物(C)とリン酸化合物(J)の固形分質量比〔(J)/(C)〕が0.020〜0.110であることが好ましく、0.030〜0.110であることがより好ましく、0.040〜0.100であることが最も好ましい。当該固形分質量比〔(J)/(C)〕が0.020未満であると、リン酸化合物(J)の添加効果である耐アルカリ性や耐食性などの効果が発現しないため好ましくなく、0.110を超えると金属表面処理剤安定性が低下するため好ましくない。   Moreover, regarding the compounding ratio of the organosilicon compound (C) and the phosphate compound (J) in the inhibitor component (d) of the present invention, the solid content mass ratio of the organosilicon compound (C) and the phosphate compound (J) [(J ) / (C)] is preferably 0.020 to 0.110, more preferably 0.030 to 0.110, and most preferably 0.040 to 0.100. If the solid content mass ratio [(J) / (C)] is less than 0.020, the effects of addition of the phosphoric acid compound (J), such as alkali resistance and corrosion resistance, are not preferable. Exceeding 110 is not preferable because the stability of the metal surface treatment agent is lowered.

バナジウム(IV)化合物(K)としては、特に限定するものではないが、五酸化バナジウム[V]、メタバナジン酸[HVO]、メタバナジン酸アンモニウム[NHVO]メタバナジン酸ナトリウム[NaVO]、オキシ三塩化バナジウム[VOCl]などの化合物のバナジウム(V)をアルコール類、有機酸類等の還元剤を用いてバナジウム(IV)に還元したもの、二酸化バナジウム[VO]、バナジウムオキシアセチルアセトネート[VO(C]、オキシ硫酸バナジウム[VOSO]などのバナジウム(IV)含有化合物、バナジウムアセチルアセトネート[V(C]三酸化バナジウム[V]、三塩化バナジウム[VCl]などの化合物のバナジウム(III)を任意の酸化剤にてバナジウム(IV)に酸化したものなどが挙げられる。Vanadium (IV) compound as a (K) is not particularly limited, vanadium pentoxide [V 2 O 5], metavanadate [HVO 3], ammonium metavanadate [NH 4 VO 3] sodium metavanadate [NaVO 3 ], vanadium (V) of a compound such as vanadium oxytrichloride [VOCl 3 ], etc. reduced to vanadium (IV) using a reducing agent such as alcohols and organic acids, vanadium dioxide [VO 2 ], vanadium oxy Vanadium (IV) -containing compounds such as acetylacetonate [VO (C 5 H 7 O 2 ) 2 ], vanadium oxysulfate [VOSO 4 ], vanadium acetylacetonate [V (C 5 H 7 O 2 ) 3 ] trioxide Compounds of vanadium [V 2 O 3 ], vanadium trichloride [VCl 3 ], etc. Examples thereof include those obtained by oxidizing nadium (III) to vanadium (IV) with an arbitrary oxidizing agent.

また、本発明のインヒビター成分(d)における有機ケイ素化合物(C)とバナジウム化合物(K)の配合比に関して、有機ケイ素化合物(C)とバナジウム化合物(K)の固形分質量比〔(K)/(C)〕が0.020〜0.060であることが好ましく、0.025〜0.060であることがより好ましく、0.030〜0.055であることが最も好ましい。当該固形分質量比〔(K)/(C)〕が0.020未満であると、バナジウム(IV)化合物(K)に起因したインヒビター効果が得られないため好ましくなく、0.060を超えると、バナジウム(IV)化合物と当該皮膜に含まれる有機物との錯化合物により、高湿化において皮膜が黄色着色し易くなるため好ましくない。   Moreover, regarding the compounding ratio of the organosilicon compound (C) and the vanadium compound (K) in the inhibitor component (d) of the present invention, the solid content mass ratio of the organosilicon compound (C) and the vanadium compound (K) [(K) / (C)] is preferably 0.020 to 0.060, more preferably 0.025 to 0.060, and most preferably 0.030 to 0.055. When the solid content mass ratio [(K) / (C)] is less than 0.020, an inhibitor effect due to the vanadium (IV) compound (K) cannot be obtained, and when it exceeds 0.060. A complex compound of a vanadium (IV) compound and an organic substance contained in the film is not preferable because the film is likely to be colored yellow at high humidity.

本発明の水系金属表面処理剤には、更にポリエチレンワックス(L)を含有することが加工性および摺動性を改善する上で好ましい。前記ポリエチレンワックス(L)の配合比に関して、前記有機ケイ素化合物(C)と前記ポリエチレンワックス(L)の固形分との質量比〔(L)/(C)〕が0.05〜0.30である必要があり、0.07〜0.30であることが好ましく、0.10〜0.25であることが最も好ましい。当該質量比〔(L)/(C)〕が0.05未満であると、充分な潤滑性が発現しないため好ましくなく、0.30を超えると当該ポリエチレンワックスによって皮膜の連続性が阻害され、皮膜が割れやすくなり、耐食性が低下するため好ましくない。   The aqueous metal surface treatment agent of the present invention preferably further contains polyethylene wax (L) in order to improve processability and slidability. Regarding the blending ratio of the polyethylene wax (L), the mass ratio [(L) / (C)] of the organosilicon compound (C) and the solid content of the polyethylene wax (L) is 0.05 to 0.30. It is necessary to be 0.07 to 0.30, and most preferably 0.10 to 0.25. If the mass ratio [(L) / (C)] is less than 0.05, it is not preferable because sufficient lubricity is not expressed, and if it exceeds 0.30, the continuity of the film is inhibited by the polyethylene wax, It is not preferable because the film is easily broken and the corrosion resistance is lowered.

本発明の表面処理金属材は、前記水系金属表面処理剤を塗布し、50〜250℃の到達温度で乾燥を行い、乾燥後の皮膜重量が0.2〜5.0g/mであることが好ましい。乾燥温度については、到達温度で50℃〜250℃であることが好ましく、70℃〜150℃であることがより好ましく、100℃〜140℃であることが最も好ましい。到達温度が50℃未満であると、該水系金属表面処理剤の溶媒が完全に揮発しないため好ましくない。逆に250℃を超えると、該水系金属表面処理剤にて形成された皮膜の有機鎖の一部が分解するため好ましくない。皮膜重量に関しては、0.2〜5.0g/mであることが好ましく、0.5〜3.0g/mであることがより好ましく、0.8〜2.0g/mであることが最も好ましい。皮膜重量が0.2g/m未満であると、該金属材の表面を被覆できないため耐食性が著しく低下するため好ましくない。逆に5.0g/mを超えると、皮膜密着性が低下するため好ましくない。The surface-treated metal material of the present invention is coated with the aqueous metal surface-treating agent, dried at an ultimate temperature of 50 to 250 ° C., and the film weight after drying is 0.2 to 5.0 g / m 2. Is preferred. About drying temperature, it is preferable that it is 50 to 250 degreeC in ultimate temperature, It is more preferable that it is 70 to 150 degreeC, It is most preferable that it is 100 to 140 degreeC. An ultimate temperature of less than 50 ° C. is not preferable because the solvent of the aqueous metal surface treatment agent does not volatilize completely. On the other hand, if it exceeds 250 ° C., part of the organic chain of the film formed with the aqueous metal surface treatment agent is decomposed, which is not preferable. For the coating weight is preferably 0.2~5.0g / m 2, more preferably from 0.5 to 3.0 g / m 2, is 0.8 to 2.0 g / m 2 Most preferred. If the coating weight is less than 0.2 g / m 2 , the surface of the metal material cannot be coated and the corrosion resistance is remarkably lowered. On the other hand, if it exceeds 5.0 g / m 2 , the film adhesion deteriorates, which is not preferable.

本発明に用いる水系金属表面処理剤は、本発明の効果を損なわない範囲で、塗工性を向上させるためのレベリング剤や水溶性溶剤、金属安定化剤、エッチング抑制剤などを使用することが可能である。レベリング剤としては、ノニオンまたはカチオンの界面活性剤として、ポリエチレンオキサイドもしくはポリプロピレンオキサイド付加物やアセチレングリコール化合物などが挙げられ、水溶性溶剤としてはエタノール、イソプロピルアルコール、t−ブチルアルコールおよびプロピレングリコールなどのアルコール類、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルなどのセロソルブ類、酢酸エチル、酢酸ブチルなどのエステル類、アセトン、メチルエチルケトンおよびメチルイソブチルケトンなどのケトン類が挙げられる。金属安定化剤としては、EDTA、DTPAなどのキレート化合物が挙げられ、エッチング抑制剤としては、エチレンジアミン、トリエチレンペンタミン、グアニジンおよびピリミジンなどのアミン化合物類が挙げられる。特に一分子内に2個以上のアミノ基を有するものが金属安定化剤としても効果があり、より好ましい。   The aqueous metal surface treatment agent used in the present invention may use a leveling agent, a water-soluble solvent, a metal stabilizer, an etching inhibitor, etc. for improving the coating property within the range not impairing the effects of the present invention. Is possible. Examples of leveling agents include nonionic or cationic surfactants such as polyethylene oxide or polypropylene oxide adducts and acetylene glycol compounds, and examples of water-soluble solvents include alcohols such as ethanol, isopropyl alcohol, t-butyl alcohol, and propylene glycol. , Cellosolves such as ethylene glycol monobutyl ether and ethylene glycol monoethyl ether, esters such as ethyl acetate and butyl acetate, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. Examples of the metal stabilizer include chelate compounds such as EDTA and DTPA, and examples of the etching inhibitor include amine compounds such as ethylenediamine, triethylenepentamine, guanidine and pyrimidine. In particular, those having two or more amino groups in one molecule are more preferable because they are effective as metal stabilizers.

本発明の表面処理亜鉛系めっき鋼板は、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、且つ加工性および摺動性にも優れる。この理由は以下のように推測されるが、本発明はかかる推測に縛られるものではない。   The surface-treated zinc-based plated steel sheet of the present invention has corrosion resistance, alkali resistance, solvent resistance and other cleaning resistance, film adhesion, paint adhesion and printing adhesion, moisture discoloration resistance, and condensation resistance. It is excellent in water resistance and excellent in workability and slidability. The reason is presumed as follows, but the present invention is not limited to such presumption.

本発明に用いる水系金属表面処理剤を用いて形成される皮膜は有機ケイ素化合物(C)とポリエーテルポリウレタン樹脂(E)を造膜成分として含むものである。まず、耐食性は、前記有機ケイ素化合物の1部が乾燥などにより濃縮されたときに前記有機ケイ素化合物が互いに反応して連続皮膜を成膜すること、前記有機ケイ素化合物の1部が加水分解して生成した−OR基が金属表面とSi−O−M結合(M:被塗物表面の金属元素)を形成することにより、著しいバリアー効果を発揮することによると推定される。これに加え、有機ケイ素化合物(C)が特異な構造、すなわち環状シロキサン結合と鎖状シロキサン結合を特定の割合で含有することで、様々な効果が得られる。前述のように、有機ケイ素化合物(C)は、それ自身の縮合と素材との反応により素材と強固に結合した緻密な皮膜が形成されるが、そのシロキサン結合が環状であると、乾燥時に三次元的なシロキサン結合の皮膜が形成され、酸素や水分などの浸入に対する抵抗が増大するため極めて優れたバリア性を発揮する。しかしながら、環状シロキサン結合は骨格上の理由から変形自由度がなく、硬いが脆い皮膜となってしまう。一方で、鎖状シロキサン結合は、環状シロキサン結合のような立体構造は形成せず、環状シロキサン結合と比較してバリア性は低いが、変形自由度は高い。このような異なる性質のシロキサン結合が一定の比率で共存することで、バリア性や密着性に優れる皮膜を形成することができる。これにポリエーテルウレタン樹脂が皮膜形成時に絡合し、さらに有機ケイ素化合物と反応性を有する構造単位(D)を有するポリエーテルポリウレタン樹脂の場合は、前記有機ケイ素化合物とポリエーテルポリウレタン樹脂が結合し、極めて高いバリア性を発揮する。これに加え、カチオン性フェノール樹脂(F)は共鳴安定化構造を有する化合物であり、カチオン性フェノール樹脂(F)を含有する皮膜は、金属表面と反応し固着することによって、素材金属の外殻軌道と重なる程度に充分近い距離であるため、φ軌道を利用して腐食によって生ずる電子を非局在化する作用を持ち、このことによって、表面電位が均一に保たれ、優れた耐食性が付与される。   The film formed using the water-based metal surface treatment agent used in the present invention contains an organosilicon compound (C) and a polyether polyurethane resin (E) as film-forming components. First, the corrosion resistance is such that when one part of the organosilicon compound is concentrated by drying or the like, the organosilicon compound reacts with each other to form a continuous film, and one part of the organosilicon compound hydrolyzes. It is presumed that the generated —OR group exhibits a significant barrier effect by forming a Si—OM bond (M: metal element on the surface of the object to be coated) with the metal surface. In addition, various effects can be obtained when the organosilicon compound (C) contains a specific structure, that is, a cyclic siloxane bond and a chain siloxane bond in a specific ratio. As described above, the organosilicon compound (C) forms a dense film that is firmly bonded to the material by its own condensation and reaction with the material. An original siloxane-bonded film is formed, and resistance to intrusion of oxygen, moisture and the like is increased, so that an extremely excellent barrier property is exhibited. However, the cyclic siloxane bond does not have a degree of freedom of deformation for skeleton reasons, and becomes a hard but brittle film. On the other hand, a chain siloxane bond does not form a three-dimensional structure like a cyclic siloxane bond, and has a lower barrier property than a cyclic siloxane bond, but has a high degree of freedom in deformation. Such siloxane bonds having different properties coexist at a certain ratio, whereby a film having excellent barrier properties and adhesion can be formed. In the case of a polyether polyurethane resin having a structural unit (D) that is entangled with the polyether urethane resin at the time of film formation and having reactivity with the organosilicon compound, the organosilicon compound and the polyether polyurethane resin are bonded to each other. , Exhibit extremely high barrier properties. In addition, the cationic phenol resin (F) is a compound having a resonance stabilizing structure, and the coating containing the cationic phenol resin (F) reacts with and adheres to the metal surface. Because it is close enough to overlap with the orbit, it has the effect of delocalizing electrons generated by corrosion using φ orbit, which keeps the surface potential uniform and provides excellent corrosion resistance. The

一方、インヒビター成分(d)の効果は、素材表面のエッチングによる酸化膜の除去効果、エッチングに伴うpH上昇による析出および皮膜化、溶出した素材起因の金属イオンとの難溶性塩の形成、素材の腐食に伴うpH上昇の緩和、表面電位の均一化などが挙げられる。チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物は、素材表面のエッチングにより酸化膜の除去する効果を持ち、同時に、これに伴うpH上昇によりフッ素の解離および酸化物もしくは水酸化物として析出し、皮膜化することにより耐食性を付与するものと推測される。また、腐食により溶出した素材起因の金属イオンと難溶性塩を形成し、腐食の進行を遅らせる効果を有する。一方、リン酸化合物は素材腐食に伴うpH上昇緩和効果を持ち、特に溶出性インヒビターとしての効果を有する。バナジウム化合物は、バナジウムの酸化還元反応により腐食により生じた電子を消費し、腐食の進行を抑制する効果を有するものと推測される。このような効果を持つインヒビター成分と前述の造膜成分に起因した密着性とバリア性をバランスよく発現させることにより耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、且つ極めて加工性および摺動性に優れる皮膜を形成することが可能であると推察される。   On the other hand, the effect of the inhibitor component (d) is the effect of removing the oxide film by etching the surface of the material, the precipitation and film formation due to the pH increase accompanying the etching, the formation of a hardly soluble salt with the metal ions derived from the eluted material, Examples include relaxation of pH increase due to corrosion, and uniform surface potential. The fluoro metal complex compound having at least one selected from titanium and zirconium has an effect of removing the oxide film by etching the material surface, and at the same time, as the pH increases, the fluorine dissociates and becomes an oxide or hydroxide. It is presumed that corrosion resistance is imparted by precipitation and film formation. In addition, it has the effect of delaying the progress of corrosion by forming slightly soluble salts with metal ions derived from the material eluted by corrosion. On the other hand, phosphoric acid compounds have a pH increase mitigating effect associated with material corrosion, and particularly have an effect as an elution inhibitor. It is estimated that the vanadium compound has an effect of consuming electrons generated by corrosion due to the oxidation-reduction reaction of vanadium and suppressing the progress of corrosion. By exhibiting a good balance between the inhibitor component having such an effect and the adhesion and barrier properties caused by the above-mentioned film-forming component, it is resistant to detergents such as corrosion resistance, alkali resistance and solvent resistance, film adhesion, and paint adhesion. It is presumed that it is possible to form a film having excellent water resistance such as adhesion and print adhesion, moisture discoloration resistance and dew condensation resistance, and extremely excellent workability and slidability.

以下に本発明の実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。試験板の調製、実施例および比較例、および金属材料用表面処理剤の塗布の方法について下記に説明する。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples of the present invention, but the present invention is not limited thereto. Preparation of the test plate, examples and comparative examples, and a method of applying the surface treatment agent for metal material will be described below.

試験板の調製
(1)試験素材
下記に示した市販の素材を用いた。
・電気亜鉛めっき鋼板(EG):板厚=0.8mm、目付量=20/20(g/m
・溶融亜鉛めっき鋼板(GI):板厚=0.8mm、目付量=90/90(g/m
・合金化溶融亜鉛めっき鋼板(GA):板厚=0.8mm、目付量=90/90(g/m
・溶融亜鉛−11%アルミニウム−3%マグネシウム−0.2%シリコンめっき鋼板(SD):板厚=0.8mm、目付量=60/60(g/m
(2)脱脂処理
素材を、シリケート系アルカリ脱脂剤のファインクリーナー4336(登録商標:日本パーカライジング(株)製)を用いて、濃度20g/L、温度60℃の条件で2分間スプレー処理し、純水で30秒間水洗したのちに乾燥したものを試験板とした。
Preparation of test plate (1) Test material Commercially available materials shown below were used.
Electrogalvanized steel sheet (EG): plate thickness = 0.8 mm, basis weight = 20/20 (g / m 2 )
Hot-dip galvanized steel sheet (GI): plate thickness = 0.8 mm, basis weight = 90/90 (g / m 2 )
Alloyed hot-dip galvanized steel sheet (GA): plate thickness = 0.8 mm, basis weight = 90/90 (g / m 2 )
Hot-dip zinc-11% aluminum-3% magnesium-0.2% silicon-plated steel sheet (SD): plate thickness = 0.8 mm, basis weight = 60/60 (g / m 2 )
(2) Degreasing treatment The material was sprayed for 2 minutes under the conditions of a concentration of 20 g / L and a temperature of 60 ° C. using a fine silicate alkali degreasing agent 4336 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.). The test plate was washed with water for 30 seconds and then dried.

実施例および比較例に使用したシランカップリング剤を表1に、ウレタン樹脂を表2に、リン酸化合物を表3に、バナジウム化合物を表4に、ポリエチレンワックスを表5に示し、配合例、皮膜量および乾燥温度を表6に示す。   Table 1 shows silane coupling agents used in Examples and Comparative Examples, Table 2 shows urethane resins, Table 3 shows phosphoric acid compounds, Table 4 shows vanadium compounds, Table 5 shows polyethylene waxes, Formulation Examples, Table 6 shows the coating amount and the drying temperature.

〔有機ケイ素化合物Cの調整方法〕
表6に示す組み合わせおよび配合比率にて、表1に示すシランカップリング剤をエタノール中で反応させ、その後、酢酸にてpH4〜4.5に調整した水と混合し、固形分が20%となるように調整した。得られた有機ケイ素化合物の官能基(a)数と親水基(b)1個当たりの分子量、FT−IR反射法による環状シロキサン結合を示す1090〜1100cm−1の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm−1の吸光度(C2)の比〔C1/C2〕を表6に示す。
[Method for preparing organosilicon compound C]
With the combinations and blending ratios shown in Table 6, the silane coupling agent shown in Table 1 was reacted in ethanol, and then mixed with water adjusted to pH 4 to 4.5 with acetic acid, and the solid content was 20%. It adjusted so that it might become. The number of functional groups (a) and the molecular weight per hydrophilic group (b) of the obtained organosilicon compound, the absorbance (C1) of 1090 to 1100 cm −1 showing the chain siloxane bond by FT-IR reflection method, and the chain siloxane Table 6 shows the ratio [C1 / C2] of absorbance (C2) of 1030 to 1040 cm −1 indicating the binding.

〔ウレタン樹脂(E1)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよびエチレングリコール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで3アミノプロピルトリメトキシシランを10質量部添加し、80℃〜85℃に保ちながら1時間反応させて構造単位(D1)を形成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンと残留した3アミノプロピルトリメトキシシランを回収して水溶性のカチオン性ウレタン樹脂を得た。樹脂固形分に対するSi含有量は0.5質量%であった。
[Method of synthesizing urethane resin (E1)]
Polyether polyol (synthesis components: tetramethylene glycol and ethylene glycol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, isophorone diisocyanate: 94 parts by mass And 135 mass parts of methyl ethyl ketone was put into reaction container, it was made to react for 1 hour, keeping at 70 to 75 degreeC, and the urethane prepolymer was produced | generated. Then, 10 parts by mass of 3aminopropyltrimethoxysilane was added and reacted for 1 hour while maintaining at 80 to 85 ° C. to form the structural unit (D1). Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified. Then, methyl ethyl ketone and remaining 3 aminopropyltrimethoxysilane were recovered to obtain a water-soluble cationic urethane resin. Si content with respect to resin solid content was 0.5 mass%.

〔ウレタン樹脂(E2)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよびエチレングリコール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Synthesis Method of Urethane Resin (E2)]
Polyether polyol (synthesis components: tetramethylene glycol and ethylene glycol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, isophorone diisocyanate: 94 parts by mass And 135 mass parts of methyl ethyl ketone was put into reaction container, it was made to react for 1 hour, keeping at 70 to 75 degreeC, and the urethane prepolymer was produced | generated. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Next, 576 parts by mass of water was placed in the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E3)の合成方法〕
ポリエステルポリオール(合成成分:マレイン酸と1,4−ブタンジオ−ルの縮合物、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンと残留した3アミノプロピルトリメトキシシランを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Method of synthesizing urethane resin (E3)]
Polyester polyol (synthesis component: condensate of maleic acid and 1,4-butanediol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified. Then, methyl ethyl ketone and remaining 3 aminopropyltrimethoxysilane were recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E4)の合成方法〕
ポリエステルポリオール(合成成分:ポリ(ヘキサメチレンカーボネート)ジオール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンと残留した3アミノプロピルトリメトキシシランを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Method of synthesizing urethane resin (E4)]
Polyester polyol (synthetic component: poly (hexamethylene carbonate) diol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, isophorone diisocyanate: 94 parts by mass And 135 mass parts of methyl ethyl ketone was put into reaction container, it was made to react for 1 hour, keeping at 70 to 75 degreeC, and the urethane prepolymer was produced | generated. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified. Then, methyl ethyl ketone and remaining 3 aminopropyltrimethoxysilane were recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E5)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。次いで3アミノプロピルトリメトキシシランを10質量部添加し、80℃〜85℃に保ちながら1時間反応させて構造単位(D1)を形成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンと残留した3アミノプロピルトリメトキシシランを回収して水溶性のカチオン性ウレタン樹脂を得た。樹脂固形分に対するSi含有量は0.5質量%であった。
[Method of synthesizing urethane resin (E5)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 10 mass parts of 3 aminopropyl trimethoxysilane was added, and it was made to react for 1 hour, keeping at 80 to 85 degreeC, and the structural unit (D1) was formed. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified. Then, methyl ethyl ketone and remaining 3 aminopropyltrimethoxysilane were recovered to obtain a water-soluble cationic urethane resin. Si content with respect to resin solid content was 0.5 mass%.

〔ウレタン樹脂(E6)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよびビスフェノールAのPO2モル付加物、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。次いで3アミノプロピルトリメトキシシランを10質量部添加し、80℃〜85℃に保ちながら1時間反応させて構造単位(D1)を形成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンと残留した3アミノプロピルトリメトキシシランを回収して水溶性のカチオン性ウレタン樹脂を得た。樹脂固形分に対するSi含有量は0.5質量%であった。
[Method of synthesizing urethane resin (E6)]
Polyether polyol (synthesis component: PO2 molar adduct of tetramethylene glycol and bisphenol A, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, isophorone Diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 10 mass parts of 3 aminopropyl trimethoxysilane was added, and it was made to react for 1 hour, keeping at 80 to 85 degreeC, and the structural unit (D1) was formed. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified. Then, methyl ethyl ketone and remaining 3 aminopropyltrimethoxysilane were recovered to obtain a water-soluble cationic urethane resin. Si content with respect to resin solid content was 0.5 mass%.

〔ウレタン樹脂(E7)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Method of synthesizing urethane resin (E7)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Next, 576 parts by mass of water was placed in the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E8)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよびビスフェノールAのPO2モル付加物、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸15質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Synthesis Method of Urethane Resin (E8)]
Polyether polyol (synthesis component: PO2 molar adduct of tetramethylene glycol and bisphenol A, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, isophorone Diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 15 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Next, 576 parts by mass of water was placed in the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E9)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸13質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Method of synthesizing urethane resin (E9)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Next, 13 parts by mass of dimethyl sulfate was placed in the reaction vessel and reacted at 50 to 60 ° C. for 30 to 60 minutes to produce a cationic urethane prepolymer. Next, 576 parts by mass of water was placed in the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E10)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器にジメチル硫酸20質量部を入れ、50〜60℃で30分〜60分間反応させて、カチオン性ウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Synthesis Method of Urethane Resin (E10)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Subsequently, 20 mass parts of dimethyl sulfuric acid was put into this reaction container, and it was made to react at 50-60 degreeC for 30 minutes-60 minutes, and the cationic urethane prepolymer was produced | generated. Next, 576 parts by mass of water was placed in the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E11)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、N−メチル−N,N−ジエタノールアミン:24質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部と酢酸30質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のカチオン性ウレタン樹脂を得た。
[Synthesis Method of Urethane Resin (E11)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, N-methyl-N, N-diethanolamine: 24 parts by mass, Isophorone diisocyanate: 94 parts by mass and 135 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Next, 576 parts by mass of water and 30 parts by mass of acetic acid were added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin.

〔ウレタン樹脂(E12)の合成方法〕
ポリエーテルポリオール(合成成分:テトラメチレングリコールおよび1、4−シクロヘキサン−ジメタノール、分子量1500):150質量部、トリメチロールプロパン:6質量部、イソホロンジイソシアネート:94質量部およびメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成させた。ついで該反応容器に水576質量部入れ、ノニオン性乳化剤用いて混合物を均一に乳化させた後、メチルエチルケトンを回収して水溶性のウレタン樹脂を得た。
[Synthesis Method of Urethane Resin (E12)]
Polyether polyol (synthesis component: tetramethylene glycol and 1,4-cyclohexane-dimethanol, molecular weight 1500): 150 parts by mass, trimethylolpropane: 6 parts by mass, isophorone diisocyanate: 94 parts by mass and methyl ethyl ketone 135 parts by mass And was allowed to react for 1 hour while maintaining the temperature at 70 ° C. to 75 ° C. to produce a urethane prepolymer. Subsequently, 576 parts by mass of water was placed in the reaction vessel, and the mixture was uniformly emulsified using a nonionic emulsifier, and then methyl ethyl ketone was recovered to obtain a water-soluble urethane resin.

〔分子量測定方法〕
分子量の測定は、ゲルフィルタレーションクロマトグラフィーを用い、カラム温度40℃にて、成分濃度を5重量%に希釈し、有機ケイ素化合物(C)の分子量を求めた。なお、ポリエチレングリコール(分子量:600〜12000)換算とした。
[Molecular weight measurement method]
The molecular weight was measured by gel filtration chromatography, the component concentration was diluted to 5% by weight at a column temperature of 40 ° C., and the molecular weight of the organosilicon compound (C) was determined. In addition, it was set as polyethylene glycol (molecular weight: 600-12000) conversion.

〔FT−IR〕
FT−IR装置に、赤外全反射吸収スペクトル装置を装備して使用した。なお,測定は波数範囲650〜4000cm−1、分解能4cm−1、積算回数16回、25°Cの温度で行った。得られた赤外吸収スペクトルから、ベースライン法(900cm−1、1200cm−1)により、環状シロキサン結合を示す1090〜1100cm−1の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm−1の吸光度(C2)を求めた。
[FT-IR]
The FT-IR apparatus was used with an infrared total reflection absorption spectrum apparatus. The measurement wavenumber range 650~4000Cm -1, resolution 4 cm -1, cumulated number 16 times, was carried out at a temperature of 25 ° C. From the obtained infrared absorption spectrum, baseline method (900cm -1, 1200cm -1) by, 1030~1040Cm -1 indicating the chain siloxane bond and absorbance 1090~1100Cm -1 indicating the cyclic siloxane bond (C1) The absorbance (C2) of was determined.

表面処理剤安定性
製薬後の薬剤を密閉容器に入れ、40℃での薬剤安定性を観察した。
◎=3ヶ月間液性状変化なし
○=1ヶ月間液性状変化なし
△=1ヶ月以内に粘度増加もしくは沈殿発生
×=1週間以内に粘度増加もしくは沈殿発生
Surface treatment agent stability The drug after the pharmaceutical was placed in a sealed container, and the drug stability at 40 ° C was observed.
◎ = No liquid property change for 3 months ○ = No liquid property change for 1 month △ = Viscosity increase or precipitation occurred within 1 month × = Viscosity increase or precipitation occurred within 1 week

〔評価試験〕
耐食性
JIS−Z−2371による塩水噴霧試験を240時間行い、白錆発生状況を観察した。
<評価基準>
◎=錆発生が全面積の3%未満
○=錆発生が全面積の3%以上10%未満
△=錆発生が全面積の10%以上30%未満
×=錆発生が全面積の30%以上
〔Evaluation test〕
Corrosion resistance A salt spray test according to JIS-Z-2371 was conducted for 240 hours, and the occurrence of white rust was observed.
<Evaluation criteria>
◎ = Rust generation is less than 3% of the total area ○ = Rust generation is 3% or more and less than 10% of the total area △ = Rust generation is 10% or more and less than 30% of the total area × = Rust generation is 30% or more of the total area

耐アルカリ性
皮膜形成後、シリケート系アルカリ脱脂剤のパルクリーンN364S(日本パーカライジング(株)製)を用いて、濃度20g/L、温度60℃の条件で2分間スプレー処理し、JIS−Z−2371による塩水噴霧試験を120時間行い、白錆発生状況を観察した。
<評価基準>
◎◎=錆発生が全面積の0%
◎=錆発生が全面積の0%を超え、3%未満
○=錆発生が全面積の3%以上10%未満
△=錆発生が全面積の10%以上30%未満
×=錆発生が全面積の30%以上
After alkali resistance film formed by using a pulse clean N364S silicate-based alkali degreasing agent (manufactured by Japan Parkerizing Co.) was sprayed for 2 minutes under conditions of a concentration 20 g / L, temperature 60 ℃, JIS-Z-2371 A salt spray test was conducted for 120 hours, and the occurrence of white rust was observed.
<Evaluation criteria>
◎◎ = Rust generation is 0% of the total area
◎ = Rust generation exceeds 0% of total area and less than 3% ○ = Rust generation is 3% or more and less than 10% of total area △ = Rust generation is 10% or more and less than 30% of total area × = Rust generation is all More than 30% of the area

耐汗性
皮膜形成後、人工汗液(JIS−L−0848 D法)を、1滴滴下後、65℃93%RHに48時間静置し下記基準で評価した。
<評価基準>
◎=外観変化なし
○=外観変化ほとんどなし
△=滴下部の30%未満の面積が変化
×=滴下部の30%以上の面積が変化
After the formation of the sweat- resistant film, one drop of artificial sweat (JIS-L-0848 D method) was dropped and then left at 65 ° C. and 93% RH for 48 hours, and evaluated according to the following criteria.
<Evaluation criteria>
◎ = No change in appearance ○ = No change in appearance △ = Change in area of less than 30% of dripping part × = Change in area of 30% or more of dripping part

耐溶剤性
MEK(メチルエチルケトン)をガーゼに染み込ませ、荷重500gで、5往復ラビングした痕を、試験前後のL値増減にて評価した。
<評価基準>
◎=△Lが0.5未満
○=△Lが0.5以上1.0未満
△=△Lが1.0以上2.0未満
×=△Lが2.0以上
Solvent-resistant MEK (methyl ethyl ketone) was soaked in gauze, and a trace that was rubbed 5 times with a load of 500 g was evaluated by an increase or decrease in L value before and after the test.
<Evaluation criteria>
◎ = △ L is less than 0.5 ○ = △ L is 0.5 or more and less than 1.0 △ = △ L is 1.0 or more and less than 2.0 × = △ L is 2.0 or more

皮膜密着性
1mm碁盤目にカットした部分をエリクセン試験機にて7mm押し出した後にテープ剥離し、密着性の評価を残個数割合(残個数/カット数:100個)にて行った。
<評価基準>
◎=100%
○=20%未満95%以上
△=90%以上、95%未満
×=90%未満
Film adhesiveness 1 mm A portion cut into a 1 mm grid was extruded 7 mm with an Erichsen tester, and then the tape was peeled off. The adhesiveness was evaluated at the remaining number ratio (remaining number / number of cuts: 100).
<Evaluation criteria>
◎ = 100%
○ = less than 20% 95% or more △ = 90% or more, less than 95% × = less than 90%

塗装密着性
メラミンアルキッド系塗料をバーコートで塗布し、120℃で20分焼付けた後、1mm碁盤目にカットし、密着性の評価を残個数割合(残個数/カット数:100個)にて行った。
<評価基準>
◎=100%
○=95%以上
△=90%以上、95%未満
×=90%未満
Paint adhesion Melamine alkyd paint is applied by bar coating, baked at 120 ° C for 20 minutes, then cut into 1mm grids, and the adhesion evaluation is based on the remaining number ratio (remaining number / cut number: 100) went.
<Evaluation criteria>
◎ = 100%
○ = 95% or more △ = 90% or more, less than 95% × = less than 90%

印刷密着性
スクリーン印刷用インクをベタ印刷し、120℃で20分焼付けた後、1mm碁盤目にカットし、密着性の評価を残個数割合(残個数/カット数:100個)にて行った。
<評価基準>
◎=100%
○=95%以上
△=90%以上、95%未満
×=90%未満
Printing adhesion Screen printing ink was solid-printed, baked at 120 ° C. for 20 minutes, then cut into 1 mm grids, and the adhesion was evaluated by the remaining number ratio (remaining number / cut number: 100). .
<Evaluation criteria>
◎ = 100%
○ = 95% or more △ = 90% or more, less than 95% × = less than 90%

耐湿変色性
温度65℃、湿度95%の高温高湿環境下に72時間静置し、試験前後の色調変化ΔEにて評価した。
◎=△Eが1.0未満
○=△Eが1.0以上2.0未満
△=△Eが2.0以上3.0未満
×=△Eが3.0以上
The sample was allowed to stand for 72 hours in a high-temperature and high-humidity environment having a humidity discoloration resistance temperature of 65 ° C. and a humidity of 95%, and the color change ΔE before and after the test was evaluated.
◎ = △ E is less than 1.0 ○ = △ E is 1.0 or more and less than 2.0 △ = △ E is 2.0 or more and less than 3.0 × = △ E is 3.0 or more

耐結露性
温度25℃、湿度60%の環境下に静置した試験片に純水を1cc滴下し、自然乾燥させた時の試験前後の色調変化ΔEにて評価した。
◎=△Eが0.5未満
○=△Eが0.5以上1.0未満
△=△Eが1.0以上2.0未満
×=△Eが2.0以上
1 cc of pure water was dropped onto a test piece that was allowed to stand in an environment with a condensation resistance temperature of 25 ° C. and a humidity of 60%, and the color change ΔE before and after the test when it was naturally dried was evaluated.
◎ = △ E is less than 0.5 ○ = △ E is 0.5 or more and less than 1.0 △ = △ E is 1.0 or more and less than 2.0 × = △ E is 2.0 or more

115mmφの直径のブランク板を使用し、ポンチ径=50mmφ、しわ押え圧1Ton、深絞り速度30m/分、無塗油の条件で高速円筒深絞り試験を実施した。
<評価基準>
◎=限界絞り比が2.50以上
○=限界絞り比が2.40以上2.50未満
△=限界絞り比が2.30以上2.40未満
×=限界絞り比が2.30未満
A blank plate having a diameter of 115 mmφ was used, and a high-speed cylindrical deep drawing test was performed under the conditions of punch diameter = 50 mmφ, wrinkle presser pressure 1 Ton, deep drawing speed 30 m / min, and no oil coating.
<Evaluation criteria>
◎ = Limit drawing ratio is 2.50 or more ○ = Limit drawing ratio is 2.40 or more and less than 2.50 Δ = Limit drawing ratio is 2.30 or more and less than 2.40 × = Limit drawing ratio is less than 2.30

〔評価試験の結果〕
実施例1〜4と比較例1および2の評価結果より、有機ケイ素化合物(C)に使用されるシランカップリング剤(A)および(B)が請求の範囲から外れる場合、すなわちシランカップリング剤(B)が多すぎると分子構造上皮膜が硬くなるため皮膜密着性が劣るため、全ての評価項目において性能が低下する。逆にシランカップリング剤(A)が多すぎると、アミノ基による過剰な親水性の付与、もしくはアミノ基による発色構造のため、耐結露性や耐湿変色性が劣る。逆に請求の範囲内のさらに好適な範囲であれば、全ての性能を満たすことがわかる。
実施例2,5〜7および比較例3〜5より、官能基(a)が一つしかない場合は本発明の有機ケイ素化合物(C)ではなく、一般的なシランカップリング剤と同等の作用効果しか得られないため、全ての性能が著しく低下する。
[Results of evaluation test]
From the evaluation results of Examples 1 to 4 and Comparative Examples 1 and 2, when the silane coupling agents (A) and (B) used in the organosilicon compound (C) are outside the scope of the claims, that is, the silane coupling agent If the amount of (B) is too large, the film becomes hard due to its molecular structure, so that the film adhesion is inferior, and the performance deteriorates in all evaluation items. On the other hand, when the amount of the silane coupling agent (A) is too large, condensation resistance and moisture discoloration resistance are inferior due to excessive hydrophilicity imparted by amino groups or color formation structure due to amino groups. On the contrary, it is understood that all the performances are satisfied within the more preferable range within the scope of the claims.
From Examples 2, 5 to 7 and Comparative Examples 3 to 5, when there is only one functional group (a), it is not an organosilicon compound (C) of the present invention, but an action equivalent to a general silane coupling agent. Since only an effect can be obtained, all the performances are significantly reduced.

実施例2,8〜9および比較例5〜6の評価結果より、官能基(b)一つ当たりの分子量が500であると皮膜成分が可溶化しやすくなるため耐脱脂性、耐溶剤性、結露性、および耐湿変色性が劣り、15000を超えると造膜性が不足するため皮膜密着性が劣るため性能全般が低下する。
実施例10〜15および比較例7より、環状シロキサン結合を有していない場合は、耐食性と耐湿潤性が劣るが、環状シロキサン結合を好適な範囲で含有する場合は、全ての評価項目で極めて優れる性能を有することがわかる。
実施例4および比較例8〜9の評価結果より、ウレタン樹脂(E)がエーテル構造を有していない場合、エステル系であると加水分解しやすいため耐脱脂性、耐湿潤性、耐結露性が劣り、カーボネート系は剛直性が強すぎるため皮膜密着性と加工性が劣る。
実施例13,16〜19および比較例10〜11の評価結果より、有機ケイ素化合物(C)とウレタン樹脂(E)の比率が請求の範囲を外れる場合、すなわちウレタン樹脂が少ない場合は造膜成分(c)のバリア性が低下するため耐食性と耐湿潤性が劣り、逆にウレタン樹脂が多い場合は素材との密着性が著しく低下するため皮膜密着性と塗装密着性に劣ることがわかる。
実施例20〜21、比較例12〜19の評価結果より、インヒビター成分としてTiもしくはZrフルオロ金属錯化合物(H)を含有しない場合は、耐食性と耐湿潤性が極めて劣り、これらの性能低下は、リン酸化合物(J)やバナジウム(IV)化合物を添加しても同等であり、インヒビター成分としてTiもしくはZrのフルオロ金属錯化合物の効果がわかる。
実施例22〜29および比較例20〜21の評価結果より、ウレタン樹脂の骨格について、好適な構造を有しているウレタン樹脂は、性能全般に優れる結果となっており、特に構造単位(D1)を含有する場合は、極めて性能が優れる。一方、全アミノ基中の4級アンモニウム塩量が0の場合またアミノ基を有していない場合は、処理剤安定性に劣り、特にアミノ基を有していない場合は、処理剤安定性が不足していることに起因して、性能全般に劣ることがわかる。
From the evaluation results of Examples 2, 8 to 9 and Comparative Examples 5 to 6, since the film component is easily solubilized when the molecular weight per functional group (b) is 500, degreasing resistance, solvent resistance, Condensation and moisture discoloration resistance are inferior, and if it exceeds 15000, the film-forming property is insufficient and the film adhesion is inferior, so the overall performance is lowered.
From Examples 10 to 15 and Comparative Example 7, when the cyclic siloxane bond is not present, the corrosion resistance and the wet resistance are inferior. It can be seen that it has excellent performance.
From the evaluation results of Example 4 and Comparative Examples 8-9, when the urethane resin (E) does not have an ether structure, it is easily dehydrolyzed if it is an ester system, so that it is resistant to degreasing, moisture, and condensation. Inferior, the carbonate system is too rigid, so the film adhesion and workability are inferior.
From the evaluation results of Examples 13, 16 to 19 and Comparative Examples 10 to 11, when the ratio of the organosilicon compound (C) and the urethane resin (E) is outside the scope of the claims, that is, when the urethane resin is small, the film forming component Since the barrier property of (c) is lowered, the corrosion resistance and the wet resistance are inferior. On the contrary, when there are many urethane resins, the adhesion to the material is remarkably lowered, so that it is inferior to the film adhesion and the coating adhesion.
From the evaluation results of Examples 20 to 21 and Comparative Examples 12 to 19, when Ti or Zr fluorometal complex compound (H) is not contained as an inhibitor component, the corrosion resistance and the wet resistance are extremely inferior, Even if a phosphoric acid compound (J) or a vanadium (IV) compound is added, it is the same, and the effect of a fluoro metal complex compound of Ti or Zr as an inhibitor component can be seen.
From the evaluation results of Examples 22 to 29 and Comparative Examples 20 to 21, the urethane resin having a suitable structure with respect to the skeleton of the urethane resin is excellent in overall performance, particularly the structural unit (D1). When it contains, the performance is extremely excellent. On the other hand, when the amount of quaternary ammonium salt in all amino groups is 0 or when there is no amino group, the stability of the treatment agent is inferior, and particularly when there is no amino group, the stability of the treatment agent is low. It can be seen that the overall performance is inferior due to the lack.

実施例30〜90の評価結果より、フェノール樹脂の含有量、フルオロ金属錯化合物の種類と含有量、リン酸化合物の種類と含有量、バナジウム化合物(K)の種類と含有量、ポリエチレンワックスの種類と含有量については、好適な範囲に調整することで、評価項目全般において実使用可能レベルの性能を有することがわかる。また、W,Co,Mgについても同様に、評価項目全般においてとれているバランスを崩すことなく耐食性を改善する効果があることがわかった。これらの性能は、50〜250℃の到達温度で乾燥を行い、乾燥後の皮膜重量が0.2〜5.0g/mであれば達成可能であり、特に到達温度が100〜200℃、皮膜量が1.2〜1.5g/mにてきわめて優れる性能を有することが明らかとなった。From the evaluation results of Examples 30 to 90, the content of the phenol resin, the type and content of the fluorometal complex compound, the type and content of the phosphate compound, the type and content of the vanadium compound (K), the type of polyethylene wax As for the content, by adjusting it to a suitable range, it can be seen that it has performance of a practically usable level in all evaluation items. Similarly, it was found that W, Co, and Mg have the effect of improving the corrosion resistance without losing the balance that is generally taken in the evaluation items. These performances can be achieved if the drying is performed at a temperature of 50 to 250 ° C., and the film weight after drying is 0.2 to 5.0 g / m 2 . It was revealed that the film has extremely excellent performance when the coating amount is 1.2 to 1.5 g / m 2 .

以上の評価結果より、本発明の水系金属表面処理剤を塗布し乾燥することにより各成分を含有する複合皮膜を形成することで、耐食性、耐アルカリ性や耐溶剤性などの耐洗浄剤性、耐汗性、皮膜密着性、塗料密着性および印刷密着性などの密着性、耐湿変色性や耐結露性などの耐水性に優れ、且つ極めて加工性および摺動性にも優れるクロムフリー表面処理亜鉛系めっき鋼板が得られることがわかる。   From the above evaluation results, by forming a composite film containing each component by applying and drying the aqueous metal surface treatment agent of the present invention, it is resistant to detergents such as corrosion resistance, alkali resistance, solvent resistance, and the like. Chrome-free surface-treated zinc system with excellent water resistance such as sweat, film adhesion, paint adhesion and printing adhesion, moisture discoloration resistance and dew condensation resistance, and extremely excellent workability and slidability It turns out that a plated steel plate is obtained.

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Figure 0005642082
Figure 0005642082

Claims (12)

(1)分子中にアミノ基を1つ含有するシランカップリング剤(A)と、分子中にグリシジル基を1つ含有するシランカップリング剤(B)を固形分質量比〔(A)/(B)〕で0.50〜0.75の割合で配合して得られる、分子内に下記一般式[1]で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)およびアミノ基から選ばれる少なくとも1種の親水性官能基(b)を1個以上含有し、平均の分子量が1000〜10000であり、骨格中に環状シロキサン結合を有し、環状シロキサン結合と鎖状シロキサン結合の存在割合が、FT−IR反射法による環状シロキサン結合を示す1090〜1100cm −1 の吸光度(C1)と鎖状シロキサン結合を示す1030〜1040cm −1 の吸光度(C2)の比〔C1/C2〕が1.0〜2.0である有機ケイ素化合物(C)と、
Figure 0005642082
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表し、少なくとも1つはアルコキシ基を表す)
(2)分子中にポリエーテルポリオールに由来する構造単位を有すポリエーテルポリウレタン樹脂(E)と、
を含有する造膜成分(c)と、
(3)チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)を必須成分とするインヒビター成分(d)と、
(4)水性媒体、
を含有する水系金属表面処理剤を塗布し乾燥することにより各成分を含有する複合皮膜を形成した亜鉛系めっき鋼板であり、且つ、該水系処理剤の造膜成分(c)における
(5)有機ケイ素化合物(C)とポリエーテルポリウレタン樹脂(E)の固形分質量比〔(E)/(C)〕が0.33〜0.90であることを特徴とする、表面処理亜鉛系めっき鋼板。
(1) A silane coupling agent (A) containing one amino group in the molecule and a silane coupling agent (B) containing one glycidyl group in the molecule are mixed in a mass ratio [(A) / ( B)] in a ratio of 0.50 to 0.75, and two or more functional groups (a) represented by the following general formula [1] in the molecule and a hydroxyl group (functional group (a ) And at least one hydrophilic functional group (b) selected from amino groups, an average molecular weight of 1000 to 10,000, and cyclic in the skeleton have a siloxane bond, the presence ratio of cyclic siloxane bond and chain siloxane bond, the absorbance of 1090~1100Cm -1 indicating the cyclic siloxane bond by FT-IR reflection method and the chain siloxane bond (C1) 1030~1040cm -1 The ratio [C1 / C2] is 1.0 to 2.0 der Ru organosilicon compound luminosity (C2) (C), and
Figure 0005642082
(Wherein R1, R2 and R3 each independently represent an alkoxy group or a hydroxyl group, and at least one represents an alkoxy group)
(2) a polyether polyurethane resin (E) having a structural unit derived from a polyether polyol in the molecule;
A film-forming component (c) containing:
(3) an inhibitor component (d) having a fluoro metal complex compound (H) having at least one selected from titanium and zirconium as an essential component;
(4) an aqueous medium,
(5) Organic in the film-forming component (c) of the water-based treatment agent, which is a zinc-based plated steel sheet in which a composite film containing each component is formed by applying and drying a water-based metal surface treatment agent containing A surface-treated zinc-based plated steel sheet, wherein the solid content mass ratio [(E) / (C)] of the silicon compound (C) and the polyether polyurethane resin (E) is 0.33 to 0.90.
前記ポリエーテルポリウレタン樹脂(E)が分子中に芳香環および/又は炭素数が4〜6の脂環構造を有することを特徴とする、請求項に記載の表面処理亜鉛系めっき鋼板。 The surface-treated zinc-based plated steel sheet according to claim 1 , wherein the polyether polyurethane resin (E) has an aromatic ring and / or an alicyclic structure having 4 to 6 carbon atoms in the molecule. 前記ポリエーテルポリウレタン樹脂(E)が分子中にアミノ基を含有し、該アミノ基の総量に対する4級アンモニウム塩の割合がモル比で0.7〜1.0であることを特徴とする、請求項1または2に記載の表面処理亜鉛系めっき鋼板。 The polyether polyurethane resin (E) contains an amino group in the molecule, and the ratio of the quaternary ammonium salt to the total amount of the amino group is 0.7 to 1.0 in a molar ratio. Item 3. The surface-treated galvanized steel sheet according to item 1 or 2 . 前記ポリエーテルポリウレタン樹脂(E)が分子中に下記一般式[2]で表される構造単位(D)を有することを特徴とする、請求項1〜のいずれか1項に記載の表面処理亜鉛系めっき鋼板。
Figure 0005642082
(式中、R9は水素原子、アルキル基、アリール基およびアラルキル基からなる群より選ばれる一価の有機残基、R10、R11は互いに独立に、アルコキシル基、アシロキシ基、水酸基およびハロゲン原子からなる群から選ばれる官能基を、mは1〜5の整数を表す。)
The polyether polyurethane resin (E) is characterized by having a structural unit (D) represented by the following general formula [2] in the molecule, a surface treatment according to any one of claims 1 to 3 Galvanized steel sheet.
Figure 0005642082
(Wherein R9 is a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R10 and R11 are independently of each other an alkoxyl group, an acyloxy group, a hydroxyl group and a halogen atom. (In the functional group selected from the group, m represents an integer of 1 to 5.)
前記造膜成分(c)に更にビスフェノールA骨格を有するカチオン性フェノール樹脂(F)を含有し、前記ポリエーテルポリウレタン樹脂(E)とカチオン性フェノール樹脂(F)の固形分質量比[(F)/(E)]が0.010〜0.030であることを特徴とする、請求項1〜のいずれか1項に記載の表面処理亜鉛系めっき鋼板。 The film-forming component (c) further contains a cationic phenol resin (F) having a bisphenol A skeleton, and the solid content mass ratio of the polyether polyurethane resin (E) and the cationic phenol resin (F) [(F) / (E)] is 0.010 to 0.030, The surface-treated zinc-based plated steel sheet according to any one of claims 1 to 4 . 前記インヒビター成分(d)が、
(6)リン酸化合物(J)
を更に含有することを特徴とする、請求項1〜のいずれか1項に記載の表面処理亜鉛めっき鋼板。
The inhibitor component (d) is
(6) Phosphate compound (J)
The surface-treated galvanized steel sheet according to any one of claims 1 to 5 , further comprising:
前記インヒビター成分(d)が、
(7)バナジウム(IV)化合物(K)
を更に含有することを特徴とする、請求項に記載の表面処理亜鉛めっき鋼板。
The inhibitor component (d) is
(7) Vanadium (IV) compound (K)
The surface-treated galvanized steel sheet according to claim 6 , further comprising:
(8)前記有機ケイ素化合物(C)由来のSi(Si)と前記チタンおよびジルコニウムから選ばれる少なくとも1種を有するフルオロ金属錯化合物(H)の金属成分(M)の質量比〔(M)/(Si)〕が0.08〜0.20であり、
(9)前記有機ケイ素化合物(C)と前記リン酸化合物(J)の固形分質量比〔(J)/(C)〕が0.02〜0.11であり、
(10)前記有機ケイ素化合物(C)と前記バナジウム(IV)化合物(K)の固形分質量比〔(K)/(C)〕が0.02〜0.06
であることを特徴とする、請求項に記載の表面処理亜鉛系めっき鋼板。
(8) Mass ratio of metal component (M) of Si (Si) derived from organosilicon compound (C) and fluorometal complex compound (H) having at least one selected from titanium and zirconium [(M) / (Si)] is 0.08-0.20,
(9) The solid content mass ratio [(J) / (C)] of the organosilicon compound (C) and the phosphate compound (J) is 0.02 to 0.11;
(10) The solid content mass ratio [(K) / (C)] of the organosilicon compound (C) and the vanadium (IV) compound (K) is 0.02 to 0.06.
The surface-treated zinc-based plated steel sheet according to claim 7 , wherein
前記フルオロ金属錯化合物(H)の金属成分(M)がチタン(M)とジルコニウム(M)の双方を含有し、各々の金属成分質量比〔(M)/(M)〕が0.50〜0.80であることを特徴とする、請求項1〜のいずれか1項に記載の表面処理亜鉛系めっき鋼板。 The metal component (M) of the fluoro metal complex compound (H) contains both titanium (M T ) and zirconium (M Z ), and each metal component mass ratio [(M T ) / (M Z )] is The surface-treated galvanized steel sheet according to any one of claims 1 to 8 , wherein the surface-treated galvanized steel sheet is 0.50 to 0.80. 前記インヒビター成分(d)が、更にMg、CoおよびWから選ばれる少なくとも1種の金属成分を含有することを特徴とする、請求項1〜のいずれか1項に記載の表面処理亜鉛系めっき鋼板。 The surface-treated zinc-based plating according to any one of claims 1 to 9 , wherein the inhibitor component (d) further contains at least one metal component selected from Mg, Co, and W. steel sheet. 前記水系金属表面処理剤が、更にポリエチレンワックス(L)を含有し、前記有機ケイ素化合物(C)とポリエチレンワックス(L)の固形分質量比〔(L)/(C)〕が0.05〜0.30であることを特徴とする、請求項1〜10のいずれか1項に記載の表面処理亜鉛系めっき鋼板。 The water-based metal surface treatment agent further contains a polyethylene wax (L), and the solid content mass ratio [(L) / (C)] of the organosilicon compound (C) and the polyethylene wax (L) is 0.05 to The surface-treated zinc-based plated steel sheet according to any one of claims 1 to 10 , wherein the surface-treated zinc-based steel sheet is 0.30. 亜鉛系めっき鋼板表面に、請求項1〜11のいずれか1項に記載の水系金属表面処理剤を塗布し、50〜250℃の到達温度で乾燥を行い、乾燥後の皮膜重量が0.2〜5.0g/mであることを特徴とする、表面処理亜鉛系めっき鋼板。 The aqueous metal surface treatment agent according to any one of claims 1 to 11 is applied to the surface of a galvanized steel sheet, and dried at an ultimate temperature of 50 to 250 ° C. A surface-treated galvanized steel sheet, characterized by being -5.0 g / m 2 .
JP2011537333A 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet Active JP5642082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537333A JP5642082B2 (en) 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009241421 2009-10-20
JP2009241421 2009-10-20
JP2011537333A JP5642082B2 (en) 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet
PCT/JP2010/069014 WO2011049238A1 (en) 2009-10-20 2010-10-20 Chromium-free surface-treated galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPWO2011049238A1 JPWO2011049238A1 (en) 2013-03-14
JP5642082B2 true JP5642082B2 (en) 2014-12-17

Family

ID=43900458

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011537333A Active JP5642082B2 (en) 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet
JP2010235597A Active JP5388987B2 (en) 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010235597A Active JP5388987B2 (en) 2009-10-20 2010-10-20 Chrome-free surface-treated galvanized steel sheet

Country Status (6)

Country Link
JP (2) JP5642082B2 (en)
KR (1) KR101379135B1 (en)
CN (1) CN102575358B (en)
MY (1) MY156429A (en)
TW (1) TWI433898B (en)
WO (1) WO2011049238A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2833367C (en) * 2011-04-27 2015-08-18 Nippon Steel & Sumitomo Metal Corporation Surface-treated metal material and aqueous metal surface-treatment agent
KR101316384B1 (en) * 2011-12-23 2013-10-10 주식회사 포스코 Conversion coating composition, surface treated steel sheet, and method for manufacturing the same
EP3130691A4 (en) * 2014-04-08 2017-10-11 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet
MY163238A (en) * 2014-07-16 2017-08-30 Nippon Steel & Sumitomo Metal Corp Coated steel sheet
JP6596976B2 (en) * 2015-06-26 2019-10-30 Dic株式会社 Metal surface treatment agent and metal substrate treated with the surface treatment agent
CN106318170A (en) * 2015-06-30 2017-01-11 宝山钢铁股份有限公司 Water-based environment-friendly treating agent for galvanized steel plate, manufacture method and using method thereof
JP6932025B2 (en) * 2017-05-11 2021-09-08 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material having a film and its manufacturing method
JP6932026B2 (en) * 2017-05-11 2021-09-08 日本パーカライジング株式会社 A water-based metal surface treatment agent, a metal material having a base treatment layer, and a method for manufacturing the same.
KR20200140643A (en) 2019-06-07 2020-12-16 동아대학교 산학협력단 Eco-friendly bar bell with Improved hardness and manufacturing method the same
CN112280453A (en) * 2020-10-29 2021-01-29 蓝帆新材料技术(广州)有限公司 Fingerprint-resistant surface treating agent for galvanized steel sheet and preparation method thereof
TW202331001A (en) * 2021-11-22 2023-08-01 日商日本製鐵股份有限公司 Surface-treated steel material
TWI804081B (en) * 2021-12-02 2023-06-01 日商日本製鐵股份有限公司 Zn-based plated steel sheet
CN114231190B (en) * 2021-12-27 2023-05-26 北京化工大学 Modification method for improving adhesive property of zinc-aluminum-magnesium steel plate
CN115124917B (en) * 2022-07-11 2022-12-13 德州科顺建筑材料有限公司 Single-component polyurethane waterproof coating and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295988A (en) * 1996-04-30 1997-11-18 Japan Energy Corp New organic silicon compound and its production and surface-treating agent and resin additive using the same
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2005120469A (en) * 2003-09-26 2005-05-12 Nippon Parkerizing Co Ltd Composition for treating surface of metallic material, and surface treatment method
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP2006328445A (en) * 2005-05-23 2006-12-07 Nippon Parkerizing Co Ltd Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material
JP2008025023A (en) * 2006-06-23 2008-02-07 Nippon Steel Corp Surface-treated metal material and metal surface treatment agent
JP2008194839A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Ind Ltd Chromium-free surface-treated steel sheet excellent in performance balance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295988A (en) * 1996-04-30 1997-11-18 Japan Energy Corp New organic silicon compound and its production and surface-treating agent and resin additive using the same
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2005120469A (en) * 2003-09-26 2005-05-12 Nippon Parkerizing Co Ltd Composition for treating surface of metallic material, and surface treatment method
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP2006328445A (en) * 2005-05-23 2006-12-07 Nippon Parkerizing Co Ltd Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material
JP2008025023A (en) * 2006-06-23 2008-02-07 Nippon Steel Corp Surface-treated metal material and metal surface treatment agent
JP2008194839A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Ind Ltd Chromium-free surface-treated steel sheet excellent in performance balance

Also Published As

Publication number Publication date
CN102575358B (en) 2014-08-27
CN102575358A (en) 2012-07-11
TWI433898B (en) 2014-04-11
JPWO2011049238A1 (en) 2013-03-14
MY156429A (en) 2016-02-26
JP5388987B2 (en) 2014-01-15
WO2011049238A1 (en) 2011-04-28
JP2011106029A (en) 2011-06-02
KR101379135B1 (en) 2014-03-27
KR20120052418A (en) 2012-05-23
TW201122061A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
JP5642082B2 (en) Chrome-free surface-treated galvanized steel sheet
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
CN101184866B (en) Sol for sol-gel process coating of a surface and coating method by sol-gel process using same
DE102010030114B4 (en) Aqueous silane system for bare corrosion protection, process for its production, its use as well as objects treated with this and anti-corrosion layer
KR101449359B1 (en) Surface-treated metal material and aqueous metal surface treatment agent
CN101573472B (en) Surface-treated metal material and method for producing the same
CN104233243B (en) Aqueous metal surface treatment agent
EP3030623B1 (en) Coating composition for metal surface pre-treatment, its preparation and use thereof
JPWO2006082951A1 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
KR102406796B1 (en) Organosilicon compound, method for producing same and metal surface treatment agent using same
JP5933324B2 (en) Chromate-free precoat metal plate and pretreatment metal plate pretreatment agent
JP4920442B2 (en) Chrome-free surface-treated steel sheet with excellent performance balance
KR100456951B1 (en) Alternatives for conversion coating solution and it&#39;s film for hot dip galvanized steel sheet has a good apperance and anti-corrosion
JP4888641B2 (en) Non-chromate aqueous metal surface treatment agent, surface-treated steel material and painted steel material, metal surface treatment method for steel material, and method for producing painted steel material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5642082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250