JP5634699B2 - Glass defect source identification method, molten cast refractory, and glass melting furnace using the same - Google Patents

Glass defect source identification method, molten cast refractory, and glass melting furnace using the same Download PDF

Info

Publication number
JP5634699B2
JP5634699B2 JP2009249346A JP2009249346A JP5634699B2 JP 5634699 B2 JP5634699 B2 JP 5634699B2 JP 2009249346 A JP2009249346 A JP 2009249346A JP 2009249346 A JP2009249346 A JP 2009249346A JP 5634699 B2 JP5634699 B2 JP 5634699B2
Authority
JP
Japan
Prior art keywords
glass
molten
cast refractory
refractory
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009249346A
Other languages
Japanese (ja)
Other versions
JP2011093740A (en
Inventor
利弘 石野
利弘 石野
之浩 牛丸
之浩 牛丸
晋也 林
晋也 林
ジーンピエレ、メイケンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
AGC Ceramics Co Ltd
Original Assignee
AGC Glass Europe SA
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA, AGC Ceramics Co Ltd filed Critical AGC Glass Europe SA
Priority to JP2009249346A priority Critical patent/JP5634699B2/en
Priority to EP10768492A priority patent/EP2493821A1/en
Priority to BR112012010245A priority patent/BR112012010245A2/en
Priority to PCT/EP2010/065898 priority patent/WO2011051162A1/en
Priority to EA201290235A priority patent/EA021752B1/en
Priority to US13/505,206 priority patent/US20120216566A1/en
Publication of JP2011093740A publication Critical patent/JP2011093740A/en
Application granted granted Critical
Publication of JP5634699B2 publication Critical patent/JP5634699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • C04B35/109Refractories by fusion casting containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/484Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、ガラス溶融窯を用いてガラス製品を製造する際に用いられるガラス欠点発生源特定方法、溶融鋳造耐火物及びそれを用いたガラス溶融窯に係り、特に、溶融ガラス中への溶融鋳造耐火物成分の溶出に起因するガラス欠点を直接的に特定が可能なガラス欠点発生源特定方法、その方法に好適な溶融鋳造耐火物及びガラス溶融窯に関する。   The present invention relates to a glass defect generation source identifying method, a molten cast refractory, and a glass melting furnace using the same, which are used when manufacturing a glass product using a glass melting furnace, and more particularly, molten casting into molten glass. The present invention relates to a glass defect generation source specifying method capable of directly specifying a glass defect caused by elution of a refractory component, a molten cast refractory suitable for the method, and a glass melting furnace.

一般に、市販されている主なガラスを組成から分類すると、ソーダ石灰ガラス、アルミノシリケートガラス、硼珪酸ガラス等に分けられる。これらのガラスは、ガラス製品を製造する際の材料として用いられ、工業的に耐火物からなる炉材で内張りされたガラス溶融窯でそのガラス材料を溶融させた後、その溶融したガラス材料を成型し、冷却、徐冷して固化させてガラス製品とする。   In general, the main commercially available glasses are classified according to composition, soda glass, aluminosilicate glass, borosilicate glass and the like. These glasses are used as materials when manufacturing glass products. After melting the glass material in a glass melting kiln lined with a furnace material made of refractory industrially, the molten glass material is molded. Then, it is cooled and gradually cooled to solidify it into a glass product.

上記耐火物としては、通常、所定配合の耐火物原料を電気炉にて完全に溶融した後、所定形状の鋳型に流し込み徐々に常温まで冷却、再固化により得られる溶融鋳造耐火物が用いられている。この耐火物は、粉状又は粒状の原料を所定形状に成形して焼成した、又は不焼成のままの結合耐火物とは組織、製法とも全く異なるもので、耐食性の高い耐火物である。   As the refractory, a molten cast refractory obtained by melting a refractory raw material of a predetermined composition completely in an electric furnace, pouring it into a mold of a predetermined shape, gradually cooling to room temperature, and re-solidifying is used. Yes. This refractory is a refractory having a high corrosion resistance because it is completely different from the structure and manufacturing method of a bonded refractory that is formed by firing a powdery or granular raw material into a predetermined shape and fired or remains unfired.

このような溶融鋳造耐火物としては、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、アルミナ質溶融鋳造耐火物、ジルコニア質溶融鋳造耐火物等が代表的なものとして知られている。例えば、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、一般に、AZS溶融鋳造耐火物という名称で呼ばれ、ガラス溶解用の耐火物として広く用いられている。   Typical examples of such molten cast refractories include alumina / zirconia / silica fused cast refractories, alumina melt cast refractories, zirconia melt cast refractories, and the like. For example, an alumina / zirconia / silica fused cast refractory is generally called by the name of AZS fused cast refractory and is widely used as a refractory for melting glass.

AZS溶融鋳造耐火物は、約80〜85%(質量%、特記ないかぎり以下同じ)の結晶相とその結晶間隙を埋めている15〜20%のマトリックスガラス相からなる。結晶相は、コランダム結晶とバデライト結晶とからなり、その組成は、市販されているもので、概ね、Al23 を45〜52%、ZrO2 を28〜41%、SiO2 を12〜16%、Na2 Oを1〜1.9%程度のものである。 The AZS molten cast refractory consists of approximately 80-85% (mass%, the same unless otherwise specified) crystal phase and 15-20% matrix glass phase filling the crystal gap. The crystal phase is composed of corundum crystals and badelite crystals, and the composition thereof is commercially available. Al 2 O 3 is 45 to 52%, ZrO 2 is 28 to 41%, and SiO 2 is 12 to 16%. %, Na 2 O is about 1 to 1.9%.

ZrO2 は、よく知られているように、昇温時1150℃付近、降温時850℃付近に、単斜晶と正方晶の相転移による変態膨張があり、異常な収縮、膨張を示す。マトリックスガラス相は、結晶間のクッションのような役割を果たし、AZS溶融鋳造耐火物を製造する際のジルコニアの正方晶から単斜晶の転移による変態膨張による応力を吸収することにより、耐火物を亀裂なく製造するための重要な役割を果たす。 As is well known, ZrO 2 has a transformation expansion due to a monoclinic and tetragonal phase transition around 1150 ° C. when the temperature is raised and 850 ° C. when the temperature is lowered, and exhibits abnormal shrinkage and expansion. The matrix glass phase acts as a cushion between crystals and absorbs the stress caused by transformation expansion due to the transition from tetragonal to monoclinic zirconia in the production of AZS molten cast refractories. It plays an important role for manufacturing without cracks.

ところが、この溶融鋳造耐火物は、その使用時には常に高温に晒されているため、溶融したガラス材料との接触箇所が侵食され、その際にマトリックスガラス相が溶融したガラス材料中に滲み出す(ガラス滲出と呼ばれる)現象が生じる。このガラス滲出現象は、高温で、マトリックスガラス相の粘性が低下し流動性を帯びるとともに、AZS溶融鋳造耐火物から高温で放出されるガスの力でもって押し出されるために起こるものと考えられている。   However, since this molten cast refractory is always exposed to a high temperature during its use, the contact portion with the molten glass material is eroded, and at that time, the matrix glass phase oozes out into the molten glass material (glass). A phenomenon called exudation occurs. This glass leaching phenomenon is considered to occur because the viscosity of the matrix glass phase is lowered and fluidity is caused at high temperature, and it is extruded by the force of gas released from the AZS molten cast refractory at high temperature. .

この耐火物の表面に滲出したガラスの組成は、アルミナ及びジルコニアに富んだ高粘性のガラスであるため、母ガラスに混入すると、溶融するガラスに完全に拡散されず、異質なものとなって節や筋と呼ばれるガラス欠点になってしまう。   The composition of the glass that exudes to the surface of the refractory is a highly viscous glass rich in alumina and zirconia, so when mixed in the mother glass, it does not completely diffuse into the melting glass and becomes extraneous. It becomes a glass defect called a streak.

このガラス欠点は、製品の歩留まりを低下させるので、工業上大きな問題となっている。したがって、このガラス欠点の発生場所を特定して、適切な温度操作等の操業条件や用いる炉材を選定することで歩留まりを向上させることが行われている。   This glass defect is a serious industrial problem because it reduces the yield of the product. Therefore, the yield is improved by specifying the location where the glass defect occurs and selecting the operation conditions such as appropriate temperature operation and the furnace material to be used.

ところが、このガラス欠点の出現状況は、各々の溶融窯によって個別の特徴を有しており、さらに操業条件等によっても異なるため、その発生状況は複雑な形態をとる。そこで、このようなガラス欠点の発生を防止するために、その発生源を特定しガラス溶融窯の構造や操業条件の決定は、従来、数学シミュレーションを利用して行われていた。   However, the appearance situation of this glass defect has individual characteristics depending on each melting kiln, and further varies depending on the operating conditions and the like, so the occurrence situation takes a complicated form. Therefore, in order to prevent the occurrence of such glass defects, conventionally, the generation source is specified and the structure and operating conditions of the glass melting furnace are determined using a mathematical simulation.

この数学シミュレーションによる方法としては、例えば、複数のガラス融液の流路(ライン)を有するガラス溶融炉において、ある特定のラインに溶解欠点が集中する場合には、問題のラインに多数個の粒子を配置し、時間を遡って粒子の軌跡を追跡してその流線から発生源を推定する粒子軌跡法が知られている。   As a method based on this mathematical simulation, for example, in a glass melting furnace having a plurality of glass melt flow paths (lines), when melting defects are concentrated on a specific line, a large number of particles are present on the problem line. There is known a particle trajectory method in which the source is traced back in time, the trajectory of the particle is traced, and the source is estimated from the streamline.

また、この粒子軌跡法を改良したものとして、ガラス溶融炉のガラス融液の流れ場を求め、その流れ場に対して、特定の流路への出口に仮想のトレーサ成分を発生させ、ガラス融液の流れ場におけるトレーサ成分に関する移流のみを考慮した移流拡散方程式を設定し、この移流拡散方程式を逆時間方向に解いて得られるトレーサ成分の濃度分布より特定の流路へのトレーサ成分の流入確率分布を得て、それに基づいて溶解欠点の発生源の位置を特定する方法が知られている(特許文献1参照)。   As an improvement of this particle trajectory method, the flow field of the glass melt in the glass melting furnace is obtained, and a virtual tracer component is generated at the outlet to a specific flow path for the flow field, thereby glass melting. Establishing an advection diffusion equation that considers only the advection related to the tracer component in the liquid flow field, and the concentration distribution of the tracer component obtained by solving this advection diffusion equation in the reverse time direction, the inflow probability of the tracer component to a specific channel A method is known in which the distribution is obtained and the position of the source of the dissolution defect is specified based on the distribution (see Patent Document 1).

また、ガラス欠点の発生源を特定するものではないが、溶融窯に用いる耐火物として、SrO、BaO、ZnOを含有する溶融鋳造耐火物が知られている(特許文献2〜4参照)。   Moreover, although the generation | occurrence | production source of a glass fault is not specified, the fusion | melting cast refractory containing SrO, BaO, ZnO is known as a refractory used for a melting furnace (refer patent documents 2-4).

特開2000−7342号公報JP 2000-7342 A 特許第2870188号公報Japanese Patent No. 2870188 特許第4297543号公報Japanese Patent No. 4297543 特開2001−220249号公報JP 2001-220249 A

しかしながら、上記した数学シミュレーションによる節や筋の発生源の位置の特定は、ガラス融液の流れを解析し、その流れにおいて、トレーサとなる粒子や成分を導入して、発生源の流入箇所について確率等により推定して特定するため、操作が煩雑であるという問題があった。また、この数学シミュレーションは、間接的に発生源を特定するものであるため、精度が低いという問題があった。このため、発生源と推定される箇所の問題を除去しても、ガラス欠点の発生状況が変わらない場合があった。   However, the location of the source of knots and streaks by the above-mentioned mathematical simulation is to analyze the flow of the glass melt and introduce particles and components that become tracers in the flow to determine the probability of the inflow location of the source. Therefore, there is a problem that the operation is complicated. In addition, since this mathematical simulation indirectly specifies the source, there is a problem that the accuracy is low. For this reason, even if the problem of the place presumed to be a generation source is removed, the occurrence of glass defects may not change.

そこで、本発明は、上記した問題を解決すべくなされたものであり、ガラス欠点の発生源を、数学シミュレーションを用いずに、直接的に特定することができるガラス欠点発生源の特定方法を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and provides a method for identifying a glass defect source that can directly identify the glass defect source without using a mathematical simulation. It is intended to do.

本発明のガラス欠点発生源特定方法は、本発明の溶融鋳造耐火物を内張り炉材に用いてガラス溶融窯を構築する工程と、ガラス溶融窯によりガラス材料を溶融し、溶融されたガラス材料を、鋳型に流し込んでガラス製品を製造する工程と、ガラス製品のうちガラス欠点を有するものを抽出し、成分組成を分析して前記ガラス溶融窯のガラス欠点発生源の位置を求める工程と、を有することを特徴とするものである。 The glass defect generation source identifying method of the present invention includes a step of constructing a glass melting furnace using the molten cast refractory of the present invention as a lining furnace material, melting a glass material by the glass melting furnace, And a step of producing a glass product by pouring into a mold, and a step of extracting a glass product having a glass defect and analyzing a component composition to determine a position of a glass defect generation source of the glass melting kiln. It is characterized by this.

このとき用いられる内張り炉材としては、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、アルミナ質溶融鋳造耐火物及びジルコニア質溶融鋳造耐火物が代表的なものとして挙げられる。   Typical examples of the lining furnace material used at this time include alumina / zirconia / silica fusion cast refractories, alumina fusion cast refractories and zirconia fusion cast refractories.

本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、化学組成が質量%で、Al2 3 を45〜70%、ZrO2 を14〜45%、SiO2 を9〜15%、Na2 O、K2 O、CsO及びSrOの合計量が2%以下であって、かつ、Cs2 O及びSrOから選ばれる少なくとも1種のトレーサ成分を0.2〜2%含有することを特徴とするものである。 The alumina / zirconia / silica fusion cast refractory of the present invention has a chemical composition of mass%, Al 2 O 3 of 45 to 70%, ZrO 2 of 14 to 45%, SiO 2 of 9 to 15%, Na 2 The total amount of O, K 2 O, Cs 2 O and SrO is 2% or less, and contains 0.2 to 2% of at least one tracer component selected from Cs 2 O and SrO It is what.

本発明のジルコニア質溶融鋳造耐火物は、化学組成が質量%で、ZrO2 を88〜97%、SiO2 を2.4〜10.0%、Al2 3 を0.4〜3%含み、Na2 O、K2 O及びCs2 Oの合計量が1%以下であって、かつ、Cs2 Oのトレーサ成分を0.2〜0.5%含有することを特徴とするものである。 Zirconia fused cast refractory of the present invention is a chemical composition by mass%, comprises ZrO 2 88 to 97%, the SiO 2 from 2.4 to 10.0%, the Al 2 O 3 0.4 to 3% The total amount of Na 2 O, K 2 O and Cs 2 O is 1% or less, and contains 0.2 to 0.5% of the tracer component of Cs 2 O. .

さらに、本発明のガラス溶融窯は、本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物及びジルコニア質溶融鋳造耐火物から選ばれる少なくとも1種の溶融鋳造耐火物を用いたことを特徴とするものである。 Further, the glass melting furnace of the present invention is characterized by using at least one of fused cast refractories selected from alumina-zirconia-silica fusion cast refractory Mono及 beauty zirconia fused cast refractory of the present invention Is.

本発明のガラス欠点発生源特定方法によれば、所定の組成からなり、トレーサ成分を含有した溶融鋳造耐火物をガラス溶融窯の内張り炉材として用いているため、ガラス溶融窯のどの箇所がガラス欠点発生源となるかを、容易に、かつ、直接的に特定することができる。 According to the glass defect generation source specifying method of the present invention, a molten cast refractory material having a predetermined composition and containing a tracer component is used as a lining furnace material of a glass melting kiln. It can be easily and directly specified whether it becomes a defect generation source.

本発明の溶融鋳造耐火物及びそれを用いたガラス溶融窯は、本発明のガラス欠点発生源特定方法に好適なものである。   The molten cast refractory of the present invention and the glass melting furnace using the same are suitable for the glass defect generation source identifying method of the present invention.

最初に、本発明のガラス欠点発生源特定方法について説明する。   First, the glass defect generation source specifying method of the present invention will be described.

このガラス欠点発生源特定方法において、まずは、ガラス溶融窯の内張り炉材として、Cs2 O、SrO、BaO及びZnOから選ばれる少なくとも1種のトレーサ成分を含有した溶融鋳造耐火物を用いたガラス溶融窯を構築する。このとき、上記トレーサ成分を含有するものを、内張り炉材の溶融ガラスとの接触箇所に設けるものである。 In this glass defect generation source identifying method, first, glass melting using a molten cast refractory containing at least one tracer component selected from Cs 2 O, SrO, BaO and ZnO as a lining furnace material of a glass melting furnace. Build a kiln. At this time, what contains the said tracer component is provided in a contact location with the molten glass of a lining furnace material.

このとき、ガラス溶融窯の内張り炉材として用いる溶融鋳造耐火物は、Cs2 O、SrO、BaO及びZnOから選ばれる少なくとも1種のトレーサ成分を含有したものであり、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、アルミナ質溶融鋳造耐火物又はジルコニア質溶融鋳造耐火物が代表的なものとして挙げられる。 At this time, the molten cast refractory used as the lining furnace material of the glass melting furnace contains at least one tracer component selected from Cs 2 O, SrO, BaO and ZnO, and is fused with alumina, zirconia, siliceous. Typical examples include a cast refractory, an alumina melt cast refractory, or a zirconia melt cast refractory.

そして、このトレーサ成分を含有した溶融鋳造耐火物は、ガラス溶融窯を構築するにあたっては、1種類の溶融鋳造耐火物を用いる場合には、ガラス欠点の発生可能性のあるガラス溶融窯の一部に用いて構成される。全てに用いてしまうと結局発生源の特定が不可能になってしまうためである。このとき、トレーサ成分を含有しない従来用いていた溶融鋳造耐火物を、ガラス欠点発生源としての可能性がない部分に用いればよい。   And when this molten cast refractory containing the tracer component is used to construct a glass melting kiln, when one type of molten cast refractory is used, a part of the glass melting kiln that may cause a glass defect. Used to configure. This is because if it is used for everything, it will become impossible to specify the source. At this time, a conventionally used molten cast refractory that does not contain a tracer component may be used in a portion that has no possibility as a glass defect source.

また、トレーサ成分を含有する溶融鋳造耐火物を2種類以上用いる場合には、ガラス欠点の発生源として可能性のある箇所を、それぞれ異なるトレーサ成分を有する溶融鋳造耐火物で構築するものである。ここで、異なるトレーサ成分とは、Cs2 O、SrO、BaO及びZnOを単独で用いている場合には、その種類が異なるものであり、これら成分を2種以上組み合わせてトレーサ成分とする場合には、その含有するトレーサ成分の種類及び/又は含有割合が異なるものであって、後述する組成分析において、互いに判別することができるものを言う。 Further, when two or more types of molten cast refractories containing a tracer component are used, a possible portion as a glass defect generation source is constructed by a molten cast refractory having different tracer components. Here, the different tracer components are different in the case where Cs 2 O, SrO, BaO and ZnO are used singly, and when these components are combined to form a tracer component. Means different types and / or content ratios of the contained tracer components, which can be distinguished from each other in the composition analysis described later.

したがって、ここで用いるガラス溶融窯としては、ガラス溶融窯を任意のブロック単位に分け、そのブロック単位ごとに異なるトレーサ成分を有する溶融鋳造耐火物を用いて構成することが好ましい。   Therefore, as the glass melting furnace used here, it is preferable to divide the glass melting furnace into arbitrary block units and to use molten cast refractories having different tracer components for each block unit.

そして、次に、構築したガラス溶融窯でガラス材料を溶融し、溶融したガラス材料は、通常のガラス製品の製造と同様に、炉内を溶融させながら移動させ、所定の箇所で成型し、冷却、固化させて所望のガラス製品を製造する。   Then, the glass material is melted in the constructed glass melting kiln, and the molten glass material is moved while being melted in the furnace in the same manner as in the production of a normal glass product, molded at a predetermined location, and cooled. , Solidify to produce the desired glass product.

次いで、得られたガラス製品にガラス欠点が発生しているか否かを確認し、ガラス欠点の発生しているものを抽出し、抽出したガラス製品についてその欠点部分のガラスの成分組成を分析する。この組成分析は、電子顕微鏡分析(SEM−EDX、EPMA)、蛍光X線分析、原子吸光法やICP(誘導結合プラズマ)発光分析、ICP質量分析等により行うことができる。なお、このときトレーサ成分を十分に検出することができるように、上記溶融鋳造耐火物に含有されるトレーサ成分は0.2%以上であることが好ましい。   Next, it is confirmed whether or not a glass defect has occurred in the obtained glass product, a glass defect is extracted, and the extracted glass product is analyzed for the component composition of the glass in the defective portion. This composition analysis can be performed by electron microscope analysis (SEM-EDX, EPMA), fluorescent X-ray analysis, atomic absorption method, ICP (inductively coupled plasma) emission analysis, ICP mass spectrometry, and the like. At this time, the tracer component contained in the molten cast refractory is preferably 0.2% or more so that the tracer component can be sufficiently detected.

分析の結果、トレーサ成分を含有しているか否か、含有している場合にはどのトレーサ成分を含有しているか等を分析することで、ガラス溶融窯のガラス欠点発生源を特定することができる。すなわち、そのガラス欠点の発生源は、分析により検出されたトレーサ成分を含有する内張り炉材を用いた箇所であることが容易に、かつ、直接的に特定されるものである。なお、組成分析をするにあたっては、用いているガラス材料、トレーサ成分の含有の有無、トレーサ成分の含有量について考慮しなければならない。   As a result of the analysis, it is possible to identify the glass defect generation source of the glass melting furnace by analyzing whether or not the tracer component is contained, and if so, which tracer component is contained. . That is, the source of the glass defect is easily and directly specified as the location using the lining furnace material containing the tracer component detected by analysis. In the composition analysis, the glass material used, the presence or absence of the tracer component, and the content of the tracer component must be considered.

まず、用いたガラス材料がトレーサ成分を含有していない場合について説明する。この場合には、判定は容易であって、ガラス欠点の組成分析により、トレーサ成分を含有していれば、その検出されたトレーサ成分を含有する溶融鋳造耐火物で構成される箇所が発生源であることが特定できる。逆に、このときトレーサ成分を含有していなければ、トレーサ成分を含有した溶融鋳造耐火物以外の箇所がガラス欠点発生源であると判定することができる。   First, the case where the used glass material does not contain a tracer component will be described. In this case, the determination is easy.If the tracer component is contained by the composition analysis of the glass defect, the location of the molten cast refractory containing the detected tracer component is the source. It can be identified. Conversely, if the tracer component is not contained at this time, it can be determined that a portion other than the molten cast refractory containing the tracer component is a glass defect source.

次に、用いたガラス材料がトレーサ成分を含有している場合について説明する。この場合には、トレーサ成分は常に検出されるものであるから、ガラス欠点の組成分析により、トレーサ成分がどの程度検出されるかが重要である。   Next, the case where the used glass material contains a tracer component will be described. In this case, since the tracer component is always detected, it is important how much the tracer component is detected by the composition analysis of the glass defect.

トレーサ成分は検出されたものの、その検出量が、その用いたガラス材料の組成割合との差がなければ、トレーサ成分を含有した溶融鋳造耐火物以外の箇所がガラス欠点発生源であると判定することができる。また、その検出量が、その用いたガラス材料の組成割合を超えて十分に大きいとき(例えば、1質量%以上の差が生じたようなときは明確に)、トレーサ成分を含有した溶融鋳造耐火物で構成される箇所が発生源であると特定することができる。このようにトレーサ成分がガラス材料中に含まれるときには、溶融鋳造耐火物中に含有するトレーサ成分の含有量を多くすることで、分析及び判定を容易にすることができる。   If the tracer component is detected, but the detected amount is not different from the composition ratio of the glass material used, it is determined that a place other than the molten cast refractory containing the tracer component is a glass defect source. be able to. Also, when the detected amount is sufficiently large exceeding the composition ratio of the glass material used (for example, clearly when a difference of 1% by mass or more occurs), the molten cast refractory containing the tracer component It is possible to specify that a place composed of objects is a generation source. Thus, when the tracer component is contained in the glass material, analysis and determination can be facilitated by increasing the content of the tracer component contained in the molten cast refractory.

次に、本発明のガラス欠点発生源特定方法に好適な溶融鋳造耐火物について説明する。   Next, the molten cast refractory suitable for the glass defect generation source identifying method of the present invention will be described.

本発明の溶融鋳造耐火物は、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、アルミナ質溶融鋳造耐火物及びジルコニア質溶融鋳造耐火物であり、それぞれ上記記載した成分から構成されるものであって、これら各成分について、以下説明する。なお、本明細書において、成分の含有量は耐火物に対するものであり、「%」は質量%を意味するものである。   The molten cast refractory of the present invention is an alumina / zirconia / silica molten cast refractory, an alumina melt cast refractory and a zirconia melt cast refractory, each comprising the above-described components, Each of these components will be described below. In addition, in this specification, content of a component is with respect to a refractory, and "%" means the mass%.

まず、本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物(以下、AZS溶融鋳造耐火物と称する。)の各成分について説明する。   First, each component of the alumina / zirconia / silica fusion cast refractory (hereinafter referred to as AZS fusion cast refractory) of the present invention will be described.

AZS溶融鋳造耐火物におけるAl23 成分は、耐火物の結晶構造を構成する成分において、ZrO2 と並んで重要な成分であり、コランダム結晶を構成して、溶融ガラスに対してZrO2 の次に強い耐食性を示すとともに、ZrO2 のような変態膨張を示さない。その配合量は45〜70%の範囲であることが好ましい。70%超であると、マトリックスガラス相の量が少なくなるとともにムライト(3Al2 3 ・SiO2 )が生成しやすくなるために耐火物を亀裂なく製造することができなくなってしまう。また、45%未満のように少なすぎるとマトリックスガラス相の量が多くなるために、ガラスが滲み出しやすくなってしまう。 The Al 2 O 3 component in the AZS molten cast refractory is an important component along with ZrO 2 in the component constituting the crystal structure of the refractory, and constitutes a corundum crystal and is composed of ZrO 2 with respect to the molten glass. Next, it shows strong corrosion resistance and does not show transformation expansion like ZrO 2 . The blending amount is preferably in the range of 45 to 70%. If it exceeds 70%, the amount of the matrix glass phase decreases, and mullite (3Al 2 O 3 .SiO 2 ) is likely to be formed, so that the refractory cannot be produced without cracks. On the other hand, if the amount is too small, such as less than 45%, the amount of the matrix glass phase increases, so that the glass tends to exude.

AZS溶融鋳造耐火物におけるZrO2 成分は、溶融ガラスの浸食に対する抵抗力が強く、耐火物の主要成分として含有される。この観点からは多い方がよいが、本発明では、ZrO2 含有量が多くなると、ZrO2 の変態膨張量とそれに伴う応力が大きくなりすぎ、マトリックスガラス相が体積変化を吸収しきれなくなるために、耐火物を亀裂なく製造するのが困難になってしまう。また、少なすぎると溶融ガラスに対する耐食性が乏しくなってしまう。そのため、ZrO2 成分の配合量は14〜45%の範囲であることが好ましい。 The ZrO 2 component in the AZS molten cast refractory has a strong resistance to erosion of the molten glass and is contained as a main component of the refractory. From this point of view, it is better, but in the present invention, if the ZrO 2 content increases, the transformation expansion amount of ZrO 2 and the stress accompanying it become too large, and the matrix glass phase cannot absorb the volume change. This makes it difficult to produce refractories without cracks. Moreover, when there are too few, the corrosion resistance with respect to a molten glass will become scarce. Therefore, the blending amount of the ZrO 2 component is preferably in the range of 14 to 45%.

SiO2 成分は、マトリックスガラス相を構成する主成分で特性を左右する重要な成分である。その配合量は9〜15%の範囲であることが好ましい。9%未満であると、マトリックスガラス相量が少なくなってマトリックスガラス相がZrO2 の体積変化を吸収しきれなくなり、耐火物を亀裂なくなる製造するのが困難になってしまう。また、15%超であると、マトリックスガラス相の量が多くなるために、ガラスが滲み出しやすくなってしまう。 The SiO 2 component is an important component that determines the characteristics as a main component constituting the matrix glass phase. The blending amount is preferably in the range of 9 to 15%. If it is less than 9%, the amount of the matrix glass phase decreases, and the matrix glass phase cannot absorb the volume change of ZrO 2 , and it becomes difficult to produce the refractory without cracking. On the other hand, if it exceeds 15%, the amount of the matrix glass phase increases, so that the glass tends to exude.

Na2 OとK2 Oのアルカリ成分は、マトリックスガラス相の温度と粘性の関係を調整する重要な成分である。その含有量が合計量で1.8%超であるとガラスが滲み出しやすくなってしまう。一方、その合計量が、0.8%未満であると、マトリックスガラス相の粘性が高くなりすぎると同時にムライトを生成させるために、耐火物を亀裂なく製造することができない。 The alkali components of Na 2 O and K 2 O are important components for adjusting the relationship between the temperature and viscosity of the matrix glass phase. If the total content exceeds 1.8%, the glass tends to ooze out. On the other hand, if the total amount is less than 0.8%, the viscosity of the matrix glass phase becomes too high and at the same time mullite is generated, so that the refractory cannot be manufactured without cracks.

そして、本願発明においては、ガラス欠点の発生源を特定するためのトレーサ成分として、Cs2 O及びSrOの少なくとも1種を含有するものである。ここで、トレーサ成分として上記化合物を選択したのは、マトリックスガラスが滲出し溶融状態のガラス材料に混入したときに、マトリックスガラスに充分溶解して、ガラス材料側に移行することができるものであるからである。 Then, in the present invention, as a tracer component to identify a glass defect source are those containing at least one Cs 2 O and SrO. Here, the above-mentioned compound was selected as the tracer component because when the matrix glass is exuded and mixed into the molten glass material, it can be sufficiently dissolved in the matrix glass and transferred to the glass material side. Because.

このとき、これらCs2 O、SrO、BaO及びZnO成分は、Na2 O、K2 Oも含めた合計量、すなわち、Na2 O、K2 O、Cs2 O及びSrOの合計量が2%以下であって、かつ、Cs2 O及びSrO成分は0.2%以上含有するものである。トレーサ成分が0.2%未満となってしまうと、検出性能が悪くなり、ガラス欠点発生源の特定が困難となってしまう。 At this time, these Cs 2 O, SrO, BaO and ZnO components have a total amount including Na 2 O and K 2 O, that is, a total amount of Na 2 O, K 2 O, Cs 2 O and SrO is 2%. The Cs 2 O and SrO components are 0.2% or more. When the tracer component is less than 0.2%, the detection performance is deteriorated, and it is difficult to specify the glass defect source.

その他の成分については、本発明の目的効果を損なわない程度において若干含まれていてもよいが、できる限り少量に制限することが望ましい。   Other components may be contained in a slight amount to the extent that they do not impair the object effects of the present invention, but it is desirable to limit them to a small amount as much as possible.

例えば、Fe23 、TiO2 、CaO、MgOは、工業原料の不純物として混入するもので、できる限り少ない方がよいが、工業的な範囲としてその合計量で0.05〜0.4%の範囲で含有されてもその特性に影響を及ぼさない。 For example, Fe 2 O 3 , TiO 2 , CaO, and MgO are mixed as impurities of industrial raw materials and should be as little as possible, but the total amount as an industrial range is 0.05 to 0.4%. Even if it is contained within the range, it does not affect its properties.

次に、本発明のアルミナ質溶融鋳造耐火物の各成分について説明する。   Next, each component of the alumina melt cast refractory of the present invention will be described.

アルミナ質溶融鋳造耐火物としてのAl23 成分は、耐火物の結晶構造を構成する成分において重要な成分であり、αAl23 (コランダム結晶)とアルカリと反応して生成されるβAl23 結晶の交錯した組織を有する。溶融ガラスに対して強い耐食性を示すとともに変態膨張を示さない。その配合量は94〜98%の範囲であることが好ましい。98%超であると、βAl23 結晶相が少なくなり割れやすくなる。また、94%未満のように少なすぎるとβAl23 結晶相が多くなり、気孔率が数%以上になり、溶融ガラスに対する耐食性が悪くなる為好ましくない。 Al 2 O 3 component as alumina fusion cast refractory is an important component in the components constituting the crystal structure of the refractory, BetaAl 2 produced reacts with alpha Al 2 O 3 (corundum crystals) and alkali It has a crossed structure of O 3 crystals. It exhibits strong corrosion resistance against molten glass and does not exhibit transformation expansion. The blending amount is preferably in the range of 94 to 98%. If it exceeds 98%, the βAl 2 O 3 crystal phase is reduced and cracking easily occurs. On the other hand, if the amount is too small, such as less than 94%, the βAl 2 O 3 crystal phase increases, the porosity becomes several percent or more, and the corrosion resistance against molten glass deteriorates.

SiO2 は、耐火物中に発生する応力を緩和するマトリックスガラスを形成する必須成分である。このSiO2 は、亀裂のない実用寸法の耐火物を得るために、耐火物中に0.1%以上含有している必要があり、0.5%以上含有していることが好ましい。しかし、SiO2 成分の含有量が多くなると耐食性が小さくなってしまう。そこで、本発明において、SiO2 は耐火物中に0.1〜1.0%の範囲で含有させるものである。 SiO 2 is an essential component for forming a matrix glass that relieves stress generated in the refractory. In order to obtain a refractory having a practical size without cracks, SiO 2 needs to be contained in an amount of 0.1% or more in the refractory, and is preferably contained in an amount of 0.5% or more. However, when the content of the SiO 2 component is increased, the corrosion resistance is reduced. Therefore, in the present invention, SiO 2 is contained in the refractory within a range of 0.1 to 1.0%.

Na2 OとK2 Oのアルカリ成分は、Al23 と反応してβAl23 結晶を構成する重要な成分である。その含有量が合計量で4.8%超であるとβAl23 結晶相が多くなり、気孔率が数%以上になり、溶融ガラスに対する耐食性が悪くなる為好ましくない。一方、その合計量が、1%未満であると、βAl23 結晶相が少なくなり、割れやすくなる。 The alkali components of Na 2 O and K 2 O are important components that react with Al 2 O 3 to form βAl 2 O 3 crystals. If the total content exceeds 4.8%, the βAl 2 O 3 crystal phase increases, the porosity becomes several percent or more, and the corrosion resistance to the molten glass deteriorates. On the other hand, if the total amount is less than 1%, the βAl 2 O 3 crystal phase is reduced and cracking is likely.

そして、本願発明においては、ガラス欠点の発生源を特定するためのトレーサ成分として、Cs2 O、SrO、BaO及びZnOの少なくとも1種を含有するものである。ここで、トレーサ成分として上記化合物を選択したのは、トレーサ成分とAl23が反応してβAl23やマトリックスガラス組成を構成し、高温で溶融ガラスと接触すると、これらが溶融状態のガラス材料に混入し、ガラス材料側に移行することができるものであるからである。 Then, in the present invention, as a tracer component to identify a glass defect source are those containing Cs 2 O, SrO, at least one of BaO and ZnO. Here, the above compounds were selected as the tracer component because the tracer component and Al 2 O 3 reacted to form βAl 2 O 3 and a matrix glass composition, and when in contact with molten glass at a high temperature, these were in a molten state. This is because it can be mixed into the glass material and transferred to the glass material side.

このとき、これらCs2 O、SrO、BaO及びZnO成分は、Na2 O、K2 Oも含めた合計量、すなわち、Na2 O、K2 O、Cs2 O、SrO、BaO及びZnOの合計量が5%以下であって、かつ、Cs2 O、SrO、BaO及びZnO成分は0.2%以上含有するものである。トレーサ成分が0.2%未満となってしまうと、検出性能が悪くなり、ガラス欠点発生源の特定が困難となってしまう。 At this time, these Cs 2 O, SrO, BaO and ZnO components are the total amount including Na 2 O and K 2 O, that is, the total of Na 2 O, K 2 O, Cs 2 O, SrO, BaO and ZnO. The amount is 5% or less, and Cs 2 O, SrO, BaO and ZnO components are contained in an amount of 0.2% or more. When the tracer component is less than 0.2%, the detection performance is deteriorated, and it is difficult to specify the glass defect source.

その他の成分については、本発明の目的効果を損なわない程度において若干含まれていてもよいが、できる限り少量に制限することが望ましい。   Other components may be contained in a slight amount to the extent that they do not impair the object effects of the present invention, but it is desirable to limit them to a small amount as much as possible.

例えば、Fe23 、TiO2 、CaO、MgOは、工業原料の不純物として混入するもので、できる限り少ない方がよいが、工業的な範囲としてその合計量で0.05〜0.4%の範囲で含有されてもその特性に影響を及ぼさない。 For example, Fe 2 O 3 , TiO 2 , CaO, and MgO are mixed as impurities of industrial raw materials and should be as little as possible, but the total amount as an industrial range is 0.05 to 0.4%. Even if it is contained within the range, it does not affect its properties.

次に、ジルコニア質溶融鋳造耐火物の各成分について説明する。   Next, each component of the zirconia melt cast refractory will be described.

ZrOは、溶融ガラスの浸食に対する抵抗力が強く、耐火物の主要成分として含有されるものである。したがって、耐火物中にZrO2 の含有量が多い方が溶融ガラスに対する耐食性が優れたものとなり、ジルコニア質溶融鋳造耐火物においては、溶融ガラスに対して十分な耐食性を得るために、ZrO2 の含有量を88%以上とするものである。 ZrO 2 has strong resistance to erosion of molten glass and is contained as a main component of the refractory. Therefore, it the content of ZrO 2 is large becomes excellent corrosion resistance against molten glass in the refractory, in zirconia fused cast refractories, in order to obtain sufficient corrosion resistance against molten glass, the ZrO 2 The content is 88% or more.

一方、ZrO2 の含有量が97%より多くなると、マトリックスガラスの量が相対的に少なくなってバデライト結晶の変態にともなう体積変化を吸収できなくなるため、クラックの無い耐火物を得ることが困難になってしまう。したがって、本発明において、ZrO2 は耐火物中に88〜97%の範囲で含有させるものである。 On the other hand, if the content of ZrO 2 is more than 97%, the amount of matrix glass becomes relatively small and it becomes impossible to absorb the volume change caused by the transformation of the baderite crystal, making it difficult to obtain a refractory without cracks. turn into. Therefore, in the present invention, ZrO 2 is contained in the refractory in the range of 88 to 97%.

SiO2 は、耐火物中に発生する応力を緩和するマトリックスガラスを形成する必須成分である。このSiO2 は、亀裂のない実用寸法の耐火物を得るために、耐火物中に2.4%以上含有している必要があり、5.0%以上含有していることが好ましい。しかし、SiO2 成分の含有量が多くなると耐食性が小さくなってしまう。そこで、本発明において、SiO2 は耐火物中に2.4〜10.0%の範囲で含有させるものである。 SiO 2 is an essential component for forming a matrix glass that relieves stress generated in the refractory. In order to obtain a refractory having a practical size without cracks, this SiO 2 needs to be contained in the refractory in an amount of 2.4% or more, preferably 5.0% or more. However, when the content of the SiO 2 component is increased, the corrosion resistance is reduced. Therefore, in the present invention, SiO 2 is contained in the refractory in a range of 2.4 to 10.0%.

Al2 3 は、マトリックスガラスの温度と粘性の関係を調整する重要な役割を有しており、マトリックスガラス中のZrO2 成分の濃度を低減する効果を有している。この効果を利用してマトリックスガラス中のジルコン(ZrO2 ・SiO2 )などの結晶の生成を抑制するためにはAl2 3 成分含有量を0.4%以上とする必要がある。また、バデライト結晶の結晶変態温度域におけるマトリックスガラスの粘性を適度のものとして維持するためにAl2 3 成分含有量を3.0%以下とする必要がある。そこで、本発明において、Al2 3 は耐火物中に0.4〜3%の範囲で含有させるものである。 Al 2 O 3 has an important role of adjusting the relationship between the temperature and viscosity of the matrix glass and has the effect of reducing the concentration of the ZrO 2 component in the matrix glass. In order to suppress the formation of crystals such as zircon (ZrO 2 · SiO 2 ) in the matrix glass using this effect, the Al 2 O 3 component content needs to be 0.4% or more. Moreover, in order to maintain the viscosity of the matrix glass in the crystal transformation temperature range of the bedelite crystals as moderate, the Al 2 O 3 component content needs to be 3.0% or less. Therefore, in the present invention, Al 2 O 3 is contained in the refractory in the range of 0.4 to 3%.

Al2 3 成分が3%より多いとマトリックスガラスの粘度を高くする他、Al2 3 成分がSiO2 と反応してムライトを生成する傾向があり、その場合にはマトリックスガラスの絶対量が減少すると同時に析出したムライト結晶によってマトリックスガラスの粘性が高くなり、残存体積膨張が生じる。熱サイクルによって、この残存体積膨張が累積すると耐火物にクラックが生じてしまい、耐熱サイクル安定性を阻害するため、ムライトのマトリックスガラス中への析出を抑制し、残存体積膨張の累積傾向を顕著に減少するために、Al2 3 成分の含有量は2%以下であることが好ましい。 If the Al 2 O 3 component is more than 3%, the viscosity of the matrix glass is increased, and the Al 2 O 3 component tends to react with SiO 2 to produce mullite. Simultaneously with the decrease, the precipitated mullite crystal increases the viscosity of the matrix glass, resulting in residual volume expansion. When this residual volume expansion accumulates due to thermal cycling, cracks occur in the refractory, and the stability of the heat cycle is inhibited, so precipitation of mullite into the matrix glass is suppressed, and the cumulative tendency of residual volume expansion is noticeable. In order to decrease, the content of the Al 2 O 3 component is preferably 2% or less.

Na2 OとK2 Oのアルカリ成分は、マトリックスガラス相の温度と粘性の関係を調整する重要な成分である。その含有量が合計量で0.8%超であるとガラスが滲み出しやすくなってしまう。一方、その合計量が、0.1%未満であると、マトリックスガラス相の粘性が高くなりすぎ耐火物を亀裂なく製造することができない。 The alkali components of Na 2 O and K 2 O are important components for adjusting the relationship between the temperature and viscosity of the matrix glass phase. If the total content exceeds 0.8%, the glass tends to ooze out. On the other hand, if the total amount is less than 0.1%, the viscosity of the matrix glass phase becomes too high to produce a refractory without cracks.

そして、本願発明においては、ガラス欠点の発生源を特定するためのトレーサ成分として、Cs2 Oを含有するものである。ここで、トレーサ成分として上記化合物を選択したのは、マトリックスガラスが滲出し溶融状態のガラス材料に混入したときに、マトリックスガラスに充分溶解して、ガラス材料側に移行することができるものであるからである。 Then, in the present invention, as a tracer component to identify a glass defect source are those containing Cs 2 O. Here, the above-mentioned compound was selected as the tracer component because when the matrix glass is exuded and mixed into the molten glass material, it can be sufficiently dissolved in the matrix glass and transferred to the glass material side. Because.

このとき、これらCs2 O成分は、Na2 O、K2 Oも含めた合計量、すなわち、Na2 O、K2 O及びCs2 Oの合計量が1%以下であって、かつ、Cs2 O成分は0.2%以上0.5%以下含有するものである。トレーサ成分が0.2%未満となってしまうと、検出性能が悪くなり、ガラス欠点発生源の特定が困難となってしまう。 At this time, these Cs 2 O components include a total amount including Na 2 O and K 2 O, that is, a total amount of Na 2 O, K 2 O and Cs 2 O is 1% or less, and Cs 2 O component is contained in an amount of 0.2% to 0.5%. When the tracer component is less than 0.2%, the detection performance is deteriorated, and it is difficult to specify the glass defect source.

その他の成分については、本発明の目的効果を損なわない程度において若干含まれていてもよいが、できる限り少量に制限することが望ましい。   Other components may be contained in a slight amount to the extent that they do not impair the object effects of the present invention, but it is desirable to limit them to a small amount as much as possible.

例えば、Fe23 、TiO2 、CaO、MgOは、工業原料の不純物として混入するもので、できる限り少ない方がよいが、工業的な範囲としてその合計量で0.05〜0.4%の範囲で含有されてもその特性に影響を及ぼさない。 For example, Fe 2 O 3 , TiO 2 , CaO, and MgO are mixed as impurities of industrial raw materials and should be as little as possible, but the total amount as an industrial range is 0.05 to 0.4%. Even if it is contained within the range, it does not affect its properties.

上記した各溶融鋳造耐火物は、それぞれ上記配合割合となるように粉末原料を均質に混合し、これをアーク電気炉により溶融させて、溶融した原料を砂型又は黒鉛型に流し込み、冷却して製造される。この耐火物は、溶融時にかかるエネルギーが大きいためコストはかかるが、得られる結晶組織が緻密で、結晶の大きさも大きいことから、焼結耐火物よりも耐食安定性に優れたものである。なお、溶融時の加熱は、グラファイト電極と原料粉末を接触させ、電極に通電することにより行われる。   Each of the above-mentioned molten cast refractories is manufactured by uniformly mixing powder raw materials so as to have the above blending ratio, melting this with an arc electric furnace, pouring the molten raw material into a sand mold or a graphite mold, and cooling. Is done. This refractory is expensive because it takes a large amount of energy when melted. However, since the crystal structure obtained is dense and the size of the crystal is large, the refractory is superior in corrosion resistance stability to the sintered refractory. In addition, the heating at the time of melting is performed by bringing a graphite electrode and raw material powder into contact with each other and energizing the electrode.

このように得られた耐火物は、溶融ガラスに対して優れた耐食性を示し、板ガラス等のガラス製品を製造する際に用いる、ガラス溶融窯用の炉材に適したものである。   The refractory material thus obtained exhibits excellent corrosion resistance with respect to molten glass, and is suitable for a furnace material for a glass melting furnace used when producing a glass product such as a plate glass.

本発明のガラス溶融窯は、上記した本発明の溶融鋳造耐火物を用いて製造されるものであり、内張り炉材として、本発明の溶融鋳造耐火物を用いて製造すればよい。   The glass melting kiln of the present invention is manufactured using the above-described molten cast refractory of the present invention, and may be manufactured using the molten cast refractory of the present invention as a lining furnace material.

また、このガラス溶融窯の製造にあたっては、上記したように、ガラス溶融窯を任意のブロック単位に分け、そのブロックごとに異なるトレーサ成分を有する溶融鋳造耐火物を内張り炉材として用いて構成することが好ましい。このとき、ガラス欠点の発生源とは考えられないブロックには、トレーサ成分を含まない、従来用いられてきた溶融鋳造耐火物を用いてもよい。   Moreover, in the production of this glass melting furnace, as described above, the glass melting furnace is divided into arbitrary block units, and is constructed using a molten cast refractory material having a different tracer component for each block as a lining furnace material. Is preferred. At this time, a conventionally used molten cast refractory material that does not contain a tracer component may be used for a block that is not considered to be a source of glass defects.

なお、このとき、どのようにブロック単位を分けるか、どのブロック単位にどの種類の溶融鋳造耐火物を用いるかは、設計段階においてガラス融液の流路を予測し、効率的にガラス欠点の発生源を特定することができるようにして決定することが好ましい。   At this time, how to divide the block unit and which type of molten cast refractory to use for each block unit predicts the flow path of the glass melt at the design stage and efficiently generates glass defects. It is preferable to determine such that the source can be identified.

以下に、本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を実施例によって具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   EXAMPLES The alumina / zirconia / silica fusion cast refractory of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
表1に示した配合となるように各成分の粉末原料を均質に混合し、これをアーク電気炉により溶融させて、溶融した原料を黒鉛型に流し込み、冷却してジルコニア含有量32%クラスのAZS電鋳煉瓦を得た。これはトレーサ成分として、Cs2 Oを0.43%含有するものである。
得られた電鋳煉瓦から10mm×20mm×120mmの直方体の試料を切りだし、板ガラスを溶解した1500℃の白金坩堝中に72時間つるして侵食試験を行い、そのときの電鋳煉瓦の侵食量を測定するとともに、煉瓦近傍のガラス中のCs2 O含有量を調べた。また、これとは別に、得られた電鋳煉瓦から30mm(直径)×30mm(高さ)の試料を切出し、これを電気炉で1500℃、16時間加熱後のガラス滲出量を求めた。その結果を表1に示した。
Example 1
The raw materials of each component are homogeneously mixed so as to have the composition shown in Table 1, and this is melted by an arc electric furnace, and the molten raw material is poured into a graphite mold and cooled to have a zirconia content of 32% class. An AZS electroformed brick was obtained. This contains 0.43% of Cs 2 O as a tracer component.
A 10 mm × 20 mm × 120 mm rectangular parallelepiped sample was cut out from the obtained electrocast brick, and eroded in a 1500 ° C. platinum crucible in which plate glass was melted for 72 hours, and the amount of erosion of the electroformed brick at that time was measured. While measuring, the Cs 2 O content in the glass near the brick was examined. Separately from this, a 30 mm (diameter) × 30 mm (height) sample was cut from the obtained electrocast brick, and the amount of glass exudation after heating for 16 hours at 1500 ° C. in an electric furnace was determined. The results are shown in Table 1.

(実施例2)
トレーサ成分として、Cs2 Oの代わりにSrOを0.48%含有するものとした以外は、実施例1と同様に電鋳煉瓦を鋳造し、ガラスによる侵食量、SrO含有量及びガラス滲出量を調べた。その結果を表1に示した。
(Example 2)
As a tracer component, electrocast brick was cast in the same manner as in Example 1 except that 0.48% of SrO was contained instead of Cs 2 O, and the amount of erosion by glass, SrO content and glass exudation amount were determined. Examined. The results are shown in Table 1.

(実施例3)
トレーサ成分として、Cs2 O含有量が2.1%のものを実施例1と同様の操作で鋳造した。実施例1と同様に、ガラスによる侵食量、SrO含有量及びガラス滲出量を調べ、その結果を表1に示した。
Example 3
A tracer component having a Cs 2 O content of 2.1% was cast in the same manner as in Example 1. Similarly to Example 1, the amount of erosion by glass, the SrO content and the amount of glass exudation were examined, and the results are shown in Table 1.

(比較例1〜2)
トレーサ成分として、同時にCs2 O、SrOを含有しない通常のAZS電鋳煉瓦(比較例1)、Cs2 O含有量が0.19%のもの(比較例2)を実施例1と同様の操作で鋳造した。実施例1と同様に、ガラスによる侵食量、SrO含有量及びガラス滲出量を調べ、その結果を表1に示した。
(Comparative Examples 1-2)
The same operation as in Example 1 was performed for a normal AZS electroformed brick (Comparative Example 1) that does not contain Cs 2 O and SrO at the same time as a tracer component, and a Cs 2 O content of 0.19% (Comparative Example 2). Casted with. Similarly to Example 1, the amount of erosion by glass, the SrO content and the amount of glass exudation were examined, and the results are shown in Table 1.

Figure 0005634699
Figure 0005634699

*侵食試験後の煉瓦の侵食量:
耐食性は、10mm×20mm×120mmの直方体形状の試料を鋳塊より切出し、白金坩堝中に吊るしてカンタルスーパー炉中で1500℃、48時間、ガラス材料に浸漬した後の侵食量を測定して求めた。ここで用いたガラス材料は、SiO2 72.5%、Al2 2.0%、MgO 4.0%、CaO 8.0%、Na2 O 12.5%、K2 O 0.8%の組成からなるものである。
*侵食試験後の煉瓦近傍ガラス中のトレーサ成分含有量:
上記侵食試験において、ガラス中に浸漬された試料の表層から0.5〜1mm離れた部分のガラスの成分を電子顕微鏡(SEM−EDX)を用いて、測定した。
*ガラス滲出量:直径30mm、高さ30mmの円柱の試料をダイヤモンドコアドリルで切出し、アルキメデス法にて乾燥質量(W1)、水中質量(W2)を測定する。この試料を電気炉にて1500℃で16時間保持した後、炉外に取り出し、炉外で自然放冷する。この試料を再度、アルキメデス法にて乾燥質量(W3)、水中質量(W4)を測定する。このようにして得られた測定値を使い、次式(1)により算出した。
ガラス滲出量=〔(W3−W4)/(W1−W2)−1〕×100% …(1)
* Brick erosion after erosion test:
Corrosion resistance is determined by measuring the amount of erosion after a 10 mm x 20 mm x 120 mm rectangular parallelepiped sample is cut from an ingot, suspended in a platinum crucible and immersed in a glass material at 1500 ° C for 48 hours. It was. The glass materials used here are SiO 2 72.5%, Al 2 O 3 2.0%, MgO 4.0%, CaO 8.0%, Na 2 O 12.5%, K 2 O 0.8. % Composition.
* Tracer component content in glass near brick after erosion test:
In the said erosion test, the component of the glass of 0.5-1 mm away from the surface layer of the sample immersed in glass was measured using the electron microscope (SEM-EDX).
* Glass oozing amount: A cylindrical sample having a diameter of 30 mm and a height of 30 mm is cut out with a diamond core drill, and the dry mass (W1) and the underwater mass (W2) are measured by the Archimedes method. After holding this sample at 1500 ° C. for 16 hours in an electric furnace, it is taken out of the furnace and allowed to cool naturally outside the furnace. This sample is again measured for dry mass (W3) and underwater mass (W4) by Archimedes method. Using the measured value thus obtained, the calculation was performed by the following equation (1).
Glass exudation amount = [(W3-W4) / (W1-W2) -1] × 100% (1)

その結果、実施例1及び実施例2は、1500℃で72時間という長期間の侵食試験後の炉材近傍のガラス中からCs2 O及びSrOが検出することができ、ガラス欠点となった際も、トレーサ成分が検出されることが確認された。また、侵食試験による耐食性及びガラス滲出試験結果も現在、一般的に使用されている煉瓦(比較例1)と大きく差がないことが確認された。また、実施例3も侵食試験後の炉材近傍中のガラス中のCs2 Oは1.5%と充分検出されるものであった。ただし、実施例3では侵食試験における耐食性及び硝子滲出量が大きく、このようなものをガラス窯に使用すると、製品に悪影響が及ぼされる可能性がある。
一方、比較例2はCs2 O含有量が0.19%であるが、侵食試験後の炉材近傍のガラス中にCsOは検出されなかった。
As a result, Example 1 and Example 2 were able to detect Cs 2 O and SrO from the glass in the vicinity of the furnace material after a long-term erosion test at 1500 ° C. for 72 hours, resulting in a glass defect. In addition, it was confirmed that the tracer component was detected. Moreover, it was confirmed that the corrosion resistance and the glass leaching test result by the erosion test are not significantly different from the bricks (Comparative Example 1) that are currently used. Also in Example 3, Cs 2 O in the glass near the furnace material after the erosion test was sufficiently detected as 1.5%. However, in Example 3, the corrosion resistance and the glass exudation amount in the erosion test are large, and when such a material is used in a glass kiln, there is a possibility that the product is adversely affected.
On the other hand, in Comparative Example 2, the Cs 2 O content was 0.19%, but Cs 2 O was not detected in the glass near the furnace material after the erosion test.

以上より、本発明のガラス欠点発生源特定方法により、容易に、かつ、直接的に、ガラス欠点の発生源を特定することができた。   From the above, it was possible to easily and directly identify the glass defect source by the glass defect source identification method of the present invention.

本発明のガラス欠点発生源特定方法は、ガラス溶融窯を用いたガラス製品の製造分野に利用することができる。また、本発明の溶融鋳造耐火物及びそれを用いたガラス溶融窯は、本発明のガラス欠点発生源特定方法を行う際に適したものであるが、この特定方法を行わないガラス製品の製造におけるガラス溶融窯に適用することもできる。   The glass defect generation source identifying method of the present invention can be used in the field of manufacturing glass products using a glass melting kiln. In addition, the molten cast refractory of the present invention and the glass melting furnace using the same are suitable for performing the glass defect generation source identifying method of the present invention, but in the production of glass products not performing this identifying method. It can also be applied to a glass melting furnace.

Claims (7)

化学組成が質量%で、Al2 3 を45〜70%、ZrO2 を14〜45%、SiO2 を9〜15%含み、Na2 O、K2 O、Cs2 O及びSrOの合計量が2%以下であって、かつ、Cs2 O及びSrOから選ばれる少なくとも1種のトレーサ成分を0.2〜2%含有することを特徴とするガラス溶融窯の内張り炉材用アルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 In chemical composition by mass%, the Al 2 O 3 45 to 70%, a ZrO 2 14 to 45%, the SiO 2 comprises 9-15%, the total amount of Na 2 O, K 2 O, Cs 2 O and SrO Is 2% or less, and contains 0.2-2% of at least one tracer component selected from Cs 2 O and SrO. Alumina / zirconia / Silica fusion cast refractory. 化学組成が質量%で、ZrO2 を88〜97%、SiO2 を2.4〜10.0%、Al2 3 を0.4〜3%含み、Na2 O、K2 O及びCs2 Oの合計量が1%以下であって、かつ、Cs2 Oのトレーサ成分を0.2〜0.5%含有することを特徴とするガラス溶融窯の内張り炉材用ジルコニア質溶融鋳造耐火物。 Chemical composition is mass%, contains ZrO 2 88-97%, SiO 2 2.4-10.0%, Al 2 O 3 0.4-3%, Na 2 O, K 2 O and Cs 2 The total amount of O is 1% or less, and contains 0.2 to 0.5% of a tracer component of Cs 2 O. . 請求項1又は2に記載の溶融鋳造耐火物を内張り炉材として用いたことを特徴とするガラス溶融窯。 A glass melting kiln characterized by using the molten cast refractory according to claim 1 or 2 as a lining furnace material. 前記ガラス溶融窯を、その構成箇所により任意のブロック単位に分け、そのブロック単位ごとに異なるトレーサ成分を含有する請求項1又は2に記載の溶融鋳造耐火物を用いることを特徴とするガラス溶融窯。 The glass melting kiln using the molten cast refractory according to claim 1 or 2, wherein the glass melting kiln is divided into arbitrary block units depending on the constituent parts, and contains different tracer components for each block unit. . 請求項1又は2に記載の溶融鋳造耐火物を内張り炉材に用いてガラス溶融窯を構築する工程と、
前記ガラス溶融窯によりガラス材料を溶融し、溶融されたガラス材料を、成型しガラス製品を製造する工程と、
前記ガラス製品のうちガラス欠点を有するものを抽出し、成分組成を分析して前記ガラス溶融窯のガラス欠点発生源の位置を求める工程と、
を有することを特徴とするガラス欠点発生源特定方法。
A step of constructing a glass melting kiln using the molten cast refractory according to claim 1 as a lining furnace material;
Melting the glass material in the glass melting furnace, molding the molten glass material, and manufacturing a glass product;
Extracting a glass defect from the glass product, analyzing the component composition to determine the position of the glass defect source in the glass melting furnace, and
A glass defect source identifying method characterized by comprising:
前記溶融鋳造耐火物中に含まれるトレーサ成分が、前記溶融されるガラス材料に含まれていないことを特徴とする請求項5に記載のガラス欠点発生源特定方法。 6. The method for identifying a glass defect source according to claim 5 , wherein a tracer component contained in the molten cast refractory is not contained in the molten glass material. 前記ガラス溶融窯の構成箇所をブロック単位に分け、そのブロック単位ごとに前記トレーサ成分として異なる成分を含有する溶融鋳造耐火物を用いることを特徴とする請求項5又は6に記載のガラス欠点発生源特定方法。 The glass defect generation source according to claim 5 or 6, wherein a constituent portion of the glass melting furnace is divided into block units, and a molten cast refractory containing different components as the tracer component is used for each block unit. Identification method.
JP2009249346A 2009-10-29 2009-10-29 Glass defect source identification method, molten cast refractory, and glass melting furnace using the same Expired - Fee Related JP5634699B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009249346A JP5634699B2 (en) 2009-10-29 2009-10-29 Glass defect source identification method, molten cast refractory, and glass melting furnace using the same
EP10768492A EP2493821A1 (en) 2009-10-29 2010-10-21 Method for identifying glass defect source, fusion cast refractory and glass melting furnace using it
BR112012010245A BR112012010245A2 (en) 2009-10-29 2010-10-21 method of identifying a source of defective molded refractory melting glass and glass melting furnace using the same
PCT/EP2010/065898 WO2011051162A1 (en) 2009-10-29 2010-10-21 Method for identifying glass defect source, fusion cast refractory and glass melting furnace using it
EA201290235A EA021752B1 (en) 2009-10-29 2010-10-21 Method for identifying glass defect source, associated with refractory corrosion
US13/505,206 US20120216566A1 (en) 2009-10-29 2010-10-21 Method for identifying glass defect source, fusion cast refractory and glass melting furnace using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249346A JP5634699B2 (en) 2009-10-29 2009-10-29 Glass defect source identification method, molten cast refractory, and glass melting furnace using the same

Publications (2)

Publication Number Publication Date
JP2011093740A JP2011093740A (en) 2011-05-12
JP5634699B2 true JP5634699B2 (en) 2014-12-03

Family

ID=43384455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249346A Expired - Fee Related JP5634699B2 (en) 2009-10-29 2009-10-29 Glass defect source identification method, molten cast refractory, and glass melting furnace using the same

Country Status (6)

Country Link
US (1) US20120216566A1 (en)
EP (1) EP2493821A1 (en)
JP (1) JP5634699B2 (en)
BR (1) BR112012010245A2 (en)
EA (1) EA021752B1 (en)
WO (1) WO2011051162A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012046786A1 (en) * 2010-10-06 2014-02-24 旭硝子株式会社 High zirconia electroformed refractory
CN103153911B (en) * 2010-10-06 2016-12-07 旭硝子株式会社 High zirconia refractory product
KR101599984B1 (en) 2011-03-11 2016-03-04 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Refractory object, glass overflow forming block, and process for glass object manufacture
MY163175A (en) 2011-03-30 2017-08-15 Saint-Gobain Ceram & Plastics Inc Refractory object, glass overflow forming block, and process of forming and using the refractory object
HUE046163T2 (en) * 2012-01-11 2020-02-28 Saint Gobain Ceramics Refractory object
HUE025493T2 (en) * 2012-08-24 2016-04-28 Refractory Intellectual Property Gmbh & Co Kg Fused cast refractory material based on aluminium oxide, zirconium dioxide and silicon dioxide, and use of such a material
US9309139B2 (en) 2013-02-15 2016-04-12 Corning Incorporated High volume production of display quality glass sheets having low zirconia levels
JP6386801B2 (en) * 2014-06-10 2018-09-05 Agcセラミックス株式会社 Alumina fusion cast refractory and method for producing the same
CN107257780A (en) 2015-02-24 2017-10-17 圣戈本陶瓷及塑料股份有限公司 refractory product and preparation method
WO2017115698A1 (en) * 2015-12-28 2017-07-06 旭硝子株式会社 Alumina-zirconia-silica refractory, glass melting furnace, and method for manufacturing plate glass
FR3074909B1 (en) 2017-12-11 2022-03-04 Saint Gobain Ct Recherches METHOD FOR IDENTIFYING THE CLASS OF ELECTROFONDED AZS REFRACTORY GENERATING "STONES" IN A GLASS PRODUCT
JP2020100536A (en) * 2018-12-25 2020-07-02 日本電気硝子株式会社 Apparatus and method for manufacturing glass article

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB610854A (en) * 1945-04-10 1948-10-21 Corning Glass Works Alumina low silica refractory
US2970924A (en) * 1959-05-29 1961-02-07 Joseph C Fox Glass batch preparation
FR1443349A (en) * 1965-05-12 1966-06-24 Electro Refractaire High electrical resistivity electrofused refractory products
US3843345A (en) * 1973-03-06 1974-10-22 Ppg Industries Inc Method and apparatus for delivery of molten glass to a float forming process
US3843346A (en) * 1973-03-06 1974-10-22 Ppg Industries Inc Manufacture of sheet glass by continuous float process
US3973940A (en) * 1974-05-30 1976-08-10 Ppg Industries, Inc. Delivery of molten glass to a glass forming process
JP2870188B2 (en) 1990-11-27 1999-03-10 旭硝子株式会社 High zirconia fused cast refractories
US5236625A (en) * 1992-02-24 1993-08-17 Bac Pritchard, Inc. Structural assembly
JP3489588B2 (en) * 1992-11-10 2004-01-19 サンゴバン・ティーエム株式会社 High alumina cast refractories
JP3524629B2 (en) * 1995-04-06 2004-05-10 サンゴバン・ティーエム株式会社 High zirconia molten refractory
JP3667403B2 (en) * 1995-10-05 2005-07-06 サンゴバン・ティーエム株式会社 β-alumina electroformed refractory
US6237369B1 (en) * 1997-12-17 2001-05-29 Owens Corning Fiberglas Technology, Inc. Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner
JP4297543B2 (en) * 1998-02-26 2009-07-15 Agcセラミックス株式会社 Alumina / zirconia / silica fusion cast refractory and glass melting furnace using the same
EP0939065B1 (en) * 1998-02-26 2002-05-15 Asahi Glass Company Ltd. Fused-cast alumina-zirconia-silica refractory and glass melting furnace employing it
JP4081623B2 (en) 1998-06-16 2008-04-30 旭硝子株式会社 Melting defect source identification method and melting defect source analysis system for glass melting furnace
FR2804425B1 (en) 2000-01-31 2002-10-11 Produits Refractaires ALUMINA-ZIRCONIA-SILICA ELECTRODEFUSION PRODUCTS WITH IMPROVED MICROSTRUCTURE
DE602004031969D1 (en) * 2003-10-20 2011-05-05 Nippon Electric Glass Co METHOD FOR PRODUCING A GLASS OBJECT
JP4658870B2 (en) * 2006-06-28 2011-03-23 サンゴバン・ティーエム株式会社 High electrical resistance high zirconia cast refractory
US7534734B2 (en) * 2006-11-13 2009-05-19 Corning Incorporated Alkali-free glasses containing iron and tin as fining agents

Also Published As

Publication number Publication date
EA021752B1 (en) 2015-08-31
WO2011051162A1 (en) 2011-05-05
US20120216566A1 (en) 2012-08-30
EP2493821A1 (en) 2012-09-05
JP2011093740A (en) 2011-05-12
BR112012010245A2 (en) 2017-07-04
EA201290235A1 (en) 2012-12-28

Similar Documents

Publication Publication Date Title
JP5634699B2 (en) Glass defect source identification method, molten cast refractory, and glass melting furnace using the same
TWI537233B (en) High zirconia material electroformed refractory (1)
JP5749770B2 (en) High zirconia electric fusion cast refractory
TWI492915B (en) Refractory object and process of forming a glass sheet using the refractory object
US9284208B2 (en) Refractory block and glass-melting furnace
JP4275867B2 (en) Fused cast products based on alumina-zirconia-silica with improved microstructure
RU2494996C2 (en) Refractory for glass furnace generator nozzle element
JP2010513208A (en) Doped sintered products based on zircon and zirconia
JP2005526683A (en) Melt cast refractory products with high zirconia content
CN104010989B (en) There is the refractory product of high zirconia content
KR20120104373A (en) Refractory product having high zirconia content
EP2626340A1 (en) High zirconia refractory product
US8187990B2 (en) Hollow piece for producing a sintered refractory product exhibiting improved bubbling behaviour
KR101940850B1 (en) High zirconia fused cast refractory
US20070015655A1 (en) Hollow piece for producing a sintered refractory product exhibiting improved bubbling behaviour
BR112017019299B1 (en) NON-CONFORMED PRODUCT, PROCESS FOR THE REPAIR OF A REGION OF A GLASS FUSION FURNACE AND GLASS FUSION FURNACE
CN110214130B (en) Zircon-based sintered concrete
TW201402519A (en) High zirconia fused cast refractory
US20230406775A1 (en) High-zirconia electro-fused cast refractory material
EP3932889A1 (en) High-alumina melt-casted refractory and method for manufacturing same
CN117098740A (en) Refractory product with high zirconia content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees