JP5633422B2 - Accumulated fuel injection system - Google Patents

Accumulated fuel injection system Download PDF

Info

Publication number
JP5633422B2
JP5633422B2 JP2011033539A JP2011033539A JP5633422B2 JP 5633422 B2 JP5633422 B2 JP 5633422B2 JP 2011033539 A JP2011033539 A JP 2011033539A JP 2011033539 A JP2011033539 A JP 2011033539A JP 5633422 B2 JP5633422 B2 JP 5633422B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
valve
common rail
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011033539A
Other languages
Japanese (ja)
Other versions
JP2012172552A (en
Inventor
靖之 鏑木
靖之 鏑木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011033539A priority Critical patent/JP5633422B2/en
Publication of JP2012172552A publication Critical patent/JP2012172552A/en
Application granted granted Critical
Publication of JP5633422B2 publication Critical patent/JP5633422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧燃料が蓄圧されるコモンレールへの高圧燃料供給ポンプからの送油量を圧力制御弁により制御する蓄圧式燃料噴射装置に関する。   The present invention relates to a pressure accumulation type fuel injection device that controls the amount of oil fed from a high pressure fuel supply pump to a common rail in which high pressure fuel is accumulated by a pressure control valve.

従来より、特許文献1にあるように、コモンレールから燃料噴射弁に燃料を供給する蓄圧式燃料噴射装置では、高圧燃料供給ポンプからコモンレールに高圧燃料を供給すると共に、圧力制御弁により高圧燃料供給ポンプからの送油量を調整して、コモンレールの燃料圧を制御している。   Conventionally, as disclosed in Patent Document 1, in an accumulator fuel injection device that supplies fuel from a common rail to a fuel injection valve, high pressure fuel is supplied from a high pressure fuel supply pump to the common rail, and a high pressure fuel supply pump is provided by a pressure control valve. The fuel pressure of the common rail is controlled by adjusting the amount of oil fed from the tank.

その際、プランジャ式の高圧燃料供給ポンプの圧縮行程の途中で、圧力制御弁を閉弁させて、高圧燃料をコモンレールに供給してコモンレールの燃料圧を制御するプレストローク制御が行われている。また、センサによりコモンレールの燃料圧を検出し、検出した燃料圧と目標圧とに基づいて、燃料圧と目標圧との差が小さくなるように、圧力制御弁への通電時期をフィードバック制御している。   At that time, pre-stroke control is performed in the middle of the compression stroke of the plunger type high pressure fuel supply pump to close the pressure control valve and supply high pressure fuel to the common rail to control the fuel pressure of the common rail. In addition, the common rail fuel pressure is detected by a sensor, and the energization timing to the pressure control valve is feedback controlled so that the difference between the fuel pressure and the target pressure becomes small based on the detected fuel pressure and the target pressure. Yes.

特開平5−163994号公報JP-A-5-163994

こうした従来のものでは、通電時期での圧力制御弁への駆動信号の出力により、圧力制御弁を閉弁するようにしている。圧力制御弁は閉弁すると高圧燃料の圧力を閉弁方向に受けて閉弁状態を維持するように構成されている。   In such a conventional system, the pressure control valve is closed by outputting a drive signal to the pressure control valve at the time of energization. When the pressure control valve is closed, the pressure of the high-pressure fuel is received in the valve closing direction to maintain the valve closed state.

例えば、図11(a)に示すように、圧力制御弁に駆動信号を出力して高圧燃料を高圧燃料供給ポンプからコモンレールに供給する。このときの駆動信号は通電期間が圧力制御弁の応答性を考慮した予め定められた一定期間に設定され、不必要に通電期間を長くすることなく省エネを図っている。   For example, as shown in FIG. 11A, a drive signal is output to the pressure control valve to supply high-pressure fuel from the high-pressure fuel supply pump to the common rail. The drive signal at this time is set to a predetermined fixed period in consideration of the responsiveness of the pressure control valve, and energy saving is achieved without unnecessarily lengthening the energization period.

そして、図11(b)に示すように、経年変化等により圧力制御弁の応答が遅くなると、フィードバック制御により駆動信号の通電時期を進角側に制御して、コモンレール圧力を目標圧に制御している。   Then, as shown in FIG. 11B, when the response of the pressure control valve becomes slow due to secular change or the like, the energization timing of the drive signal is controlled to the advance side by feedback control, and the common rail pressure is controlled to the target pressure. ing.

しかし、圧力制御弁の応答性悪化がさらに進むと、以下のような問題点が発生することが発明者らの研究により明らかになった。すなわち、圧力制御弁の応答時間が、ソレノイドへの通電期間を越えてしまうほど長くなると閉弁に達することができない、という問題である。すなわち、図11(c)に示すように、応答性の悪化に応じて駆動信号の通電時期を進角しても、通電期間終了時になっても圧力制御弁の弁体のリフトが十分に行われず、フルリフト位置(閉弁位置)に達することができないことがある。その場合、圧力制御弁が閉弁し切れなくなり、高圧燃料供給ポンプから高圧燃料が供給されなくなる可能性がある。このため、高圧燃料供給ポンプからの高圧燃料供給が確実に維持できない、という問題があった。   However, the inventors have clarified that the following problems occur as the response of the pressure control valve further deteriorates. That is, there is a problem that the valve cannot be closed when the response time of the pressure control valve becomes long enough to exceed the energization period of the solenoid. That is, as shown in FIG. 11 (c), the valve body of the pressure control valve is sufficiently lifted even when the energization timing of the drive signal is advanced or the energization period ends according to the deterioration of responsiveness. The full lift position (valve closing position) may not be reached. In this case, the pressure control valve cannot be closed completely, and high pressure fuel may not be supplied from the high pressure fuel supply pump. For this reason, there is a problem that the high-pressure fuel supply from the high-pressure fuel supply pump cannot be reliably maintained.

本発明の課題は、圧力制御弁の応答性悪化時でも高圧燃料の供給を維持できる蓄圧式燃料噴射装置を提供することにある。   An object of the present invention is to provide a pressure accumulation type fuel injection device capable of maintaining the supply of high pressure fuel even when the responsiveness of a pressure control valve is deteriorated.

かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
内燃機関の気筒内に燃料を噴射する燃料噴射弁と、
高圧に蓄圧された燃料を保持し前記燃料噴射弁に供給するコモンレールと、
該コモンレールに高圧燃料を供給する高圧燃料供給ポンプと、
駆動信号の入力により閉弁して高圧燃料を前記高圧燃料供給ポンプから前記コモンレールに供給すると共に、前記高圧燃料の圧力を閉弁方向に受けて閉弁を維持し、前記高圧燃料供給ポンプからの供給を制御する圧力制御弁と、
前記コモンレールの燃料圧を検出する燃料圧検出手段とを備え、
前記燃料圧検出手段により検出した前記燃料圧と目標圧とに基づく通電時期及び予め設定された通電期間に応じた前記駆動信号により前記圧力制御弁を制御して前記コモンレールの燃料圧を制御する蓄圧式燃料噴射装置において、
前記通電時期に基づいて前記圧力制御弁の応答性悪化量を算出し、該応答性悪化量に基づいて前記圧力制御弁への前記通電期間を長く変更する補正手段を備えたことを特徴とする蓄圧式燃料噴射装置がそれである。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
A fuel injection valve for injecting fuel into a cylinder of the internal combustion engine;
A common rail that holds fuel accumulated at a high pressure and supplies the fuel to the fuel injection valve;
A high pressure fuel supply pump for supplying high pressure fuel to the common rail;
The high-pressure fuel is supplied from the high-pressure fuel supply pump to the common rail by closing the drive signal, and the pressure of the high-pressure fuel is received in the valve closing direction to maintain the valve closed. A pressure control valve to control the supply;
Fuel pressure detecting means for detecting the fuel pressure of the common rail,
Accumulated pressure for controlling the fuel pressure of the common rail by controlling the pressure control valve by the drive signal according to the energization timing based on the fuel pressure detected by the fuel pressure detecting means and the target pressure and a preset energization period. In the fuel injection device,
Compensating means is provided for calculating a responsiveness deterioration amount of the pressure control valve based on the energization timing and changing the energization period to the pressure control valve longer based on the responsiveness deterioration amount. This is an accumulator fuel injection device.

前記補正手段は、前記燃料圧と前記目標圧とに基づいてフィードバック制御する前記通電時期の変化に基づいて前記応答性悪化量を算出し、その際フィードバック制御での前記通電時期の補正量のうちの積分項分の変化に基づいて前記応答性悪化量を算出するようにしてもよい。 Said correcting means, said calculating the response deterioration amount based on the energization time change in the feedback control based on said target pressure and the fuel pressure, this time, of the energizing time of the feedback control correction amount of The responsiveness deterioration amount may be calculated based on the change of the integral term.

また、前記補正手段は、前記フィードバック制御での前記通電時期と前記燃料圧検出手段により検出される前記コモンレールの燃料圧の変化に基づいて算出する送油量に対応する通電時期とに基づいて前記応答性悪化量を算出するようにしてもよい。その際、前記補正手段は、オープン制御時に前記応答性悪化量を算出するようにしてもよい。   Further, the correction means is based on the energization timing in the feedback control and the energization timing corresponding to the oil supply amount calculated based on the change in the fuel pressure of the common rail detected by the fuel pressure detection means. The responsiveness deterioration amount may be calculated. At this time, the correction means may calculate the responsiveness deterioration amount during open control.

前記補正手段は、前記圧力制御弁の応答時間と前記通電期間との比が一定となるように、前記応答性悪化量に基づいて前記通電期間を長く変更するようにしてもよい。あるいは、前記補正手段は、前記応答性悪化量を加算して、前記通電期間を長く変更するようにしてもよい。 The correction means may change the energization period longer based on the responsiveness deterioration amount so that a ratio between the response time of the pressure control valve and the energization period becomes constant. Alternatively, the correction unit may add the responsiveness deterioration amount to change the energization period longer.

本発明の蓄圧式燃料噴射装置は、圧力制御弁の応答性悪化量を算出し、応答性悪化量に基づいて圧力制御弁の通電期間を長く変更するので、不必要に通電期間を長くすることなく省エネを図りながら、圧力制御弁の応答性悪化時でも高圧燃料の供給を維持できるという効果を奏する。   The pressure accumulation type fuel injection device of the present invention calculates the responsiveness deterioration amount of the pressure control valve, and changes the energization period of the pressure control valve based on the responsiveness deterioration amount, so that the energization period is unnecessarily extended. There is an effect that the supply of high-pressure fuel can be maintained even when the responsiveness of the pressure control valve is deteriorated while saving energy.

フィードバック制御する通電時期の変化に基づいて応答性悪化量を算出することにより、容易に応答性悪化量を定量的に算出できる。また、通電時期の補正量のうちの積分項分の変化に基づいて応答性悪化量を算出することにより、経時変化による応答性悪化を捉えることができる。   By calculating the responsiveness deterioration amount based on the change in the energization timing for feedback control, the responsiveness deterioration amount can be easily calculated quantitatively. Further, by calculating the responsiveness deterioration amount based on the change of the integral term of the correction amount of the energization time, it is possible to catch the responsiveness deterioration due to the change with time.

また、フィードバック制御での通電時期とコモンレールの燃料圧の変化に基づいて算出する送油量に対応する通電時期とに基づいて応答性悪化量を算出することにより、容易に応答性悪化量を定量的に算出できる。その際、オープン制御時に応答性悪化量を算出することにより、正確に算出できる。   In addition, the responsiveness deterioration amount can be easily quantified by calculating the responsiveness deterioration amount based on the energization timing in feedback control and the energization timing corresponding to the oil supply amount calculated based on the change in the fuel pressure of the common rail. Can be calculated automatically. In that case, it can calculate correctly by calculating the amount of responsiveness deterioration at the time of open control.

更に、応答性悪化量を加算して、通電期間を長く変更することにより、容易に通電期間を変更できる。あるいは、応答時間と通電期間との比が一定となるように、通電期間を変更することにより、より省エネを図ることができる。   Furthermore, the energization period can be easily changed by adding the responsiveness deterioration amount and changing the energization period longer. Alternatively, energy saving can be further achieved by changing the energization period so that the ratio between the response time and the energization period is constant.

本発明の一実施形態としての蓄圧式燃料噴射装置を示す全体構成図である。1 is an overall configuration diagram showing a pressure accumulation type fuel injection device as one embodiment of the present invention. 本実施形態の圧力制御弁と駆動信号との説明図である。It is explanatory drawing of the pressure control valve and drive signal of this embodiment. 本実施形態のフィードバック制御の制御ロジックを示すブロック図である。It is a block diagram which shows the control logic of the feedback control of this embodiment. 本実施形態の積分項と応答性悪化度合との関係を示すグラフである。It is a graph which shows the relationship between the integral term and responsiveness deterioration degree of this embodiment. 本実施形態の圧力制御弁の送油量と通電時期との関係を示すグラフである。It is a graph which shows the relationship between the oil supply amount of the pressure control valve of this embodiment, and energization timing. 本実施形態の電子制御回路において行われる応答性悪化補正処理の一例を示すフローチャートである。It is a flowchart which shows an example of the responsiveness deterioration correction process performed in the electronic control circuit of this embodiment. 本実施形態の圧力制御弁の駆動信号と弁リフトとポンプカムとのタイミングチャートである。It is a timing chart of the drive signal of a pressure control valve of this embodiment, a valve lift, and a pump cam. 別の実施形態の電子制御回路において行われる応答性悪化補正処理の一例を示すフローチャートである。It is a flowchart which shows an example of the responsiveness deterioration correction process performed in the electronic control circuit of another embodiment. 別の実施形態の圧力制御弁の送油量と通電時期との関係を示すグラフである。It is a graph which shows the relationship between the oil supply amount of the pressure control valve of another embodiment, and energization timing. 別の実施形態の圧力制御弁の駆動信号と弁リフトとポンプカムとのタイミングチャートである。It is a timing chart of the drive signal of a pressure control valve of another embodiment, a valve lift, and a pump cam. 従来の圧力制御弁の駆動信号と弁リフトとポンプカムとのタイミングチャートである。It is a timing chart of the drive signal of a conventional pressure control valve, a valve lift, and a pump cam.

以下本発明を実施するための形態を図面に基づいて詳細に説明する。図1は本発明の一実施形態としての蓄圧式燃料噴射装置を示す全体構成図である。
図1に示すように、本実施形態の蓄圧式燃料噴射装置は、例えば、4気筒のディーゼル機関としての内燃機関1に適用されており、高圧燃料を蓄えるコモンレール2と、燃料タンク3からフィードポンプ10により汲み上げた燃料を加圧してコモンレール2に供給する高圧燃料供給ポンプ4と、高圧配管17を介してコモンレール2より供給される高圧燃料を内燃機関1の気筒内の燃焼室21に噴射する燃料噴射弁5と、燃料噴射弁5等を電子制御する電子制御ユニット6(以下ECU6と呼ぶ)とを備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall configuration diagram showing a pressure accumulation type fuel injection device as one embodiment of the present invention.
As shown in FIG. 1, the pressure accumulation type fuel injection device of the present embodiment is applied to, for example, an internal combustion engine 1 as a four-cylinder diesel engine, and a common rail 2 that stores high-pressure fuel and a feed pump from a fuel tank 3. A high-pressure fuel supply pump 4 that pressurizes the fuel pumped up by 10 and supplies it to the common rail 2 and a fuel that injects high-pressure fuel supplied from the common rail 2 through the high-pressure pipe 17 into the combustion chamber 21 in the cylinder of the internal combustion engine 1. An injection valve 5 and an electronic control unit 6 (hereinafter referred to as ECU 6) for electronically controlling the fuel injection valve 5 and the like are provided.

コモンレール2は、ECU6により運転状態等に基づいて目標圧が設定され、高圧燃料供給ポンプ4から供給された高圧燃料を目標圧に蓄圧する。このコモンレール2には、蓄圧された燃料圧を検出してECU6に出力する燃料圧検出手段としての燃料圧センサ7が取り付けられている。   The common rail 2 has a target pressure set by the ECU 6 based on the operating state and the like, and accumulates the high-pressure fuel supplied from the high-pressure fuel supply pump 4 to the target pressure. A fuel pressure sensor 7 is attached to the common rail 2 as fuel pressure detecting means for detecting the accumulated fuel pressure and outputting it to the ECU 6.

高圧燃料供給ポンプ4は、図2に示すように、内燃機関1に駆動されて回転するカム24により、ローラ26を介してピストン28を往復動させ、フィードポンプ10より送り出された燃料を加圧室30に吸入し、加圧室30から加圧された燃料を吐出弁32を押し開いてコモンレール2に供給するように構成されている。   As shown in FIG. 2, the high-pressure fuel supply pump 4 is driven by the internal combustion engine 1 and rotated by a cam 24 to reciprocate a piston 28 via a roller 26 to pressurize the fuel fed from the feed pump 10. The fuel is sucked into the chamber 30, and the fuel pressurized from the pressurizing chamber 30 is configured to push the discharge valve 32 and supply it to the common rail 2.

高圧燃料供給ポンプ4には、圧力制御弁34が設けられており、圧力制御弁34は図示しないソレノイドを励磁することにより弁体36を摺動させて弁座38に着座させて閉弁する。また、弁体36は加圧室30内の燃料圧を閉弁方向に受けて閉弁状態を維持し、加圧室30の負圧による作用力や図示しないバネ等の付勢部材の付勢力等により弁体36を弁座38から離間させて開弁する。   The high-pressure fuel supply pump 4 is provided with a pressure control valve 34. The pressure control valve 34 slides the valve body 36 by exciting a solenoid (not shown) to be seated on the valve seat 38 and closes the valve. Further, the valve body 36 receives the fuel pressure in the pressurizing chamber 30 in the valve closing direction and maintains the valve closed state. The valve body 36 acts by the negative pressure of the pressurizing chamber 30 and the biasing force of a biasing member such as a spring (not shown). The valve body 36 is separated from the valve seat 38 and opened by, for example.

圧力制御弁34には、予め設定された通電期間Tssの駆動信号が入力されて、ソレノイドが励磁される。駆動信号は高圧燃料供給ポンプ4の圧縮行程時の所定の通電時期に入力され、ソレノイドの励磁による弁体36の弁リフトにより弁座38に着座して閉弁する。圧力制御弁34が閉弁すると、加圧室30からの高圧燃料がコモンレール2に供給され、通電時期を変更することにより、高圧燃料供給ポンプ4からコモンレール2に供給される送油量を可変でき、コモンレール2の燃料圧を制御できる。   A drive signal for a preset energization period Tss is input to the pressure control valve 34, and the solenoid is excited. The drive signal is input at a predetermined energization timing during the compression stroke of the high-pressure fuel supply pump 4 and is seated on the valve seat 38 by the valve lift of the valve body 36 by excitation of the solenoid to close the valve. When the pressure control valve 34 is closed, the high pressure fuel from the pressurizing chamber 30 is supplied to the common rail 2, and the amount of oil supplied from the high pressure fuel supply pump 4 to the common rail 2 can be varied by changing the energization timing. The fuel pressure of the common rail 2 can be controlled.

高圧燃料供給ポンプ4の圧縮行程中に圧力制御弁34への通電期間Tssが経過して、ソレノイドの励磁が停止しても、弁体36は加圧室30の燃料圧を受けて、弁座38に着座する閉弁状態を維持し、高圧燃料供給ポンプ4が圧縮行程から吸入工程に変わると、弁体36は弁座38から離間して開弁する。これにより、フィードポンプ10からの燃料を加圧室30に吸入する。   Even if the energization period Tss to the pressure control valve 34 elapses during the compression stroke of the high-pressure fuel supply pump 4 and the excitation of the solenoid is stopped, the valve body 36 receives the fuel pressure in the pressurizing chamber 30 and receives the valve seat. When the high-pressure fuel supply pump 4 changes from the compression stroke to the suction process while the valve-closing state seated on the valve 38 is maintained, the valve body 36 opens away from the valve seat 38. Thereby, the fuel from the feed pump 10 is sucked into the pressurizing chamber 30.

このように、加圧室30に燃料を吸入した後、ピストン28が圧縮行程に移行しても直ちに圧力制御弁34を閉弁せずに、加圧室30内の燃料が所定量となるまで開弁を保持して余剰の燃料を排出し、供給時に送油量の調量を行なうプレストローク制御を行っている。また、閉弁後は燃料圧により閉弁状態が維持されるので、通電期間Tssは圧力制御弁34の基本応答時間TFDを加味して、最小の期間に予め設定して、省エネを図っている。   As described above, after the fuel is sucked into the pressurizing chamber 30, even if the piston 28 shifts to the compression stroke, the pressure control valve 34 is not immediately closed and the fuel in the pressurizing chamber 30 reaches a predetermined amount. Pre-stroke control is performed to hold the valve open, discharge excess fuel, and adjust the amount of oil delivered during supply. Since the closed state is maintained by the fuel pressure after the valve is closed, the energization period Tss is set in advance to a minimum period in consideration of the basic response time TFD of the pressure control valve 34 to save energy. .

前記各センサ等はECU6に接続されており、ECU6は、図1に示すように、周知のCPU62、ROM64、RAM66等を中心に論理演算回路として構成され、外部と入出力を行う入出力回路、ここでは入出力回路68をコモンバス70を介して相互に接続されている。   Each sensor is connected to an ECU 6, and the ECU 6 is configured as a logical operation circuit around a known CPU 62, ROM 64, RAM 66, etc., as shown in FIG. Here, the input / output circuits 68 are connected to each other via a common bus 70.

CPU62は、燃料圧センサ7、パルサ16に形成された複数の歯を検出する電磁ピックアップを用いた回転センサ18及びアクセルペダル19の踏込量に応じたアクセル開度を検出するアクセル開度センサ20からの入力信号を入出力回路68を介して入力する。   The CPU 62 includes a fuel pressure sensor 7, a rotation sensor 18 using an electromagnetic pickup that detects a plurality of teeth formed on the pulsar 16, and an accelerator opening sensor 20 that detects an accelerator opening corresponding to the amount of depression of the accelerator pedal 19. Are input via the input / output circuit 68.

これらの信号及びROM64、RAM66内のデータや予め記憶された制御プログラムに基づいてCPU62は、回転センサ18により検出される回転数やアクセル開度センサ20により検出されるアクセル開度等の運転状態に基づいて燃料噴射弁5からの噴射量や噴射時期を算出する。また、回転数や噴射量に基づいて、コモンレール2の目標圧を算出し、噴射量とコモンレール2の目標圧とに基づいて、高圧燃料供給ポンプ4からコモンレール2に供給する送油量を算出する。   Based on these signals, data in the ROM 64 and RAM 66 and a control program stored in advance, the CPU 62 is in an operating state such as the number of revolutions detected by the rotation sensor 18 and the accelerator opening detected by the accelerator opening sensor 20. Based on this, the injection amount and injection timing from the fuel injection valve 5 are calculated. Further, the target pressure of the common rail 2 is calculated based on the rotation speed and the injection amount, and the amount of oil supplied from the high-pressure fuel supply pump 4 to the common rail 2 is calculated based on the injection amount and the target pressure of the common rail 2. .

送油量の算出の際には、図3の制御ロジックに示すように、フィードバック制御が行われ、燃料圧センサ7により検出されるコモンレール2の燃料圧と、目標圧との圧力偏差△Pを算出する。比例ゲインKp に圧力偏差△Pを乗算してフィードバック制御の補正量に用いられる比例項を算出する。次に、積分ゲインKi に燃料圧と目標圧との圧力偏差△Pの積分値を乗算して、積分項を算出する。続いて、指令送油量に比例項と積分項とを加算して圧力制御弁34に出力し、圧力制御弁34をフィードバック制御する。   When calculating the amount of oil to be fed, feedback control is performed as shown in the control logic of FIG. 3, and the pressure deviation ΔP between the fuel pressure of the common rail 2 detected by the fuel pressure sensor 7 and the target pressure is calculated. calculate. A proportional term used for the correction amount of the feedback control is calculated by multiplying the proportional gain Kp by the pressure deviation ΔP. Next, the integral term is calculated by multiplying the integral gain Ki by the integral value of the pressure deviation ΔP between the fuel pressure and the target pressure. Subsequently, the proportional term and the integral term are added to the command oil supply amount and output to the pressure control valve 34, and the pressure control valve 34 is feedback-controlled.

下記(1)式のように、補正量に微分ゲインKd に圧力偏差△Pの微分値を乗算した微分項を加味したPID制御によるフィードバック制御を行ってもよい。
補正量=Kp ×△P+Ki ×∫△P+Kd ×d/dt△P…(1)
経時変化等により、圧力制御弁34の応答性が低下すると、補正量のうち、積分項が増加し、図4に示すように、特に、負荷が一定の運転状態である定常運転時の積分項の増加と圧力制御弁34の応答性悪化度合とは比例する。
As shown in the following equation (1), feedback control by PID control in which a differential term obtained by multiplying the correction amount by the differential gain Kd and the differential value of the pressure deviation ΔP may be performed.
Correction amount = Kp × ΔP + Ki × ∫ΔP + Kd × d / dtΔP (1)
When the responsiveness of the pressure control valve 34 decreases due to a change over time or the like, the integral term of the correction amount increases. As shown in FIG. 4, in particular, the integral term during steady operation in which the load is in a constant operation state. And the degree of responsiveness deterioration of the pressure control valve 34 are proportional.

また、コモンレール2への送油量Qとそれによるコモンレール2内の圧力変化量△Pとの関係は下記(2)式により算出できる。ここで、VCRはコモンレール2の容積、Kはコモンレール2内の燃料の体積弾性係数である。   Further, the relationship between the oil feed amount Q to the common rail 2 and the pressure change amount ΔP in the common rail 2 can be calculated by the following equation (2). Here, VCR is the volume of the common rail 2, and K is the bulk elastic modulus of the fuel in the common rail 2.

Q=△P×VCR/K…(2)
一方、図5に実線で示すように、予め送油量Qと圧力制御弁34への通電時期TF との関係が記憶されており、この関係に基づいて、送油量Qから圧力制御弁34への通電時期TF が算出される。
Q = ΔP × VCR / K (2)
On the other hand, as indicated by a solid line in FIG. 5, the relationship between the oil supply amount Q and the energization timing TF to the pressure control valve 34 is stored in advance, and based on this relationship, the oil supply amount Q is changed to the pressure control valve 34. The energization time TF is calculated.

次に、ECU6により実行される補正手段としての応答性悪化処理について図6に示すフローチャートに基づいて説明する。
まず、回転センサ18により検出される回転数、アクセル開度センサ20により検出されるアクセル開度、燃料圧センサ7により検出されるコモンレール2の燃料圧等に基づいて、現在の運転状態を認識する(ステップ100。以下S100という。以下同様。)。次に、認識した運転状態に基づいて、定常状態であるか否かを判断する(S110)。定常状態とは、車両が平坦な道路を定速で走行し、回転数がほぼ一定で、アクセル開度もほぼ一定の運転状態で、コモンレール2の燃料圧の変動が少なく、コモンレール2の目標圧や送油量がほぼ一定の状態をいう。定常状態であるときには、負荷の変動等がなく、コモンレール2の燃料圧の変化が少ない。
Next, responsiveness deterioration processing as correction means executed by the ECU 6 will be described based on the flowchart shown in FIG.
First, based on the number of revolutions detected by the rotation sensor 18, the accelerator opening detected by the accelerator opening sensor 20, the fuel pressure of the common rail 2 detected by the fuel pressure sensor 7, etc., the current operating state is recognized. (Step 100, hereinafter referred to as S100, and so on). Next, based on the recognized driving state, it is determined whether or not it is in a steady state (S110). The steady state is a driving state where the vehicle travels on a flat road at a constant speed, the rotational speed is substantially constant, the accelerator opening is also substantially constant, the fuel pressure fluctuation of the common rail 2 is small, and the target pressure of the common rail 2 is small. And the amount of oil sent is almost constant. When in a steady state, there is no load fluctuation and the change in the fuel pressure of the common rail 2 is small.

定常状態でないと判断したときには(S110:NO)、本制御処理を一旦終了し、定常状態であると判断すると(S110:YES)、フィードバック制御の補正量のうち、積分項分の認識に基づいて応答性悪化量△Tを算出する(S120)。   When it is determined that it is not in a steady state (S110: NO), this control process is temporarily terminated, and when it is determined that it is in a steady state (S110: YES), based on recognition of the integral term of the feedback control correction amount. The responsiveness deterioration amount ΔT is calculated (S120).

図5に示すように、圧力制御弁34の応答性が悪化した際、同じ通電時期TF1のままでは、送油量△Qが減少する。同じ送油量を維持するために、フィーバック制御により圧力制御弁34の新品当時等の正常時の通電時期TF1に対して、応答性悪化時の通電時期TF2に進角する。正常時の通電時期TF1に対して、応答性悪化時の通電時期TF2が進角した悪化角度量△TF は下記(3)式により算出できる。   As shown in FIG. 5, when the responsiveness of the pressure control valve 34 deteriorates, the oil feed amount ΔQ decreases at the same energization timing TF1. In order to maintain the same oil feed amount, the feedback control is advanced to the energization timing TF2 when the responsiveness deteriorates with respect to the normal energization timing TF1 when the pressure control valve 34 is new. The deterioration angle amount ΔTF obtained by advancing the energization timing TF2 when the responsiveness deteriorates with respect to the normal energization timing TF1 can be calculated by the following equation (3).

△TF=TF1−TF2…(3)
正常時の通電時期TF1は、正常時の定常運転時に記憶し、定常運転時に(3)式により悪化角度量△TF を算出することにより、悪化角度量△TF は積分項の補正量に相当し、悪化角度量△TF は圧力制御弁34の応答性の悪化に対応する。また、悪化角度量△TF はフィードバック制御の積分項から直接算出するようにしてもよい。
△ TF = TF1-TF2 (3)
The normal energization timing TF1 is stored during normal steady operation, and the deterioration angle amount ΔTF is calculated by the equation (3) during normal operation, so that the deterioration angle amount ΔTF corresponds to the correction amount of the integral term. The deterioration angle amount ΔTF corresponds to the deterioration of the responsiveness of the pressure control valve 34. Further, the deterioration angle amount ΔTF may be directly calculated from the integral term of the feedback control.

次に、この悪化角度量△TF から、下記(4)式により、応答性悪化量△Tを算出する。ここで、Np は高圧燃料供給ポンプ4のカム24の回転数(rpm)であり、角度が単位である悪化角度量△TF を時間に変換する。   Next, the responsiveness deterioration amount ΔT is calculated from the deterioration angle amount ΔTF by the following equation (4). Here, Np is the rotation speed (rpm) of the cam 24 of the high-pressure fuel supply pump 4 and converts the deterioration angle amount ΔTF whose angle is a unit into time.

△T=△TF/((Np/60)×360))…(4)
次に、この応答性悪化量△Tを通電期間Tssに加算して、補正通電期間Tssb を下記(5)式により算出する(S130)。
ΔT = ΔTF / ((Np / 60) × 360)) (4)
Next, this responsiveness deterioration amount ΔT is added to the energization period Tss, and the corrected energization period Tssb is calculated by the following equation (5) (S130).

Tssb=Tss+△T…(5)
通電期間Tssを応答性悪化量△Tの分だけ長くした補正通電期間Tssb により圧力制御弁34を制御することにより、図7に示すように、駆動信号の通電期間が長くなり、応答性が悪化した圧力制御弁34でも、弁体36が弁座38に確実に着座して閉弁し、高圧燃料供給ポンプ4から高圧の燃料がコモンレール2に供給される。よって、不必要に通電期間を長くすることなく省エネを図りながら、圧力制御弁34の応答性悪化時でも高圧燃料の供給を維持できる。
Tssb = Tss + ΔT (5)
By controlling the pressure control valve 34 with the corrected energization period Tssb in which the energization period Tss is increased by the responsiveness deterioration amount ΔT, as shown in FIG. 7, the energization period of the drive signal becomes longer and the responsiveness deteriorates. Even in the pressure control valve 34, the valve body 36 is securely seated on the valve seat 38 and is closed, and high-pressure fuel is supplied from the high-pressure fuel supply pump 4 to the common rail 2. Therefore, the supply of high-pressure fuel can be maintained even when the responsiveness of the pressure control valve 34 is deteriorated while saving energy without unnecessarily extending the energization period.

補正通電期間Tssb は、通電期間Tssに応答性悪化量△Tを加算する場合に限らず、圧力制御弁34の基本応答時間TFDと通電期間Tssとの比が一定となるように、下記(6)式により補正通電期間Tssb を算出してもよい。   The correction energization period Tssb is not limited to the case where the responsiveness deterioration amount ΔT is added to the energization period Tss, and is as follows so that the ratio between the basic response time TFD of the pressure control valve 34 and the energization period Tss becomes constant. ) May be used to calculate the correction energization period Tssb.

TFD/Tss=(△T+TFD)/Tssb=一定…(6)
次に、前述した応答性悪化処理と異なる別の実施形態の補正手段としての応答性悪化処理について、図8のフローチャートによって説明する。
TFD / Tss = (ΔT + TFD) / Tssb = constant (6)
Next, responsiveness deterioration processing as a correction unit according to another embodiment different from the responsiveness deterioration processing described above will be described with reference to the flowchart of FIG.

まず、オープン制御時か否かを判断する(S200)。始動時や検査モード時には、圧力制御弁34に、予め設定された指定送油量となるように、予め設定された通電時期TFaの駆動パルスが入力され、オープン制御される。オープン制御時には一定の送油量がコモンレール2に供給され、負荷の変動等がなく、コモンレール2の燃料圧の変化が少ない。   First, it is determined whether or not it is during open control (S200). At the time of start-up or inspection mode, a drive pulse of a preset energization time TFa is input to the pressure control valve 34 so as to obtain a preset designated oil feed amount, and open control is performed. During open control, a constant amount of oil is supplied to the common rail 2, there is no load fluctuation, and the change in the fuel pressure of the common rail 2 is small.

オープン制御時でないときには(S200:NO)、一旦本制御処理を終了し、オープン制御時には(S200:YES)、図9に示すように、指定送油量での通電時期TFaを認識する(S210)。次に、オープン制御時の実送油量を算出する(S220)。   When it is not at the time of open control (S200: NO), this control process is once ended, and at the time of open control (S200: YES), as shown in FIG. 9, the energization timing TFa at the designated oil feed amount is recognized (S210). . Next, the actual oil supply amount at the time of open control is calculated (S220).

実送油量Qは、図10に示すように、オープン制御時の圧力制御弁34に駆動信号を出力して閉弁した際のコモンレール2の圧力変化量△Pを燃料圧センサ7により検出し、その圧力変化量△Pから前述した(2)式により算出する。   As shown in FIG. 10, the actual oil supply amount Q is detected by the fuel pressure sensor 7 by detecting the pressure change amount ΔP of the common rail 2 when the drive signal is output to the pressure control valve 34 during the open control and the valve is closed. The pressure change amount ΔP is calculated from the above-described equation (2).

そして、この算出した実送油量Qに対応する通電時期TFbを図9に実線で示す正常時の送油量と通電時期との関係から算出する(S230)。続いて、指定送油量での通電時期TFaから実送油量での通電時期TFbを減算して、下記(7)式のように、悪化角度量△TF を算出する。圧力制御弁34の応答性が悪化すると、指定送油量に対して実送油量Qが減少するので、悪化角度量△TF は圧力制御弁34の応答性の悪化に対応する。   Then, the energization timing TFb corresponding to the calculated actual oil supply amount Q is calculated from the relationship between the normal oil supply amount and the energization timing shown by the solid line in FIG. 9 (S230). Subsequently, the deterioration angle amount ΔTF is calculated by subtracting the energization timing TFb at the actual oil supply amount from the energization timing TFa at the designated oil supply amount, as shown in the following equation (7). When the responsiveness of the pressure control valve 34 deteriorates, the actual oil supply amount Q decreases with respect to the designated oil supply amount, so the deterioration angle amount ΔTF corresponds to the deterioration of the responsiveness of the pressure control valve 34.

△TF=|TFa−TFb|…(7)
次に、悪化角度量△TF から、前述した(4)式により、悪化角度量△TF を時間に変換した応答性悪化量△Tを算出する(S240)。この応答性悪化量△Tを通電期間Tssに加算して、補正通電期間Tssb を前述した(5)式により算出する(S250)。あるいは、圧力制御弁34の基本応答時間TFDと通電期間Tssとの比が一定となるように、(6)式により補正通電期間Tssb を算出してもよい。
ΔTF = | TFa−TFb | (7)
Next, the responsiveness deterioration amount ΔT obtained by converting the deterioration angle amount ΔTF into time is calculated from the deterioration angle amount ΔTF by the above-described equation (4) (S240). The responsive deterioration amount ΔT is added to the energization period Tss, and the corrected energization period Tssb is calculated by the above-described equation (5) (S250). Alternatively, the corrected energization period Tssb may be calculated by equation (6) so that the ratio between the basic response time TFD of the pressure control valve 34 and the energization period Tss is constant.

前述した実施形態と同様、駆動信号の通電期間が長くなり、応答性が悪化した圧力制御弁34でも、弁体36が弁座38に確実に着座して閉弁し、高圧燃料供給ポンプ4から高圧の燃料がコモンレール2に供給される。よって、不必要に通電期間を長くすることなく省エネを図りながら、圧力制御弁34の応答性悪化時でも高圧燃料の供給を維持できる。   Similarly to the above-described embodiment, even in the pressure control valve 34 in which the energization period of the drive signal is long and the responsiveness is deteriorated, the valve body 36 is securely seated on the valve seat 38 and is closed, and the high pressure fuel supply pump 4 High pressure fuel is supplied to the common rail 2. Therefore, the supply of high-pressure fuel can be maintained even when the responsiveness of the pressure control valve 34 is deteriorated while saving energy without unnecessarily extending the energization period.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

1…内燃機関 2…コモンレール
3…燃料タンク 4…高圧燃料供給ポンプ
5…燃料噴射弁 6…電子制御ユニット
7…燃料圧センサ 10…フィードポンプ
17…高圧配管 18…回転センサ
20…アクセル開度センサ 21…燃焼室
24…カム 26…ローラ
28…ピストン 30…加圧室
32…吐出弁 34…圧力制御弁
36…弁体 38…弁座
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Common rail 3 ... Fuel tank 4 ... High pressure fuel supply pump 5 ... Fuel injection valve 6 ... Electronic control unit 7 ... Fuel pressure sensor 10 ... Feed pump 17 ... High pressure piping 18 ... Rotation sensor 20 ... Accelerator opening sensor DESCRIPTION OF SYMBOLS 21 ... Combustion chamber 24 ... Cam 26 ... Roller 28 ... Piston 30 ... Pressurization chamber 32 ... Discharge valve 34 ... Pressure control valve 36 ... Valve body 38 ... Valve seat

Claims (7)

内燃機関の気筒内に燃料を噴射する燃料噴射弁と、
高圧に蓄圧された燃料を保持し前記燃料噴射弁に供給するコモンレールと、
該コモンレールに高圧燃料を供給する高圧燃料供給ポンプと、
駆動信号の入力により閉弁して高圧燃料を前記高圧燃料供給ポンプから前記コモンレールに供給すると共に、前記高圧燃料の圧力を閉弁方向に受けて閉弁を維持し、前記高圧燃料供給ポンプからの供給を制御する圧力制御弁と、
前記コモンレールの燃料圧を検出する燃料圧検出手段とを備え、
前記燃料圧検出手段により検出した前記燃料圧と目標圧とに基づく通電時期及び予め設定された通電期間に応じた前記駆動信号により前記圧力制御弁を制御して前記コモンレールの燃料圧を制御する蓄圧式燃料噴射装置において、
前記燃料圧と前記目標圧とに基づいてフィードバック制御する前記通電時期の補正量のうちの積分項分の変化に基づいて前記圧力制御弁の応答性悪化量を算出し、該応答性悪化量に基づいて前記圧力制御弁への前記通電期間を長く変更する補正手段を備えたことを特徴とする蓄圧式燃料噴射装置。
A fuel injection valve for injecting fuel into a cylinder of the internal combustion engine;
A common rail that holds fuel accumulated at a high pressure and supplies the fuel to the fuel injection valve;
A high pressure fuel supply pump for supplying high pressure fuel to the common rail;
The high-pressure fuel is supplied from the high-pressure fuel supply pump to the common rail by closing the drive signal, and the pressure of the high-pressure fuel is received in the valve closing direction to maintain the valve closed. A pressure control valve to control the supply;
Fuel pressure detecting means for detecting the fuel pressure of the common rail,
Accumulated pressure for controlling the fuel pressure of the common rail by controlling the pressure control valve by the drive signal according to the energization timing based on the fuel pressure detected by the fuel pressure detecting means and the target pressure and a preset energization period. In the fuel injection device,
A responsiveness deterioration amount of the pressure control valve is calculated based on a change of an integral term of a correction amount of the energization timing for feedback control based on the fuel pressure and the target pressure, and the responsiveness deterioration amount is calculated as the responsiveness deterioration amount. A pressure-accumulation fuel injection apparatus comprising: a correction unit that changes the energization period of the pressure control valve to be longer.
内燃機関の気筒内に燃料を噴射する燃料噴射弁と、
高圧に蓄圧された燃料を保持し前記燃料噴射弁に供給するコモンレールと、
該コモンレールに高圧燃料を供給する高圧燃料供給ポンプと、
駆動信号の入力により閉弁して高圧燃料を前記高圧燃料供給ポンプから前記コモンレールに供給すると共に、前記高圧燃料の圧力を閉弁方向に受けて閉弁を維持し、前記高圧燃料供給ポンプからの供給を制御する圧力制御弁と、
前記コモンレールの燃料圧を検出する燃料圧検出手段とを備え、
前記燃料圧検出手段により検出した前記燃料圧と目標圧とに基づく通電時期及び予め設定された通電期間に応じた前記駆動信号により前記圧力制御弁を制御して前記コモンレールの燃料圧を制御する蓄圧式燃料噴射装置において、
前記燃料圧と前記目標圧とに基づいてフィードバック制御する前記通電時期と前記燃料圧検出手段により検出される前記コモンレールの燃料圧の変化に基づいて算出する送油量に対応する通電時期とに基づいて前記圧力制御弁の応答性悪化量を算出し、該応答性悪化量に基づいて前記圧力制御弁への前記通電期間を長く変更する補正手段を備えたことを特徴とする蓄圧式燃料噴射装置。
A fuel injection valve for injecting fuel into a cylinder of the internal combustion engine;
A common rail that holds fuel accumulated at a high pressure and supplies the fuel to the fuel injection valve;
A high pressure fuel supply pump for supplying high pressure fuel to the common rail;
The high-pressure fuel is supplied from the high-pressure fuel supply pump to the common rail by closing the drive signal, and the pressure of the high-pressure fuel is received in the valve closing direction to maintain the valve closed. A pressure control valve to control the supply;
Fuel pressure detecting means for detecting the fuel pressure of the common rail,
Accumulated pressure for controlling the fuel pressure of the common rail by controlling the pressure control valve by the drive signal according to the energization timing based on the fuel pressure detected by the fuel pressure detecting means and the target pressure and a preset energization period. In the fuel injection device,
Based on the energization timing for feedback control based on the fuel pressure and the target pressure, and the energization timing corresponding to the oil supply amount calculated based on the change in the fuel pressure of the common rail detected by the fuel pressure detection means. A pressure accumulating fuel injection apparatus, comprising: a correction means for calculating a responsiveness deterioration amount of the pressure control valve and changing the energization period to the pressure control valve based on the responsiveness deterioration amount. .
前記補正手段は、オープン制御時に前記応答性悪化量を算出することを特徴とする請求項2に記載の蓄圧式燃料噴射装置。 The pressure-accumulation fuel injection device according to claim 2 , wherein the correction means calculates the responsiveness deterioration amount during open control. 前記補正手段は、前記応答性悪化量を加算して、前記通電期間を長く変更することを特徴とする請求項1ないし請求項3のいずれかに記載の蓄圧式燃料噴射装置。 The pressure-accumulation fuel injection device according to any one of claims 1 to 3 , wherein the correction means adds the responsiveness deterioration amount to change the energization period longer. 前記補正手段は、前記圧力制御弁の応答時間と前記通電期間との比が一定となるように、前記応答性悪化量に基づいて前記通電期間を長く変更することを特徴とする請求項1ないし請求項3のいずれかに記載の蓄圧式燃料噴射装置。 The said correction | amendment means changes the said electricity supply period long based on the said responsiveness deterioration amount so that the ratio of the response time of the said pressure control valve and the said electricity supply period may become fixed. The pressure accumulation type fuel injection device according to claim 3 . 内燃機関の気筒内に燃料を噴射する燃料噴射弁と、
高圧に蓄圧された燃料を保持し前記燃料噴射弁に供給するコモンレールと、
該コモンレールに高圧燃料を供給する高圧燃料供給ポンプと、
駆動信号の入力により閉弁して高圧燃料を前記高圧燃料供給ポンプから前記コモンレールに供給すると共に、前記高圧燃料の圧力を閉弁方向に受けて閉弁を維持し、前記高圧燃料供給ポンプからの供給を制御する圧力制御弁と、
前記コモンレールの燃料圧を検出する燃料圧検出手段とを備え、
前記燃料圧検出手段により検出した前記燃料圧と目標圧とに基づく通電時期及び予め設定された通電期間に応じた前記駆動信号により前記圧力制御弁を制御して前記コモンレールの燃料圧を制御する蓄圧式燃料噴射装置において、
前記通電時期に基づいて前記圧力制御弁の応答性悪化量を算出し、前記圧力制御弁の応答時間と前記通電期間との比が一定となるように、前記応答性悪化量に基づいて前記圧力制御弁への前記通電期間を長く変更する補正手段を備えたことを特徴とする蓄圧式燃料噴射装置。
A fuel injection valve for injecting fuel into a cylinder of the internal combustion engine;
A common rail that holds fuel accumulated at a high pressure and supplies the fuel to the fuel injection valve;
A high pressure fuel supply pump for supplying high pressure fuel to the common rail;
The high-pressure fuel is supplied from the high-pressure fuel supply pump to the common rail by closing the drive signal, and the pressure of the high-pressure fuel is received in the valve closing direction to maintain the valve closed. A pressure control valve to control the supply;
Fuel pressure detecting means for detecting the fuel pressure of the common rail,
Accumulated pressure for controlling the fuel pressure of the common rail by controlling the pressure control valve by the drive signal according to the energization timing based on the fuel pressure detected by the fuel pressure detecting means and the target pressure and a preset energization period. In the fuel injection device,
The pressure response valve responsiveness deterioration amount is calculated based on the energization timing, and the pressure response valve deterioration time amount based on the responsiveness deterioration amount so that a ratio between the pressure control valve response time and the energization period is constant. A pressure-accumulation fuel injection apparatus comprising a correction means for changing the energization period to the control valve longer.
前記補正手段は、前記燃料圧と前記目標圧とに基づいてフィードバック制御する前記通電時期の変化に基づいて前記応答性悪化量を算出することを特徴とする請求項6に記載の蓄圧式燃料噴射装置。 The accumulator fuel injection according to claim 6 , wherein the correction unit calculates the responsiveness deterioration amount based on a change in the energization timing for feedback control based on the fuel pressure and the target pressure. apparatus.
JP2011033539A 2011-02-18 2011-02-18 Accumulated fuel injection system Active JP5633422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033539A JP5633422B2 (en) 2011-02-18 2011-02-18 Accumulated fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033539A JP5633422B2 (en) 2011-02-18 2011-02-18 Accumulated fuel injection system

Publications (2)

Publication Number Publication Date
JP2012172552A JP2012172552A (en) 2012-09-10
JP5633422B2 true JP5633422B2 (en) 2014-12-03

Family

ID=46975697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033539A Active JP5633422B2 (en) 2011-02-18 2011-02-18 Accumulated fuel injection system

Country Status (1)

Country Link
JP (1) JP5633422B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301095B2 (en) * 1991-12-16 2002-07-15 株式会社デンソー Injection pressure control device
JPH08232738A (en) * 1995-02-22 1996-09-10 Nippondenso Co Ltd Fuel injection control device for diesel engine
JP3746392B2 (en) * 1999-04-02 2006-02-15 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP3577991B2 (en) * 1999-04-30 2004-10-20 トヨタ自動車株式会社 Common rail fuel pressure control system for internal combustion engines
JP2002038998A (en) * 2000-07-24 2002-02-06 Nissan Motor Co Ltd Fuel injection device for diesel engine

Also Published As

Publication number Publication date
JP2012172552A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5212501B2 (en) Fuel injection device
JP4345861B2 (en) Fuel injection control device and fuel injection system using the same
JP3714099B2 (en) Fuel pressure control device for internal combustion engine
US20080216797A1 (en) High pressure fuel pump control apparatus for an internal combustion engine
JP4333549B2 (en) Fuel injection control device for internal combustion engine
JP5141723B2 (en) Fuel injection control device for internal combustion engine
JP5939227B2 (en) Pump control device
JP4111123B2 (en) Common rail fuel injection system
JP4569598B2 (en) Pressure reducing valve control device and fuel injection system using the same
JP3818011B2 (en) Fuel pressure control device for internal combustion engine
JP2015014221A (en) Control device of high pressure pump
JP5884744B2 (en) Fuel supply device
JP2009138593A (en) Accumulating type fuel injection device
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP5310464B2 (en) Fuel injection device
JP5799919B2 (en) Pump control device
JP2011144711A (en) Fuel injection device
JP2010190147A (en) Fuel pressure control device
JP5991268B2 (en) Fuel supply device for internal combustion engine
JP2007023801A (en) Fuel pressure control device for internal combustion engine
JP5633422B2 (en) Accumulated fuel injection system
JP4670832B2 (en) Pressure control device and fuel injection control system
JP2010216370A (en) Fuel supply control device
JP5589910B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R151 Written notification of patent or utility model registration

Ref document number: 5633422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250