JP5641466B2 - Method for producing peptide - Google Patents

Method for producing peptide Download PDF

Info

Publication number
JP5641466B2
JP5641466B2 JP2009171765A JP2009171765A JP5641466B2 JP 5641466 B2 JP5641466 B2 JP 5641466B2 JP 2009171765 A JP2009171765 A JP 2009171765A JP 2009171765 A JP2009171765 A JP 2009171765A JP 5641466 B2 JP5641466 B2 JP 5641466B2
Authority
JP
Japan
Prior art keywords
alkali
protein
peptide
hydrolysis
moles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009171765A
Other languages
Japanese (ja)
Other versions
JP2010053119A (en
Inventor
将吉 大内
将吉 大内
伸也 山岡
伸也 山岡
和夫 内海
和夫 内海
大輔 守谷
大輔 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2009171765A priority Critical patent/JP5641466B2/en
Publication of JP2010053119A publication Critical patent/JP2010053119A/en
Application granted granted Critical
Publication of JP5641466B2 publication Critical patent/JP5641466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Fodder In General (AREA)

Description

本発明は、蛋白質を含有する動植物材料、例えば、産業副生産物から、効率良く、ペプチドを製造する方法に関する。 The present invention relates to a method for efficiently producing peptides from animal or plant materials containing proteins, such as industrial byproducts.

蛋白質を加水分解して、調味料、医薬品、化粧品、飲料等として利用されるアミノ酸あるいはペプチドを得ることは既に知られている。蛋白質を含有する動植物材料からアミノ酸やペプチドを製造する方法としては、一般に、酵素による分解法と酸又はアルカリによる加水分解法が用いられてきた。しかしながら、これらの方法では加水分解に長時間を要するという問題や、高温高圧下の加水分解では、熱や酸に不安定なアミノ酸やペプチドが更に分解されるという問題があった(例えば、特許文献1参照)。 It is already known to hydrolyze proteins to obtain amino acids or peptides used as seasonings, pharmaceuticals, cosmetics, beverages and the like. As methods for producing amino acids and peptides from animal and plant materials containing proteins, enzymatic decomposition methods and acid or alkali hydrolysis methods have generally been used. However, in these methods, there is a problem that hydrolysis takes a long time, and hydrolysis under high temperature and high pressure has a problem that amino acids and peptides unstable to heat and acid are further decomposed (for example, patent documents). 1).

超臨界水は反応性が高いので、この反応性を利用して蛋白質を加水分解してアミノ酸やペプチドを製造する提案もなされている(特許文献2参照)。この方法では高速で蛋白質が分解されるが、分解速度が大きく、反応制御が困難で、任意の成分の回収が困難である。また、超臨界水は腐食性が大きく、且つ、無機塩類の溶解性が小さくなるため塩析が起こり、管の閉塞などが問題となる。 Since supercritical water has high reactivity, proposals have been made to produce amino acids and peptides by hydrolyzing proteins using this reactivity (see Patent Document 2). In this method, the protein is degraded at a high speed, but the degradation rate is large, the reaction control is difficult, and it is difficult to recover any components. Also, supercritical water is highly corrosive and the solubility of inorganic salts is reduced, so that salting out occurs and there is a problem of clogging of the tube.

一方、マイクロ波による著しい化学反応促進効果が認められるようになり、有機合成等において、従来の外部加熱による反応に比べ、反応条件の穏和化、反応速度の著しい高速化、反応選択性の向上などが実証されている。従って、このマイクロ波を利用して、蛋白質を従来法に比べて穏和な条件で迅速に加水分解し、有用なアミノ酸を効率的に製造する方法も提案されている(特許文献3)。特許文献3では、マイクロ波水熱法により、タンパク質が通常の水熱法(200℃以上の飽和水蒸気圧下)に比べて、150〜200℃という低温・低圧条件において、短時間にアミノ酸まで加水分解できること、アルカリ性の条件では100〜110℃の飽和水蒸気圧下で、短時間に加水分解され、原料タンパク質のアミノ酸組成を反映したアミノ酸混合溶液が得られたことが報告されている。 On the other hand, a remarkable chemical reaction promotion effect by microwaves has been recognized, and in organic synthesis, etc., compared with the conventional reaction by external heating, the reaction conditions are moderated, the reaction speed is significantly increased, the reaction selectivity is improved, etc. Has been demonstrated. Therefore, a method for efficiently producing useful amino acids by rapidly hydrolyzing proteins under mild conditions as compared with conventional methods using this microwave has also been proposed (Patent Document 3). In Patent Document 3, the protein is hydrolyzed to amino acids in a short time by a microwave hydrothermal method at a low temperature and low pressure of 150 to 200 ° C. compared to a normal hydrothermal method (under saturated water vapor pressure of 200 ° C. or higher). It has been reported that under alkaline conditions, an amino acid mixed solution reflecting the amino acid composition of the raw protein was obtained by hydrolysis in a short time under a saturated water vapor pressure of 100 to 110 ° C.

しかしながら、特許文献3においては、蛋白質の加水分解率が100%で、アミノ酸単体混合物を得ることが開示されているのみで、加水分解率の制御によるペプチド製造に関しては、何ら言及されていない。また、アルカリを併用することに関する記載もあるものの、蛋白質中のアミド結合モル数に対するアルカリモル数での比率制御がされておらず、蛋白質アミド結合に対するアルカリモル過剰率が相当に大きい範囲の、全ての蛋白質がアミノ酸まで分解する条件しか記載されていない。 However, Patent Document 3 discloses that the hydrolysis rate of the protein is 100% and that a single amino acid mixture is obtained, and nothing is mentioned regarding peptide production by controlling the hydrolysis rate. In addition, although there is a description regarding the combined use of alkali, the ratio of the number of moles of alkali to the number of moles of amide bonds in the protein is not controlled, and the alkali mole excess ratio relative to the protein amide bonds is considerably large. Only the conditions for the protein to degrade to amino acids are described.

ところで、蛋白質を加水分解していくと、ペプチドを経て究極はアミノ酸にまで分解されるが、生体に吸収されるアミノ酸としては、アミノ酸単体として吸収されるルートとアミノ酸が2〜6量体の形になったペプチド体で吸収される2つのルートが存在すると言われている。そして、人体への吸収に際しては、各々1分子毎の通過しか認められていないとも言われており、生体血中の溶解アミノ酸取得から見ると、アミノ酸として吸収されるルートではアミノ酸1分子であるのに対し、他方はペプチド1分子、即ち、アミノ酸換算で2〜6量体分のアミノ酸が血中に入るので、食物取得後の初期血中アミノ酸濃度測定結果でも、ペプチドの方が数倍高く血中にアミノ酸が吸収されることが証明されている。 By the way, when a protein is hydrolyzed, it is eventually decomposed into amino acids via peptides, but as amino acids absorbed into the living body, the route absorbed as a single amino acid and amino acids are in the form of 2 to 6 mer. It is said that there are two routes that are absorbed by the peptide body. In addition, it is said that only one molecule per molecule is allowed to be absorbed into the human body. From the viewpoint of obtaining dissolved amino acids in living blood, there is one amino acid molecule in the route absorbed as amino acids. On the other hand, since one molecule of peptide, that is, 2 to 6-mer amino acid in terms of amino acid enters the blood, the peptide is several times higher in the blood amino acid concentration measurement result after food acquisition. It has been proven that amino acids are absorbed into it.

一方、未分解蛋白質のままの添加では、時間をかけて生体内の蛋白分解酵素の働きにて、ペプチド又はアミノ酸にまで加水分解させて吸収させることになるので、時間に対する消化を助ける効率化の意味においても、予め、蛋白質成分を加水分解させ、食物、飼料等に添加することには時間に対する効率で大きな意味がある。特に、前述のごとくペプチドの形にして吸収させる方法が、アミノ酸の形で添加するよりも効率が良い。従って、ペプチドを選択的に製造する、即ち、分子量を制御して効率良くペプチドを得る技術の開発が強く望まれている。 On the other hand, when the undegraded protein is added as it is, it takes time to hydrolyze it into a peptide or amino acid by the action of the proteolytic enzyme in the living body and absorbs it. In terms of meaning, pre-hydrolyzing protein components and adding them to food, feed, etc. has a great meaning in terms of time efficiency. In particular, the method of absorbing in the form of a peptide as described above is more efficient than adding it in the form of an amino acid. Therefore, development of a technique for selectively producing a peptide, that is, efficiently obtaining a peptide by controlling the molecular weight is strongly desired.

特開2002−332265号公報JP 2002-332265 A 特開2002−60376号公報Japanese Patent Laid-Open No. 2002-60376 特開2004−345998号公報JP 2004-345998 A

前記のごとく、マイクロ波を利用して蛋白質からアミノ酸混合物を効率的に製造する方法は知られているが、ペプチドを主として製造する方法・条件は知られていない。従って、本発明の課題は、蛋白質を加水分解して、主としてペプチドを効率的に製造する方法・条件を提供することにある。 As described above, a method for efficiently producing an amino acid mixture from a protein using microwaves is known, but a method and conditions for mainly producing a peptide are not known. Therefore, the subject of this invention is providing the method and conditions which hydrolyze a protein and mainly manufactures a peptide efficiently.

本発明は、動植物性蛋白質を、マイクロ波の照射下に、該蛋白質が有するアミド結合の全モル数に対して、0.5〜3倍モルのアルカリを含有するアルカリ水中で、該アルカリ水の沸騰温度以下の温度かつ常圧下で部分的に加水分解することを特徴とするペプチドの製造方法である。アルカリとしては、水酸化ナトリウム又は水酸化カリウムが好ましく用いられる。更に、好ましい条件は、蛋白質のアミド結合の全モル数に対して1〜2倍モルのアルカリを用いる方法である。アルカリ水の沸騰温度は、アルカリ水の濃度に依存するが、最大105℃程度であり、該沸騰温度以下の温度で、処理時間は40分以下が適当で、好ましくは20分以下である。そして、蛋白質の加水分解率が40%〜80%の範囲で部分的に加水分解するのが好ましい。 The present invention relates to animal and vegetable proteins in alkaline water containing 0.5 to 3 times moles of alkali with respect to the total number of moles of amide bonds of the protein under microwave irradiation. It is a method for producing a peptide, characterized in that it is partially hydrolyzed at a temperature below the boiling temperature and under normal pressure . As the alkali, sodium hydroxide or potassium hydroxide is preferably used. Furthermore, a preferable condition is a method using 1 to 2 moles of alkali with respect to the total number of moles of amide bonds of the protein. Although the boiling temperature of the alkaline water depends on the concentration of the alkaline water, it is about 105 ° C. at the maximum, and the treatment time is suitably 40 minutes or less, preferably 20 minutes or less at a temperature below the boiling temperature. And it is preferable to hydrolyze partially in the range whose protein hydrolysis rate is 40%-80%.

本発明によると、マイクロ波照射を併用することによって、動植物性蛋白質のアミド結合の全モル数に対するアルカリのモル数が比較的小さい範囲で、かつ、沸騰条件以下による加水分解法で、該蛋白質を、従来法よりも短時間に加水分解し、アミノ酸の生成を抑制しつつペプチドを連続的に製造できる。生成したペプチドは、過剰アルカリ分をイオン交換樹脂にて除去精製し、必要に応じて既知乾燥法を用いれば、固形物として回収でき、動物用飼料等への添加物として利用できる。また、食品や化粧品等への添加物としても利用することができる。本発明では、蛋白質が、アルカリ存在下で沸騰温度以下の高温処理されることで抗体等も完全に処理ができ、生成物は、カルボン酸中性塩の形で精製されるので、水にも溶け易いペプチドが提供される。 According to the present invention, by using microwave irradiation in combination, the protein can be obtained by hydrolysis in a range where the number of moles of alkali relative to the total number of moles of amide bonds of animal and vegetable proteins is relatively small and under boiling conditions. The peptide can be continuously produced while hydrolyzing in a shorter time than the conventional method and suppressing the production of amino acids. The resulting peptide can be purified by removing excess alkali with an ion exchange resin, and if necessary, can be recovered as a solid by using a known drying method, and can be used as an additive to animal feeds. It can also be used as an additive to foods and cosmetics. In the present invention, the protein is treated at a high temperature below the boiling temperature in the presence of an alkali so that the antibody and the like can be completely treated, and the product is purified in the form of a carboxylic acid neutral salt. A readily soluble peptide is provided.

実施例1における生成物の、ガスクロマトグラフィによるアミノ酸分析結を示す図である。FIG. 3 is a view showing amino acid analysis results of the product in Example 1 by gas chromatography. 従来法と本発明(マイクロ波法)の比較を示す図である(TOF-MSによる結果)。It is a figure which shows the comparison of the conventional method and this invention (microwave method) (result by TOF-MS). 実施例3における生成物の最大分子量と平均分子量を示す図である(TOF-MSによる結果)。It is a figure which shows the maximum molecular weight and average molecular weight of the product in Example 3 (result by TOF-MS). 実施例4で採用した条件下での分解率に対するGPC分析結果を示す図である。It is a figure which shows the GPC analysis result with respect to the decomposition rate on the conditions employ | adopted in Example 4. FIG. 実施例5で採用した条件下での分解率に対するGPC分析結果を示す図である。It is a figure which shows the GPC analysis result with respect to the decomposition rate on the conditions employ | adopted in Example 5. FIG. 実施例6で採用した条件下での分解率に対するGPC分析結果を示す図である。It is a figure which shows the GPC analysis result with respect to the decomposition rate on the conditions employ | adopted in Example 6. FIG. 実施例7で採用した条件下での分解率に対するGPC分析結果を示す図である。It is a figure which shows the GPC analysis result with respect to the decomposition rate on the conditions employ | adopted in Example 7. FIG.

本発明は、動植物性蛋白質を、マイクロ波の照射下に、該蛋白質が有するアミド結合の全モル数に対して、0.5〜3倍モルのアルカリを含有するアルカリ水中で、該アルカリ水の沸騰温度以下の温度で部分的に加水分解してペプチドを得る方法である。本発明において用いられる動植物性蛋白質とは、天然の動植物素材中に含まれる動植物性蛋白質、農水産加工廃棄物や食品廃棄物等に含まれる動植物性蛋白質等を意味し、特に限定されるものではない。また、本発明の実施にあたっては、かかる蛋白質を含有する材料をそのまま加水分解に用いても、蛋白質を含有する材料を適当な方法で前処理して、蛋白質を主体とする材料に精製して用いてもよい。 The present invention relates to animal and vegetable proteins in alkaline water containing 0.5 to 3 times moles of alkali with respect to the total number of moles of amide bonds of the protein under microwave irradiation. In this method, a peptide is obtained by partial hydrolysis at a temperature below the boiling temperature. The animal and plant protein used in the present invention means an animal and plant protein contained in natural animal and plant materials, an animal and plant protein contained in agricultural and fishery processing waste, food waste, etc., and is not particularly limited. Absent. In carrying out the present invention, even if the material containing the protein is used for hydrolysis as it is, the material containing the protein is pretreated by an appropriate method and purified to a material mainly composed of protein. May be.

なお、前記特許文献3の発明は、蛋白質の加水分解に際し、マイクロ波とアルカリを採用し、更に温度条件等も本発明と類似している。しかしながら、特許文献3のものは、蛋白質中のアミド結合に対して使用するアルカリの量が非常に多く、ペプチドの取得ではなくアミノ酸の取得の条件であり、本発明の方法とは異なっている。具体的に、特許文献3の実施例2から使用されるアルカリの量を計算してみる。シルクフィブロイン20mgを使用しているが、シルクフィブロインの含窒素率が不明なので、20mgを全て窒素として計算しても、アミド結合のモル数は、(20/1000)/14=0.00143モルである(実際はもっと少ない)。アルカリは、1N〜6Nを20ml添加しているので、1/1000×20〜6/1000×20=0.02〜0.12モルである。従って、アルカリ/アミドモル比=14〜84倍モルであり(実際はもっと大きい)、本発明におけるアルカリ/アミドモル比が0.5〜3倍であるのと大きく異なっている。本発明は、マイクロ波を使うと分解速度が速くなるものの、ペプチドを選択的に得るためには、アミド結合に対するアルカリのモル比を制御する必要があり、更に、処理時間を制御して分解率を制御すれば、ペプチドを最大に取得できることを知見して完成されたものである。 The invention of Patent Document 3 employs microwaves and alkalis for protein hydrolysis, and temperature conditions are similar to those of the present invention. However, in Patent Document 3, the amount of alkali used for the amide bond in the protein is very large, which is a condition for obtaining an amino acid rather than a peptide, and is different from the method of the present invention. Specifically, the amount of alkali used from Example 2 of Patent Document 3 will be calculated. Although silk fibroin 20 mg is used, but the nitrogen content of silk fibroin is unknown, even if all 20 mg is calculated as nitrogen, the number of moles of amide bond is (20/1000) /14=0.00143 mol. Yes (actually less). Since 20 ml of 1N to 6N is added to the alkali, 1/1000 × 20 to 6/1000 × 20 = 0.02 to 0.12 mol. Therefore, the alkali / amide molar ratio = 14 to 84 times mol (actually larger), which is greatly different from the alkali / amide molar ratio in the present invention being 0.5 to 3 times. In the present invention, although the degradation rate is increased when microwaves are used, in order to selectively obtain peptides, it is necessary to control the molar ratio of alkali to amide bond, and furthermore, the degradation rate can be controlled by controlling the treatment time. It has been completed by knowing that the maximum peptide can be obtained by controlling.

マイクロ波は、波長が100μm〜1mの電磁波であり、液体に照射すると、ヒーター等での加熱に比べて効率よく温度を上げることができる。マイクロ波の加熱を利用した器具として電子レンジが広く知られているが、マイクロ波の照射装置(2.45GHz)としては、バッチ方式の色々なタイプのものが公知である他、連続処理型のマイクロ波化学反応装置も知られている。本発明においては、公知のどのような装置を用いてもかまわない。 Microwaves are electromagnetic waves having a wavelength of 100 μm to 1 m, and when irradiated to a liquid, the temperature can be increased efficiently compared to heating with a heater or the like. A microwave oven is widely known as an appliance using microwave heating, but as a microwave irradiation device (2.45 GHz), various types of batch systems are known, and a continuous processing type is also available. Microwave chemical reactors are also known. In the present invention, any known device may be used.

本発明の加水分解に際しては、蛋白質の加水分解をアミノ酸(100%)に至るまでは分解させずに抑える必要があるので、比較的低濃度のアルカリを用い、比較的低温で加水分解を行う。アルカリとしては、水酸化ナトリウム又は水酸化カリウムが好ましく、該蛋白質のアミド結合体のモル数に対して0.5〜3倍モル、好ましい条件としては1〜2倍モルとなるアルカリ水を添加し、加水分解の温度は、該アルカリ水に依存する沸騰温度以下で最大105℃以下にて処理を行う。 In the hydrolysis of the present invention, it is necessary to suppress the hydrolysis of the protein until it reaches the amino acid (100%) without being decomposed. Therefore, the hydrolysis is performed at a relatively low temperature using a relatively low concentration of alkali. As the alkali, sodium hydroxide or potassium hydroxide is preferable, and 0.5 to 3 times mol, preferably 1 to 2 times mol of alkaline water is added to the number of moles of the amide conjugate of the protein. The hydrolysis is carried out at a temperature not higher than the boiling temperature depending on the alkaline water and not higher than 105 ° C.

この温度で40分以下、好ましくは20分以下で、加水分解率として40〜80%の範囲の条件下で加水分解を行うのが好ましい。かかる条件下で加水分解を行えば、アミノ酸の生成を抑制し、短時間で動植物性蛋白質を分解してペプチドを主成分として製造することができる。連続処理型のマイクロ波化学反応装置を用いれば、ペプチドを連続的に製造することもできる。生成したペプチドは、通常、目的とするペプチド以外の物質も含むので、例えば、イオン交換樹脂又は合成吸着剤等にて精製し、動物用飼料等への添加物として利用できるし、食品や化粧品等に利用することができる。 It is preferable that the hydrolysis is carried out at this temperature for 40 minutes or less, preferably 20 minutes or less, and under a condition of a hydrolysis rate of 40 to 80%. If hydrolysis is performed under such conditions, the production of amino acids can be suppressed, and animal and plant proteins can be degraded in a short time to produce peptides as the main components. If a continuous processing type microwave chemical reaction apparatus is used, peptides can be produced continuously. The produced peptide usually contains substances other than the target peptide, so that it can be purified by, for example, an ion exchange resin or a synthetic adsorbent and used as an additive to animal feeds, foods, cosmetics, etc. Can be used.

該蛋白質のアミド結合のモル数に対して0.5倍モル未満のアルカリ添加量だと、生成するカルボン酸と反応して塩を生成するので、蛋白質の分解が余り進まず、高分子蛋白質成分が残るか、ポリペプチドが多い形となり、生体への吸収効率が良くない。該蛋白質のアミド結合のモル数に対して3倍モルを超える量だと、過剰分アルカリにて該蛋白質の加水分解が進むものの、過剰率が大きい程に処理時間(分単位)で分解率増加傾きが大きく、途中で止めるのは容易ではない。ペプチド取得には、蛋白質が持つアミド結合の全モル数に対して最適なアルカリ添加比が存在し、その最適範囲が0.5〜3倍モル、より最適範囲は過剰分のアルカリ処理負荷の関係から1〜2倍モルとなる。また、3.0倍モルを超える量のアルカリ添加量だと、オリゴペプチドを通り越して、アミノ酸にまで容易に分解が進み、オリゴペプチドを最適濃度にて入手する目的に対し好ましくない。アミノ酸を取得する目的では、アルカリ過剰率を上げた方が有利であるが、本発明の目的はアルカリ過剰率を制御し処理時間を制御することで、有効なオリゴペプチド分を入手するものである。 When the amount of the alkali added is less than 0.5 times the number of moles of the amide bond of the protein, it reacts with the carboxylic acid produced to produce a salt, so that the decomposition of the protein does not progress so much, and the high molecular protein component Or remains in a polypeptide-rich form, and the absorption efficiency into the living body is not good. If the amount exceeds 3 times the number of moles of the amide bond of the protein, the hydrolysis of the protein proceeds with excess alkali, but the degradation rate increases with treatment time (in minutes) as the excess rate increases. The inclination is large and it is not easy to stop halfway. For peptide acquisition, there is an optimum alkali addition ratio with respect to the total number of moles of amide bonds in the protein, the optimum range is 0.5 to 3 times the mole, and the optimum range is related to the excess alkali treatment load. To 1 to 2 moles. On the other hand, when the amount of alkali added is more than 3.0 times the molar amount, it is not preferable for the purpose of obtaining the oligopeptide at the optimum concentration because the decomposition easily proceeds to the amino acid through the oligopeptide. For the purpose of obtaining amino acids, it is advantageous to increase the alkali excess, but the object of the present invention is to obtain an effective oligopeptide content by controlling the alkali excess and controlling the treatment time. .

加水分解温度としては、余りに低温下だと加水分解時間が長くなる不利が生ずるが、特に限定されるものではない。上限温度はマイクロ波を用いると、常圧下で各アルカリ濃度によって沸騰点は異なるも、加圧がないと最大105℃以上には上昇しない。常圧での使用法が好ましいが、特に圧力に限定されるものではなく、上限は添加アルカリ水溶液の沸騰温度である。 As the hydrolysis temperature, if it is too low, there is a disadvantage that the hydrolysis time becomes long, but it is not particularly limited. When the microwave is used as the upper limit temperature, the boiling point varies depending on the alkali concentration under normal pressure, but the maximum temperature does not increase to 105 ° C. or higher without pressure. Use at normal pressure is preferred, but the pressure is not particularly limited, and the upper limit is the boiling temperature of the added aqueous alkali solution.

蛋白質の水分解率は100%だと全てアミノ酸になる条件で、0%は蛋白質そのものであり、80%以上ではアミノ酸の多いものになり、40%以下では蛋白質の未分解、及びペプチドとして重合度の大きいポリペプチドが多くなって好ましくない。常圧下、同一アルカリ過剰率の場合、マイクロ波を使わない場合には、沸騰温度下で同様の加熱分解をさせても、同一分解率を確保するには数10時間以上がかかる(数10倍以上の速度差)ので、マイクロ波の使用と適切なるアルカリ過剰条件処理する効果は大きい。一般的に製造法として確立されている酵素法によるペプチド取得法では、分解速度が桁違いに遅く、通常数日はかかるので、本発明の方法とは著しい差がある。また、例えば生大豆には蛋白質分解酵素阻害物質等があって汎用的に利用されてこなかった経緯があるが、加熱すれば消えることも知られていて、酵素法にて取得したものは、どこかの段階で加熱処理する必要があるが、本発明のごとくアルカリでのマイクロ波加熱処理法だと不要であり、分解酵素阻害物質も分解される利点もある。 If the water decomposition rate of a protein is 100%, all amino acids are used, 0% is the protein itself, 80% or more contains many amino acids, 40% or less is undegraded protein, and the degree of polymerization as a peptide. A large polypeptide is not preferred because it increases. In the case of the same alkali excess rate under normal pressure, when not using microwaves, it takes several tens of hours or more to secure the same decomposition rate even if the same thermal decomposition is performed at the boiling temperature (several tens times) Therefore, the effect of using microwaves and appropriate alkali excess conditions is great. In general, the method for obtaining a peptide by an enzymatic method, which has been established as a production method, has a significant difference from the method of the present invention because the degradation rate is orders of magnitude slower and usually takes several days. In addition, for example, raw soybeans have proteolytic enzyme inhibitors and have not been widely used, but it is known that they will disappear if heated. Although it is necessary to perform the heat treatment at such a stage, the microwave heat treatment method using alkali as in the present invention is not necessary, and there is an advantage that the decomposing enzyme inhibitor is also decomposed.

本発明のごとく、動植物性蛋白質をマイクロ波の照射下に加水分解を行うと、加水分解時間が短縮されるという効果の他に、均一的な加水分解反応が可能になるという効果も得られる。即ち、マイクロ波を用いずに加水分解反応を行なった場合、動植物蛋白質の切れやすいところと切れにくいところがあるため、生成するペプチド断片も不均一な分布になり易い。しかし、マイクロ波を用いることで、全てのペプチド結合に対して、均一に加水分解反応が進行するため、加水分解時間で制御することで、分解を特定の長さのペプチド断片に留めることができる。条件によっては、アミノ酸まで加水分解することもできるが、本発明の条件の範囲内では、ペプチドで留めることができる。 As in the present invention, when an animal or vegetable protein is hydrolyzed under microwave irradiation, in addition to the effect that the hydrolysis time is shortened, the effect that a uniform hydrolysis reaction becomes possible is also obtained. That is, when the hydrolysis reaction is carried out without using microwaves, there are a portion where the animal and plant protein is easily cut and a portion where it is difficult to cut, so that the generated peptide fragments tend to be unevenly distributed. However, since the hydrolysis reaction proceeds uniformly for all peptide bonds by using microwaves, the degradation can be limited to peptide fragments of a specific length by controlling the hydrolysis time. . Depending on the conditions, it can be hydrolyzed to amino acids, but within the scope of the conditions of the invention it can be retained with a peptide.

本発明のペプチドとは、2個以上のアミノ酸がペプチド結合で結合したジペプチド以上のオリゴペプチドや、ポリペプチドを意味する。好ましくは、構成アミノ酸残基数が約100以下の、いわゆるオリゴペプチドやポリペプチドである。好ましいのは、2〜6量体のオリゴペプチドである。蛋白質の高分子成分は生体内で一旦体内分解酵素で分解されてペプチドとアミノ酸になるので、吸収に関しては時間効率が悪く、オリゴペプチド形の添加物とすることが非常に有用である。特定の単一物質であっても、各種のペプチドの混合物であってもよい。 The peptide of the present invention means a dipeptide or more oligopeptide or polypeptide in which two or more amino acids are bonded by a peptide bond. A so-called oligopeptide or polypeptide having about 100 or less constituent amino acid residues is preferred. Preference is given to 2-6 mer oligopeptides. Since the high molecular component of protein is once decomposed in vivo by a biodegrading enzyme to become a peptide and an amino acid, it is inefficient in terms of absorption, and it is very useful to use an oligopeptide-type additive. It may be a specific single substance or a mixture of various peptides.

本発明において得られたペプチドを、例えば、食品として利用する場合は、その形態は特に限定されるものではなく、本発明のペプチドをそのまま飲食品として調製したもの、各種タンパク質、糖類、脂肪、微量元素、ビタミン類等を更に配合したもの、液状、半液体状若しくは固体状にしたもの、一般の飲食品へ添加したものであっても良い。また、食品とは、健康食品、健康補助食品、特定保健用食品等を広く含む意味で用いられる。動物用
飼料添加物としては、養殖魚の摂餌用飼料への添加物、その他家畜としての、鶏、豚、牛等の飼料用に、成長促進剤あるいは体力増強剤として添加をすることができる。
When the peptide obtained in the present invention is used, for example, as a food, the form is not particularly limited, and the peptide of the present invention is prepared as it is as a food or drink, various proteins, sugars, fats, trace amounts What further mix | blended an element, vitamins, etc., what was made into the liquid, semi-liquid form, or the solid form, and what was added to the general food-drinks may be used. In addition, the term “food” is used to mean a wide range of health foods, health supplements, foods for specified health use, and the like. As an animal feed additive, it can be added as a growth promoter or a physical strength enhancer to feed for feeding cultured fish, other feeds for livestock such as chickens, pigs, and cattle.

本発明におけるアミノ酸分析は、ガスクロマトグラフィーを用いる通常の方法で行った。
具体的には、カラムはHP−1(Agilent Technologies社製)0.32mmφ×30m、50〜350℃、10℃/分の昇温にて検出はFID方式で行った。分子量及び分子量分布に関して、TOF−MS(Time of Flight Mass Spectrometry)は、日本パーセティブ社製Voyager Linear-DE/K分析装置を用いて、水/アセトニトリル/トリフルオロ酢酸混合溶液にて、α−シアノ−4−ヒドロキシケイ皮酸系をマトリックスにして測定した。また、
GPC(Gel Permeation
Chromatograph)分析は、具体的には、カラムはセファデックスG−50(直径2mm、長さ10cm)、検出器としてUV−D2(254nm)流速2mL/分、サンプル量は0.3mLでの分析図であり、マーカー試料としては、リパーゼ(MW:4.8万)、リゾチーム(MW:1.4万)、大豆アミノ酸混合溶液を用いた。
The amino acid analysis in the present invention was performed by a usual method using gas chromatography.
Specifically, the column was HP-1 (Agilent Technologies) 0.32 mmφ × 30 m, 50 to 350 ° C., and the temperature was raised at 10 ° C./min, and the detection was performed by the FID method. Regarding molecular weight and molecular weight distribution, TOF-MS (Time of Flight Mass Spectrometry) was measured using α-cyano- in a water / acetonitrile / trifluoroacetic acid mixed solution using a Voyager Linear-DE / K analyzer manufactured by Japan Perspective. The measurement was carried out using a 4-hydroxycinnamic acid system as a matrix. Also,
GPC (Gel Permeation
Chromatograph) analysis, specifically, Sephadex G-50 (diameter 2 mm, length 10 cm) as a column, UV-D2 (254 nm) flow rate 2 mL / min as a detector, sample amount 0.3 mL As a marker sample, lipase (MW: 48,000), lysozyme (MW: 14,000), and a soy amino acid mixed solution were used.

また、蛋白質の加水分解率(%)とは、以下の式によって求められる値である。
加水分解率(%)=(N末端量/全窒素量)×100
ここで、N末端量は、アルカリ性のペプチド溶液を自動滴定装置にかけて得られる中和曲線の、アルカリ側の変曲点(pH11程度)〜中性付近の変曲点(pH6.5程度)までに必要とされる水素イオン量、即ち、アルカリ溶液中で陰イオンとして存在しているアミノ酸とペプチドが、双性イオンになるために必要とされる水素イオン量に等しいとし、全窒素量はケルダール法にて求めた値を用いた。なお、実施例と比較例で用いた脱脂大豆は、ケルダール法窒素分析値が7.68重量%のものである。
The protein hydrolysis rate (%) is a value determined by the following formula.
Hydrolysis rate (%) = (N-terminal amount / total nitrogen amount) × 100
Here, the N-terminal amount is between the inflection point on the alkali side (about pH 11) to the inflection point near pH (about pH 6.5) in the neutralization curve obtained by applying an alkaline peptide solution to an automatic titrator. The amount of hydrogen ions required, i.e., the amino acid and peptide present as anions in an alkaline solution are equal to the amount of hydrogen ions required to become zwitterions, and the total nitrogen amount is the Kjeldahl method The value obtained in (1) was used. The defatted soybean used in Examples and Comparative Examples has a Kjeldahl nitrogen analysis value of 7.68% by weight.

以下、実施例により本発明を詳述する。 Hereinafter, the present invention will be described in detail by way of examples.

[実施例1]
脱脂大豆フレーク10gを家庭用ミキサーによって粉砕した物(アミド基換算Nモル数0.055モル)を常に一定量採取して、200mLフラスコに入れ、NaOH水溶液(アルカリ濃度を変えるだけで常に一定量50mL)を添加した。添加したアルカリ濃度を以下の様に変化させた。
[Example 1]
A constant amount of 10 g of defatted soybean flakes pulverized by a home mixer (amide group equivalent N mole number 0.055 mol) is always taken into a 200 mL flask, and NaOH aqueous solution (always 50 mL constant amount by changing the alkali concentration) ) Was added. The added alkali concentration was changed as follows.

1)アルカリ濃度0.25N/L、50ml、アルカリ添加モル数0.0125モル、比:0.23倍モル
2)アルカリ濃度0.5N/L、50ml、アルカリ添加モル数0.025モル、比:0.45倍モル
3)アルカリ濃度1N/L、50ml、アルカリ添加モル数0.05モル、比:0.91倍モル
4)アルカリ濃度2N/L、50ml、アルカリ添加モル数0.1モル、比:1.82倍モル
5)アルカリ濃度3N/L、50ml、アルカリ添加モル数0.15モル、比:2.73倍モル
6)アルカリ濃度4N/L、50ml、アルカリ添加モル数0.2モル、比:3.64倍モル
1) Alkaline concentration 0.25N / L, 50ml, Alkaline addition mole number 0.0125mol, Ratio: 0.23 times mole 2) Alkaline concentration 0.5N / L, 50ml, Alkaline addition mole number 0.025mol, Ratio: 0.45 times mole 1N / L, 50ml, alkali addition mole number 0.05mol, ratio: 0.91 times mole 4) alkali concentration 2N / L, 50ml, alkali addition mole number 0.1 mole, ratio: 1.82 times mole 5) alkali concentration 3N / L, 50ml, Alkaline added mole number 0.15 mole, ratio: 2.73 times mole 6) Alkali concentration 4N / L, 50ml, alkali added mole number 0.2 mole, ratio: 3.64 times mole

マイクロ波反応装置(四国計測製、2.45GHz周波数、最大650Wの内325KW出力一定)内にフラスコを設置し、ここに還流管を立て、マグネチックスターラーで撹拌しながら、5分間マイクロ波処理した。なお、このとき内温は、熱電対式温度計を用いて96℃に制御した。反応終了後、内容物を取り出し、液中のアミノ酸量を測定した。図1にその結果を示した。図1から分かるように、水酸化ナトリウム濃度が4N/Lの場合、アラニンやアスパラギン酸などが大量に生成するものの、3N/L以下では少量のアラニンが生成するだけである。また、2N/L以下では、リシン以外のアミノ酸はほとんど生成しないことが分かる。従って、アルカリが3N/L以下、特に2N/L以下の場合は、蛋白質の分解が主としてペプチドで止まっていると推測できる。 A flask was placed in a microwave reactor (manufactured by Shikoku Measurement Co., Ltd., 2.45 GHz frequency, 325 kW output constant of maximum 650 W), a reflux tube was set up here, and microwave treatment was performed for 5 minutes while stirring with a magnetic stirrer. . At this time, the internal temperature was controlled to 96 ° C. using a thermocouple thermometer. After completion of the reaction, the contents were taken out and the amount of amino acids in the liquid was measured. Figure 1 shows the results. As can be seen from FIG. 1, when the sodium hydroxide concentration is 4 N / L, alanine, aspartic acid and the like are produced in large quantities, but at 3 N / L or less, only a small amount of alanine is produced. It can also be seen that at 2 N / L or less, amino acids other than lysine are hardly generated. Therefore, when the alkali is 3 N / L or less, particularly 2 N / L or less, it can be presumed that the degradation of the protein is mainly stopped by the peptide.

ちなみに、アルカリ添加濃度が1.1N/Lの場合に蛋白質アミド結合のモル数に対して等モル添加量になり、生成するカルボン酸に対しても等モルになり、添加アルカリ分が低いと消費される形になる。それ以上の添加量ではアルカリが過剰条件になるが、ペプチドを効率良く取得するには、最適アルカリ過剰モル数と処理時間を規定することが必要になる。 By the way, when the alkali addition concentration is 1.1 N / L, the addition amount is equimolar with respect to the number of moles of protein amide bond, and the equivalence is also with respect to the carboxylic acid to be produced. It becomes a form. If the amount of addition is larger than that, the alkali becomes an excess condition. However, in order to obtain the peptide efficiently, it is necessary to define the optimum alkali excess molar number and the treatment time.

[実施例2]
5gの大豆粕(アミド基換算Nモル数0.0275モル)を1N/L・NaOH水溶液(50ml:0.05モル モル比:1.82倍モル)を用いて、100℃のオイルバスで1時間処理した場合(従来法)と、96℃制御のマイクロ波で、5分間処理した場合の分子量分布をTOF−MS法で分析した結果を図2に示した。図2から分かるように、従来法では、1時間処理でも6割以上が分子量1万以上の蛋白質又はポリペプチドとして残っているが、本発明のマイクロ波処理では5分の処理で、分子量1万以上のものは残っていない。条件にもよるが、マイクロ波を用いれば、従来法に比べて数十倍〜数百倍程度の速さで加水分解が可能である。
[Example 2]
5 g of soybean meal (amide group equivalent N mole number 0.0275 mol) using 1 N / L / NaOH aqueous solution (50 ml: 0.05 mol molar ratio: 1.82 times mol) in an oil bath at 100 ° C. FIG. 2 shows the results of analyzing the molecular weight distribution by the TOF-MS method in the case of time treatment (conventional method) and in the case of treatment for 5 minutes with a microwave controlled at 96 ° C. As can be seen from FIG. 2, in the conventional method, 60% or more remains as a protein or polypeptide having a molecular weight of 10,000 or more even after 1 hour treatment, but in the microwave treatment of the present invention, the molecular weight is 10,000 after treatment for 5 minutes. No more remains. Although it depends on the conditions, if microwaves are used, hydrolysis is possible at a speed several tens to several hundreds times faster than the conventional method.

[実施例3]
実施例2と同じ方法で、NaOH水溶液の濃度を変えて加水分解を行い、得られた加水分解生成物をTOF−MSを用いて測定し、最大分子量と平均分子量(加重平均)を求めた。その結果を図3に示した。図3から分かるように、NaOH濃度が0.5mol/L(=N/L:アルカリ/アミドモル比=0.91倍モル)では蛋白質(分子量1万以上のポリペプチド)が残留しているが、1mol/L(=N/L:アルカリ/アミドモル比=1.82倍モル)以上では残留していない。また、平均分子量も、NaOH濃度が1〜3mol/L(=N/L:アルカリ/アミドモル比=1.82〜5.5倍モル)で250〜600程度である。
[Example 3]
Hydrolysis was performed by changing the concentration of the NaOH aqueous solution in the same manner as in Example 2, and the obtained hydrolysis product was measured using TOF-MS to obtain the maximum molecular weight and the average molecular weight (weighted average). The results are shown in FIG. As can be seen from FIG. 3, protein (polypeptide having a molecular weight of 10,000 or more) remains when the NaOH concentration is 0.5 mol / L (= N / L: alkali / amide molar ratio = 0.91 times mol). No residue remains above 1 mol / L (= N / L: alkali / amide molar ratio = 1.82 times mol). The average molecular weight is about 250 to 600 when the NaOH concentration is 1 to 3 mol / L (= N / L: alkali / amide molar ratio = 1.82 to 5.5 times mol).

実施例1で得られたアミノ酸の分析の結果(図1に示したように4mol/L(=N/L:モル比=3.64倍モル)では各種アミノ酸が多量生成されるが、3mol/L(=N/L:モル比=2.73倍モル)以下ではリシン以外は殆ど生成せず、1mol/L(=N/L:0.91倍モル)以下ではリシンのみが生成する。)と合わせて考えれば、NaOH濃度が0.55〜3.3mol/L(=N/L:モル比=0.5〜3倍モル)、好ましくは1.1〜2.2mol/L(=N/L:モル比=1〜2倍モル)であれば、アミノ酸の生成を抑えた上でペプチドを得ることが可能であるといえる。 As a result of the analysis of the amino acid obtained in Example 1 (as shown in FIG. 1, 4 mol / L (= N / L: molar ratio = 3.64 times mol), various amino acids are produced in large amounts. Less than L (= N / L: molar ratio = 2.73 times mole) produces almost no lysine, and less than 1 mol / L (= N / L: 0.91 times mole) produces only lysine.) The NaOH concentration is 0.55 to 3.3 mol / L (= N / L: molar ratio = 0.5 to 3 times mol), preferably 1.1 to 2.2 mol / L (= N / L: molar ratio = 1 to 2 moles), it can be said that it is possible to obtain a peptide while suppressing the production of amino acids.

[実施例4〜7]
実施例1に準じて、分解時間を15分にした以外は全く同様の試験を実施した。脱脂大豆フレーク10g(アミド基換算Nモル数0.055モル)を家庭用ミキサーによって粉砕した物を一定量採取し、200mLフラスコに入れ、下記アルカリ条件にしたものを仕込み、マイクロ波(325W)で分解処理をした。3〜4分後には常温から沸騰点103℃に到達し、残り15分までの温度は103℃で一定のままだった。
[Examples 4 to 7]
According to Example 1, the same test was performed except that the decomposition time was 15 minutes. A fixed amount of 10 g of defatted soybean flakes (N mole number in terms of amide group 0.055 mol) pulverized by a home mixer is collected, put into a 200 mL flask, charged with the following alkaline conditions, and microwaved (325 W). Decomposed. After 3 to 4 minutes, the boiling point reached 103 ° C. from room temperature, and the remaining temperature up to 15 minutes remained constant at 103 ° C.

1)アルカリ濃度1N/L、50ml、アルカリ添加モル数0.05モル、比:0.91倍モル(実施例4)
2)アルカリ濃度1.1N/L、50ml、アルカリ添加モル数0.055モル、比:1倍モル(実施例5)
3)アルカリ濃度2.2N/L、50ml、アルカリ添加モル数0.11モル、 比:2倍モル(実施例6)
4)アルカリ濃度3.3N/L、50ml、アルカリ添加モル数0.165モル、比:3倍モル(実施例7)
1) Alkali concentration 1 N / L, 50 ml, 0.05 mol added alkali, ratio: 0.91 times mol (Example 4)
2) Alkali concentration 1.1 N / L, 50 ml, alkali addition mole number 0.055 mol, ratio: 1 time mol (Example 5)
3) Alkali concentration 2.2N / L, 50ml, alkali added mole number 0.11mol, ratio: 2 times mole (Example 6)
4) Alkaline concentration 3.3 N / L, 50 ml, alkali addition mole number 0.165 mol, ratio: 3 times mol (Example 7)

上記条件で加水分解させた液の分解率を滴定分析した結果と、GPCを用いて分子量分布分析を行った結果を、表1と図4〜7に示した。GPCの条件は次のとおりであった。
ポンプ:EYELA VSP-3050(流量=2mL/min)
検出 :EYELA UV-D2(波長=254nm)
カラム:セファデックスG−50(直径2cm、長さ10cm)
マーカー:リパーゼ、リゾチーム、アミノ酸混合溶液(大豆アミノ酸組成と同一)
注入量:0.3mL
The results of titration analysis of the decomposition rate of the liquid hydrolyzed under the above conditions and the results of molecular weight distribution analysis using GPC are shown in Table 1 and FIGS. The conditions of GPC were as follows.
Pump: EYELA VSP-3050 (flow rate = 2 mL / min)
Detection: EYELA UV-D2 (wavelength = 254 nm)
Column: Sephadex G-50 (diameter 2 cm, length 10 cm)
Marker: Lipase, lysozyme, amino acid mixed solution (same as soy amino acid composition)
Injection volume: 0.3 mL

[比較例1]
実施例4〜7と全く同様に加水分解時間を15分間で実施した。アルカリ濃度3.3N/L 50mlに対して、脱脂大豆フレークの量を2.15gと少なく添加して相対過剰率を高くしたものをテストしたが、沸騰状態は同じだった。(仕込み大豆フレークアミド換算Nモル数0.0118モル)アルカリ濃度3.3N/L、50ml アルカリ添加モル数0.165モル、比:14倍モルであり、加水分解率100%を示した。別試験で100%加水分解率は全てアミノ酸が生成していることを確認した。
[Comparative Example 1]
The hydrolysis time was 15 minutes exactly as in Examples 4-7. A test was conducted with an alkali concentration of 3.3N / L 50ml, with a small amount of defatted soybean flakes added as low as 2.15g to increase the relative excess, but the boiling state was the same. (N mole number in terms of soy flake amide charged: 0.0118 mol) Alkaline concentration: 3.3 N / L, 50 ml Alkaline added mole number: 0.165 mol, ratio: 14 times mol, showing a hydrolysis rate of 100%. In another test, it was confirmed that all amino acids were produced at 100% hydrolysis rate.

[比較例2]
実施例6に準じて、但し、マイクロ波を使わずに熱処理だけの比較テストを実施した。大豆フレーク10gに対してアルカリ濃度2.2N/L、50ml、アルカリ添加モル数0.11モル、 比:2倍モル、温度は103℃を維持していても、マイクロ波を用いないと、10倍以上の時間がかかった。15分時点での加水分解率は、32.3%の値を示し、実施例6と比較してマイクロ波を利用する効果が確認された。
[Comparative Example 2]
In accordance with Example 6, however, a comparative test of only heat treatment was conducted without using microwaves. 10g of soy flakes, alkali concentration 2.2N / L, 50ml, alkali added mole number 0.11mol, ratio: 2 times mole, temperature maintained at 103 ° C, but if microwave is not used, 10 times or more took time. The hydrolysis rate at the time of 15 minutes showed a value of 32.3%, and the effect of using the microwave was confirmed as compared with Example 6.

Figure 0005641466
Figure 0005641466

図4〜7より、蛋白質はいずれも分解をしており、アミノ酸成分と蛋白質高分子との間にペプチドが存在し、蛋白高分子が少なく、かつ、アミノ酸も少ないペプチド主成分のものが得られる加水分解率の範囲は、40〜80%の範囲に存在していることが分かる。その際、蛋白質中のアミド成分モル数に対し添加するアルカリモル数比は、0.5倍から3倍の範囲にあり、好ましい範囲は1倍から2倍の範囲にあることが分かる。


4-7, all the proteins have decomposed | disassembled, a peptide exists between an amino acid component and a protein polymer, and the thing of a peptide main component with few protein polymers and few amino acids is obtained. It can be seen that the hydrolysis rate range is in the range of 40-80%. At that time, the ratio of the number of moles of alkali added to the number of moles of the amide component in the protein is in the range of 0.5 to 3 times, and the preferred range is in the range of 1 to 2 times.


Claims (3)

動植物性蛋白質を、マイクロ波の照射下に、該蛋白質が有するアミド結合の全モル数に対して、0.5〜3倍モルのアルカリを含有するアルカリ水中で、該アルカリ水の沸騰温度以下の温度かつ常圧下で部分的に加水分解することを特徴とするペプチドの製造方法。 Animal and vegetable proteins are irradiated with microwaves in an alkaline water containing 0.5 to 3 times moles of alkali with respect to the total number of moles of amide bonds of the protein, and the boiling temperature of the alkaline water is lower than the boiling temperature. A method for producing a peptide, which comprises partially hydrolyzing under temperature and normal pressure . 蛋白質が有するアミド結合の全モル数に対して、1〜2倍モルのアルカリを含有するアルカリ水を用いることを特徴とする請求項1記載のペプチドの製造方法。 The method for producing a peptide according to claim 1, wherein alkaline water containing 1 to 2 moles of alkali is used with respect to the total number of moles of amide bonds of the protein. 蛋白質の加水分解率が40〜80%の範囲で、部分的に加水分解することを特徴とする請求項1又は2記載のペプチドの製造方法。 The method for producing a peptide according to claim 1 or 2, wherein the protein is partially hydrolyzed within a hydrolysis rate of 40 to 80%.
JP2009171765A 2008-07-26 2009-07-23 Method for producing peptide Expired - Fee Related JP5641466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171765A JP5641466B2 (en) 2008-07-26 2009-07-23 Method for producing peptide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008192905 2008-07-26
JP2008192905 2008-07-26
JP2009171765A JP5641466B2 (en) 2008-07-26 2009-07-23 Method for producing peptide

Publications (2)

Publication Number Publication Date
JP2010053119A JP2010053119A (en) 2010-03-11
JP5641466B2 true JP5641466B2 (en) 2014-12-17

Family

ID=42069400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171765A Expired - Fee Related JP5641466B2 (en) 2008-07-26 2009-07-23 Method for producing peptide

Country Status (1)

Country Link
JP (1) JP5641466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251090A (en) * 2011-06-03 2012-12-20 Nihon Univ Apparatus and method for treating inside surface of tube
KR102705458B1 (en) * 2021-11-29 2024-09-11 주식회사 이레본 Method for Manufacturing Feedstuff Composition for Preventing Diabetes in Dogs Comprising Mulberry Leaves

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733376B2 (en) * 1994-06-15 2006-01-11 独立行政法人産業技術総合研究所 Peptide and prolyl endopeptidase inhibitor, functional food and animal feed containing the same
JP2004345998A (en) * 2003-05-21 2004-12-09 Kagawa Industry Support Foundation Method for rapidly producing amino acid
DE102007002386A1 (en) * 2007-01-10 2008-07-17 Analyticon Discovery Gmbh Pharmaceutically active compounds
JP5312780B2 (en) * 2007-12-19 2013-10-09 国立大学法人鳥取大学 Food / drink and pharmaceutical composition for reducing blood ammonia concentration

Also Published As

Publication number Publication date
JP2010053119A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Pati et al. Isolation and characterization of fish scale collagen of higher thermal stability
Ishak et al. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing
KR101692925B1 (en) A method of manufacturing an amino-acid composition using animal by-products
Yang et al. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella)
Jin et al. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides
Quitain et al. Production of valuable materials by hydrothermal treatment of shrimp shells
Jiang et al. Aqueous enzymatic extraction of peanut oil and protein hydrolysates
Wisuthiphaet et al. Production of fish protein hydrolysates by acid and enzymatic hydrolysis
Yang et al. Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: Impact on the antioxidant activities of the extracted peptides
Benjakul et al. Extraction and characterisation of pepsin‐solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus)
Song et al. Development of industrial ultrasound system for mass production of collagen and biochemical characteristics of extracted collagen
KR101341704B1 (en) Manufacturing process of collagen by using by-products
Giteru et al. Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications
KR101341721B1 (en) Manufacturing process of amino acid fertilizer compositions by using marine by-products
Wisuthiphaet et al. Fish protein hydrolysate production by acid and enzymatic hydrolysis
Wali et al. Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates
Álvarez et al. Production of porcine hemoglobin peptides at moderate temperature and medium pressure under a nitrogen stream. Functional and antioxidant properties
RU2682448C2 (en) Method for producing hydrolysed keratinaceous material
Wu et al. Optimization of ultrasound assisted extraction of abalone viscera protein and its effect on the iron-chelating activity
Espinales et al. Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview
CN101509030A (en) Hydrolyzation of pig blood with complex enzyme method for producing blood peptide native
Zhao et al. Ultrasound treatment on the structure of goose liver proteins and antioxidant activities of its enzymatic hydrolysate
Zhang et al. Application of steam explosion treatment on the collagen peptides extraction from cattle bone
JP5641466B2 (en) Method for producing peptide
Agoua et al. Substantial improvement of tryptic and chymotryptic hydrolysis of β-lactoglobulin pretreated with high voltage electrical treatments

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5641466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees