JP5637431B2 - Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme - Google Patents

Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme Download PDF

Info

Publication number
JP5637431B2
JP5637431B2 JP2010179751A JP2010179751A JP5637431B2 JP 5637431 B2 JP5637431 B2 JP 5637431B2 JP 2010179751 A JP2010179751 A JP 2010179751A JP 2010179751 A JP2010179751 A JP 2010179751A JP 5637431 B2 JP5637431 B2 JP 5637431B2
Authority
JP
Japan
Prior art keywords
proteolytic
enzyme
activity
supernatant
krill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010179751A
Other languages
Japanese (ja)
Other versions
JP2012034658A (en
Inventor
崇 渡邊
崇 渡邊
勝男 田代
勝男 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2010179751A priority Critical patent/JP5637431B2/en
Publication of JP2012034658A publication Critical patent/JP2012034658A/en
Application granted granted Critical
Publication of JP5637431B2 publication Critical patent/JP5637431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

本発明は、オキアミ由来タンパク質分解酵素の生成方法および当該酵素を用いたタンパク質分解方法に関する。 The present invention relates to the proteolytic method using the production method and the enzymatic proteolytic enzymes from krill.

オキアミ類(ナンキョクオキアミ、ツノナシオキアミ)は動物プランクトンの一種であり、日本における漁獲量は年間約6万トンである。オキアミ類は現在主に釣り餌(撒き餌)や養殖魚の色出し餌料へ利用されているが、中国および韓国から安い餌料が入手可能であることや釣り餌への需要が低下しているため、より付加価値の高い他の活用法が望まれている。特にオキアミ類の付加価値を上げる活用法の1つに、オキアミ類に含まれるタンパク質分解酵素(プロテアーゼ)による食品加工助剤、品質改良剤および機能食品への展開を挙げることができる。   Krills (nankoku krill, horned krill) are a kind of zooplankton, and the catch in Japan is about 60,000 tons per year. Krills are currently used mainly for fishing bait and colored fish feed, but because cheaper feeds are available from China and South Korea and the demand for fishing baits is lower, Other utilization methods with high added value are desired. In particular, one of the utilization methods for increasing the added value of krills is the development of food processing aids, quality improvers and functional foods by proteolytic enzymes (proteases) contained in krills.

しかしながら、オキアミ類を含む甲殻類の水抽出液は冷蔵下で1日放置しただけでも黒変が著しく進行するため、上記利用展開の大きな妨げとなっている。この黒変は内在性のチロシナーゼによりチロシンを含むフェノール類が酸化、さらに自動酸化が進み、黒色のメラニンが生成することで起こる。   However, the water extract of crustaceans containing krills is a significant hindrance to the above-mentioned development of use because the blackening proceeds remarkably even if left alone for 1 day under refrigeration. This blackening occurs when phenols containing tyrosine are oxidized by endogenous tyrosinase, and further auto-oxidation proceeds to produce black melanin.

ここで、甲殻類の黒変を防ぐ方法として、タンパク質分解酵素阻害物質と亜硫酸ナトリウム、コウジ酸、カテキン類、システイン、グルタチオン、ビタミンCの一種あるいは二種以上を混合したものを併用する方法のほか(特許文献1参照)、80〜90[℃]で加熱処理する方法が提案されている(非特許文献1参照)。   Here, as a method of preventing blackening of crustaceans, in addition to a method of using a proteolytic enzyme inhibitor and sodium sulfite, kojic acid, catechins, cysteine, glutathione, or a mixture of two or more of vitamin C in combination. (Refer patent document 1), The method of heat-processing at 80-90 [degreeC] is proposed (refer nonpatent literature 1).

特開平06−245690号公報Japanese Patent Laid-Open No. 06-245690

「ツノナシオキアミの利用に関する研究」、岩手県水産技術センター年報Vol.1997 Page.111-115 (1998)"Studies on the use of horned krill", Iwate Prefectural Fisheries Technology Center Annual Report Vol.1997 Page.111-115 (1998)

また、オキアミ類の水抽出で得られるタンパク質分解酵素製剤は、37[℃]の反応温度で長時間安定した分解活性を示すが、50[℃]の反応温度では徐々に酵素が失活する。タンパク質分解酵素を前記目的に利用するには、分解活性が高い高温領域で長時間安定的に反応を行なえるようにする必要がある。   The proteolytic enzyme preparation obtained by water extraction of krills shows stable degradation activity for a long time at a reaction temperature of 37 [° C.], but the enzyme is gradually deactivated at a reaction temperature of 50 [° C.]. In order to use a proteolytic enzyme for the above-mentioned purpose, it is necessary to be able to react stably for a long time in a high temperature region where the degradation activity is high.

これまでの黒変防止法はいずれもタンパク質分解酵素の機能を著しく低下させるものであり、タンパク質分解酵素の活用を想定しているものではなかった。タンパク質分解酵素の活性を維持しつつ、黒変を防止する手法の開発が待ち望まれていた。   All the blackening prevention methods so far have significantly reduced the function of proteolytic enzymes, and were not intended to utilize proteolytic enzymes. The development of a technique for preventing blackening while maintaining the activity of proteolytic enzymes has been awaited.

そこで、本発明は、メラニン発生による黒変を抑制しながら、分解活性高い高温で安定的な反応を行なうことが可能なオキアミ由来タンパク質分解酵素を生成する方法および当該酵素を用いてタンパク質を分解する方法を提供することを目的とするThe present invention, while suppressing darkening due melanogenesis, stable reaction using the methods and the enzyme to produce a krill-derived proteolytic enzymes capable of performing proteolysis was cracking activity is high hot It aims to provide a way to do .

前記課題を解決するためのオキアミ由来のタンパク質分解酵素の生成方法は、オキアミを水により均質化した上清液を生成または準備した上で、当該上清液をカルシウムイオンの共存下で熱処理するステップを備えていることを特徴とする。 A method for producing a krill-derived proteolytic enzyme for solving the above-mentioned problem is a step of producing or preparing a supernatant obtained by homogenizing krill with water and then heat-treating the supernatant in the presence of calcium ions. It is characterized by having.

前記ステップは、前記上清液を0.5〜1[mM]カルシウムイオンの共存下、50〜55[℃]の温度範囲で10〜20[min]にわたり熱処理するステップであることが好ましい。   The step is preferably a step of heat-treating the supernatant for 10 to 20 [min] in the temperature range of 50 to 55 [° C.] in the presence of 0.5 to 1 [mM] calcium ions.

本発明の方法によれば、詳細は後述するが、黒変を抑制しつつカルシウムイオンによる熱安定化によりタンパク質分解酵素の比活性を増加させることができる。また、熱処理後の上清溶液を酵素試料とし、カルシウムイオンを反応系に0.5〜1[mM]となるように添加し、50[℃]の反応温度でタンパク質の分解を行なうと、従来よりも長時間にわたり高い分解活性を保持することができる。   According to the method of the present invention, as will be described in detail later, the specific activity of the proteolytic enzyme can be increased by thermal stabilization with calcium ions while suppressing blackening. Moreover, when the supernatant solution after the heat treatment is used as an enzyme sample, calcium ions are added to the reaction system so that the concentration is 0.5 to 1 [mM], and protein decomposition is performed at a reaction temperature of 50 [° C.] It is possible to maintain a high degradation activity for a longer time.

1[mM]カルシウムイオン存在・非存在下,粗酵素抽出液を各温度、20[min]で熱処理して得られる上清溶液のアゾカゼイン分解活性(比活性の相対値)、および同上清液を4[℃]、1日放置したときのメラニン生成量(相対値)の説明図。The azocasein-degrading activity (relative value of specific activity) of the supernatant solution obtained by heat-treating the crude enzyme extract at each temperature and 20 [min] in the presence or absence of 1 [mM] calcium ion, and the supernatant Explanatory drawing of the melanin production amount (relative value) when left at 4 [° C.] for 1 day. 1[mM]のカルシウムイオン存在下、粗酵素抽出液を55[℃]、各時間で熱処理して得られる上清溶液のアゾカゼイン分解活性(比活性の相対値)、および同上清液を4[℃]、1日放置したときのメラニン生成量(相対値)の説明図。In the presence of 1 [mM] calcium ion, the crude enzyme extract was 55 [° C.], the azocasein-degrading activity (relative value of the specific activity) of the supernatant solution obtained by heat treatment at each time, and 4 [ [° C.] Explanatory drawing of the amount of melanin production (relative value) when left for 1 day. 各カルシウムイオン濃度,反応温度50[℃]におけるアゾカゼイン分解量の経時変化の実験結果説明図。Explanatory drawing of the experimental result of the time-dependent change of the amount of azocasein decomposition | disassembly at each calcium ion concentration and reaction temperature 50 [degreeC].

本発明のオキアミ由来タンパク質分解酵素の生成方法および当該酵素を用いたタンパク質分解方法の実施形態について説明する。 Embodiments of a method for producing a krill-derived proteolytic enzyme of the present invention and a proteolytic method using the enzyme will be described.

(実施例1)
(粗酵素抽出液の調製)
−80℃で凍結保存していたオキアミ40[g]をたとえば2倍量(80[ml])の冷水とともにHSIANGTAI製ホモジナイザー(本体:HG-200、シャフトジェネレーター:K30)を用いて氷冷下でホモジナイズした。このホモジネートを遠心分離(10、000×[g]、10[min]、4[℃])し、上清液(粗酵素抽出液)を得た。
Example 1
(Preparation of crude enzyme extract)
For example, krill 40 [g] stored frozen at −80 ° C. under ice-cooling with a double volume (80 [ml]) of cold water using a HSIANGTAI homogenizer (main body: HG-200, shaft generator: K30). Homogenized. This homogenate was centrifuged (10,000 × [g], 10 [min], 4 [° C.]) to obtain a supernatant (crude enzyme extract).

(加熱処理)
上清液2.7[ml]に10[mM]の塩化カルシウム0.3[ml](+Caイオン:最終濃度1[mM])または水0.3[ml](−Caイオン)を加え混合した試料について、37、45、50、55、60および70[℃]のそれぞれの温度で20[min]にわたり熱処理を行なった。熱処理後、遠心分離(10、000×[g]、10[min]、4[℃])し、タンパク質分解酵素(プロテアーゼ)を含有する上清液について、メラニン生成量、タンパク質の定量、タンパク質分解活性の測定を行なった。
(Heat treatment)
Add 10 [mM] calcium chloride 0.3 [ml] (+ Ca ion: final concentration 1 [mM]) or water 0.3 [ml] (-Ca ion) to the supernatant 2.7 [ml] and mix. The obtained samples were heat-treated at respective temperatures of 37, 45, 50, 55, 60, and 70 [° C.] for 20 [min]. After the heat treatment, centrifugation (10,000 × [g], 10 [min], 4 [° C.]) is carried out, and the supernatant liquid containing the proteolytic enzyme (protease) is subjected to melanin production, protein quantification, proteolysis Activity was measured.

(メラニン生成量の測定)
前記で得られた各条件の上清液の一部(約1.5[ml])を試験管にとり、4[℃]で24[hr]にわたり放置した。この溶液を蒸留水で5倍希釈し、遠心分離後の上清液を等量の1M水酸化ナトリウムで可溶化した溶液について、405[nm]の吸光度を測定することで、黒変の程度(メラニン生成量)を数値化した。なお、メラニン生成量は熱処理なしを100[%]とした相対値で示した。
(Measurement of melanin production)
A part (about 1.5 [ml]) of the supernatant liquid obtained under the above conditions was placed in a test tube and allowed to stand at 4 [° C.] for 24 [hr]. This solution was diluted 5-fold with distilled water, and the absorbance of 405 [nm] was measured for a solution obtained by solubilizing the supernatant after centrifugation with an equal amount of 1M sodium hydroxide. The amount of melanin production) was quantified. In addition, the melanin production amount was shown by the relative value which set 100% as the non-heat processing.

(タンパク質の定量)
前記手順により得られたそれぞれの上清液中のタンパク質濃度を、ミクロビウレット法(Itzhaki, R. F. and Gill, D. M. (1964) Anal. Biochem. 9 401-410参照)にしたがって測定した。なお、標準タンパク質はウシ血清アルブミンを用いた。
(Quantification of protein)
The protein concentration in each supernatant obtained by the above procedure was measured according to the microbiuret method (see Itzhaki, RF and Gill, DM (1964) Anal. Biochem. 9 401-410). The standard protein used was bovine serum albumin.

(タンパク質分解活性の測定)
アゾカゼインを基質とし、基質の分解によって生じた遊離チロシン量を335[nm]の吸光度で測定する方法でタンパク質分解活性を測定した。
(Measurement of proteolytic activity)
Proteolytic activity was measured by a method in which azocasein was used as a substrate and the amount of free tyrosine produced by the degradation of the substrate was measured with an absorbance of 335 [nm].

具体的には、100[mM]リン酸緩衝溶液(pH7.0)で溶解した1[%](w/v)アゾカゼイン700[μl]に150[μl]の水を加え、これにタンパク質濃度0.5[mg/ml]となるように調製した各条件の上清液を150[μl]加えて、37[℃]で1[hr]にわたり加水分解反応を行なった。   Specifically, 150 [μl] of water was added to 700 [μl] of 1 [%] (w / v) azocasein dissolved in 100 [mM] phosphate buffer solution (pH 7.0), and the protein concentration was adjusted to 0. 150 [μl] of the supernatant solution of each condition prepared so as to be 5 [mg / ml] was added, and a hydrolysis reaction was performed at 37 [° C.] for 1 [hr].

10[%](v/v)トリクロロ酢酸2[ml]を加えることで反応を停止させ、遠心分離後の上清液の335[nm]における吸光度を測定した。なお、95[℃]で10[min]にわたり酵素失活させた各条件の上清液について、上記と同様の処理を施したものをブランクに用いた。前記加熱処理を行なわなかった粗酵素抽出液の活性を100[%]としたときの相対活性として結果をまとめた。   10 [%] (v / v) trichloroacetic acid 2 [ml] was added to stop the reaction, and the absorbance at 335 [nm] of the supernatant after centrifugation was measured. In addition, about the supernatant liquid of each condition which carried out enzyme inactivation over 95 [degreeC] over 10 [min], what performed the same process as the above was used for the blank. The results were summarized as relative activities when the activity of the crude enzyme extract not subjected to the heat treatment was 100%.

カルシウムイオン存在・非存在下,粗酵素抽出液を各温度で所定時間熱処理して得られる上清溶液のアゾカゼイン分解活性(相対値)、およびメラニン生成量(相対値)の結果を図1に示す。黒変すなわちメラニン生成量について、45[℃]までは強い黒変が観察されたが、50[℃]以降からメラニン生成量が熱処理前の50[%]以下となり明確な黒変の抑止効果がみられた。なお、この黒変の程度に関して、カルシウムイオンの存在・非存在下間での差異は認められなかった。   Fig. 1 shows the results of azocasein degradation activity (relative value) and melanin production (relative value) of the supernatant solution obtained by heat-treating the crude enzyme extract at each temperature for a predetermined time in the presence or absence of calcium ions. . As for blackening, that is, melanin production amount, strong blackening was observed up to 45 [° C], but from 50 [° C] onward, the melanin production amount became 50% or less before heat treatment, and there was a clear blackening suppression effect. It was seen. Regarding the degree of blackening, no difference was observed between the presence and absence of calcium ions.

一方、タンパク質分解活性については、カルシウムイオンの添加の有無に関わらず45〜60[℃]の熱処理により活性の増加が認められた。これは海水やオキアミに含まれる内在性カルシウムイオンによる熱安定化の寄与があるためと推察されるが、1[mM]のカルシウムイオンが追加されると比活性がさらに増加する。
50〜60[℃]の温度域がメラニン生成を熱処理前の50[%]以下に抑えつつ、タンパク質分解の比活性も熱処理前より10[%]以上増加する好ましい条件である。特に、55[℃]の熱処理ではメラニン生成を熱処理前の35[%]以下に抑制し、かつタンパク質分解酵素の比活性を20[%]以上増加することができる最も好ましい条件である。
なお、カルシウムイオンの濃度を変化させた場合、例えば0.5[mM]において、タンパク質分解活性は1[mM]と同等のレベルを有していたが、3[mM]においてはタンパク質分解活性の増加が熱処理前の10[%]程度に留まることから、0.5〜1[mM]のカルシウムイオンが本発明を実施する上での最適濃度であることが判明している。
On the other hand, with regard to proteolytic activity, an increase in activity was observed by heat treatment at 45 to 60 [° C.] regardless of the presence or absence of calcium ions. This is presumed to be due to the contribution of thermal stabilization by endogenous calcium ions contained in seawater and krill, but the addition of 1 [mM] calcium ions further increases the specific activity.
The temperature range of 50 to 60 [° C.] is a preferable condition in which the specific activity of proteolysis is increased by 10 [%] or more than before the heat treatment while suppressing the melanin production to 50 [%] or less before the heat treatment. In particular, the heat treatment at 55 [° C.] is the most preferable condition that can suppress the melanin production to 35 [%] or less before the heat treatment and increase the specific activity of the proteolytic enzyme by 20 [%] or more.
In addition, when the calcium ion concentration was changed, for example, at 0.5 [mM], the proteolytic activity had a level equivalent to 1 [mM]. Since the increase is limited to about 10 [%] before the heat treatment, it has been found that 0.5 to 1 [mM] calcium ion is the optimum concentration for carrying out the present invention.

(実施例2)
実施例1により黒変を防止しつつタンパク質分解活性も増加する好ましい条件であった1[mM]カルシウムイオンの存在下、55[℃]の熱処理について、最適処理時間を検討した。
(Example 2)
The optimum treatment time was examined for heat treatment at 55 [° C.] in the presence of 1 [mM] calcium ion, which was a preferable condition for increasing proteolytic activity while preventing blackening in Example 1.

(加熱処理)
粗酵素抽出液2.7[ml]に10[mM]の塩化カルシウム0.3[ml](最終濃度1[mM])を加え混合した試料について、55[℃]、2、5、10、20、40、60[min]の条件で熱処理を行なった。熱処理後、遠心分離(10、000×[g]、10[min]、4[℃])し、タンパク質分解酵素(プロテアーゼ)を含有する上清液について、実施例1と同様メラニン生成量、タンパク質の定量、タンパク質分解活性の測定を行なった。
(Heat treatment)
With respect to a sample obtained by adding 10 [mM] calcium chloride 0.3 [ml] (final concentration 1 [mM]) to 2.7 [ml] of the crude enzyme extract and mixing, 55 [° C.] 2, 5, 10, Heat treatment was performed under the conditions of 20, 40, and 60 [min]. After the heat treatment, centrifugation (10,000 × [g], 10 [min], 4 [° C.]) was carried out, and the supernatant containing the proteolytic enzyme (protease) was used in the same manner as in Example 1 to produce melanin, protein And proteolytic activity were measured.

カルシウムイオン存在下,粗酵素抽出液を55[℃]で各所定時間熱処理して得られる上清溶液中のアゾカゼイン分解活性(相対値)、およびメラニン生成量(相対値)の結果を図2に示す。黒変について、10[min]以上の熱処理でメラニン生成量が熱処理前より50[%]以下となり明確な黒変防止効果が認められた。タンパク質分解活性については、5〜20[min]の間20[%]以上の増加が認められた。よって、55[℃]の熱処理の場合、10〜20[min]の処理時間が黒変を防止しつつ、タンパク質分解活性を増加させる条件であることが判明した。   FIG. 2 shows the results of azocasein degradation activity (relative value) and melanin production (relative value) in the supernatant solution obtained by heat-treating the crude enzyme extract at 55 [° C.] in the presence of calcium ions for each predetermined time. Show. Regarding the blackening, the amount of melanin produced by heat treatment of 10 [min] or more became 50 [%] or less before the heat treatment, and a clear blackening prevention effect was recognized. Regarding the proteolytic activity, an increase of 20 [%] or more was observed for 5 to 20 [min]. Therefore, in the case of heat treatment at 55 [° C.], it has been found that the treatment time of 10 to 20 [min] is a condition for increasing the proteolytic activity while preventing blackening.

以上、加熱処理とカルシウムイオンの添加を組み合わせる簡便かつ安価な方法により、酵素製剤化の大きな障害となる黒変を抑制しつつ、タンパク質分解酵素の比活性の増加、つまり粗精製も同時に行なうことが可能になる。   As described above, the specific activity of the proteolytic enzyme can be increased, that is, the crude purification can be performed at the same time, while suppressing blackening, which is a major obstacle to enzyme preparation, by a simple and inexpensive method combining heat treatment and calcium ion addition. It becomes possible.

(実施例3)
実施例2により黒変を防止しつつタンパク質分解活性も増加する最も好ましい条件であった1[mM]カルシウムイオンの存在下、55[℃]で20[min]にわたる熱処理により得られた上清液を試料に用いた。本実施例では高温(50[℃])で失活を抑制できる最適なカルシウム添加量について検討した。
Example 3
The supernatant obtained by heat treatment over 20 [min] at 55 [° C.] in the presence of 1 [mM] calcium ion, which was the most preferable condition for preventing the blackening and increasing the proteolytic activity according to Example 2. Was used as a sample. In this example, the optimum amount of added calcium capable of suppressing deactivation at a high temperature (50 [° C.]) was examined.

(タンパク質分解活性の測定)
カルシウムイオン存在下(最終濃度:0.5〜1、5及び10[mM])または非存在下、50[℃]の温度条件で0、5、10および25[hr]のそれぞれにわたって時間反応させた以外は、実施例1と同様の操作で活性を測定した。
(Measurement of proteolytic activity)
In the presence of calcium ions (final concentration: 0.5 to 1, 5 and 10 [mM]) or in the absence, the reaction was allowed to proceed for 0, 5, 10 and 25 [hr] at a temperature of 50 [° C.], respectively. The activity was measured in the same manner as in Example 1 except that.

本実施例の結果を図3に示す。50[℃]の反応温度において、カルシウムイオン無添加では徐々に増加率が減少し、失活が進行する。これに対し、反応系に0.5〜1[mM]のカルシウムイオンが加わると、分解酵素の耐熱性が増し、失活の進行を最も抑えることができる。反応時間25[hr]後においてカルシウム無添加の約1.7倍の活性で反応を進めることができる。   The results of this example are shown in FIG. At a reaction temperature of 50 [° C.], when calcium ions are not added, the rate of increase gradually decreases and deactivation proceeds. On the other hand, when 0.5 to 1 [mM] calcium ion is added to the reaction system, the heat resistance of the degrading enzyme increases and the progression of inactivation can be suppressed most. After a reaction time of 25 [hr], the reaction can proceed with an activity about 1.7 times that of calcium-free addition.

一方、反応系に5[mM]のカルシウムイオンが加わると、0.5〜1[mM]ほど耐熱性の効果は得られないが、反応時間25[hr]後においてカルシウム無添加の約1.5倍の活性で反応を進めることができる。さらに反応系に10[mM]のカルシウムイオンが加わると、耐熱効果がほとんど得られず、カルシウムイオン無添加と同レベルの活性となった。   On the other hand, when 5 [mM] calcium ion is added to the reaction system, the effect of heat resistance cannot be obtained as much as 0.5 to 1 [mM]. However, after the reaction time of 25 [hr], about 1. The reaction can proceed with 5 times the activity. Further, when 10 [mM] calcium ion was added to the reaction system, almost no heat-resistant effect was obtained, and the activity was the same as when calcium ion was not added.

以上、反応系に0.5〜1[mM]のカルシウムイオンが添加されると、オキアミに含まれるタンパク質分解酵素の耐熱性が増し、活性の高い50[℃]の高温域で安定的にタンパク質分解を行なうことが可能になる。   As described above, when 0.5 to 1 [mM] calcium ion is added to the reaction system, the heat resistance of the proteolytic enzyme contained in krill increases, and the protein is stably stabilized at a high temperature of 50 [° C] where activity is high. It becomes possible to perform decomposition.

Claims (3)

オキアミ由来タンパク質分解酵素の生成方法であって、
オキアミを水により均質化した上清液を生成または準備した上で、当該上清液をカルシウムイオンの共存下で熱処理するステップを備えていることを特徴とする方法。
A method for producing a krill-derived proteolytic enzyme,
A method comprising preparing or preparing a supernatant obtained by homogenizing krill with water and then heat-treating the supernatant in the presence of calcium ions.
前記ステップは、前記上清液を0.5〜1[mM]カルシウムイオンの共存下、50〜55[℃]の温度範囲で10〜20[min]にわたり熱処理するステップであることを特徴とする請求項1記載のタンパク質分解酵素の生成方法。   The step is a step of heat-treating the supernatant for 10 to 20 [min] in the temperature range of 50 to 55 [° C.] in the presence of 0.5 to 1 [mM] calcium ions. The method for producing a proteolytic enzyme according to claim 1. オキアミ由来のタンパク質分解酵素を用いたタンパク質の分解方法であって、
請求項2記載の方法にしたがって熱処理された前記上清液に0.5〜1[mM]の濃度範囲となるようカルシウムイオンを添加し、50〜60[℃]の温度条件で前記タンパク質分解を行なうことを特徴とする方法
A protein degradation method using a krill-derived proteolytic enzyme,
Calcium ions to a concentration range of 0.5 to 1 in the supernatant heat treated according to the method of claim 2 wherein [mM] was added, degradation of the protein at a temperature of 50-60 [° C.] The method characterized by performing.
JP2010179751A 2010-08-10 2010-08-10 Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme Expired - Fee Related JP5637431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179751A JP5637431B2 (en) 2010-08-10 2010-08-10 Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179751A JP5637431B2 (en) 2010-08-10 2010-08-10 Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme

Publications (2)

Publication Number Publication Date
JP2012034658A JP2012034658A (en) 2012-02-23
JP5637431B2 true JP5637431B2 (en) 2014-12-10

Family

ID=45847385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179751A Expired - Fee Related JP5637431B2 (en) 2010-08-10 2010-08-10 Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme

Country Status (1)

Country Link
JP (1) JP5637431B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501908A (en) * 1982-10-25 1984-11-15 ヘルグレン・ラルス・グスタ−ヴ・インゲ Enzyme composition for cleaning
SE8703064D0 (en) * 1987-08-06 1987-08-06 Viggo Mohr METHOD FOR ISOLATING ACTIVE ENZYME PREPARATIONS FROM ANIMAL TISSUES
JPH04135472A (en) * 1990-09-27 1992-05-08 Nippon Suisan Kaisha Ltd Blackening inhibitor
JP3527521B2 (en) * 1993-02-24 2004-05-17 日本水産株式会社 Black discoloration inhibitor and black discoloration prevention method
JP2000139434A (en) * 1998-11-13 2000-05-23 Nisshin Oil Mills Ltd:The Composition for preventing darkening and browning of food
JP4049944B2 (en) * 1999-05-18 2008-02-20 丸善製薬株式会社 Crustacean blackening inhibitor and blackening prevention method

Also Published As

Publication number Publication date
JP2012034658A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
Grosova et al. Perspectives and applications of immobilised beta-galactosidase in food industry-a review
Corzo et al. Pineapple fruit bromelain affinity to different protein substrates
Van Hau et al. Purification and characterization of trypsin from pyloric caeca of bigeye snapper (Pricanthus macracanthus)
Kurtovic et al. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha)
Srichanun et al. Gene expression and activity of digestive enzymes during the larval development of Asian seabass (Lates calcarifer)
Liu et al. Isolation of cathepsin B from the muscle of silver carp (Hypophthalmichthys molitrix) and comparison of cathepsins B and L actions on surimi gel softening
Delbarre-Ladrat et al. Relative contribution of calpain and cathepsins to protein degradation in muscle of sea bass (Dicentrarchus labrax L.)
Beka et al. Characterisation of a milk-clotting extract from Balanites aegyptiaca fruit pulp
Oliveira et al. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease
Hu et al. Participation of cathepsin L in modori phenomenon in carp (Cyprinus carpio) surimi gel
Klomklao et al. Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix)
Wu et al. Purification and characterization of a collagenolytic serine proteinase from the skeletal muscle of red sea bream (Pagrus major)
Yi et al. Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (Ctenopharyngodon idella)
Nalinanon et al. Purification and biochemical properties of pepsins from the stomach of skipjack tuna (Katsuwonus pelamis)
Okita et al. A novel soft surimi gel with functionality prepared using alcalase for people suffering from dysphagia
Klomklao et al. Cationic trypsin: A predominant proteinase in Pacific saury (Cololabis saira) pyloric ceca
Maghsoudi et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives
Alemán et al. Enzymatic hydrolysis of fish gelatin under high pressure treatment
Zamani et al. Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity
Sun et al. Autolysis of krill protein from North Pacific krill Euphausia pacifica during protein recovery via isoelectric solubilization/precipitation
Osuna-Ruiz et al. Biochemical characterization of a semi-purified aspartic protease from sea catfish Bagre panamensis with milk-clotting activity
Eakpetch et al. Autolysis of Pacific white shrimp (Litopenaeus vannamei) meat: characterization and the effects of protein additives
JP5637431B2 (en) Method for producing krill-derived proteolytic enzyme and proteolytic method using the enzyme
Kim et al. Purification and Characterization of a Trypsin‐Like Protease from Flatfish (P aralichthys olivaceus) Intestine
Liu et al. Purification and characterization of cathepsin L from the muscle of silver carp (Hypophthalmichthys molitrix)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141009

R150 Certificate of patent or registration of utility model

Ref document number: 5637431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees