JP5639947B2 - Catalytic reactor - Google Patents

Catalytic reactor Download PDF

Info

Publication number
JP5639947B2
JP5639947B2 JP2011086317A JP2011086317A JP5639947B2 JP 5639947 B2 JP5639947 B2 JP 5639947B2 JP 2011086317 A JP2011086317 A JP 2011086317A JP 2011086317 A JP2011086317 A JP 2011086317A JP 5639947 B2 JP5639947 B2 JP 5639947B2
Authority
JP
Japan
Prior art keywords
reactor
catalyst
reaction
region
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011086317A
Other languages
Japanese (ja)
Other versions
JP2012217929A (en
Inventor
一毅 村橋
一毅 村橋
森田 健太郎
健太郎 森田
讓 加藤
讓 加藤
篤 村田
篤 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011086317A priority Critical patent/JP5639947B2/en
Priority to PCT/JP2012/059558 priority patent/WO2012137936A1/en
Publication of JP2012217929A publication Critical patent/JP2012217929A/en
Application granted granted Critical
Publication of JP5639947B2 publication Critical patent/JP5639947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00469Radiofrequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series

Description

本発明は、例えば微粒状の触媒を使用して例えば液とガスを反応させるようにした触媒反応装置に関する。   The present invention relates to a catalytic reaction apparatus in which, for example, a liquid and a gas are reacted using a finely divided catalyst.

従来、触媒を用いて反応器内で液とガスを反応させて生成物として液やガスを生成するようにした触媒反応装置において、例えば反応器内に下方からガスを充填して反応器内に満たされた反応液及び触媒と反応させて、上方から反応生成物としての生成液と生成ガスを分離して排出するようにしたものがある。
例えば、図10に示す気液固三相を含む触媒反応装置100では、略カプセル状の反応器101内に微粉状の触媒102を分散させた反応液103を充填しており、液面の上方にルーバー式で飛散する液と触媒のミストを取り除くデミスター104と、飛散する液と触媒を遠心力によって捕捉するサイクロン105が設けられ、最終的に生成ガスと残りの未反応原料ガスだけが上端部から管路を通って排出されることになる。
Conventionally, in a catalytic reaction apparatus that uses a catalyst to react a liquid and a gas in a reactor to produce a liquid or a gas as a product, for example, the reactor is filled with gas from below to enter the reactor. There is one in which a reaction liquid and a catalyst are reacted with each other, and a product liquid and a product gas as reaction products are separated and discharged from above.
For example, in the catalytic reaction apparatus 100 including a gas-liquid solid three-phase shown in FIG. 10, a reaction liquid 103 in which a finely powdered catalyst 102 is dispersed is filled in a substantially capsule-shaped reactor 101, and above the liquid level. Are provided with a demister 104 that removes the mist of the liquid and catalyst scattered by the louver type, and a cyclone 105 that captures the scattered liquid and catalyst by centrifugal force, and finally only the product gas and the remaining unreacted raw material gas are at the upper end. Will be discharged through the pipeline.

そして、反応器101の下側には原料ガスの供給管107が設けられ、ノズル107aから原料ガスの気泡108を反応液103内に吐出する。これによって反応器101内に気液固三相スラリーが形成される。
また、反応液103の液面近傍には触媒102の流出を防ぐ筒状の微細な金網フィルター109が設けられ、この金網フィルター109から反応生成物としての液110が触媒と分離されて反応器101の外部に排出される。排出された生成液110は管路を介して外部の気液分離装置112に搬送されて加熱器113によって生成液110に溶解した未反応原料を含むガスを分離して追い出し、未反応原料を含むガスを分離した生成液110は他へ排出されることになる。
A source gas supply pipe 107 is provided below the reactor 101, and bubbles 108 of the source gas are discharged from the nozzle 107 a into the reaction solution 103. As a result, a gas-liquid solid three-phase slurry is formed in the reactor 101.
In addition, a cylindrical fine wire mesh filter 109 that prevents the catalyst 102 from flowing out is provided in the vicinity of the liquid surface of the reaction solution 103, and the liquid 110 as a reaction product is separated from the catalyst from the wire mesh filter 109, and the reactor 101. Is discharged outside. The discharged product liquid 110 is conveyed to an external gas-liquid separation device 112 via a pipe line, and a gas containing unreacted raw material dissolved in the product liquid 110 is separated and expelled by a heater 113 to contain unreacted raw material. The product liquid 110 from which the gas has been separated is discharged to the other.

このような触媒反応装置100において、反応後の生成液110が反応器101から排出されると、金網フィルター109を通って液110中に分散する微細な触媒102も液と一体に流出してしまうという問題があった。また、反応器内110においては、触媒102は重力沈降するため反応器101の上方では液中での触媒102の濃度が薄く下方では濃度が濃くなる傾向があり、反応器101の上方での反応が進みにくかった。   In such a catalytic reaction apparatus 100, when the reaction product liquid 110 is discharged from the reactor 101, the fine catalyst 102 dispersed in the liquid 110 through the wire mesh filter 109 also flows out together with the liquid. There was a problem. Further, in the reactor 110, the catalyst 102 is gravity settled, so that the concentration of the catalyst 102 in the liquid is thin above the reactor 101 and tends to be thick below, so that the reaction above the reactor 101 It was difficult to proceed.

これらを解消するための1つの手段として、反応器101内から微粒状の触媒102が液110と共に流出しないようにあるいは沈降しないように保持する必要がある。反応器101内で触媒102を固定して保持する場合には、微粒状の触媒に代えて一定以上の大きさを持つ触媒ペレットを充填したり、触媒をハニカム状にして充填すること等が行われていた。
また、反応器101内で触媒102を固定しない場合には、均一で高効率な反応条件を達成するために、反応ガスを気泡状にして気液2相流を形成させ、反応器101内の反応液103が気泡浮力によって流動し、液の流れで触媒を流動させて均一な分散を図ったり、直接ガス流によって微粒状の触媒102を流動させる流動層を設けたり、或いはガスの力に依らずに液を攪拌機やポンプで混合流動させ触媒を均一分散させるようにしていた。
As one means for solving these problems, it is necessary to keep the finely divided catalyst 102 from flowing out of the reactor 101 together with the liquid 110 so as not to settle. When the catalyst 102 is fixed and held in the reactor 101, it is possible to fill the catalyst pellets having a certain size or more instead of the finely divided catalyst, or to fill the catalyst in a honeycomb shape. It was broken.
Further, when the catalyst 102 is not fixed in the reactor 101, in order to achieve uniform and highly efficient reaction conditions, the reaction gas is bubbled to form a gas-liquid two-phase flow. The reaction liquid 103 flows by bubble buoyancy, and the catalyst is flowed by the flow of the liquid to achieve uniform dispersion, or a fluidized bed for flowing the fine catalyst 102 by the direct gas flow is provided, or depending on the force of the gas Instead, the liquid was mixed and flowed with a stirrer or a pump to uniformly disperse the catalyst.

一方、磁気分離フィルター装置として、下記特許文献1〜4に記載された技術が提案されている。これらの磁気分離フィルター装置では、例えば油圧機器などの作動油に混入した金属粉等は汚染物として作動不良や故障の原因になるために除去するようにしている。この作動油浄化装置は網状容器内に非晶質金属材料の線材からなるフィルター部材が充填されており、この網状容器の周囲に磁気発生手段を配設して磁場をかけた状態で網状容器内に金属粉を含む作動油を流通させることで、強磁性体である金属粉を磁化されたフィルター部材で吸着させて除去するようにしている。
これらの技術は単に、作動油等の流体中に含まれる強磁性体物質を磁化されたフィルター部材で吸着するというものにすぎない。
On the other hand, technologies described in Patent Documents 1 to 4 below have been proposed as magnetic separation filter devices. In these magnetic separation filter devices, for example, metal powder or the like mixed in hydraulic oil such as hydraulic equipment is removed as a contaminant that causes malfunction or failure. In this hydraulic oil purifier, a mesh container is filled with a filter member made of a wire made of an amorphous metal material, and magnetism generating means is disposed around the mesh container so that a magnetic field is applied to the mesh container. The working oil containing the metal powder is circulated in the metal so that the metal powder, which is a ferromagnetic material, is adsorbed and removed by the magnetized filter member.
These techniques are merely to adsorb a ferromagnetic substance contained in a fluid such as hydraulic oil with a magnetized filter member.

実開昭59−158421号公報Japanese Utility Model Publication No. 59-158421 実開昭56−121415号公報Japanese Utility Model Publication No. 56-121415 特開平4−281807号公報JP-A-4-281807 特開平10−5510号公報Japanese Patent Laid-Open No. 10-5510

ところで、上述した触媒反応装置100において、上述のように触媒102を反応器101で固定する場合には、微粒子状の触媒102を使用できず、反応器101への触媒の充填や交換は微粒子状の触媒と異なって、人手による作業が必要であり手間がかかる欠点がある。しかも、触媒が触媒ペレット状やハニカム状であるため、微粒状の触媒を用いたものと比較して反応効率が低かった。
他方、触媒を反応器101で固定しない場合には、いずれの場合であっても、微粒状の触媒が重力で沈降することを避けて液中に均一に分散させるために、ガスや液による触媒の流動と分散を反応中に継続させる必要があり、流体の流れが反重力方向になるように下方から上方へ流動させてその流速を一定流速以上に設定する必要があった。そのため、結果的に、流体の流通流量条件と反応器の水平断面積との関係で制約を受けることになるという欠点があった。
また、反応器101内の液の混合を促進する手段として、ポンプによる液循環を採用する場合は吸い込み側に微細金網フィルター等の触媒流出防止手段を設けない限り、触媒粒子がポンプに流入したときに高速で回転するポンプインペラーと触媒が衝突して両者の摩耗や損耗を招くため望ましくない。
By the way, in the catalyst reaction apparatus 100 described above, when the catalyst 102 is fixed by the reactor 101 as described above, the particulate catalyst 102 cannot be used. Unlike conventional catalysts, there is a drawback that it requires labor and labor. Moreover, since the catalyst is in the form of a catalyst pellet or honeycomb, the reaction efficiency is low compared to that using a finely divided catalyst.
On the other hand, in the case where the catalyst is not fixed in the reactor 101, in any case, in order to prevent the finely divided catalyst from being settled by gravity and to uniformly disperse it in the liquid, a catalyst by gas or liquid is used. It was necessary to continue the flow and dispersion of the liquid during the reaction, and it was necessary to flow from below to above so that the flow of the fluid would be in the anti-gravity direction and to set the flow rate to a certain flow rate or higher. Therefore, as a result, there is a drawback in that it is restricted by the relationship between the flow rate condition of the fluid and the horizontal sectional area of the reactor.
Further, when liquid circulation by a pump is adopted as a means for promoting the mixing of the liquid in the reactor 101, the catalyst particles flow into the pump unless a catalyst outflow prevention means such as a fine wire mesh filter is provided on the suction side. The pump impeller that rotates at a high speed and the catalyst collide with each other to cause wear and wear of both, which is not desirable.

触媒反応装置では、高効率に反応させるために均一な反応を行う必要があり、そのためには、微粒状の触媒を用いて反応器内の流体にできるだけ均一に分散させる必要があるが、流体の流動条件は、偏流や流動パターンの変化によって大幅に変わりやすく、その結果として触媒の沈降を招き、反応率や容積効率等の低下につながり、触媒劣化につながるおそれもあった。特に、気液固3相からなる気泡塔の場合、ガス空塔速度とガスホールドアップ、フローパターンの関係が複雑であり、定量指標が得難く制御も容易ではなかった。   In a catalytic reactor, it is necessary to perform a uniform reaction in order to react with high efficiency. For this purpose, it is necessary to disperse the fluid in the reactor as uniformly as possible using a finely divided catalyst. The flow conditions are likely to change significantly due to drift and changes in the flow pattern. As a result, the catalyst settles down, leading to a decrease in reaction rate, volumetric efficiency, and the like, possibly leading to catalyst deterioration. In particular, in the case of a bubble column composed of gas-liquid solid three phases, the relationship between the gas superficial velocity, gas hold-up, and flow pattern is complicated, and it is difficult to obtain a quantitative index and control is not easy.

本発明は、このような問題に鑑みてなされたものであり、触媒を吸着保持することで触媒反応の効率を向上できるようにした触媒反応装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a catalytic reaction apparatus capable of improving the efficiency of the catalytic reaction by adsorbing and holding the catalyst.

本発明による触媒反応装置は、反応器内で微粒状の触媒を用いて生成物を得るようにした触媒反応装置において、反応器内に触媒保持部を設け、触媒保持部は、反応器内に充填されたアモルファス合金細線と、反応器の外側に設けられていてアモルファス合金細線に磁力を作用させる着磁装置と、少なくとも一部に強磁性体を含んでいて着磁装置の磁力によってアモルファス合金細線に分散して吸着される触媒と、を備えたことを特徴とする。
本発明による触媒反応装置によれば、着磁装置によって磁場を反応器内に生じさせてアモルファス合金細線を磁化させることで強磁性体を含む触媒をアモルファス合金細線に均一に分散させて吸着保持させ、この状態において反応器内で流体を触媒と反応させることで反応生成物を得ることができる。
なお、流体として例えば液、ガス等を用いることができる。
A catalytic reactor according to the present invention is a catalytic reactor in which a product is obtained using a finely divided catalyst in a reactor, and a catalyst holding unit is provided in the reactor, and the catalyst holding unit is provided in the reactor. A filled amorphous alloy wire, a magnetizing device provided on the outside of the reactor for applying a magnetic force to the amorphous alloy wire, and at least partly containing a ferromagnetic material, and the amorphous alloy wire being magnetized by the magnetic force of the magnetizing device And a catalyst adsorbed in a dispersed manner.
According to the catalytic reactor of the present invention, a magnetic field is generated in the reactor by the magnetizing device to magnetize the amorphous alloy fine wire, thereby uniformly dispersing and holding the catalyst containing the ferromagnetic material in the amorphous alloy fine wire. In this state, the reaction product can be obtained by reacting the fluid with the catalyst in the reactor.
For example, liquid, gas, or the like can be used as the fluid.

本発明による触媒反応装置は、反応器の上側に上述した触媒保持部を備えたことを特徴とする。
本発明による触媒反応装置によれば、反応器内で流体と触媒とによって反応を生じさせる際、例えば、触媒を流体と共に上下方向に流動させたとしても、重力沈降によって触媒は降下し易いので、反応器の下側では触媒の濃度が濃く、上側で触媒の濃度が薄くなる傾向があるが、反応器の上側に触媒保持部を設けることで、着磁装置によって磁場を触媒保持部に生じさせ、触媒保持部でアモルファス合金細線を磁化させることで強磁性体を含む触媒を反応器の上側で均一に分散させて吸着保持させ、この状態において触媒保持部で流体を触媒と反応させることで反応器の上側を下側と同様に均一な触媒濃度に保持することができるため、反応器全体に亘って均一に分散された触媒によって流体の反応を効率良く行うことができて反応生成物を得ることができる。
或いは、反応器の下側において、流体と触媒とで反応が行われ、反応生成ガスと残りの未反応原料が共に反応器の上方に流通するが、その際、反応器の上側に触媒保持部を設置することで、未反応原料は、触媒保持部で、着磁装置で生成する磁場によって磁化されたアモルファス合金細線によって分散して吸着保持された触媒によって、均一に反応が進行できるため、より多くの反応生成物を得つつも未反応原料の排出を抑制できる。
The catalytic reaction apparatus according to the present invention is characterized in that the catalyst holding unit described above is provided on the upper side of the reactor.
According to the catalytic reaction apparatus of the present invention, when the reaction is caused by the fluid and the catalyst in the reactor, for example, even if the catalyst is caused to flow in the vertical direction together with the fluid, the catalyst is likely to fall by gravity sedimentation. The catalyst concentration tends to be lower at the lower side of the reactor and lower at the upper side. However, by providing a catalyst holding unit on the upper side of the reactor, a magnetic field is generated in the catalyst holding unit by the magnetizing device. Then, the amorphous alloy fine wire is magnetized in the catalyst holding part, and the catalyst containing the ferromagnetic material is uniformly dispersed and adsorbed and held on the upper side of the reactor. In this state, the fluid is reacted with the catalyst in the reaction. Since the upper side of the reactor can be maintained at a uniform catalyst concentration similarly to the lower side, the reaction of the fluid can be efficiently performed by the catalyst uniformly dispersed throughout the reactor. Rukoto can.
Alternatively, the reaction is carried out between the fluid and the catalyst on the lower side of the reactor, and the reaction product gas and the remaining unreacted raw material both circulate above the reactor. Since the unreacted raw material can be uniformly reacted by the catalyst held by adsorption and held by the amorphous alloy fine wire magnetized by the magnetic field generated by the magnetizing device in the catalyst holding unit, more reaction can proceed. While obtaining many reaction products, discharge of unreacted raw materials can be suppressed.

また、本発明による触媒反応装置は、第一反応器と第二反応器で微粒状の触媒を用いて生成物を得るようにした触媒反応装置において、第一反応器の下流側に第二反応器を接続し、第二反応器に触媒保持部を設け、触媒保持部は、第二反応器内に充填されたアモルファス合金細線と、第二反応器の外側に設けられていてアモルファス合金細線に磁力を作用させる着磁装置と、少なくとも一部に強磁性体を含んでいて着磁装置の磁力によってアモルファス合金細線に分散して吸着される触媒と、を備えたことを特徴とする。
本発明による触媒反応装置によれば、第一反応器内で流体と触媒とによって反応を生じさせて、第一反応器の下流側から抜き出された流体を第二反応器へ供給させる。第一反応器から抜き出される流体には、未反応の原料成分が含まれており、例えば第一反応器で触媒が重力沈降によって降下し易い傾向があるため、反応器の下側では触媒の濃度が濃く上側で触媒の濃度が薄くなる傾向があるため、下流側では必ずしも十分な反応が行われず、未反応の原料成分が、反応生成物として抜き出される流体に多く随伴して流出することがあり得る。このような場合、抜き出し流体の経路上に設けた第二反応器に触媒保持部を設けておくことで、触媒保持部では着磁装置によって強磁性体を含む触媒がアモルファス合金細線に均一に分散して吸着保持されているから、反応生成物に随伴する液やガス及び液に溶解したガス等の原料成分が、第二反応器で均一分散された触媒と効率よく反応して反応生成物を得ることができる。これによって未反応の原料成分が排出されロスとなることを抑制できる。又、抜き出し流体の、液側には微粒状の触媒が液固スラリー状態として随伴し、ガス側にはミスト状の液飛沫と共に微粒状の触媒が随伴するが、抜き出し流体の経路上に設けた第二反応器に触媒保持部を設けておくことで、触媒が強磁性体を含むために触媒保持部の磁気吸着力によってアモルファス合金細線に捕集され、触媒の流出を防止できる。
又、ガス側では、触媒保持部に充填したアモルファス合金細線の充填層がミスト捕集作用をもたらすのでミスト状の液飛沫が流出することも防止できる。
なお、第二反応器だけでなく第一反応器にも触媒保持部を設けてもよく、この場合には反応効率が一層向上する。
The catalytic reactor according to the present invention is a catalytic reactor in which a product is obtained using a finely divided catalyst in the first reactor and the second reactor, and the second reaction is provided downstream of the first reactor. And a catalyst holding part is provided in the second reactor. The catalyst holding part is provided on the amorphous alloy fine wire provided outside the second reactor and the amorphous alloy fine wire filled in the second reactor. A magnetizing device for applying a magnetic force, and a catalyst that includes at least a portion of a ferromagnetic material and is dispersed and adsorbed on an amorphous alloy fine wire by the magnetic force of the magnetizing device.
According to the catalytic reaction apparatus of the present invention, the reaction is caused by the fluid and the catalyst in the first reactor, and the fluid extracted from the downstream side of the first reactor is supplied to the second reactor. The fluid withdrawn from the first reactor contains unreacted raw material components. For example, the catalyst tends to fall due to gravity sedimentation in the first reactor. Since the concentration is high and the catalyst concentration tends to decrease on the upper side, sufficient reaction does not necessarily take place on the downstream side, and unreacted raw material components flow out with much fluid extracted as reaction products. There can be. In such a case, the catalyst holding unit is provided in the second reactor provided on the path of the extracted fluid, and the catalyst containing the ferromagnetic material is uniformly dispersed in the amorphous alloy thin wire by the magnetizing device in the catalyst holding unit. As a result, the raw material components such as the liquid and gas accompanying the reaction product and the gas dissolved in the liquid react efficiently with the catalyst uniformly dispersed in the second reactor, and the reaction product is Can be obtained. As a result, it is possible to prevent the unreacted raw material components from being discharged and lost. In addition, a finely divided catalyst is accompanied by a liquid-solid slurry state on the liquid side of the extracted fluid, and a finely divided catalyst is accompanied with a mist-like liquid droplet on the gas side, but is provided on the path of the extracted fluid. By providing the catalyst holding part in the second reactor, since the catalyst contains a ferromagnetic material, the catalyst is trapped in the amorphous alloy fine wire by the magnetic adsorption force of the catalyst holding part, and the outflow of the catalyst can be prevented.
In addition, on the gas side, the packed layer of the amorphous alloy fine wire filled in the catalyst holding part provides a mist collecting action, so that it is possible to prevent the mist-like liquid droplets from flowing out.
In addition, you may provide a catalyst holding | maintenance part not only in a 2nd reactor but in a 1st reactor, and in this case, reaction efficiency improves further.

また、触媒保持部は、反応器または第二反応器の非磁性金属からなる筒状管と、筒状管の軸直交断面を仕切る2枚の仕切り板と、2枚の仕切り板で仕切られていてアモルファス合金細線が充填された第一領域と、第一領域における筒状管の外側部分に配置された着磁装置とを設けたことが好ましい。
触媒保持部では、第一領域の外側に配置された着磁装置によって仕切り板で仕切られた第一領域内に着磁装置による磁場が形成され、第一領域の外側にはほとんど磁束は生じないため、効率よくアモルファス合金細線を磁化できて触媒を分散状態で強く吸着保持できる。
The catalyst holding part is partitioned by a cylindrical tube made of a nonmagnetic metal of the reactor or the second reactor, two partition plates that partition the cross section perpendicular to the axis of the cylindrical tube, and two partition plates. It is preferable that a first region filled with the amorphous alloy fine wire and a magnetizing device disposed in an outer portion of the tubular tube in the first region are provided.
In the catalyst holding unit, a magnetic field is generated by the magnetizing device in the first region partitioned by the partition plate by the magnetizing device disposed outside the first region, and almost no magnetic flux is generated outside the first region. Therefore, the amorphous alloy fine wire can be efficiently magnetized and the catalyst can be strongly adsorbed and held in a dispersed state.

また、筒状管の第一領域と仕切り板で仕切られた第二領域に温度調節用熱媒体の流路が設けられ、仕切り板を伝熱部材として第一領域内の流体と触媒の反応温度を調整するようにしてもよい。
第一領域における触媒と流体との反応に好適な反応温度に応じて、第二領域に温度調節用熱媒体の流路を配置することで仕切り板を介して第一領域の流体と触媒の反応温度をより好適なものに昇温または冷却する等して調整できる。
In addition, a temperature adjusting heat medium flow path is provided in the second region partitioned by the first region of the cylindrical tube and the partition plate, and the reaction temperature of the fluid and the catalyst in the first region using the partition plate as a heat transfer member. May be adjusted.
Depending on the reaction temperature suitable for the reaction between the catalyst and the fluid in the first region, the reaction of the fluid and the catalyst in the first region through the partition plate by arranging the flow path of the temperature adjusting heat medium in the second region. The temperature can be adjusted by raising the temperature or cooling to a more suitable temperature.

また、触媒保持部は、反応器または第二反応器の非磁性金属からなる筒状管と、該筒状管の軸直交断面を仕切る4枚以上の偶数枚の仕切り板と、各2枚の仕切り板で仕切られた複数の第一領域にアモルファス合金細線が収納され、第一領域の筒状管の外側部分に配置した着磁装置とを設け、仕切り板を介して第一領域と交互に第二領域が設けられ、第二領域に温度調節用熱媒体の流路が設けられて仕切り板を伝熱部材として第一領域の流体と触媒の反応温度を調整するようにしてもよい。
本発明によれば、触媒保持部を筒状管に設けた偶数枚の仕切り板によってアモルファス合金細線を充填して触媒を均等に分散保持させ、流通する流体が反応するようにした第一領域と温度調節用媒体の流路を配置した第二領域とを交互に設けることができるから、複数の第一領域内における流体と触媒の反応温度を全体に反応に好ましい温度に調整できる。
The catalyst holding unit includes a cylindrical tube made of a non-magnetic metal of the reactor or the second reactor, an even number of four or more partition plates that partition the axial orthogonal section of the cylindrical tube, and two each Amorphous alloy thin wires are housed in a plurality of first regions partitioned by a partition plate, and a magnetizing device disposed on the outer portion of the tubular tube in the first region is provided, and alternately with the first region via the partition plate A second region may be provided, and a temperature adjusting heat medium flow path may be provided in the second region to adjust the reaction temperature between the fluid and the catalyst in the first region using the partition plate as a heat transfer member.
According to the present invention, the first region in which the catalyst holding portion is filled with the amorphous alloy fine wires by the even number of partition plates provided in the cylindrical tube to uniformly distribute and hold the catalyst, and the fluid flowing therethrough reacts. Since the second region in which the flow path of the temperature adjusting medium is arranged can be alternately provided, the reaction temperature of the fluid and the catalyst in the plurality of first regions can be adjusted to a temperature preferable for the reaction as a whole.

また、着磁装置は磁力の発生と消滅を切り換えできるようにしてもよい。
触媒を均一に分散吸着する場合には着磁装置により触媒保持部に磁力を発生させ、触媒を除去する場合には着磁装置を離間する等して触媒保持部の磁力を消滅させる。着磁装置に永久磁石を用いた場合には開閉駆動手段によって永久磁石を触媒保持部に対して対向する位置と離間した位置とに切換移動させることができ、電磁石を用いた場合では電流のON,OFFで切換できる。
The magnetizing device may be configured to switch between generation and extinction of magnetic force.
When the catalyst is uniformly dispersed and adsorbed, a magnetic force is generated in the catalyst holding unit by the magnetizing device, and when the catalyst is removed, the magnetic force of the catalyst holding unit is extinguished by separating the magnetizing device. When a permanent magnet is used for the magnetizing device, the opening / closing drive means can switch the permanent magnet between a position facing the catalyst holding portion and a position separated from the catalyst holding portion. When an electromagnet is used, the current is turned on. , OFF to switch.

また、第二反応器が複数並列に設けられ、第一反応器といずれか一方の第二反応器を選択的に連結し、他方の第二反応器の着磁装置による磁力を消磁させるようにしてもよい。
この場合、第一反応器からの抜き出し流体に未反応原料成分と微粒状の触媒が随伴して第二反応器へ供給されるが、その際、一方の第二反応器の触媒保持部で未反応原料成分を触媒と反応させ、その間に他方の第二反応器の触媒保持部の磁力を消滅させた状態で逆洗浄や補修等の処理を行うことができる。特に、第二反応器の触媒保持部に吸着捕集した触媒は磁力を消滅させた状態で逆洗浄によって第一反応器に返送すれば、交互にいずれかの第二反応器を使用して第一反応器から連続的に随伴流出する触媒の捕集と逆送が可能となり、目詰まりを防ぎつつ連続的に未反応原料成分の反応を促進して、原料成分及び触媒の流出ロスが防止できる。
A plurality of second reactors are provided in parallel, and the first reactor and one of the second reactors are selectively connected to demagnetize the magnetic force generated by the magnetizing device of the other second reactor. May be.
In this case, the unreacted raw material component and the finely divided catalyst are supplied to the fluid extracted from the first reactor and supplied to the second reactor. The reaction raw material component is reacted with the catalyst, and during this time, the magnetic force of the catalyst holding part of the other second reactor is extinguished, and the treatment such as back washing and repair can be performed. In particular, if the catalyst adsorbed and collected in the catalyst holding part of the second reactor is returned to the first reactor by backwashing in a state where the magnetic force has been extinguished, the second reactor can be used alternately. It is possible to collect and reversely transfer the catalyst that continuously flows out from one reactor, and continuously promote the reaction of unreacted raw material components while preventing clogging, thereby preventing loss of raw material components and catalyst. .

また、本発明による触媒反応装置は、第二反応器が複数直列に連結されると共に、最も上流側の第二反応器の連結を流路から外して、洗浄または処理後に最も下流側に連結するようにして用いてもよい。
第一反応器から抜き出される流体に未反応原料成分や微粒状触媒が随伴していても、その流体が、直列に連結された複数の第二反応器へ順次供給されて触媒保持部に保持された触媒と未反応原料成分との反応処理が順次行われ、且つ、強磁性体を含む触媒は磁気力によってアモルファス合金細線に吸着捕集される。その際、定期的に、最も上流側の第二反応器の連結を予め流路から外して逆洗処理後に最も下流側に直列に連結することで、第二反応器の触媒保持部に吸着捕集して蓄積する触媒を適宜、磁力を消滅させた状態で逆洗することによって除去し、目詰まりを防ぎつつ、連続して反応処理に使用できる。
In the catalytic reaction apparatus according to the present invention, a plurality of second reactors are connected in series, and the connection of the second reactor on the most upstream side is removed from the flow path and connected to the most downstream side after washing or processing. It may be used in this way.
Even if unreacted raw material components and fine catalyst accompany the fluid extracted from the first reactor, the fluid is sequentially supplied to a plurality of second reactors connected in series and held in the catalyst holding section. The reaction treatment of the formed catalyst and the unreacted raw material component is sequentially performed, and the catalyst containing the ferromagnetic material is adsorbed and collected on the amorphous alloy fine wire by the magnetic force. At that time, the second reactor on the most upstream side is periodically disconnected from the flow path in advance and connected in series to the most downstream side after the backwash process, thereby adsorbing and capturing the catalyst at the catalyst holding part of the second reactor. The collected and accumulated catalyst can be removed by backwashing with the magnetic force extinguished as appropriate, and can be continuously used for the reaction treatment while preventing clogging.

また、本発明による触媒反応装置は、触媒保持部を備えた上述したいずれかの反応器が複数直列に連結され、最も上流側の反応器の連結を流路から外して、磁力を消滅させた状態で洗浄または処理した後に最も下流側に連結するようにしてもよい。
この場合でも、最初の反応器から抜き出される流体に未反応原料成分や微粒状触媒が随伴していても、その流体が、直列に連結された次の反応器へ供給されて未反応原料成分は触媒保持部の触媒との反応処理が順次行われ、又、微粒状触媒は触媒保持部に吸着捕集されるが、その際、適宜、最も上流側の反応器の連結を外して磁力を消滅させた状態で洗浄または処理した後に再び磁力を発生させて最も下流側に直列に連結することで、触媒保持部を含む反応器を逆洗浄処理しながら目詰まりを防いで連続して反応処理に使用できる。
Further, in the catalytic reaction apparatus according to the present invention, a plurality of the above-described reactors each provided with the catalyst holding unit are connected in series, and the connection of the most upstream reactor is removed from the flow path to extinguish the magnetic force. You may make it connect with the most downstream after washing | cleaning or processing in a state.
Even in this case, even if an unreacted raw material component or a particulate catalyst accompanies the fluid extracted from the first reactor, the fluid is supplied to the next reactor connected in series, and the unreacted raw material component is supplied. In this case, the reaction process with the catalyst in the catalyst holding part is sequentially performed, and the finely divided catalyst is adsorbed and collected in the catalyst holding part. After washing or processing in the extinguished state, a magnetic force is generated again and connected to the most downstream side in series, so that the reactor containing the catalyst holding part is backwashed while preventing clogging and continuously reacting. Can be used for

本発明による触媒反応装置によれば、着磁装置の磁力によって触媒を触媒保持部のアモルファス合金細線に吸着保持することができて、液やガス等の流体の流動に頼らなくても触媒の均一な分散保持を達成して反応効率を向上できる。
また、本発明の触媒保持部を有する反応器は、液やガス等の流体の流れ方向の混合状態に依存しないために例えばピストンフロー型反応器として設計でき、反応量の容積効率が向上して産出する反応生成物量を増大できると共に未反応原料のロスが減少する。
しかも、抜き出し流体に随伴する微粒状触媒が触媒保持部を通過する際に吸着捕集により分散して固定され、流出しないので、流体の流出経路に別の触媒の濾過装置と返送装置を設ける必要がなく、また、触媒は磁力で吸着保持するため触媒の空間濃度を高く設定できる。更に、触媒の吸着捕集・固定保持と離脱・逆洗除去を着磁装置による磁力のON、OFFを切り換えることで容易に行うことができる。
According to the catalyst reaction apparatus of the present invention, the catalyst can be adsorbed and held on the amorphous alloy fine wire of the catalyst holding part by the magnetic force of the magnetizing apparatus, and the catalyst can be evenly distributed without depending on the flow of fluid such as liquid or gas. Reaction efficiency can be improved by achieving excellent dispersion retention.
In addition, the reactor having the catalyst holding part of the present invention does not depend on the mixing state in the flow direction of fluid such as liquid or gas, and thus can be designed as, for example, a piston flow type reactor, which improves the volumetric efficiency of the reaction amount. The amount of reaction products produced can be increased and the loss of unreacted raw materials is reduced.
Moreover, since the particulate catalyst accompanying the extracted fluid passes through the catalyst holding part and is dispersed and fixed by adsorption collection and does not flow out, it is necessary to provide another catalyst filtering device and return device in the fluid outflow path. In addition, since the catalyst is adsorbed and held by magnetic force, the spatial concentration of the catalyst can be set high. Furthermore, adsorption / collection / fixing / holding and removal / backwashing / removing of the catalyst can be easily performed by switching the magnetic force on and off by the magnetizing device.

また、本発明による触媒反応装置は、反応器の上側に上述した触媒保持部を備えているから、反応器の上側を含めて全体に亘って均一に分散された触媒によって、未反応原料と触媒との反応を効率良く行うことができて、高収率で反応生成物を得ることができ、ガス等の未反応原料成分及び微粒状触媒が反応器の上端部から排出してロスすることを抑制できる。   In addition, since the catalyst reaction apparatus according to the present invention includes the above-described catalyst holding unit on the upper side of the reactor, the unreacted raw material and the catalyst are dispersed by the catalyst uniformly dispersed throughout the entire surface including the upper side of the reactor. The reaction product can be efficiently performed, the reaction product can be obtained in a high yield, and unreacted raw material components such as gas and the particulate catalyst are discharged from the upper end of the reactor and lost. Can be suppressed.

また、本発明による触媒反応装置は、第一反応器の下流側に接続した第二反応器に触媒保持部を設けたから、第一反応器における反応生成物等の抜き出し流体に随伴する未反応原料成分及び微粒状触媒が、第二反応器の触媒保持部で均一分散された触媒と効率よく反応して反応生成物を得ることができ、且つ、微粒状触媒の吸着捕集も可能となり、未反応原料成分及び微粒状触媒が排出してロスすることを抑制できる。   In addition, since the catalyst reaction apparatus according to the present invention is provided with the catalyst holding unit in the second reactor connected to the downstream side of the first reactor, the unreacted raw material accompanying the extracted fluid such as the reaction product in the first reactor. The components and the finely divided catalyst can efficiently react with the catalyst uniformly dispersed in the catalyst holding part of the second reactor to obtain a reaction product, and the finely divided catalyst can be adsorbed and collected. It can suppress that the reaction raw material component and the particulate catalyst are discharged and lost.

また、触媒保持部は、反応器または第二反応器の非磁性金属からなる筒状管内に、2枚の仕切り板で仕切られてアモルファス合金細線を充填した第一領域と着磁装置とを設けたから、触媒保持部では第一領域内に着磁装置による磁場が形成され、第一領域の外側にはほとんど磁束は生じないため、効率よくアモルファス合金細線を磁化できて触媒を分散状態で強力に吸着保持できる。   In addition, the catalyst holding unit is provided with a first region and a magnetizing device, which are partitioned by two partition plates and filled with amorphous alloy fine wires in a cylindrical tube made of a nonmagnetic metal of the reactor or the second reactor. Therefore, in the catalyst holding part, a magnetic field is generated by the magnetizing device in the first region, and almost no magnetic flux is generated outside the first region, so that the amorphous alloy fine wire can be efficiently magnetized and the catalyst can be strongly dispersed in a dispersed state. Adsorption can be held.

また、筒状管の第二領域に温度調節用熱媒体の流路が設けられたから、仕切り板を介して第一領域の流体と触媒の反応温度をより好適なものに加熱または冷却をして調整できる。   In addition, since the flow path for the temperature adjusting heat medium is provided in the second region of the cylindrical tube, the reaction temperature of the fluid and the catalyst in the first region is heated or cooled to a more suitable one via the partition plate. Can be adjusted.

また、触媒保持部は、偶数枚の仕切り板を介して第一領域と温度調節用熱媒体の流路を配置した第二領域とを交互に複数設けて反応温度を調整するから、複数の第一領域内における流体と触媒の反応温度をより効率的に全体に反応に好ましい温度に調整できる。   Further, the catalyst holding unit adjusts the reaction temperature by alternately providing a plurality of first regions and second regions in which the flow passages of the temperature control heat medium are arranged via an even number of partition plates. The reaction temperature of the fluid and the catalyst in one region can be adjusted more efficiently to a temperature preferable for the reaction.

また、着磁装置は磁力の発生と消滅を切り換えできるから、触媒を均一に分散吸着する場合には着磁装置で磁力を発生させ、触媒を除去する場合には着磁装置による磁力を消滅させることができる。   In addition, since the magnetizing device can switch between generation and extinction of the magnetic force, when the catalyst is uniformly dispersed and adsorbed, the magnetizing device generates the magnetic force, and when removing the catalyst, the magnetizing device extinguishes the magnetic force. be able to.

また、第二反応器が複数並列に設けられ、第一反応器といずれか一方の第二反応器を選択的に連結し、他方の第二反応器の着磁装置による磁力を消磁させるようにしたから、交互にいずれかの第二反応器を使用して目詰まりを防いで流体の反応を促進できる。   Also, a plurality of second reactors are provided in parallel so that the first reactor and either one of the second reactors are selectively connected, and the magnetic force generated by the magnetizing device of the other second reactor is demagnetized. Therefore, any of the second reactors can be alternately used to prevent clogging and promote the reaction of the fluid.

また、本発明による触媒反応装置は、第二反応器が複数直列に連結されると共に、最も上流側の第二反応器の連結を適宜流路から外して、磁力を消滅させた状態で洗浄または処理した後に、再び磁力を発生させて最も下流側に連結するようにしたから、洗浄等しながら目詰まりを防いで連続して反応処理に使用できる。   Further, in the catalytic reaction apparatus according to the present invention, a plurality of second reactors are connected in series, and the connection of the second reactor on the most upstream side is appropriately removed from the flow path so that the magnetic force is extinguished. After the treatment, the magnetic force is generated again to connect to the most downstream side, so that it can be continuously used for the reaction treatment while preventing clogging while washing.

また、本発明による触媒反応装置は、触媒保持部を備えた反応器の最も上流側の反応器の連結を流路から外して、磁力を消滅させた状態で洗浄または処理した後に、再び磁力を発生させて最も下流側に連結するため、触媒保持部を含む反応器を洗浄等しながら目詰まりを防いで連続して反応処理に使用できる。   Further, the catalytic reactor according to the present invention removes the connection of the reactor on the most upstream side of the reactor equipped with the catalyst holding part from the flow path, and after washing or processing in a state where the magnetic force is extinguished, the magnetic force is again applied. Since it is generated and connected to the most downstream side, it can be used continuously for the reaction treatment while preventing clogging while washing the reactor including the catalyst holding portion.

本発明の第一実施形態による触媒反応装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of the catalytic reaction apparatus by 1st embodiment of this invention. 図1に示す触媒反応装置のA−A線断面図である。It is the sectional view on the AA line of the catalytic reaction apparatus shown in FIG. 実施形態による触媒反応装置の着磁装置の開閉駆動手段を示すもので、着磁装置が近接対向配置となった着磁ON状態を示す水平断面図である。FIG. 3 is a horizontal sectional view showing an opening / closing drive means of the magnetizing device of the catalyst reaction device according to the embodiment and showing a magnetized ON state in which the magnetizing device is disposed in close proximity to each other. 第一実施形態の変形例による触媒反応装置の要部構成を示す図である。It is a figure which shows the principal part structure of the catalytic reaction apparatus by the modification of 1st embodiment. 第二実施形態による触媒反応装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of the catalytic reaction apparatus by 2nd embodiment. 第三実施形態による触媒反応装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of the catalytic reaction apparatus by 3rd embodiment. 第四実施形態による触媒反応装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of the catalytic reaction apparatus by 4th embodiment. 第五実施形態による触媒反応装置の要部構成を示す模式図である。It is a schematic diagram which shows the principal part structure of the catalytic reaction apparatus by 5th embodiment. (a)、(b)、(c)は図8に示す触媒反応装置の使用状態を示す模式図である。(A), (b), (c) is a schematic diagram which shows the use condition of the catalytic reaction apparatus shown in FIG. 従来の触媒反応装置の要部構成を示す図である。It is a figure which shows the principal part structure of the conventional catalyst reaction apparatus.

以下、添付図面を参照して、本発明の実施形態による触媒反応装置について説明する。
図1乃至図3は本発明の第一実施形態による触媒反応装置1を示すものである。
図1及び図2に示す第一実施形態による触媒反応装置1は、上下方向に配設された略円筒状の第一反応器2の内部に例えば一対の略平行板からなる非磁性金属の仕切り板3が上側から下方向に向けて延びている。第一反応器2は例えば略カプセル状に形成されており、その下端面2aは仕切り板3の下方で略半球状の凹曲面を形成し、その上端面2bは仕切り板3の上方で略半球状の凹曲面を形成している。また、第一反応器2には触媒保持部20が設けられており、触媒保持部20については後述する。
第一反応器2は例えばSUS配管からなる非磁性金属で形成され、高圧に耐え得るように例えば略カプセル形状とされ、sch80等の肉厚管で形成されている。
なお、本実施形態の図1に示す第一反応器2において、原料ガス11によって反応液10は下側から上側に流れ、下側を上流側、上側を下流側という。他の実施形態においても同様とする。
Hereinafter, a catalytic reaction apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
1 to 3 show a catalytic reaction apparatus 1 according to a first embodiment of the present invention.
The catalytic reaction apparatus 1 according to the first embodiment shown in FIG. 1 and FIG. 2 is a nonmagnetic metal partition made up of, for example, a pair of substantially parallel plates inside a substantially cylindrical first reactor 2 arranged in the vertical direction. The plate 3 extends downward from the upper side. The first reactor 2 is formed, for example, in a substantially capsule shape, its lower end surface 2 a forms a substantially hemispherical concave curved surface below the partition plate 3, and its upper end surface 2 b is approximately hemispheric above the partition plate 3. A concave curved surface is formed. Further, the first reactor 2 is provided with a catalyst holding unit 20, which will be described later.
The first reactor 2 is made of, for example, a nonmagnetic metal made of SUS piping, has a substantially capsule shape so as to withstand high pressure, and is made of a thick tube such as sch80.
In the first reactor 2 shown in FIG. 1 of the present embodiment, the reaction liquid 10 flows from the lower side to the upper side by the raw material gas 11, and the lower side is referred to as the upstream side and the upper side is referred to as the downstream side. The same applies to other embodiments.

そして、第一反応器2において、その高さ方向中央領域に一対の仕切り板3が設けられている。図2に示す第一反応器2において、一対の仕切り板3と第一反応器2の周側面の円弧状部2cとで仕切られた第一領域が内側領域4とされ、内側領域4は水平断面で略小判型とされている。また、各仕切り板3を挟んで内側領域4の両側に設けられた略円弧状の一対の第二領域が外側領域5とされている。内側領域4と外側領域5は仕切り板3が設けられた範囲内で流体が互いに流通しないように仕切られている。2つの外側領域5の水平断面積の和と内側領域4の水平断面積との比は1:5〜1:100の範囲とされている。
第一反応器2の内側領域4には、その上下にステンレス等の非磁性金属で形成したグレーチングからなる一対の支持金具8a,8bが配設されている。支持金具8a,8b間における2枚の仕切り板3に挟まれた内側領域4には、高透磁率で残留磁気の少ないアモルファス合金細線9が充填されている。アモルファス合金細線9は例えば細長リボンを不規則にカールして、たわし状とされ、上下の支持金具8a,8bと一対の仕切り板3間で仕切られた容積全体に充填されている。
And in the 1st reactor 2, a pair of partition plate 3 is provided in the height direction center area | region. In the first reactor 2 shown in FIG. 2, the first region partitioned by the pair of partition plates 3 and the arcuate portion 2 c on the peripheral side surface of the first reactor 2 is an inner region 4, and the inner region 4 is horizontal. The cross-section is substantially oval. Further, a pair of substantially arc-shaped second regions provided on both sides of the inner region 4 with the partition plates 3 interposed therebetween are defined as outer regions 5. The inner region 4 and the outer region 5 are partitioned so that fluids do not circulate within a range where the partition plate 3 is provided. The ratio of the sum of the horizontal cross-sectional areas of the two outer regions 5 to the horizontal cross-sectional area of the inner region 4 is in the range of 1: 5 to 1: 100.
In the inner region 4 of the first reactor 2, a pair of support fittings 8 a and 8 b made of a grating formed of a nonmagnetic metal such as stainless steel are disposed above and below the first region 2. The inner region 4 sandwiched between the two partition plates 3 between the support fittings 8a and 8b is filled with an amorphous alloy fine wire 9 having a high magnetic permeability and little residual magnetism. The amorphous alloy thin wire 9 is, for example, an irregular ribbon of an elongated ribbon, which is formed into a crumpled shape, and is filled in the entire volume partitioned between the upper and lower support fittings 8a and 8b and the pair of partition plates 3.

また、第一反応器2内には一方の反応用の流体である反応液10が収容されており、反応液10内には他方の反応用の流体である原料ガス11が気泡として分散されている。そのため、反応液10と原料ガス11は気液二相流体となって、第一反応器2の内側領域4とその下端部2aまでの部分とに満たされており、液面は上側の支持金具8aの上側とされている。
また、一対の外側領域5は仕切り板3と上下の支持金具8a,8bとで反応液10と液密に仕切られており、例えば図示しない外部の管路から温度調節用熱媒体が循環することで、内側領域4の反応液10と液密に分離されている。例えば外側領域5に冷却水や温水を循環させることで仕切り板3を介して反応液10との間で除熱したり加熱したりして反応速度を調整できる。
A reaction liquid 10 that is one reaction fluid is accommodated in the first reactor 2, and a raw material gas 11 that is the other reaction fluid is dispersed in the reaction liquid 10 as bubbles. Yes. Therefore, the reaction liquid 10 and the raw material gas 11 become a gas-liquid two-phase fluid and are filled in the inner region 4 of the first reactor 2 and the portion up to the lower end 2a thereof, and the liquid surface is the upper support fitting. It is the upper side of 8a.
Further, the pair of outer regions 5 are partitioned liquid-tightly from the reaction liquid 10 by the partition plate 3 and the upper and lower support fittings 8a and 8b. For example, a temperature control heat medium circulates from an external pipe (not shown). Thus, it is separated from the reaction solution 10 in the inner region 4 in a liquid-tight manner. For example, by circulating cooling water or hot water in the outer region 5, the reaction rate can be adjusted by removing heat from the reaction liquid 10 or heating through the partition plate 3.

また、第一反応器2における内側領域4の下方には、原料ガス11を供給する供給管13が挿入されており、供給管13に設けた吐出口13aから原料ガス11が気泡となって第一反応器2内の内側領域4に吐出して、反応液10を撹拌するようになっている。
また、第一反応器2において、支持金具8aの上側には、反応液10と原料ガス11とが反応した後の生成物としての液14を外部に抜き出す排液管15が設けられている。この抜き出される液14には、未反応原料ガス11が溶解状態もしくは気泡として混入している。そして、第一反応器2の上端面2bには排出ガス16が外部に抜き出される排出管17が取り付けられている。この排出ガス16には未反応原料ガス11や反応によって生成されるガス等が混入している。
Further, a supply pipe 13 for supplying the raw material gas 11 is inserted below the inner region 4 in the first reactor 2, and the raw material gas 11 becomes bubbles from the discharge port 13 a provided in the supply pipe 13. The reaction liquid 10 is agitated by being discharged into the inner region 4 in one reactor 2.
Further, in the first reactor 2, a drainage pipe 15 is provided on the upper side of the support fitting 8 a to extract the liquid 14 as a product after the reaction liquid 10 and the raw material gas 11 have reacted. In this extracted liquid 14, the unreacted raw material gas 11 is mixed as a dissolved state or bubbles. A discharge pipe 17 through which the exhaust gas 16 is extracted to the outside is attached to the upper end surface 2 b of the first reactor 2. The exhaust gas 16 is mixed with unreacted raw material gas 11 and gas generated by the reaction.

そして、第一反応器2内の内側領域4内には、アモルファス合金細線9と共にその合金細線9に磁気によって吸着保持される微粒状の触媒19が分散状態で存在している。この触媒19中には触媒元素の少なくとも一部として、鉄、コバルト、ニッケル等の強磁性体の元素が含まれている。なお、この触媒19は仕切り板3で仕切られた内側領域4内全域に存在し、反応液10と全体的に接触している。   In the inner region 4 in the first reactor 2, the fine particles of the catalyst 19 adsorbed and held by the magnetic alloy wire 9 together with the amorphous alloy wire 9 are present in a dispersed state. The catalyst 19 contains a ferromagnetic element such as iron, cobalt, or nickel as at least a part of the catalyst element. The catalyst 19 exists throughout the inner region 4 partitioned by the partition plate 3 and is in overall contact with the reaction solution 10.

次に図3により着磁装置21について説明する。
第一反応器2において、着磁装置21には、内側領域4の外側の対向する位置に一対の永久磁石22が設けられており、これら一対の永久磁石22は第一反応器2の外側で帰磁路を構成するヨーク23によって接続されている。
着磁装置21において、内側領域4の両側にそれぞれ配設された永久磁石22によって、内側領域4内に均一で高い磁場が形成され、二つの永久磁石22とヨーク23と内側領域4との間で閉じた磁気回路が形成される。なお、仕切り板3で仕切られた外側領域5は磁気回路から外れるので、磁束はほとんど通過しない。第一反応器2の内側領域4内の磁場によってアモルファス合金細線9に磁気勾配が形成され、それによって強磁性体を含む触媒19がアモルファス合金細線9の表面上に吸着保持される。
ここで、第一反応器2において、第一反応器2の筒状管部分であって支持金具8a、8b及び仕切り板3に挟まれた内側にアモルファス合金細線9が充填された内側領域4と、内側領域4に対して第一の反応器2の外側に設けられた一対の永久磁石22とを含む構成を触媒保持部20という。
Next, the magnetizing device 21 will be described with reference to FIG.
In the first reactor 2, the magnetizing device 21 is provided with a pair of permanent magnets 22 at opposing positions outside the inner region 4, and these pair of permanent magnets 22 are outside the first reactor 2. They are connected by a yoke 23 constituting a return path.
In the magnetizing apparatus 21, a uniform and high magnetic field is formed in the inner region 4 by the permanent magnets 22 respectively disposed on both sides of the inner region 4, and between the two permanent magnets 22, the yoke 23, and the inner region 4. A closed magnetic circuit is formed. In addition, since the outer area | region 5 partitioned off with the partition plate 3 remove | deviates from a magnetic circuit, magnetic flux hardly passes. A magnetic gradient is formed in the amorphous alloy thin wire 9 by the magnetic field in the inner region 4 of the first reactor 2, whereby the catalyst 19 containing a ferromagnetic material is adsorbed and held on the surface of the amorphous alloy thin wire 9.
Here, in the first reactor 2, the inner region 4 in which the amorphous alloy fine wire 9 is filled inside the cylindrical tube portion of the first reactor 2 and sandwiched between the support fittings 8 a and 8 b and the partition plate 3; A configuration including a pair of permanent magnets 22 provided outside the first reactor 2 with respect to the inner region 4 is referred to as a catalyst holding unit 20.

そして、一対の永久磁石22とヨーク23は、第一反応器2に対向する着磁位置(図2参照)と永久磁石22とヨーク23が第一反応器2から離間する消磁位置とを選択的に取り得るように作動制御する開閉駆動手段24が設けられている。
この開閉駆動手段24は、永久磁石22とヨーク23の進退移動をガイドするガイドレール25と、各略半円状のヨーク23の例えば中央部に連結されたロッド26と、ロッド26を伸縮作動させるエアシリンダー27とが備えられている。エアシリンダー27のON、OFFによってロッド26が伸縮することでヨーク23に設けた永久磁石22を第一反応器2の内側領域4に対して対向する着磁位置と離間する消磁位置との間を移動可能とされている。
The pair of permanent magnets 22 and the yoke 23 selectively selects a magnetizing position (see FIG. 2) facing the first reactor 2 and a demagnetizing position where the permanent magnet 22 and the yoke 23 are separated from the first reactor 2. Opening / closing drive means 24 for controlling the operation is provided so as to be available.
The opening / closing drive means 24 guides the movement of the permanent magnet 22 and the yoke 23, guide rods 25, rods 26 connected to, for example, the central portions of the substantially semicircular yokes 23, and expands and contracts the rods 26. An air cylinder 27 is provided. The rod 26 expands and contracts when the air cylinder 27 is turned on and off, so that the permanent magnet 22 provided on the yoke 23 is positioned between the magnetized position facing the inner region 4 of the first reactor 2 and the demagnetized position spaced apart. It can be moved.

本実施形態による触媒反応装置1は上述の構成を備えており、次に触媒反応装置1による反応液10と原料ガス11の反応方法について説明する。
図1及び図2において、開閉駆動手段24によってヨーク23に設けた一対の永久磁石22を第一反応器2の内側領域4に対向する位置に設けている。この状態で、第一の反応器2の長手方向中央領域に設けた触媒保持部20では、一対の永久磁石22間に位置する第一反応器2の内側領域4には強い磁場が均一に発生しており、内側領域4内に充填された例えばたわし状のアモルファス合金細線9が磁化される。
これによって、反応液10に分散混入された微粉状の触媒19はその強磁性体の部分がアモルファス合金細線9に発生した磁気勾配により吸着保持される。そのため、反応液10を撹拌したり反応液10の流動に頼らなくても微粉状の触媒19がアモルファス合金細線9に略均一に分散状態に吸着保持され、触媒19がその重力で沈降することを抑制できる。
The catalytic reaction apparatus 1 according to the present embodiment has the above-described configuration. Next, a reaction method of the reaction liquid 10 and the raw material gas 11 by the catalytic reaction apparatus 1 will be described.
In FIG. 1 and FIG. 2, a pair of permanent magnets 22 provided on the yoke 23 by the opening / closing drive means 24 are provided at positions facing the inner region 4 of the first reactor 2. In this state, in the catalyst holding unit 20 provided in the center region in the longitudinal direction of the first reactor 2, a strong magnetic field is uniformly generated in the inner region 4 of the first reactor 2 located between the pair of permanent magnets 22. For example, a squirrel-shaped amorphous alloy fine wire 9 filled in the inner region 4 is magnetized.
As a result, the finely divided catalyst 19 dispersed and mixed in the reaction solution 10 is adsorbed and held by the magnetic gradient generated in the amorphous alloy fine wire 9 in the ferromagnetic part. Therefore, even if the reaction liquid 10 is not stirred and the flow of the reaction liquid 10 is not relied upon, the finely divided catalyst 19 is adsorbed and held in a substantially uniformly dispersed state on the amorphous alloy fine wire 9, and the catalyst 19 settles down due to its gravity. Can be suppressed.

この状態で、原料ガス11を、第一反応器2の下端部2a側に挿入されている供給管13の吐出口13aから気泡として吐出する。反応液10内に吐出された気泡状の原料ガス11は上昇して内側領域4内に流動して反応液10を撹拌させることができる。図1及び図2において、触媒保持部20の内側領域4内に満たされた反応液10中には、上下の支持金具8a,8b間の全体にアモルファス合金細線9が充填され,原料ガス11の気泡が分散されており、更に微粒状の触媒19が分散状態でアモルファス合金細線9の表面に吸着保持されている。
そして、着磁装置21における永久磁石22の強い磁場によって内側領域4内のアモルファス合金細線9に触媒19が略均一に分散して吸着保持されているため、触媒19が反応液10と原料ガス11の反応を促進させる。
なお、外側領域5内には永久磁石15による磁場がほとんど発生しない。
In this state, the raw material gas 11 is discharged as bubbles from the discharge port 13a of the supply pipe 13 inserted on the lower end 2a side of the first reactor 2. The bubble-like source gas 11 discharged into the reaction liquid 10 can rise and flow into the inner region 4 to stir the reaction liquid 10. 1 and 2, the reaction liquid 10 filled in the inner region 4 of the catalyst holding unit 20 is filled with the amorphous alloy thin wire 9 between the upper and lower support fittings 8a and 8b. Bubbles are dispersed, and finely divided catalyst 19 is adsorbed and held on the surface of amorphous alloy fine wire 9 in a dispersed state.
Since the catalyst 19 is substantially uniformly dispersed and adsorbed and held on the amorphous alloy thin wire 9 in the inner region 4 by the strong magnetic field of the permanent magnet 22 in the magnetizing device 21, the catalyst 19 is reacted with the reaction solution 10 and the raw material gas 11. Promote the reaction.
In the outer region 5, almost no magnetic field is generated by the permanent magnet 15.

そして、内側領域4内で反応液10と原料ガス11が触媒反応されて反応生成物を含む液14が生成され、内側領域4の上側に設けられた排液管15によって外部に排出される。この液14内には未反応の原料ガス11が僅かに残存しているが、本実施形態による触媒保持部20を有しない場合と比べて未反応の原料ガス11の量は低減している。また、反応液10から第一反応器2内の上方に流出した未反応の原料ガス11は生成ガスと共に上端部2bの排出管17から排出ガス16として外部へ排出される。
このとき、触媒19はアモルファス合金細線9に吸着保持されているから、反応生成物を含む液14に随伴して触媒19が流出することを抑制できる。そのため、第一反応器2内の触媒19の減少を防いで反応効率の低下を防止できる。
Then, the reaction liquid 10 and the raw material gas 11 are subjected to a catalytic reaction in the inner region 4 to generate a liquid 14 containing a reaction product, and is discharged to the outside by a drain pipe 15 provided on the upper side of the inner region 4. A small amount of unreacted source gas 11 remains in the liquid 14, but the amount of unreacted source gas 11 is reduced as compared with the case where the catalyst holding unit 20 according to the present embodiment is not provided. Further, the unreacted raw material gas 11 that has flowed out of the first reactor 2 from the reaction solution 10 is discharged to the outside as a discharge gas 16 from the discharge pipe 17 of the upper end 2b together with the product gas.
At this time, since the catalyst 19 is adsorbed and held by the amorphous alloy thin wire 9, it is possible to suppress the catalyst 19 from flowing out along with the liquid 14 containing the reaction product. Therefore, it is possible to prevent the catalyst 19 in the first reactor 2 from decreasing and prevent the reaction efficiency from decreasing.

上述のように、本実施形態による触媒反応装置1によれば、第一の反応器2の中央領域に設けられた触媒保持部20において、触媒19を磁力によってアモルファス合金細線9に固定保持することができ、反応液10や原料ガス11等の流体の流動や撹拌手段等に頼らなくても微粒状の触媒19の均一な分散を達成して、反応液10や原料ガス11等の反応を十分促進できる。具体的には、反応液10の流動条件や触媒19の粒径・比重等の拘束を受けず、触媒19の粒径等の物性や流動条件の調整をしなくて済む。
また、反応液10や原料ガス11等の反応は、反応液10や原料ガス11等の流れ方向の混合状態に依存しないために例えばピストンフロー型反応器として設計でき、容積反応効率が向上し、産出する反応生成物の割合を増大できると共に未反応原料成分の流出ロスが減少する。
As described above, according to the catalyst reaction apparatus 1 according to the present embodiment, the catalyst 19 is fixedly held on the amorphous alloy thin wire 9 by magnetic force in the catalyst holding unit 20 provided in the central region of the first reactor 2. Even if the fluid such as the reaction liquid 10 and the raw material gas 11 is not flowed or stirred, the uniform dispersion of the fine catalyst 19 is achieved, and the reaction of the reaction liquid 10 and the raw material gas 11 is sufficiently performed. Can promote. Specifically, the flow conditions of the reaction solution 10 and the particle size / specific gravity of the catalyst 19 are not restricted, and the physical properties such as the particle diameter of the catalyst 19 and the flow conditions do not need to be adjusted.
Moreover, since the reaction of the reaction liquid 10 and the raw material gas 11 does not depend on the mixed state in the flow direction of the reaction liquid 10 and the raw material gas 11 or the like, for example, it can be designed as a piston flow reactor, and the volumetric reaction efficiency is improved. The proportion of the reaction product produced can be increased, and the outflow loss of unreacted raw material components can be reduced.

しかも、液中において触媒19がアモルファス合金細線9に分散して吸着保持されており、触媒保持部20の下流側で、排液管15から反応生成物を含む液14と共に触媒19が流出しないので、第一反応器2内の触媒19の減少を抑制できて、触媒19はアモルファス合金細線9に吸着保持されるため触媒19の空間濃度を高く設定できる。しかも、触媒反応部20の下流側で、液14の流出経路に触媒19の濾過分離と返送等の装置を設けなくてもよい。
更に、開閉駆動手段24によって触媒19の吸着捕集・固定保持と離脱・逆洗除去を、着磁装置21の磁力のON、OFFを切り換えることで容易に行うことができる。
また、アモルファス合金細線9は熱伝導性が高く、吸着する触媒19上での発熱反応の熱を効率的に拡散できて温度ムラが起きにくい。また、触媒19がアモルファス合金細線9の表面に吸着保持されていることで、触媒19が反応液10等の流動不足で沈降したり、又、逆に流動によって排液管15から流出したりしないため、反応液10のポンプによる循環を容易に行え、触媒19を損傷するおそれは小さい。
また、外側領域5には例えば冷却水等の温度調節用熱媒体が循環することで、内側領域4の反応液10との間で熱交換して、除熱や加熱によって反応熱とバランスさせて吸着保持部の温度調節を行い、これによって反応速度を適正域に調節することができる。
Moreover, since the catalyst 19 is dispersed and held in the amorphous alloy fine wire 9 in the liquid, the catalyst 19 does not flow out together with the liquid 14 containing the reaction product from the drainage pipe 15 on the downstream side of the catalyst holding unit 20. The decrease of the catalyst 19 in the first reactor 2 can be suppressed, and the catalyst 19 is adsorbed and held by the amorphous alloy fine wire 9, so that the spatial concentration of the catalyst 19 can be set high. Moreover, it is not necessary to provide a device for filtering and separating and returning the catalyst 19 in the outflow path of the liquid 14 on the downstream side of the catalyst reaction unit 20.
Furthermore, the opening / closing drive means 24 can easily perform the adsorption collection / fixation holding / detachment / backwash removal of the catalyst 19 by switching the magnetic force of the magnetizing device 21 on and off.
Further, the amorphous alloy thin wire 9 has high thermal conductivity, and can efficiently diffuse the heat of the exothermic reaction on the adsorbing catalyst 19 so that temperature unevenness does not easily occur. Further, since the catalyst 19 is adsorbed and held on the surface of the amorphous alloy thin wire 9, the catalyst 19 does not settle due to insufficient flow of the reaction liquid 10 or the like, and conversely does not flow out of the drainage pipe 15 due to flow. Therefore, the reaction liquid 10 can be easily circulated by the pump, and the risk of damaging the catalyst 19 is small.
Further, for example, a temperature control heat medium such as cooling water circulates in the outer region 5 so that heat is exchanged with the reaction solution 10 in the inner region 4 to balance the reaction heat by heat removal or heating. The temperature of the adsorption holding unit is adjusted, and thereby the reaction rate can be adjusted to an appropriate range.

なお、本発明は上述の実施形態による触媒反応装置1の構成に限定されることはなく、本発明の要旨を逸脱しない限り適宜の変更や追加等が行える。
次に本発明の他の実施形態や変形例等について、上述の第一実施形態と同一または同様な部分、部材等には同一の符号を用いて説明する。
In addition, this invention is not limited to the structure of the catalyst reaction apparatus 1 by the above-mentioned embodiment, A suitable change, addition, etc. can be performed unless it deviates from the summary of this invention.
Next, other embodiments, modifications, and the like of the present invention will be described using the same reference numerals for the same or similar parts, members, and the like as in the first embodiment.

まず、本発明の第一実施形態の変形例による触媒反応装置24について図4により説明する。
図4に示す触媒反応装置24において、第一の反応器23はカプセル型であり、第一実施形態における第一反応器2と概略同一構成を備えている。第一反応器2との相違点は、触媒保持部20が第一反応器23の下流側、即ち上端部2bに近い上方位置に設けられていることである。
そのため、触媒反応装置24における第一反応器23において、下端部2aと支持金具8aまでの領域は、着磁装置21等で構成する触媒保持部を備えず、原料ガス11のバブリングによる反応液10の流動で触媒19が流動して反応を起こす通常の反応区域として予備反応器25と規定する。予備反応器25の下流側に第一実施形態と同一構成の触媒保持部20が設けられた構成を備えている。
First, a catalytic reaction device 24 according to a modification of the first embodiment of the present invention will be described with reference to FIG.
In the catalytic reaction apparatus 24 shown in FIG. 4, the first reactor 23 is a capsule type, and has substantially the same configuration as the first reactor 2 in the first embodiment. The difference from the first reactor 2 is that the catalyst holding unit 20 is provided on the downstream side of the first reactor 23, that is, at an upper position close to the upper end 2b.
For this reason, in the first reactor 23 in the catalyst reaction device 24, the region from the lower end 2 a and the support fitting 8 a does not include a catalyst holding portion constituted by the magnetizing device 21 or the like, and the reaction liquid 10 by bubbling the raw material gas 11. Thus, the pre-reactor 25 is defined as a normal reaction zone in which the catalyst 19 flows to cause a reaction. The catalyst holding unit 20 having the same configuration as that of the first embodiment is provided on the downstream side of the preliminary reactor 25.

予備反応器25では内部に反応液10が充填され、反応液10内に微粒状の触媒19が含まれている。そして、供給管13の吐出口13aから吐出される気泡状の原料ガス11が気泡流を生じさせて気液2相の流れを起こすことで、反応液10が上方に流動して触媒19を分散させて反応を促進させる。
この場合、第一反応器23における反応液10内の触媒19は、触媒19が重力沈降するから、触媒19は上側の触媒保持部20内の濃度が小さく下側の予備反応器25の濃度が濃くなり易い。しかしながら、本変形例によれば、第一反応器23における上側の触媒保持部20では着磁装置21によって触媒19をアモルファス合金細線9の表面上に吸着保持できるから、上側の触媒保持部20内においても触媒19の空間濃度を高く維持できる。
In the preliminary reactor 25, the reaction liquid 10 is filled inside, and the reaction liquid 10 contains a fine catalyst 19. Then, the bubble-like source gas 11 discharged from the discharge port 13a of the supply pipe 13 generates a bubble flow to cause a gas-liquid two-phase flow, whereby the reaction solution 10 flows upward to disperse the catalyst 19. To promote the reaction.
In this case, since the catalyst 19 in the reaction liquid 10 in the first reactor 23 is gravity-settled, the concentration of the catalyst 19 is small in the upper catalyst holding unit 20 and the concentration of the lower pre-reactor 25 is low. It tends to be thick. However, according to this modification, in the upper catalyst holding part 20 in the first reactor 23, the catalyst 19 can be adsorbed and held on the surface of the amorphous alloy fine wire 9 by the magnetizing device 21, so that the inside of the upper catalyst holding part 20 In this case, the spatial concentration of the catalyst 19 can be kept high.

従って、本変形例による触媒反応装置24によれば、第一の反応器23において、下側の予備反応器25と上側の触媒保持部20とで触媒19の濃度の希薄部分が無い状態を保持できるから、反応液10内で原料ガス11を触媒と反応させることで、全体に亘って均一で効率の良い反応を行うことができる。   Therefore, according to the catalyst reaction device 24 according to this modification, the first reactor 23 maintains a state where there is no lean portion of the concentration of the catalyst 19 between the lower preliminary reactor 25 and the upper catalyst holding unit 20. Therefore, by reacting the raw material gas 11 with the catalyst in the reaction solution 10, a uniform and efficient reaction can be performed throughout.

次に本発明の第二実施形態による触媒反応装置27について図5により説明する。
図5に示す第二実施形態による触媒反応装置27は、触媒保持部20を備えておらず、上述した予備反応器25と同様な構成を備えた第一反応器28と、この第一反応器28の排液管15に接続された第二反応器30とを備えた構成を有している。ここでは、第二反応器30は第一実施形態による触媒反応装置1の第一反応器2と概略同一構成を備えており、触媒保持器20を備えている。
第一反応器28は、略カプセル状に形成されていて、内部に反応液10が収容されていると共に触媒19が分散されている。この場合、この触媒19にも、少なくとも一部に強磁性体を含んでいる。第一反応器28の下側には原料ガス11の供給管13が設けられ、下端部2aの近傍で原料ガス11を気泡として反応液10内に吐出して上昇させる吐出口13aが設けられている。この原料ガス11の気泡によって反応液10の流動を起こさせて触媒19を分散させる。
第一反応器28の上側には、反応液10の液面より若干低い位置に反応後の液14を排出するための排液管15が取り付けられ、上端部2bには生成ガスと原料ガス11を排出する排出管17が設けられている。
そして、排液管15は、第二反応器30の下端部2aに接続され、この第二反応器30内に触媒保持部20が設けられている。
Next, the catalytic reactor 27 according to the second embodiment of the present invention will be described with reference to FIG.
The catalyst reaction device 27 according to the second embodiment shown in FIG. 5 does not include the catalyst holding unit 20, and includes the first reactor 28 having the same configuration as the preliminary reactor 25 described above, and the first reactor. And a second reactor 30 connected to 28 drain pipes 15. Here, the 2nd reactor 30 is equipped with the substantially same structure as the 1st reactor 2 of the catalytic reaction apparatus 1 by 1st embodiment, and is equipped with the catalyst holder | retainer 20. FIG.
The first reactor 28 is formed in a substantially capsule shape, the reaction liquid 10 is accommodated therein, and the catalyst 19 is dispersed. In this case, the catalyst 19 also contains a ferromagnetic material at least partially. A supply pipe 13 for the source gas 11 is provided below the first reactor 28, and a discharge port 13a for discharging the source gas 11 as bubbles into the reaction liquid 10 and raising it in the vicinity of the lower end 2a. Yes. The reaction liquid 10 is caused to flow by the bubbles of the raw material gas 11 to disperse the catalyst 19.
On the upper side of the first reactor 28, a drain pipe 15 for discharging the liquid 14 after the reaction is attached at a position slightly lower than the liquid level of the reaction liquid 10, and the generated gas and the raw material gas 11 are attached to the upper end 2b. Is provided with a discharge pipe 17.
The drain pipe 15 is connected to the lower end 2 a of the second reactor 30, and the catalyst holding unit 20 is provided in the second reactor 30.

本第二実施形態による触媒反応装置27は、第一反応器28では原料ガス11が供給管13から供給され、原料ガス11は気泡として微粒状の触媒19を分散して含む反応液10内に供給され、反応液11に流動性を持たせる。この状況で触媒19によって反応液10と原料ガス11が反応するが、上述の予備反応器25と同様に、触媒19が重力沈降するため、第一反応器28内の下端側では触媒19の濃度が高く上側では触媒19の濃度が低いという傾向を呈する。   In the catalytic reactor 27 according to the second embodiment, the raw material gas 11 is supplied from the supply pipe 13 in the first reactor 28, and the raw material gas 11 is contained in the reaction solution 10 containing finely divided catalyst 19 as bubbles. The reaction solution 11 is supplied with fluidity. In this situation, the reaction liquid 10 and the raw material gas 11 react with each other by the catalyst 19, but the catalyst 19 is gravity settled similarly to the above-described pre-reactor 25. On the upper side, the concentration of the catalyst 19 tends to be low.

そのため、反応後の液14は未反応原料ガス11を比較的含んでいると共に触媒19も随伴して抜き出される。こうして、液14は排液管15から第二反応器30へ供給される。第二反応器30では触媒保持部20によって触媒19が着磁装置21により磁化されたアモルファス合金細線9表面に均一に分散された状態で吸着保持されている。
そのため、第一反応器28で反応した後の液14には未反応原料ガス11や反応液10が残存しているが、触媒保持部20における内側領域4内のアモルファス合金細線9表面に均一分散されて吸着された触媒19によって更に反応が促進され、液14中に残存する未反応原料成分を触媒反応で確実に反応処理して未反応原料成分の残量をより低減させ、或いは消滅させることができる。
さらに、内側領域4内のアモルファス合金細線9には磁気勾配が存在するから液に随伴する触媒19も、アモルファス合金細線9に吸着捕集され、後流への触媒19の流出を低減させ、或いは消滅させることができる。
Therefore, the liquid 14 after the reaction relatively contains the unreacted raw material gas 11 and the catalyst 19 is also extracted. Thus, the liquid 14 is supplied from the drainage pipe 15 to the second reactor 30. In the second reactor 30, the catalyst 19 is adsorbed and held by the catalyst holding unit 20 in a state of being uniformly dispersed on the surface of the amorphous alloy fine wire 9 magnetized by the magnetizing device 21.
Therefore, the unreacted raw material gas 11 and the reaction liquid 10 remain in the liquid 14 after reacting in the first reactor 28, but uniformly dispersed on the surface of the amorphous alloy thin wire 9 in the inner region 4 in the catalyst holding unit 20. Then, the reaction is further promoted by the adsorbed catalyst 19, and the unreacted raw material component remaining in the liquid 14 is surely reacted by catalytic reaction to further reduce or eliminate the remaining amount of the unreacted raw material component. Can do.
Further, since the amorphous alloy thin wire 9 in the inner region 4 has a magnetic gradient, the catalyst 19 accompanying the liquid is also adsorbed and collected by the amorphous alloy thin wire 9 to reduce the outflow of the catalyst 19 to the downstream, or Can be extinguished.

従って、本第二実施形態による触媒反応装置27によれば、前段で従来型の第一反応器28で反応液10と原料ガス11を触媒19で反応処理させ、生成された液14中に未反応原料成分と流出する触媒19が含まれていても、後段において第二反応器30に触媒19を分散して吸着する触媒保持部20を設けたから、液14に含まれる未反応原料成分を一層効率良く反応させかつ、触媒19を効率的に吸着捕集して再利用に供することができ、反応後の液14中の未反応原料成分及び流出する触媒19をより低減させ、或いは消滅させることができる。   Therefore, according to the catalytic reactor 27 according to the second embodiment, the reaction liquid 10 and the raw material gas 11 are reacted with the catalyst 19 in the conventional first reactor 28 in the previous stage, and the reaction liquid 10 and the raw material gas 11 are not dissolved in the generated liquid 14. Even if the reaction raw material component and the outflowing catalyst 19 are included, since the catalyst holding unit 20 that disperses and adsorbs the catalyst 19 in the second reactor 30 is provided in the subsequent stage, the unreacted raw material component contained in the liquid 14 is further reduced. The catalyst 19 can be efficiently reacted, and the catalyst 19 can be efficiently adsorbed and collected for reuse, and the unreacted raw material component in the liquid 14 after the reaction and the outflowing catalyst 19 can be further reduced or eliminated. Can do.

なお、上述の第二実施形態による触媒反応装置27では、後段に触媒保持部20を有する第二反応器30を1つ設けたが、図5に一点鎖線で示すように複数(図では2つ)の第二反応器30を例えば並列に設けてもよい。
この場合、複数の第二反応器30を、液14を供給する側の下端部2aに排液管14を接続すると共に切換弁31a、31bを設けて切り換えて反応後の液14をいずれかの第二反応器30に供給するようにしてもよい。この場合、排液管15が接続された一方の第二反応器30で着磁装置21を用いた触媒の保持によって触媒反応を行うと共に、他方の第二反応器30では排液管15を遮断し、着磁装置21の消磁によるアモルファス合金細線9からの触媒19の脱離と逆洗除去等を行うことができる。このように二つの第二反応器30について切換弁31a、31bを交互に切り換えて触媒反応と洗浄等を選択的に行ってもよい。或いは複数の第二反応器30で同時に着磁装置21を用いた触媒の保持によって触媒反応を行っても良い。
In the catalyst reaction device 27 according to the second embodiment described above, one second reactor 30 having the catalyst holding unit 20 is provided in the subsequent stage, but a plurality of (two in the figure are two as shown by a one-dot chain line) in FIG. ) Second reactor 30 may be provided in parallel, for example.
In this case, the plurality of second reactors 30 are switched by connecting the drainage pipe 14 to the lower end portion 2a on the side of supplying the liquid 14 and providing the switching valves 31a and 31b to switch the liquid 14 after the reaction to either You may make it supply to the 2nd reactor 30. FIG. In this case, the catalyst reaction is performed by holding the catalyst using the magnetizing device 21 in one second reactor 30 to which the drainage pipe 15 is connected, and the drainage pipe 15 is shut off in the other second reactor 30. In addition, the catalyst 19 can be removed from the amorphous alloy thin wire 9 by demagnetization of the magnetizing device 21 and backwashed. As described above, the switching valves 31a and 31b may be alternately switched for the two second reactors 30 to selectively perform the catalytic reaction and the washing. Alternatively, the catalytic reaction may be performed by holding the catalyst using the magnetizing device 21 simultaneously in the plurality of second reactors 30.

次に本発明の第三実施形態による触媒反応装置32について図6により説明する。
図6に示す第三実施形態による触媒反応装置32は、触媒保持部20を備えていない第一反応器33と触媒保持部20を備えた第二反応器34とが一体に且つ直列に接続されている。
第一反応器33は、第二実施形態による第一反応器28と概略同一構成であり、その上端部にテーパ部35によって縮径されて内径の比較的小さい第二反応器34が連結して設けられている。第一反応器33と第二反応器34は、略カプセル状に形成されている。
Next, a catalytic reaction device 32 according to a third embodiment of the present invention will be described with reference to FIG.
In the catalytic reaction apparatus 32 according to the third embodiment shown in FIG. 6, a first reactor 33 that does not include the catalyst holding unit 20 and a second reactor 34 that includes the catalyst holding unit 20 are integrally and serially connected. ing.
The first reactor 33 has substantially the same configuration as that of the first reactor 28 according to the second embodiment, and a second reactor 34 that is reduced in diameter by a tapered portion 35 and has a relatively small inner diameter is connected to an upper end portion thereof. Is provided. The first reactor 33 and the second reactor 34 are formed in a substantially capsule shape.

第一反応器33の下側部分には原料ガス11の供給管13が設けられ、下端部2aの近傍で原料ガス11を気泡として反応液10内に吐出して上昇させる吐出口13aが設けられている。この原料ガス11の気泡によって反応液10の流動を起こさせて触媒19を分散させて反応を促進させる。
第一反応器33の上側には、反応液10に液面より若干低い位置に例えば略円筒状等の筒状をなす金網フィルター37が1または複数(図では2つ)配設されている。これらの金網フィルター37の上端は反応後の液14を外部に排出するための排液管15に接続され、金網フィルター37によって触媒19が反応後の液14に随伴して外部に排出されることを防止している。
In the lower part of the first reactor 33, a supply pipe 13 for the source gas 11 is provided, and in the vicinity of the lower end 2a, a discharge port 13a for discharging the source gas 11 as bubbles into the reaction liquid 10 and raising it is provided. ing. The reaction liquid 10 is caused to flow by the bubbles of the raw material gas 11 to disperse the catalyst 19 and promote the reaction.
On the upper side of the first reactor 33, one or a plurality (two in the figure) of a wire mesh filter 37 having a cylindrical shape such as a substantially cylindrical shape is disposed at a position slightly lower than the liquid level in the reaction solution 10. The upper ends of these wire mesh filters 37 are connected to a drain pipe 15 for discharging the liquid 14 after reaction to the outside, and the catalyst 19 is discharged to the outside along with the liquid 14 after reaction by the wire mesh filter 37. Is preventing.

そして、第一反応器33において、反応で生成されたガスと共に未反応原料ガス11が反応液10の液面から上方に流出した場合に、この未反応原料ガス11はテーパ部35を介して集合させられて第二反応器34に流入するように構成されている。また、反応液14の液ミスト及び微粒状触媒19も反応生成ガスや未反応原料ガス11と共に飛沫として飛散して、第二反応器34に同伴して導入される。
第二反応器34には、上述した触媒保持部20が設けられており、内側領域4内に充填されたアモルファス合金細線9は着磁装置21の一対の永久磁石22の磁場によって触媒19を均一に分散させた状態で吸着している。そして、第二反応器34の触媒保持部20内では、第一反応器33から流入した未反応原料ガス11と反応液10のミストとの反応が分散して吸着された触媒19によって促進され、且つ飛散する微粒触媒もアモルファス合金細線9の磁気勾配によってアモルファス合金細線9の表面上に吸着捕集され、又、飛沫として飛散する反応液14のミストは、アモルファス合金細線9の充填層に衝突して捕集され、重力によって反応器33に落下して返送される。更に、アモルファス合金細線9の表面上に吸着保持された触媒19は、適宜、触媒保持部20を消磁して上から液を流すことにより、離脱・逆洗浄され、第一反応器33に落下して返送できる。
In the first reactor 33, when the unreacted raw material gas 11 flows upward from the liquid surface of the reaction solution 10 together with the gas generated by the reaction, the unreacted raw material gas 11 collects via the tapered portion 35. And is configured to flow into the second reactor 34. Further, the liquid mist of the reaction liquid 14 and the fine particulate catalyst 19 are also scattered as a droplet together with the reaction product gas and the unreacted raw material gas 11 and introduced together with the second reactor 34.
The second reactor 34 is provided with the above-described catalyst holding unit 20, and the amorphous alloy thin wire 9 filled in the inner region 4 makes the catalyst 19 uniform by the magnetic field of the pair of permanent magnets 22 of the magnetizing device 21. Adsorbed in a dispersed state. In the catalyst holding unit 20 of the second reactor 34, the reaction between the unreacted raw material gas 11 flowing from the first reactor 33 and the mist of the reaction liquid 10 is promoted by the dispersed and adsorbed catalyst 19, The fine catalyst that scatters is also adsorbed and collected on the surface of the amorphous alloy wire 9 by the magnetic gradient of the amorphous alloy wire 9, and the mist of the reaction solution 14 that scatters as a splash collides with the packed bed of the amorphous alloy wire 9. It is collected and dropped into the reactor 33 by gravity and returned. Further, the catalyst 19 adsorbed and held on the surface of the amorphous alloy fine wire 9 is appropriately detached and back-washed by demagnetizing the catalyst holding unit 20 and flowing a liquid from above, and dropped into the first reactor 33. Can be returned.

本第三実施形態による触媒反応装置32によれば、第一反応器33では原料ガス11が気泡として反応液10内に放出されて上昇流を起こすことで触媒19が反応液10や原料ガス11と共に流動することで拡散させられる。そして、第一反応器33で原料ガス11が反応液10と触媒19とで反応し、反応後の液14が金網フィルター37を介して排液管15から外部に排出される。
しかし、触媒19は重力沈降によって反応液10の上側の濃度が薄く下側の濃度が濃くなる傾向があるため、触媒19の濃度差によって反応しきれない未反応の原料成分が残るが、液面から上方には反応生成ガスと未反応原料ガスが流出する。また、ガスに随伴して反応液10の一部はミストとして、又、微粒状触媒も飛沫として飛び出して、流出ガスと共に上昇する。
第一反応器33を通過した原料ガス11等の未反応成分は、触媒保持部20の内側領域4内に導入され吸着保持された触媒19によって反応させられ、又、反応液10のミストはアモルファス合金細線9の充填層に衝突して捕集され、重力によって反応器33に落下して返送され、さらに、触媒19の粒子は、触媒保持部の磁気力によって吸着捕集される。こうして、未反応原料ガス11等の原料成分は触媒によって反応で低減処理され、又、液ミストや触媒はアモルファス合金細線9によって流出を防止される結果、第二反応器34の上端部34aからは、未反応原料や液ミスト及び触媒19が外部に流失してロスすることを抑制もしくは防止する。
According to the catalytic reaction apparatus 32 according to the third embodiment, in the first reactor 33, the raw material gas 11 is discharged as bubbles into the reaction liquid 10 to cause an upward flow, whereby the catalyst 19 is reacted with the reaction liquid 10 and the raw material gas 11. It is diffused by flowing together. Then, the raw material gas 11 reacts with the reaction liquid 10 and the catalyst 19 in the first reactor 33, and the liquid 14 after the reaction is discharged from the drain pipe 15 through the wire mesh filter 37.
However, since the catalyst 19 has a tendency that the concentration on the upper side of the reaction solution 10 is thin and the concentration on the lower side tends to be thick due to gravity sedimentation, unreacted raw material components that cannot be reacted due to the concentration difference of the catalyst 19 remain. From above, the reaction product gas and the unreacted raw material gas flow out. Further, a part of the reaction liquid 10 is accompanied with the gas as mist, and the fine catalyst is ejected as droplets and rises with the outflow gas.
Unreacted components such as the raw material gas 11 passing through the first reactor 33 are reacted by the catalyst 19 introduced into the inner region 4 of the catalyst holding unit 20 and adsorbed and held, and the mist of the reaction liquid 10 is amorphous. It collides with the packed bed of the alloy fine wire 9 and is collected, falls to the reactor 33 by gravity and is returned, and the particles of the catalyst 19 are adsorbed and collected by the magnetic force of the catalyst holding unit. Thus, the raw material components such as the unreacted raw material gas 11 are reduced by the reaction by the catalyst, and the liquid mist and the catalyst are prevented from flowing out by the amorphous alloy fine wire 9, and as a result, from the upper end 34 a of the second reactor 34. Further, it is possible to suppress or prevent the unreacted raw material, liquid mist, and catalyst 19 from being lost to the outside and being lost.

上述のように本実施形態による触媒反応装置32によれば、第一反応器33で原料ガス11が反応液10と触媒19とで反応し、反応後の液14が金網フィルター37を介して排液管14から外部に排出され、反応液14を通過した未反応原料ガス11と反応液10のミストは第二反応器34に設けた触媒保持部20で十分反応させられる。そのため、未反応原料成分のまま外部に排出されることを防止する。又、触媒保持部20の磁気勾配によって、原料ガス11に随伴する微粒状触媒を吸着捕集して、外部に飛散することを防止する。  As described above, according to the catalytic reaction apparatus 32 according to the present embodiment, the raw material gas 11 reacts with the reaction liquid 10 and the catalyst 19 in the first reactor 33, and the liquid 14 after the reaction is discharged via the wire mesh filter 37. The unreacted raw material gas 11 discharged from the liquid pipe 14 to the outside and passed through the reaction liquid 14 and the mist of the reaction liquid 10 are sufficiently reacted by the catalyst holding unit 20 provided in the second reactor 34. Therefore, it is prevented that the unreacted raw material component is discharged outside. Moreover, the magnetic gradient of the catalyst holding unit 20 prevents the particulate catalyst accompanying the raw material gas 11 from being adsorbed and scattered and scattered outside.

次に本発明の第四実施形態として、触媒保持部20の別の構成例について説明する。
図7に示す第四実施形態による触媒反応装置38の第一反応器39に設けた触媒保持部40は、略円筒状のハウジングである第一反応器39において、偶数からなる複数の仕切り板3、ここでは4枚の仕切り板3が設けられている。これにより、2つの対向する仕切り板3で仕切られた内側領域4が2組形成され、その間と両外側には3つの外側領域5が形成されている。
そして、2組の内側領域4にはそれぞれアモルファス合金細線9がそれぞれ充填されている。各内側領域4の外側には、着磁装置21として、それぞれ一対の永久磁石22が対向して配設されている。これら2組の永久磁石22にも、それぞれ第一反応器39に対して対向及び離間可能に永久磁石22を移動させる一対の開閉駆動手段24が設けられている(図示略)。
Next, another configuration example of the catalyst holding unit 20 will be described as a fourth embodiment of the present invention.
The catalyst holding unit 40 provided in the first reactor 39 of the catalyst reaction apparatus 38 according to the fourth embodiment shown in FIG. 7 is a plurality of partition plates 3 made up of an even number in the first reactor 39 which is a substantially cylindrical housing. Here, four partition plates 3 are provided. As a result, two sets of inner regions 4 partitioned by two opposing partition plates 3 are formed, and three outer regions 5 are formed between and outside the two regions.
The two sets of inner regions 4 are filled with amorphous alloy fine wires 9, respectively. A pair of permanent magnets 22 is arranged outside the inner regions 4 as a magnetizing device 21 so as to face each other. These two sets of permanent magnets 22 are also provided with a pair of opening / closing drive means 24 (not shown) for moving the permanent magnets 22 so as to face and separate from the first reactor 39, respectively.

また、各内側領域4にはそれぞれ触媒19を含む反応液10が充填され、下方の原料ガス11の供給管13の吐出口13aから原料ガス11が気泡として供給されることになる。一方、3つの外側領域5には、それぞれ外部の図示しないパイプを介して温度調節用媒体として例えば冷却水が流通するようになっている。   Further, each inner region 4 is filled with the reaction liquid 10 containing the catalyst 19, and the raw material gas 11 is supplied as bubbles from the discharge port 13 a of the supply pipe 13 of the lower raw material gas 11. On the other hand, for example, cooling water circulates in the three outer regions 5 as temperature adjusting media through external pipes (not shown).

触媒反応装置38を上述のような構成にすれば、着磁装置21として、比較的狭い内側領域4内に永久磁石22を対向配置してより強力な磁場を設定することができ、これによりアモルファス合金細線9をより強力に磁化させて触媒19を均一に分散固定できるので、反応液10と原料ガス11と触媒19との反応は内側領域4内でより均等に且つ強力に行われるので、未反応の原料液10や原料ガス11がより低減され、これらの排出を一層抑制して反応効率を向上できる。
なお、第一反応器39内に設ける内側領域4は2つに限定されることなく3つ以上でもよい。いずれの場合でも、内側領域4を仕切るために仕切り板3は偶数枚設けることが好ましい。
If the catalyst reaction device 38 is configured as described above, the magnetizing device 21 can set a stronger magnetic field by opposingly arranging the permanent magnets 22 in the relatively narrow inner region 4. Since the fine alloy wire 9 can be magnetized more strongly and the catalyst 19 can be uniformly dispersed and fixed, the reaction between the reaction solution 10, the raw material gas 11, and the catalyst 19 is performed more uniformly and strongly in the inner region 4, so The reaction raw material liquid 10 and the raw material gas 11 are further reduced, and these discharges can be further suppressed to improve the reaction efficiency.
The inner region 4 provided in the first reactor 39 is not limited to two and may be three or more. In any case, it is preferable to provide an even number of partition plates 3 to partition the inner region 4.

次に本発明の第五実施形態として、触媒保持部20を備えた複数の反応器の配列組み合わせ構成例について説明する。
図8に示す触媒反応装置41について、第一実施形態による触媒反応装置1を例にとって説明する。触媒反応装置41では、触媒保持部20を備えた第一反応器2を3個並列になるように、下端部2aに原料ガス11の供給管13を接続し、反応後の液14を排出する排液管15を互いに接続する。ここで、各第一反応器2を符号2A、2B、2Cで区別するものとする。
そして、各第一反応器2に接続されたそれぞれの供給管13から分岐して排出管42をそれぞれ設けて反応後の液14を排出するように構成する。
そして、各管13,15、42には開閉用の切換バルブ43、44、45が設けられているものとする。触媒反応装置41の使用に際して、3つの第一反応器2のうち2つを直列に接続して使用するため、接続形態によって第一反応器2の向きが上下逆に設定される。
Next, as a fifth embodiment of the present invention, a configuration example of a combination of a plurality of reactors provided with a catalyst holding unit 20 will be described.
The catalyst reaction apparatus 41 shown in FIG. 8 will be described by taking the catalyst reaction apparatus 1 according to the first embodiment as an example. In the catalytic reaction device 41, the supply pipe 13 for the raw material gas 11 is connected to the lower end 2a so that the three first reactors 2 provided with the catalyst holding unit 20 are arranged in parallel, and the liquid 14 after the reaction is discharged. The drainage pipes 15 are connected to each other. Here, each 1st reactor 2 shall be distinguished by code | symbol 2A, 2B, 2C.
And it branches from each supply pipe | tube 13 connected to each 1st reactor 2, and it is comprised so that the discharge pipe 42 may be provided, respectively, and the liquid 14 after reaction may be discharged | emitted.
The pipes 13, 15 and 42 are provided with switching valves 43, 44 and 45 for opening and closing. When using the catalytic reaction device 41, two of the three first reactors 2 are connected in series and used, so the direction of the first reactor 2 is set upside down depending on the connection form.

このような構成を備えた触媒反応装置41の使用方法について図9により説明する。なお、図9(a)、(b)、(c)はそれぞれ切換バルブ43、44、45の開閉切換によりいずれか2つの第一反応器2が直列に接続され、残りの1つの第一反応器2が分離された状態を示している。
図9(a)では、第一反応器2Cを管路から遮断し、着磁装置21のOFFによって消磁し、アモルファス合金細線9から触媒19を除去したり洗浄したり修理等のメンテナンスがなされる。そのため、二つの第一反応器2A、2Bは直列に接続され、着磁装置21をONすることで各触媒保持部20では触媒19がアモルファス合金細線9に分散状態で吸着され、管13,15,43を経由して第一反応器2A、2Bで順次原料ガス11が反応液10と触媒19とで反応させられる。これによって殆ど未反応の原料ガス11がない状態で反応後の液14を排出できる。
A method of using the catalyst reaction apparatus 41 having such a configuration will be described with reference to FIG. 9 (a), (b), and (c), any two first reactors 2 are connected in series by switching the switching valves 43, 44, and 45, respectively, and the remaining one first reaction is performed. The container 2 is shown in a separated state.
In FIG. 9 (a), the first reactor 2C is shut off from the pipeline, demagnetized by turning off the magnetizing device 21, and the catalyst 19 is removed from the amorphous alloy thin wire 9, and maintenance such as repair or the like is performed. . For this reason, the two first reactors 2A, 2B are connected in series, and when the magnetizing device 21 is turned ON, the catalyst 19 is adsorbed in a dispersed state on the amorphous alloy thin wire 9 in each catalyst holding unit 20, and the tubes 13, 15 , 43, the raw material gas 11 is sequentially reacted with the reaction liquid 10 and the catalyst 19 in the first reactors 2A and 2B. As a result, the liquid 14 after the reaction can be discharged with almost no unreacted source gas 11 present.

次に図9(b)では、第一反応器2Aが管路から遮断され、第一反応器2Bの下流側に先に洗浄や修理交換等のメンテナンスを終えた第一反応器2Cを接続した状態で、これら第一反応器2B,2Cに原料ガス11が供給され反応させられる。
次に図9(c)では、第一反応器2Bが管路から遮断され、第一反応器2Cの下流側に先に洗浄や修理交換等のメンテナンスを終えた第一反応器2Aを接続した状態で、これら第一反応器2C,2Aに原料ガス11が供給され反応させられる。
このようにして、複数の第一反応器2について、一部の第一反応器2を管路から遮断して触媒19の除去や洗浄等を行うと共に残りの第一反応器2で触媒保持部20を用いて触媒反応を行い、順次、洗浄や補修等のメンテナンスを終了した第一反応器2を最も後方に接続することで、触媒19の詰まりや故障等の心配のない状態で複数の第一反応器2を連続して使用できる。
Next, in FIG.9 (b), the 1st reactor 2A was interrupted | blocked from the pipe line, and the 1st reactor 2C which finished maintenances, such as washing | cleaning and repair replacement | exchange previously, was connected to the downstream of the 1st reactor 2B. In this state, the raw material gas 11 is supplied to the first reactors 2B and 2C to be reacted.
Next, in FIG.9 (c), the 1st reactor 2B was interrupted | blocked from the pipe line, and the 1st reactor 2A which finished the maintenances, such as washing | cleaning and repair replacement | exchange previously, was connected to the downstream of the 1st reactor 2C. In this state, the raw material gas 11 is supplied to the first reactors 2C and 2A to be reacted.
In this way, with respect to the plurality of first reactors 2, some of the first reactors 2 are shut off from the pipes to remove or wash the catalyst 19, and the remaining first reactors 2 use the catalyst holding unit. 20 is used to carry out the catalytic reaction, and the first reactor 2 that has been subjected to maintenance such as cleaning and repairing in turn is connected to the rearmost side, so that a plurality of second reactors can be produced without worrying about clogging or failure of the catalyst 19. One reactor 2 can be used continuously.

なお、上述した第五実施形態による触媒反応装置41では、第一実施形態による第一反応器2に代えて、変形例による触媒反応装置41の第一反応器23、第三実施形態による触媒保持部30の第一反応器33及び第二反応器34、第四実施形態による触媒保持部38の第一反応器39等について適用できる。また、第二実施形態における触媒保持部27においても、第二反応器30を図9に示すように複数配設して、同様に直列に使用することもできる。   In addition, in the catalyst reaction apparatus 41 by 5th embodiment mentioned above, it replaces with the 1st reactor 2 by 1st embodiment, the 1st reactor 23 of the catalyst reaction apparatus 41 by a modification, the catalyst holding | maintenance by 3rd embodiment The present invention can be applied to the first reactor 33 and the second reactor 34 of the unit 30, the first reactor 39 of the catalyst holding unit 38 according to the fourth embodiment, and the like. Moreover, also in the catalyst holding part 27 in 2nd embodiment, the 2nd reactor 30 can be arrange | positioned multiplely as shown in FIG. 9, and it can use similarly in series.

上述の各実施形態では、触媒保持部20を用いる第一反応器2、23、39や第二反応器30、34について略円筒形状に形成したことで、高圧や高温の反応液10や原料ガス11の反応にも用いることができる。
しかし、反応液10や原料ガス11が高圧や高温でなければ、略円筒形状に限定されるものではなく、従来技術で用いたような四角筒等の多角筒形状であってもよく、これらの場合には仕切り板3が必要なく外側領域5を設けなくてもよいから、第一反応器2、23、39や第二反応器30、34の全断面容積にアモルファス合金細線9を充填して着磁装置21によって触媒19を分散吸着できる。
なお、触媒保持部20において、略円筒状の第一反応器2、23、39や第二反応器30、34に仕切り板3を設けずに全断面容積にアモルファス合金細線9を充填して永久磁石22を対向配置させて着磁装置21を使用してもよい。
In each of the above-described embodiments, the first reactors 2, 23, 39 and the second reactors 30, 34 using the catalyst holding unit 20 are formed in a substantially cylindrical shape, so that the high-pressure and high-temperature reaction liquid 10 and the raw material gas are formed. 11 reaction can also be used.
However, as long as the reaction liquid 10 and the source gas 11 are not high pressure or high temperature, they are not limited to a substantially cylindrical shape, and may be a polygonal cylinder shape such as a square cylinder used in the prior art. In some cases, the partition plate 3 is not necessary and the outer region 5 does not need to be provided, so that the entire cross-sectional volume of the first reactor 2, 23, 39 or the second reactor 30, 34 is filled with the amorphous alloy thin wire 9. The catalyst 19 can be dispersed and adsorbed by the magnetizing device 21.
In addition, in the catalyst holding unit 20, the first cylindrical reactors 2, 23, 39 and the second reactors 30, 34, which are substantially cylindrical, are not provided with the partition plate 3, and the entire cross-sectional volume is filled with the amorphous alloy fine wire 9 to be permanent. The magnetizing device 21 may be used with the magnets 22 arranged opposite to each other.

また、上述の各実施形態等では、着磁装置21において磁場を形成する手段として永久磁石22を用いたが、これに代えて電磁石を用いてもよく、この場合には電流のON,OFFで着磁と消磁を切換できるから、開閉駆動手段24を設けなくてもよい。   In each of the above-described embodiments and the like, the permanent magnet 22 is used as means for forming a magnetic field in the magnetizing device 21, but an electromagnet may be used instead of this, and in this case, the current is turned on and off. Since the magnetization and demagnetization can be switched, the opening / closing drive means 24 may not be provided.

1、24,27、32,38 触媒反応装置
2、2A,2B,2C,23、39 反応器
3 仕切り板
4 内側領域
5 外側領域
8a,8b 支持金具
9 アモルファス合金細線
10 反応液、液
11 原料ガス
13 供給管
15 排液管
17 排出管
20、40 触媒保持部
21 着磁装置
22 永久磁石
24 開閉駆動手段
25 予備反応器
28、33 第一反応器
30、34 第二反応器
1, 24, 27, 32, 38 Catalytic reactor 2, 2A, 2B, 2C, 23, 39 Reactor 3 Partition plate 4 Inner region 5 Outer region 8a, 8b Support metal fitting 9 Amorphous alloy thin wire 10 Reaction liquid, liquid 11 Raw material Gas 13 Supply pipe 15 Drainage pipe 17 Drain pipe 20, 40 Catalyst holding part 21 Magnetizing device 22 Permanent magnet 24 Opening / closing drive means
25 Prereactor 28, 33 First reactor 30, 34 Second reactor

Claims (10)

反応器内で微粒状の触媒を用いて生成物を得るようにした触媒反応装置において、
前記反応器に触媒保持部を設け、
該触媒保持部は、前記反応器内に収納されたアモルファス合金細線と、前記反応器の外側に設けられていて前記アモルファス合金細線に磁力を作用させる着磁装置と、少なくとも一部に強磁性体を含んでいて前記着磁装置の磁力によって前記アモルファス合金細線に分散して吸着される触媒と、を備えたことを特徴とする触媒反応装置。
In a catalytic reactor in which a product is obtained using a finely divided catalyst in a reactor,
A catalyst holding part is provided in the reactor,
The catalyst holding unit includes an amorphous alloy fine wire housed in the reactor, a magnetizing device that is provided outside the reactor and applies a magnetic force to the amorphous alloy fine wire, and at least a part of the ferromagnetic material. And a catalyst dispersed and adsorbed on the amorphous alloy thin wire by the magnetic force of the magnetizing device.
前記反応器の上側に前記触媒保持部を備えたことを特徴とする請求項1に記載された触媒反応装置。   The catalytic reaction apparatus according to claim 1, wherein the catalyst holding unit is provided on an upper side of the reactor. 第一反応器と第二反応器内で微粒状の触媒を用いて生成物を得るようにした触媒反応装置において、
前記第一反応器の下流側に前記第二反応器を接続し、
前記第二反応器に触媒保持部を設け、
該触媒保持部は、前記第二反応器内に収納されたアモルファス合金細線と、前記第二反応器の外側に設けられていて前記アモルファス合金細線に磁力を作用させる着磁装置と、少なくとも一部に強磁性体を含んでいて前記着磁装置の磁力によって前記アモルファス合金細線に分散して吸着される触媒と、を備えたことを特徴とする触媒反応装置。
In a catalytic reactor in which a product is obtained using a finely divided catalyst in a first reactor and a second reactor,
Connecting the second reactor downstream of the first reactor;
A catalyst holding part is provided in the second reactor,
The catalyst holding unit includes at least a part of an amorphous alloy thin wire housed in the second reactor, a magnetizing device that is provided outside the second reactor and applies a magnetic force to the amorphous alloy thin wire. And a catalyst which contains a ferromagnetic material and is dispersed and adsorbed on the amorphous alloy fine wire by the magnetic force of the magnetizing device.
前記触媒保持部は、前記反応器または第二反応器の非磁性金属からなる筒状管と、該筒状管の軸直交断面を仕切る2枚の仕切り板と、該2枚の仕切り板で仕切られていて前記アモルファス合金細線が収納された第一領域と、該第一領域における前記筒状管の外側部分に配置した前記着磁装置とを設けたことを特徴とする請求項1乃至3のいずれか1項に記載された触媒反応装置。   The catalyst holding unit includes a cylindrical tube made of a nonmagnetic metal of the reactor or the second reactor, two partition plates that divide the axial orthogonal section of the cylindrical tube, and the two partition plates. The first region in which the amorphous alloy fine wire is housed and the magnetizing device disposed in an outer portion of the cylindrical tube in the first region are provided. The catalytic reaction apparatus described in any one of the items. 前記筒状管の第一領域と仕切り板で仕切られた第二領域に温度調節用熱媒体の流路が設けられ、前記仕切り板を伝熱面として前記第一領域内の反応温度を調整するようにした請求項4に記載された触媒反応装置。   A flow path of a temperature adjusting heat medium is provided in a second region partitioned by a first plate and a partition plate of the cylindrical tube, and the reaction temperature in the first region is adjusted using the partition plate as a heat transfer surface. The catalytic reaction apparatus according to claim 4, which is configured as described above. 前記触媒保持部は、非磁性金属からなる筒状管と、該筒状管の軸直交断面を仕切る4枚以上の偶数枚の仕切り板と、各2枚の前記仕切り板で仕切られた複数の第一領域に収納された前記アモルファス合金細線と、前記第一領域の筒状管の外側部分に配置した前記着磁装置とを設け、
前記仕切り板を介して第一領域と交互に第二領域が設けられ、該第二領域に温度調節用熱媒体の流路が設けられて前記仕切り板を伝熱面として前記第一領域の反応温度を調整するようにした請求項1乃至3のいずれか1項に記載された触媒反応装置。
The catalyst holding unit includes a tubular tube made of a non-magnetic metal, an even number of four or more partition plates that divide the cross section perpendicular to the axis of the tubular tube, and a plurality of partitions partitioned by the two partition plates. Providing the amorphous alloy thin wire housed in the first region, and the magnetizing device disposed on the outer portion of the tubular tube of the first region;
A second region is provided alternately with the first region through the partition plate, and a flow path for a temperature control heat medium is provided in the second region, and the reaction of the first region is performed using the partition plate as a heat transfer surface. The catalytic reaction apparatus according to any one of claims 1 to 3, wherein the temperature is adjusted.
前記着磁装置は磁力の発生と消滅を切り換えできるようにした請求項1乃至6のいずれか1項に記載された触媒反応装置。   The catalytic reactor according to any one of claims 1 to 6, wherein the magnetizing device can switch between generation and extinction of magnetic force. 前記第二反応器が複数並列に設けられ、前記第一反応器といずれか一方の前記第二反応器を選択的に連結し、他方の前記第二反応器の前記着磁装置による磁力を消磁させるようにした請求項3乃至7のいずれか1項に記載された触媒反応装置。   A plurality of the second reactors are provided in parallel, selectively connect the first reactor and one of the second reactors, and demagnetize the magnetic force generated by the magnetizing device of the other second reactor. The catalytic reaction apparatus according to any one of claims 3 to 7, wherein the catalytic reaction apparatus is made to be made. 請求項3乃至7のいずれかに記載された前記第二反応器が複数直列に連結されると共に、最も上流側の前記第二反応器の連結を前記流路から外して、洗浄または処理後に最も下流側に連結するように構成したことを特徴とする触媒反応装置。   A plurality of the second reactors according to any one of claims 3 to 7 are connected in series, and the second reactor on the most upstream side is disconnected from the flow path, and the second reactor is the most after washing or treatment. A catalytic reaction apparatus characterized by being connected to the downstream side. 請求項1または2に記載された前記触媒保持部を備えた前記反応器が複数直列に連結され、最も上流側の前記反応器の連結を前記流路から外して、洗浄または処理後に最も下流側に連結するように構成したことを特徴とする触媒反応装置。   A plurality of the reactors including the catalyst holding unit according to claim 1 or 2 are connected in series, and the most upstream side reactor is disconnected from the flow path, and the most downstream side after washing or processing. A catalytic reactor characterized in that it is connected to
JP2011086317A 2011-04-08 2011-04-08 Catalytic reactor Expired - Fee Related JP5639947B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011086317A JP5639947B2 (en) 2011-04-08 2011-04-08 Catalytic reactor
PCT/JP2012/059558 WO2012137936A1 (en) 2011-04-08 2012-04-06 Catalytic reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086317A JP5639947B2 (en) 2011-04-08 2011-04-08 Catalytic reactor

Publications (2)

Publication Number Publication Date
JP2012217929A JP2012217929A (en) 2012-11-12
JP5639947B2 true JP5639947B2 (en) 2014-12-10

Family

ID=46969324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086317A Expired - Fee Related JP5639947B2 (en) 2011-04-08 2011-04-08 Catalytic reactor

Country Status (2)

Country Link
JP (1) JP5639947B2 (en)
WO (1) WO2012137936A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007838B (en) * 2013-01-07 2014-11-12 南京德磊科技有限公司 Chemical catalysis reactor
KR101779022B1 (en) * 2015-08-24 2017-09-26 순천대학교 산학협력단 Hydrogen generator device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012901B2 (en) * 1977-08-08 1985-04-04 エクソン リサ−チ アンド エンヂニアリング コムパニ− Cyclic operation method of fluidized bed
FR2464735A1 (en) * 1979-09-07 1981-03-20 Exxon Research Engineering Co METHOD USING MAGNETIC BEDS TO SEPARATE IMPURITIES FROM CIRCULATING LOADS
US4247987A (en) * 1979-09-26 1981-02-03 Exxon Research & Engineering Co. Continuous countercurrent fluid-solids contacting process stabilized by a magnetic field
JPS57170986A (en) * 1981-04-10 1982-10-21 Exxon Research Engineering Co Magnetically stabilized fluidized bed
JPS59158421U (en) * 1983-04-11 1984-10-24 株式会社ニレコ Hydraulic oil purification device
JPS6061038A (en) * 1983-09-14 1985-04-08 Daido Steel Co Ltd Reaction process
JPS60137439A (en) * 1983-12-24 1985-07-22 Daido Steel Co Ltd Separation of magnetic catalyst
EA018418B1 (en) * 2008-03-14 2013-07-30 Ниппон Стил Инджиниринг Ко., Лтд. Hydrocarbon compound synthesis reaction system and method of removing powdered catalyst particles

Also Published As

Publication number Publication date
WO2012137936A1 (en) 2012-10-11
JP2012217929A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
KR101110995B1 (en) Filtration device
US20100065504A1 (en) Novel filtration method for refining and chemical industries
US20100230332A1 (en) Adsorption apparatus for wastewater
US20210086108A1 (en) Scrubbing backwash filter
JP2012161792A (en) Resin contactor and containment system
CA2828358C (en) Magnetic-separation filter device
WO2009103191A1 (en) Devece and process for continuously separating and recoverying magnetic solid particles from solid-liquid mixtures
WO2008100245A3 (en) A method and device for cleaning non-fixed media filters
JP5639947B2 (en) Catalytic reactor
CN105664528A (en) Treatment of contaminated liquids
KR20110104064A (en) Wiresaw apparatus and method for continuous removal of magnetic impurities during wiresaw cutting
AU2017279470B2 (en) Fractal flow devices and methods of use
CN113019689B (en) Cutting fluid filtering device capable of recycling scrap iron and method thereof
US20140286834A1 (en) Integrated multi-step solid/liquid separation system for fischer-tropsch processes
JP2008008538A (en) Heat exchanger cleaning device and cleaning method of heat exchanger
JP2004016938A (en) Apparatus for removing fine iron powder
CN106267996B (en) A kind of flow channel for liquids case of DYNAMIC MAGNETIC filter
CN213595948U (en) Magnetic separation device
JP2002361010A (en) Apparatus and method for cleaning contaminated oil
JP2597017Y2 (en) Bathtub or pool purification equipment
CN201348455Y (en) Gas-liquid two-phase flow external circulating scale inhibition heat exchanger
CN106582457A (en) Gas-liquid-solid chemical magnetic induction stabilization equipment
WO2022155160A1 (en) System and method for regenerating and restoring kinetic properties of resin
Lindley The use of magnetic techniques in the development of a hydrogenation process
RU2473375C1 (en) Device for cleaning fluids of magnetic particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees