JP5633111B2 - Variable magnification optical system and optical apparatus equipped with the variable magnification optical system - Google Patents

Variable magnification optical system and optical apparatus equipped with the variable magnification optical system Download PDF

Info

Publication number
JP5633111B2
JP5633111B2 JP2009037562A JP2009037562A JP5633111B2 JP 5633111 B2 JP5633111 B2 JP 5633111B2 JP 2009037562 A JP2009037562 A JP 2009037562A JP 2009037562 A JP2009037562 A JP 2009037562A JP 5633111 B2 JP5633111 B2 JP 5633111B2
Authority
JP
Japan
Prior art keywords
lens group
lens
focal length
object side
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009037562A
Other languages
Japanese (ja)
Other versions
JP2010191336A (en
Inventor
智希 伊藤
智希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009037562A priority Critical patent/JP5633111B2/en
Priority to US12/708,951 priority patent/US8416506B2/en
Publication of JP2010191336A publication Critical patent/JP2010191336A/en
Application granted granted Critical
Publication of JP5633111B2 publication Critical patent/JP5633111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、変倍光学系、及び、この変倍光学系を備えた光学機器に関する。 The present invention, the variable magnification optical system, and to an optical apparatus including the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2005−121694号公報JP 2005-121694 A

しかしながら、従来の変倍光学系は、近距離撮影時及び手振れ補正時における収差変動の問題に対応できていないという課題があった。   However, the conventional variable magnification optical system has a problem that it cannot cope with the problem of aberration fluctuations at the time of short-distance photographing and camera shake correction.

本発明はこのような課題に鑑みてなされたものであり、近距離撮影時及び手振れ補正時における諸収差を良好にし、優れた光学性能を備えた変倍光学系、及び、この変倍光学系を備えた光学機器を提供することを目的とする。 The present invention has been made in view of such a problem, and provides a variable power optical system that has excellent various optical aberrations at the time of short-distance shooting and camera shake correction, and the variable power optical system. It aims at providing the optical instrument provided with.

前記課題を解決するために、本発明に係る変倍光学系は、物体側より順に、最も物体側に配置された正の屈折力を有する第1レンズ群と、第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、最も像面側に配置された正の屈折力を有する第Gnレンズ群を有して構成される。そして、変倍に際し、第1レンズ群と第Gnレンズ群とは固定されており、互いに隣り合うレンズ群間の間隔が、変倍時に変化し、合焦に際し、第2レンズ群と第Gnレンズ群との間に配置された少なくとも一つのレンズ群が合焦レンズ群として移動するよう構成する。 In order to solve the above-described problem, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a positive refractive power disposed closest to the object side, a second lens group, and a positive lens And a third lens group having a refractive power, and a Gn lens group having a positive refractive power arranged closest to the image plane side. In zooming, the first lens group and the Gn lens group are fixed, and the interval between adjacent lens groups changes during zooming, and in focusing, the second lens group and Gth lens group are changed. At least one lens group arranged between the n lens groups is configured to move as a focusing lens group.

このとき、第Gnレンズ群の一部である、負の屈折力を有する防振レンズ群を、光軸と略直交方向の成分を持つように移動する At this time, a part of the G n lens unit, a vibration reduction lens group having negative refractive power and moves so as to have an optical axis substantially perpendicular direction component.

また、このとき、第Gnレンズ群の焦点距離をfGnとし、防振レンズ群の焦点距離をfVRとしたとき、次式
−3.5 < fGn/fVR < −0.8
の条件を満足する
At this time, the focal length of the G n lens unit and FGn, when the focal length of the vibration reduction lens group and FVR, the following expression -3.5 <fGn / fVR <-0.8
To satisfy the conditions.

また、本変倍光学系において、第2レンズ群と第Gnレンズ群との間には、少なくとも2つのレンズ群を有することが好ましい。 In the variable magnification optical system, it is preferable that at least two lens groups are provided between the second lens group and the Gn lens group.

また、本変倍光学系において、第Gnレンズ群は、物体側より順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、正の屈折力を有する第3部分群と、を有し、第2部分群が防振レンズ群であることが好ましい。 In this variable magnification optical system, the Gn lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, and a positive refractive power. It is preferable that the second partial group is an anti-vibration lens group.

また、本変倍光学系は、第Gnレンズ群の焦点距離をfGnとし、合焦レンズ群の焦点距離をfGfとしたとき、次式
0.20 < |fGf/fGn| < 1.00
の条件を満足することが好ましい。
Further, the present zoom lens system, the focal length of the G n lens unit and FGn, the focal length of the focusing lens group has a FGF, the following formula 0.20 <| fGf / fGn | < 1.00
It is preferable to satisfy the following conditions.

また、本変倍光学系は、第Gnレンズ群の焦点距離をfGnとし、望遠端状態における全系の焦点距離をftとしたとき、次式
0.40 < |fGn|/ft < 1.00
の条件を満足することが好ましい。
Further, the present zoom lens system, the focal length of the G n lens unit and FGn, when the focal length of the entire system at the telephoto end state ft, the following formula 0.40 <| fGn | / ft < 1. 00
It is preferable to satisfy the following conditions.

また、本変倍光学系は、防振レンズ群の焦点距離をfVRとし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < |fVR|/fw < 1.90
の条件を満足することが好ましい。
Further, in this variable magnification optical system, when the focal length of the anti-vibration lens group is fVR and the focal length of the entire system in the wide-angle end state is fw, the following expression 0.10 <| fVR | / fw <1.90.
It is preferable to satisfy the following conditions.

また、本変倍光学系は、物体側より順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第Gnレンズ群と、を有することが好ましい。 The zoom optical system preferably includes, in order from the object side, a first lens group, a second lens group, a third lens group, a fourth lens group, and a Gn lens group. .

また、本変倍光学系は、第4レンズ群が正の屈折力を有することが好ましい。In the variable magnification optical system, it is preferable that the fourth lens group has a positive refractive power.

また、本発明に係る光学機器は、上述の変倍光学系のいずれかを備えて構成される。   An optical apparatus according to the present invention includes any of the above-described variable magnification optical systems.

本発明に係る変倍光学系、及び、この変倍光学系を備えた光学機器を以上のように構成すると、近距離撮影時及び手振れ補正時における諸収差を良好に補正可能な、優れた光学性能を得ることができる。 Variable magnification optical system according to the present invention, and, when forming the optical apparatus including the variable magnification optical system as described above, can be satisfactorily corrected aberrations at the time and image stabilization close object, excellent optical Performance can be obtained.

第1実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 1st Example. 第1実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 4A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the first embodiment, FIG. 5A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第1実施例の中間焦点距離状態での無限遠合焦状態の諸収差図であり、(a)は中間焦点距離状態における無限遠合焦状態の諸収差図であり、(b)は中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 2A is a diagram illustrating various aberrations in an infinitely focused state in an intermediate focal length state according to the first embodiment, FIG. 3A is a diagram illustrating various aberrations in an infinitely focused state in an intermediate focal length state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in an infinitely focused state in a distance state. 第1実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 2A is a diagram illustrating various aberrations in an infinitely focused state in the telephoto end state according to the first embodiment, FIG. 3A is a diagram illustrating various aberrations in an infinitely focused state in the telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第1実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態での近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 3A is an aberration diagram in a short-distance object focusing state according to the first embodiment, FIG. 3A is an aberration diagram in a short-distance object focusing state in a wide-angle end state, and FIG. FIG. 4C is an aberration diagram in the object in-focus state, and FIG. 4C is an aberration diagram in the near-field object focus state in the telephoto end state. 第2実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 2nd Example. 第2実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 6A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the second embodiment, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第2実施例の中間焦点距離状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 6A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state according to a second embodiment, FIG. 5A is a diagram illustrating various aberrations in an infinite focus state in a telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in an infinitely focused state. 第2実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 6A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state according to the second embodiment, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第2実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態における近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 6A is an aberration diagram in a short-distance object in-focus state according to the second embodiment, FIG. 5A is an aberration diagram in a short-distance object in-focus state in a wide-angle end state, and FIG. FIG. 4C is an aberration diagram in a focused state, and FIG. 4C is an aberration diagram in a short-distance object focused state in a telephoto end state. 第3実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 3rd Example. 第3実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 7A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the third embodiment, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第3実施例の中間焦点距離状態での無限遠合焦状態の諸収差図であり、(a)は中間焦点距離状態における無限遠合焦状態の諸収差図であり、(b)は中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 6A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state according to the third embodiment, FIG. 5A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in an infinitely focused state in a distance state. 第3実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 7A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state according to the third embodiment, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第3実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態における近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 10A is an aberration diagram of the third embodiment in a short-distance object focusing state, FIG. 10A is an aberration diagram of a short-distance object focusing state in the wide-angle end state, and FIG. FIG. 4C is an aberration diagram in a focused state, and FIG. 4C is an aberration diagram in a short-distance object focused state in a telephoto end state. 第4実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 4th Example. 第4実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the fourth embodiment, FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第4実施例の中間焦点距離状態での無限遠合焦状態の諸収差図であり、(a)は中間焦点距離状態における無限遠合焦状態の諸収差図であり、(b)は中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 7A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state according to the fourth embodiment, FIG. 9A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in an infinitely focused state in a distance state. 第4実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 7A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state according to the fourth embodiment, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第4実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態における近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 10A is an aberration diagram in a short-distance object in-focus state according to the fourth embodiment. FIG. 10A is an aberration diagram in a near-field object in a wide-angle end state. FIG. FIG. 4C is an aberration diagram in a focused state, and FIG. 4C is an aberration diagram in a short-distance object focused state in a telephoto end state. 第5実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 5th Example. 第5実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 7A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the fifth example, FIG. 9A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第5実施例の中間焦点距離状態での無限遠合焦状態の諸収差図であり、(a)は中間焦点距離状態における無限遠合焦状態の諸収差図であり、(b)は中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 6A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state according to a fifth embodiment, FIG. 5A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in an infinitely focused state in a distance state. 第5実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 10 is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state according to the fifth embodiment, (a) is various aberration diagrams in the infinitely focused state in the telephoto end state, and (b) is the telephoto end state. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第5実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態における近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 10A is an aberration diagram of the near-field object in a focused state according to the fifth embodiment, FIG. 10A is an aberration diagram of the near-field object in a wide-angle end state, and FIG. FIG. 4C is an aberration diagram in a focused state, and FIG. 4C is an aberration diagram in a short-distance object focused state in a telephoto end state. 第6実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 6th Example. 第6実施例の広角端状態での無限遠合焦状態の諸収差図であり、(a)は広角端状態における無限遠合焦状態の諸収差図であり、(b)は広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state according to the sixth example, FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the wide-angle end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a rotational shake of 0.40 ° in the infinitely focused state. 第6実施例の中間焦点距離状態の無限遠合焦状態の諸収差図であり、(a)は中間焦点距離状態における無限遠合焦状態の諸収差図であり、(b)は中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 10A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state according to the sixth embodiment, FIG. 10A is a diagram illustrating various aberrations in an infinite focus state in an intermediate focal length state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in an infinitely focused state. 第6実施例の望遠端状態での無限遠合焦状態の諸収差図であり、(a)は望遠端状態における無限遠合焦状態の諸収差図であり、(b)は望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図である。FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state according to the sixth embodiment, FIG. 10A is a diagram illustrating various aberrations in the infinitely focused state in the telephoto end state, and FIG. FIG. 6 is a meridional lateral aberration diagram when shake correction is performed for a 0.30 ° rotational shake in the infinite focus state. 第6実施例の近距離物体合焦状態の収差図であり、(a)は広角端状態における近距離物体合焦状態の収差図であり、(b)は中間焦点距離状態での近距離物体合焦状態の収差図であり、(c)は望遠端状態での近距離物体合焦状態の収差図である。FIG. 10A is an aberration diagram of the near-field object focusing state according to the sixth embodiment, FIG. 10A is an aberration diagram of the near-field object focusing state in the wide-angle end state, and FIG. FIG. 4C is an aberration diagram in a focused state, and FIG. 4C is an aberration diagram in a short-distance object focused state in a telephoto end state. 本実施形態に係る変倍光学系を搭載する電子スチルカメラを示し、(a)は正面図であり、(b)は背面図である。1 shows an electronic still camera equipped with a variable magnification optical system according to the present embodiment, in which (a) is a front view and (b) is a rear view. 図31(a)のA−A′線に沿った断面図である。It is sectional drawing along the AA 'line of Fig.31 (a). 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本願の好ましい実施形態について図面を参照して説明する。まず、本実施形態の変倍光学系ZLは、図1に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。そして、変倍に際し、第1レンズ群G1と第5レンズ群G5とは固定されていることが望ましい。この構成にすることで、変倍機構の簡略化することができ、鏡筒の小型化を図ることができる。また、このように第1レンズ群G1と第5レンズ群G5とを固定とすると、変倍光学系ZLの全長を一定に保つことができる。   Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. First, as shown in FIG. 1, the variable magnification optical system ZL of the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. In zooming, it is desirable that the first lens group G1 and the fifth lens group G5 are fixed. With this configuration, the zooming mechanism can be simplified, and the size of the lens barrel can be reduced. Further, when the first lens group G1 and the fifth lens group G5 are fixed as described above, the entire length of the variable magnification optical system ZL can be kept constant.

また、合焦に際し、第2レンズ群と第5レンズ群G5との間に配置された少なくとも一つのレンズ群(本実施形態では、第3レンズ群G3)が合焦レンズ群Gfとして移動する構成とすることが望ましい。第3レンズ群G3は、他のレンズ群に比べてレンズ枚数が少なく、かつ、外径が小さいため、合焦を行うのに適している。この構成にすることで、迅速な合焦を行うことができる。また、合焦による全長変化もなく、近距離物体撮影時にも良好な光学性能を得ることができる。   In focusing, at least one lens group (in this embodiment, the third lens group G3) disposed between the second lens group and the fifth lens group G5 moves as the focusing lens group Gf. Is desirable. The third lens group G3 is suitable for focusing because it has a smaller number of lenses and a smaller outer diameter than the other lens groups. With this configuration, rapid focusing can be performed. Further, there is no change in the overall length due to focusing, and good optical performance can be obtained even when shooting a short-distance object.

また、第5レンズ群G5の少なくとも一部が防振レンズ群として光軸と略直交方向の成分を持つように移動する構成とすることが望ましい。この構成にすることで、小径のレンズ群で防振することができ、手振れ補正機構の小型化・軽量化と、鏡筒の小型化とを図ることができる。なお、光軸と略直交方向の成分を持つような移動とは、光軸に対して直交方向に移動する他、光軸に対して斜め方向に移動したり、光軸上の一点を回転中心として揺動することも含まれる。   In addition, it is desirable that at least a part of the fifth lens group G5 moves as an anti-vibration lens group so as to have a component in a direction substantially orthogonal to the optical axis. With this configuration, it is possible to prevent vibration with a small-diameter lens group, and it is possible to reduce the size and weight of the camera shake correction mechanism and the size of the lens barrel. The movement having a component in a direction substantially orthogonal to the optical axis is not only to move in a direction orthogonal to the optical axis, but also to move in an oblique direction with respect to the optical axis, Swinging is also included.

このとき、第5レンズ群G5は、物体側より順に、正の屈折力を有する第1部分群G5aと、負の屈折力を有する第2部分群G5bと、正の屈折力を有する第3部分群G5cとを有する構成で、第2部分群G5bが防振レンズ群であることが望ましい。この構成にすることで、最も小径のレンズ群で防振することができ、鏡筒の小径化を図ることができる。   At this time, the fifth lens group G5 includes, in order from the object side, a first partial group G5a having a positive refractive power, a second partial group G5b having a negative refractive power, and a third part having a positive refractive power. It is desirable that the second partial group G5b is an anti-vibration lens group in the configuration having the group G5c. With this configuration, vibration can be prevented with the lens group having the smallest diameter, and the diameter of the lens barrel can be reduced.

それでは、このような変倍光学系ZLを構成するための条件について説明する。まず、変倍光学系ZLが、第1レンズ群G1から第Gnレンズ群Gnまでのレンズ群を有する場合、本変倍光学系ZLは、防振レンズ群の焦点距離をfVRとしたとき、以下の条件式(1)を満足することが望ましい。なお、本実施形態では、レンズ群が5群構成であるため(n=5)、第Gnレンズ群Gnは第5レンズ群G5を示す。また、防振レンズ群は、第5レンズ群G5を構成する第2部分群G5bを示す。 Now, conditions for constructing such a variable magnification optical system ZL will be described. First, when the variable magnification optical system ZL has lens groups from the first lens group G1 to the Gn lens group Gn , the variable magnification optical system ZL has the focal length of the image stabilizing lens group as fVR. It is desirable that the following conditional expression (1) is satisfied. In this embodiment, since the lens group has a five-group configuration (n = 5), the Gn lens group Gn indicates the fifth lens group G5. The anti-vibration lens group indicates a second partial group G5b that constitutes the fifth lens group G5.

−3.5 < fGn/fVR < −0.8 (1) −3.5 <fGn / fVR <−0.8 (1)

条件式(1)は、防振レンズ群(第2部分群G5b)の焦点距離に対する、適正な第Gnレンズ群Gn(第5レンズ群G5)の焦点距離を規定するものである。この条件式(1)の上限値を上回ると、防振レンズ群のパワーが弱くなり、防振時のシフト量が多くなるため鏡筒外径が大きくなり好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を−1.0にすることが好ましい。反対に、条件式(1)の下限値を下回ると、防振レンズ群のパワーが強くなり、倍率色収差が大きくなる。また、歪曲収差も大きくなる。また、製造誤差による性能劣化が大きくなるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を−3.0にすることが好ましい。 Conditional expression (1) defines an appropriate focal length of the Gn lens group Gn (fifth lens group G5) with respect to the focal length of the image stabilizing lens group (second partial group G5b). Exceeding the upper limit of conditional expression (1) is not preferable because the power of the anti-vibration lens group becomes weak and the shift amount at the time of anti-vibration increases, and the outer diameter of the lens barrel increases. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to −1.0. On the other hand, if the lower limit value of conditional expression (1) is not reached, the power of the anti-vibration lens group becomes strong and the chromatic aberration of magnification becomes large. Also, distortion becomes large. In addition, it is not preferable because performance degradation due to manufacturing errors increases. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to −3.0.

また、本変倍光学系ZLは、合焦レンズ群Gf(本実施形態では、第3レンズ群G3)の焦点距離をfGfとしたとき、以下の条件式(2)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (2) when the focal length of the focusing lens group Gf (in this embodiment, the third lens group G3) is fGf.

0.20 < |fGf/fGn| < 1.00 (2) 0.20 <| fGf / fGn | <1.00 (2)

条件式(2)は、第Gnレンズ群Gn(第5レンズ群G5)の焦点距離に対する、適正な合焦レンズ群Gf(第3レンズ群G3)の焦点距離を規定するものである。この条件式(2)の上限値を上回ると、合焦レンズ群Gfのパワーが弱くなり、合焦時における合焦レンズ群Gfの移動量が大きくなるため、鏡筒全長が長くなり好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を0.90にすることが好ましい。反対に、条件式(2)の下限値を下回ると、合焦レンズ群Gfのパワーが強くなり、合焦時における望遠端状態での球面収差の変動と広角端状態での像面変動とが大きくなるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を0.35にすることが好ましい。 Conditional expression (2) defines an appropriate focal length of the focusing lens group Gf (third lens group G3) with respect to the focal length of the Gn lens group Gn (fifth lens group G5). If the upper limit value of conditional expression (2) is exceeded, the power of the focusing lens group Gf becomes weak, and the amount of movement of the focusing lens group Gf at the time of focusing becomes large. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.90. On the other hand, if the lower limit value of conditional expression (2) is not reached, the power of the focusing lens group Gf becomes strong, and there is a variation in spherical aberration in the telephoto end state and an image plane variation in the wide-angle end state during focusing. Since it becomes large, it is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.35.

また、本変倍光学系ZLは、望遠端状態における全系の焦点距離をftとしたとき、以下の条件式(3)を満足することが望ましい。   Further, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (3) when the focal length of the entire system in the telephoto end state is ft.

0.4 < |fGn|/ft < 1.0 (3) 0.4 <| fGn | / ft <1.0 (3)

条件式(3)は、望遠端状態における全系の焦点距離に対する、適正な第Gnレンズ群Gn(第5レンズ群G5)の焦点距離を規定するものである。この条件式(3)の上限値を上回ると、第Gnレンズ群Gnのパワーが弱くなり、光学全長が長くなるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を0.8にすることが好ましい。反対に、条件式(3)の下限値を下回ると、第Gnレンズ群Gnのパワーが強くなり、望遠端における球面収差、コマ収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を0.5にすることが好ましい。 Conditional expression (3) defines an appropriate focal length of the Gn lens group Gn (fifth lens group G5) with respect to the focal length of the entire system in the telephoto end state. Exceeding the upper limit of conditional expression (3) is not preferable because the power of the Gn lens group Gn becomes weak and the optical total length becomes long. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.8. On the other hand, if the lower limit value of conditional expression (3) is not reached, the power of the Gn lens group Gn becomes strong, and it becomes difficult to correct spherical aberration and coma at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.5.

また、本変倍光学系ZLは、防振レンズ群(本実施形態では、第5レンズ群G5を構成する第2部分群G5b)の焦点距離をfVRとしたとき、次式以下の条件式(4)を満足することが望ましい。   The variable magnification optical system ZL has the following conditional expression (when the focal length of the anti-vibration lens group (in this embodiment, the second partial group G5b constituting the fifth lens group G5) is fVR: It is desirable to satisfy 4).

0.10 < |fVR|/fw < 1.90 (4) 0.10 <| fVR | / fw <1.90 (4)

条件式(4)は、広角端状態における全系の焦点距離に対する、適正な防振レンズ群(第2部分群G5b)の焦点距離を規定するものである。この条件式(4)の上限値を上回ると、防振レンズ群のパワーが弱くなり、防振時のシフト量が多くなるため、鏡筒外径が大きくなり好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を1.20にすることが好ましい。反対に、条件式(4)の下限値を下回ると、防振レンズ群のパワーが強くなり、防振時の広角端状態における像面のタオレ変動が大きくなる。また、防振時の制御誤差による光学性能の劣化が大きくなるため好ましくない。なお、本実施形態の効果を確実にするため、条件式(4)の下限値を0.50にするのが好ましい。   Conditional expression (4) defines an appropriate focal length of the image stabilizing lens group (second partial group G5b) with respect to the focal length of the entire system in the wide-angle end state. If the upper limit of conditional expression (4) is exceeded, the power of the anti-vibration lens group becomes weak and the amount of shift at the time of anti-vibration increases, which is not preferable because the outer diameter of the lens barrel increases. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 1.20. On the other hand, if the lower limit value of conditional expression (4) is not reached, the power of the image stabilizing lens group becomes strong, and the Taole variation of the image plane in the wide-angle end state during image stabilization increases. In addition, the optical performance is greatly deteriorated due to a control error during image stabilization, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.50.

図31及び図32に、上述の変倍光学系ZLを備える光学機器として、電子スチルカメラ1(以後、単にカメラと記す)の構成を示す。このカメラ1は、不図示の電源ボタンを押すと撮影レンズ(変倍光学系ZL)の不図示のシャッタが開放され、変倍光学系ZLで不図示の被写体からの光が集光され、像面Iに配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、カメラ1の背後に配置された液晶モニター2に表示される。撮影者は、液晶モニター2を見ながら被写体像の構図を決めた後、レリーズボタン3を押し下げ被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。   31 and 32 show a configuration of an electronic still camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL. In the camera 1, when a power button (not shown) is pressed, a shutter (not shown) of the photographing lens (variable magnification optical system ZL) is opened, and light from a subject (not shown) is condensed by the variable magnification optical system ZL. The image is formed on an image sensor C (for example, a CCD or a CMOS) disposed on the surface I. The subject image formed on the image sensor C is displayed on the liquid crystal monitor 2 disposed behind the camera 1. The photographer determines the composition of the subject image while looking at the liquid crystal monitor 2, and then presses the release button 3 to photograph the subject image with the image sensor C and records and saves it in a memory (not shown).

このカメラ1には、被写体が暗い場合に補助光を発光する補助光発光部4、変倍光学系ZLを広角端状態(W)から望遠端状態(T)にズーミングする際のワイド(W)−テレ(T)ボタン5、及び、カメラ1の種々の条件設定等に使用するファンクションボタン6等が配置されている。なお、このカメラ1は、ハーフミラー、焦点板、ペンタプリズム、接眼光学系などを備える、いわゆる一眼レフカメラとしてもよい。また、変倍光学系ZLは、一眼レフカメラに着脱可能な交換レンズに備えられるものとしてもよい。   The camera 1 includes an auxiliary light emitting unit 4 that emits auxiliary light when the subject is dark, and a wide (W) when zooming the zoom optical system ZL from the wide-angle end state (W) to the telephoto end state (T). A tele (T) button 5 and function buttons 6 used for setting various conditions of the camera 1 are arranged. The camera 1 may be a so-called single-lens reflex camera including a half mirror, a focusing screen, a pentaprism, an eyepiece optical system, and the like. The variable magnification optical system ZL may be provided in an interchangeable lens that can be attached to and detached from a single-lens reflex camera.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

まず、上述の説明及び以降に示す実施例においては、最も物体側に配置された2つのレンズ群をそれぞれ第1レンズ群G1及び第2レンズ群G2とした5群構成の変倍光学系ZLを示したが、これら2つのレンズ群を1つのレンズ群とした4群構成として扱ってもよい(例えば、以降に示す第4実施例)。この場合、この1つのレンズ群に含まれる、物体側のレンズ群を前部分レンズ群と呼び、像側のレンズ群を後部分レンズ群と呼ぶ。   First, in the above-described explanation and the embodiments described below, a variable magnification optical system ZL having a five-group configuration in which two lens groups arranged closest to the object side are respectively a first lens group G1 and a second lens group G2 is used. Although shown, these two lens groups may be treated as a four-group configuration in which one lens group is used (for example, a fourth embodiment described below). In this case, the object side lens group included in the one lens group is referred to as a front partial lens group, and the image side lens group is referred to as a rear partial lens group.

更に、以上の構成条件等は、6群、7群等の他の群構成にも適用可能である。具体的には、最も物体側に正の屈折率を有する少なくとも1つのレンズを追加した構成や、最も像側に正の屈折力または負の屈折力を有する少なくとも1つのレンズを追加した構成や、第1レンズ群G1と第5レンズ群G5との間に、3つ以上のレンズ群を配置した構成が挙げられる。   Furthermore, the above configuration conditions and the like can be applied to other group configurations such as the 6th group and the 7th group. Specifically, a configuration in which at least one lens having a positive refractive index on the most object side is added, a configuration in which at least one lens having a positive refractive power or a negative refractive power is added on the most image side, A configuration in which three or more lens groups are arranged between the first lens group G1 and the fifth lens group G5 can be mentioned.

また、上記の説明においては、第3レンズ群G3を合焦に用いる場合について説明したが、この第3レンズ群G3に限らず、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群Gfとしても良い。この場合、合焦レンズ群Gfはオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、上述のように第3レンズ群G3を合焦レンズ群Gfとするのが好ましいが、第4レンズ群G4で合焦してもよい。   In the above description, the case where the third lens group G3 is used for focusing has been described. However, the present invention is not limited to the third lens group G3, and a single lens group, a plurality of lens groups, or a partial lens group is arranged in the optical axis direction. The focusing lens group Gf may be moved to focus from an infinitely distant object to a close object. In this case, the focusing lens group Gf can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, the third lens group G3 is preferably set as the focusing lens group Gf as described above, but the fourth lens group G4 may be used for focusing.

また、この変倍光学系ZLは、レンズ面を非球面としても構わない。このとき、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the zoom optical system ZL, the lens surface may be an aspherical surface. At this time, any one of an aspheric surface by grinding, a glass mold aspheric surface in which glass is formed into an aspheric shape by a mold, and a composite aspheric surface in which resin is formed in an aspheric shape on the surface of the glass may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第5レンズ群G5の近傍または第5レンズ群G5中に配置されるのが好ましいが、開口絞りSとしての部材を設けずに、レンズの枠でその役割を代用しても良い。また、変倍に際し、開口絞りSと、この開口絞りSより像側に配置されたレンズとを固定とすることにより、Fナンバーを一定とすることができる。   The aperture stop S is preferably disposed in the vicinity of the fifth lens group G5 or in the fifth lens group G5. However, the role of the aperture stop S may be substituted by a lens frame without providing a member as the aperture stop S. good. Further, when zooming, by fixing the aperture stop S and the lens disposed on the image side of the aperture stop S, the F-number can be made constant.

さらに、各レンズ面には、広い波長域で高い透過率を有する反射防止膜を施すことにより、フレアやゴーストを軽減し高コントラストの高い光学性能を達成できる。   Furthermore, an antireflection film having a high transmittance in a wide wavelength range is applied to each lens surface, thereby reducing flare and ghost and achieving high contrast and high optical performance.

本実施形態の変倍光学系ZLは、35mmフィルムサイズ換算での焦点距離が広角端状態で60〜80mm程度であり、また、望遠端状態で180〜400mm程度であり、変倍比が2〜5程度である。   The zoom optical system ZL of the present embodiment has a focal length in terms of 35 mm film size of about 60 to 80 mm in the wide-angle end state, and about 180 to 400 mm in the telephoto end state, and a zoom ratio of 2 to 2. About 5.

本実施形態の変倍光学系ZLは、第1レンズ群G1が少なくとも正のレンズ成分を2つと負のレンズ成分を1つ有するのが好ましい。また、第1レンズ群G1は、物体側より順に、負正正の順番にレンズ成分を配置するのが好ましい。また、第1レンズ群G1は、1つの接合レンズと、2つの単レンズとを有しているのが好ましい。   In the variable magnification optical system ZL of the present embodiment, it is preferable that the first lens group G1 has at least two positive lens components and one negative lens component. In the first lens group G1, it is preferable to dispose lens components in order of negative positive / positive in order from the object side. The first lens group G1 preferably has one cemented lens and two single lenses.

本実施形態の変倍光学系ZLは、第2レンズ群G2が少なくとも正のレンズ成分を1つと負のレンズ成分を2つ有するのが好ましい。また、第2レンズ群G2は、物体側より順に、負負正の順番にレンズ成分を配置するのが好ましい。また、2番目と3番目のレンズ成分を貼り合わせてもよい。さらに、第2レンズ群G2の最も像面側に負のレンズ成分を追加してもよい。   In the variable magnification optical system ZL of the present embodiment, it is preferable that the second lens group G2 has at least one positive lens component and two negative lens components. In the second lens group G2, it is preferable to dispose lens components in order of negative and positive in order from the object side. Alternatively, the second and third lens components may be bonded together. Further, a negative lens component may be added on the most image side of the second lens group G2.

本実施形態の変倍光学系ZLは、第3レンズ群G3が少なくとも正のレンズ成分を2つ有するのが好ましい。また、第3レンズ群G3は1つの接合レンズから構成してもよい。   In the variable magnification optical system ZL of the present embodiment, it is preferable that the third lens group G3 has at least two positive lens components. The third lens group G3 may be composed of one cemented lens.

本実施形態の変倍光学系ZLは、第4レンズ群G4が正または負の屈折力を有する1つのレンズ成分から構成するのが好ましいが、複数のレンズを用いて構成してもよい。   The variable magnification optical system ZL of the present embodiment is preferably configured by one lens component in which the fourth lens group G4 has positive or negative refractive power, but may be configured by using a plurality of lenses.

また、本実施形態の変倍光学系ZLにおいて、第5レンズ群G5は、上述したように、正負正の部分レンズ群(第1部分群G5a、第2部分群G5b、第3部分群G5c)を有し、第2部分群G5bを光軸と略直交方向に移動させることにより手振れ補正(防振)することができる。この構成により、変倍光学系ZLの径を小さくすることができる。また、第1部分群G5aは少なくとも1つの正のレンズ成分を有し、第2部分群G5b群は少なくとも1つの接合レンズを有し、第3部分群G5cは少なくとも負正1つずつのレンズ成分を有するのがよい。   In the variable magnification optical system ZL of the present embodiment, as described above, the fifth lens group G5 includes the positive and negative partial lens groups (first partial group G5a, second partial group G5b, and third partial group G5c). And correcting the camera shake (anti-vibration) by moving the second partial group G5b in a direction substantially orthogonal to the optical axis. With this configuration, the diameter of the variable magnification optical system ZL can be reduced. The first partial group G5a has at least one positive lens component, the second partial group G5b group has at least one cemented lens, and the third partial group G5c has at least one negative positive lens component. It is good to have.

なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。   In addition, in order to explain this application in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.

以下、本実施形態の変倍光学系ZLの製造方法の概略を、図33を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS100)。具体的に、本実施形態では、例えば、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズ、両凸レンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14を配置して第1レンズ群G1とし、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL24を配置して第2レンズ群G2とし、物体側より順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合レンズ、及び、両凸レンズL33を配置して第3レンズ群G3とし、物体側に凹面を向けた負メニスカスレンズL41を配置して第4レンズ群G4とし、第1部分群G5aとして、物体側より順に、物体側に凸面を向けた負メニスカスレンズL51と両凸レンズL52との接合レンズを配置し、第2部分群G5bとして、物体側より順に、物体側に凹面を向けた正メニスカスレンズL53と両凹レンズL54との接合レンズを配置し、第3部分群G5cとして、物体側より順に、物体側に凸面を向けた負メニスカスレンズL55と両凸レンズL56との接合レンズ、物体側に凸面を向けた正メニスカスレンズL57、及び、物体側に凹面を向けた負メニスカスレンズL58を配置して第5レンズ群G5とする。このようにして準備した各レンズ群を配置して変倍光学系ZLを製造する。   Hereinafter, the outline of the manufacturing method of the variable magnification optical system ZL of this embodiment will be described with reference to FIG. First, each lens is arranged and a lens group is prepared (step S100). Specifically, in this embodiment, for example, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, a biconvex lens L13, and A positive meniscus lens L14 having a convex surface facing the object side is arranged as the first lens group G1, and a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a convex surface facing the object side in order from the object side. A cemented lens with the positive meniscus lens L23 and a negative meniscus lens L24 with a concave surface facing the object side are arranged as a second lens group G2, and in order from the object side, a negative meniscus lens L31 with a convex surface facing the object side A negative meniscus lens L having a cemented lens with a biconvex lens L32 and a biconvex lens L33 to form a third lens group G3 with a concave surface facing the object side. 1 is arranged as a fourth lens group G4, and as a first partial group G5a, a cemented lens of a negative meniscus lens L51 having a convex surface facing the object side and a biconvex lens L52 is arranged in order from the object side, and the second part As a group G5b, a cemented lens of a positive meniscus lens L53 having a concave surface facing the object side and a biconcave lens L54 is disposed in order from the object side, and a convex surface is directed toward the object side in order from the object side as the third subgroup G5c. The fifth lens group G5 includes a cemented lens of the negative meniscus lens L55 and the biconvex lens L56, a positive meniscus lens L57 having a convex surface on the object side, and a negative meniscus lens L58 having a concave surface on the object side. . The variable power optical system ZL is manufactured by arranging the lens groups thus prepared.

この場合、変倍に際し、第1レンズ群G1と第5レンズ群G5とは固定されており、合焦に際し、第3レンズ群G3が合焦レンズ群Gfとして移動し、第2部分群G5bが防振レンズ群として光軸と略直交方向の成分を持つように移動するよう配置する(ステップS200)。   In this case, the first lens group G1 and the fifth lens group G5 are fixed during zooming, and the third lens group G3 moves as the focusing lens group Gf during focusing, and the second partial group G5b is moved. The anti-vibration lens group is arranged so as to move so as to have a component substantially perpendicular to the optical axis (step S200).

以下、本願の各実施例を、添付図面に基づいて説明する。図1、図6、図11、図16、図21及び図26に、この変倍光学系ZLの屈折力配分及び広角端状態(W)から望遠端状態(T)への焦点距離状態の変化における各レンズ群の移動の様子を示す。まず、第1の本発明に対応する第1〜第3、第5、及び、第6実施例に係る変倍光学系ZLは、図1、図6、図11、図21及び図26に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。第5レンズ群G5は、物体側より順に、正の屈折力を有する第1部分群G5aと、負の屈折力を有する第2部分群G5bと、正の屈折力を有する第3部分群G5cとから構成される。そして、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1及び第5レンズ群G5を固定させ、第3レンズ群G3または第4レンズ群G4を光軸に沿って移動させることにより遠距離物体から近距離物体への合焦を行い、さらに、第5レンズ群G5の第2部分群G5bを光軸と略直交方向に移動させることにより手振れ補正(防振)を行うように構成されている。   Embodiments of the present application will be described below with reference to the accompanying drawings. FIG. 1, FIG. 6, FIG. 11, FIG. 16, FIG. 21 and FIG. 26 show the refractive power distribution of this variable magnification optical system ZL and the change in the focal length state from the wide-angle end state (W) to the telephoto end state (T). The state of movement of each lens group in is shown. First, the variable magnification optical system ZL according to the first to third, fifth, and sixth examples corresponding to the first aspect of the present invention is shown in FIG. 1, FIG. 6, FIG. 11, FIG. Thus, in order from the object side, the first lens group G1 having positive refractive power, the second lens group G2 having negative refractive power, the third lens group G3 having positive refractive power, and the negative refraction A fourth lens group G4 having power and a fifth lens group G5 having positive refractive power are configured. The fifth lens group G5 includes, in order from the object side, a first partial group G5a having a positive refractive power, a second partial group G5b having a negative refractive power, and a third partial group G5c having a positive refractive power. Consists of In zooming from the wide-angle end state to the telephoto end state, the first lens group G1 and the fifth lens group G5 are fixed, and the third lens group G3 or the fourth lens group G4 is moved along the optical axis. Is used to focus from a long-distance object to a short-distance object, and to perform camera shake correction (anti-vibration) by moving the second partial group G5b of the fifth lens group G5 in a direction substantially orthogonal to the optical axis. It is configured.

第2の本発明に対応する第4実施例に係る変倍光学系ZLは、図16に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。第1レンズ群G1は、物体側より順に、正の屈折力を有する前部分レンズ群G1aと、正の屈折力を有する後部分レンズ群G1bとから構成される。また、第4レンズ群G4は、物体側より順に、正の屈折力を有する第1部分群G4aと、負の屈折力を有する第2部分群G4bと、正の屈折力を有する第3部分群G4cとから構成される。そして、広角端状態から望遠端状態への変倍に際し、前部分レンズ群G1a及び第4レンズ群G4を固定させ、第3レンズ群G3を光軸に沿って移動させることにより遠距離物体から近距離物体への合焦を行い、さらに、第4レンズ群G4の第2部分群G4bを光軸と略直交方向に移動させることにより手振れ補正(防振)を行うように構成されている。   As shown in FIG. 16, the variable magnification optical system ZL according to the fourth example corresponding to the second aspect of the invention includes, in order from the object side, a first lens group G1 having a positive refractive power and a negative refractive power. A second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power. The first lens group G1 includes, in order from the object side, a front partial lens group G1a having a positive refractive power and a rear partial lens group G1b having a positive refractive power. The fourth lens group G4 includes, in order from the object side, a first partial group G4a having a positive refractive power, a second partial group G4b having a negative refractive power, and a third partial group having a positive refractive power. G4c. When zooming from the wide-angle end state to the telephoto end state, the front lens group G1a and the fourth lens group G4 are fixed, and the third lens group G3 is moved along the optical axis to move the third lens group G3 along the optical axis. It is configured to focus on a distance object and to perform camera shake correction (anti-vibration) by moving the second partial group G4b of the fourth lens group G4 in a direction substantially orthogonal to the optical axis.

〔第1実施例〕
図1に示した変倍光学系ZLは、第1実施例に係る変倍光学系ZL1の構成を示しており、n=5としたとき、すなわち、5群構成の変倍光学系ZL1を示している。この変倍光学系ZL1において、第1レンズ群G1は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズ、両凸レンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14から構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL24から構成される。第3レンズ群G3は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合レンズ、及び、両凸レンズL33から構成される。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成される。第5レンズ群G5において、第1部分群G5aは、物体側より順に、物体側に凸面を向けた負メニスカスレンズL51と両凸レンズL52との接合レンズから構成され、第2部分群G5bは、物体側より順に、物体側に凹面を向けた正メニスカスレンズL53と両凹レンズL54との接合レンズから構成され、第3部分群G5cは、物体側より順に、物体側に凸面を向けた負メニスカスレンズL55と両凸レンズL56との接合レンズ、物体側に凸面を向けた正メニスカスレンズL57、及び、物体側に凹面を向けた負メニスカスレンズL58から構成される。開口絞りSは、第5レンズ群G5の最も物体側に位置し、第1部分群G5aに含まれる。
[First embodiment]
The variable magnification optical system ZL shown in FIG. 1 shows the configuration of the variable magnification optical system ZL1 according to the first example. When n = 5, that is, the variable magnification optical system ZL1 having a five-group configuration is shown. ing. In the variable magnification optical system ZL1, the first lens group G1 includes, in order from the object side, a cemented lens and a biconvex lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. L13 and a positive meniscus lens L14 having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side The negative meniscus lens L24 facing The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 and a biconvex lens L32 having a convex surface directed toward the object side, and a biconvex lens L33. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. In the fifth lens group G5, the first partial group G5a includes, in order from the object side, a cemented lens of a negative meniscus lens L51 having a convex surface facing the object side and a biconvex lens L52, and the second partial group G5b The third partial group G5c includes, in order from the object side, a negative meniscus lens L55 having a convex surface facing the object side. And a biconvex lens L56, a positive meniscus lens L57 having a convex surface facing the object side, and a negative meniscus lens L58 having a concave surface facing the object side. The aperture stop S is located closest to the object side of the fifth lens group G5 and is included in the first partial group G5a.

なお、全系の焦点距離がfで、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)がKのレンズで角度θの回転振れを補正するには、振れ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させれば良い(この関係は、以降の実施例においても同様である)。第1実施例の広角端状態においては、防振係数は1.20であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G5bの移動量は0.42(mm)である。また、第1実施例の中間焦点距離状態においては、防振係数は1.20であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.59(mm)である。また、第1実施例の望遠端状態においては、防振係数は1.20であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.86(mm)である。   Note that the rotational shake at an angle θ is corrected with a lens having a focal length f of the entire system and an image stabilization coefficient (ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) K. In this case, the moving lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K (this relationship is the same in the following embodiments). In the wide-angle end state of the first embodiment, the image stabilization coefficient is 1.20 and the focal length is 71.4 (mm). Therefore, the second subgroup for correcting the rotational shake of 0.40 °. The amount of movement of G5b is 0.42 (mm). Further, in the intermediate focal length state of the first embodiment, since the image stabilization coefficient is 1.20 and the focal length is 135.0 (mm), the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G5b is 0.59 (mm). Further, in the telephoto end state of the first embodiment, the image stabilization coefficient is 1.20 and the focal length is 196.0 (mm), so that the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G5b is 0.86 (mm).

以下の表1に、第1実施例の諸元の値を掲げる。この表1において、fは焦点距離、FNOはFナンバー、ωは半画角をそれぞれ表している。さらに、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、面間隔は各光学面から次の光学面までの光軸上の間隔を、屈折率及びアッベ数はそれぞれd線(λ=587.6nm)に対する値を、Bfは最終面から像面Iまでの光軸上の距離(バックフォーカス)を示している。ここで、以下の全ての諸元値において掲載されている焦点距離、曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。尚、曲率半径0.0000は平面を示し、空気の屈折率1.00000は省略してある。なお、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Table 1 below lists values of specifications of the first embodiment. In Table 1, f represents a focal length, FNO represents an F number, and ω represents a half angle of view. Furthermore, the surface number is the order of the lens surfaces from the object side along the direction of travel of the light beam, the surface interval is the distance on the optical axis from each optical surface to the next optical surface, and the refractive index and Abbe number are each A value for the d-line (λ = 587.6 nm), Bf indicates a distance (back focus) on the optical axis from the final surface to the image plane I. Here, “mm” is generally used for the focal length, the radius of curvature, the surface interval, and other length units listed in all the following specifications, but the optical system is proportionally enlarged or reduced. However, the same optical performance can be obtained, and the present invention is not limited to this. The radius of curvature of 0.0000 indicates a plane, and the refractive index of air of 1.0000 is omitted. The description of these symbols and the description of the specification table are the same in the following examples.

(表1)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 207.2519 2.0000 32.35 1.850260
2 77.5141 9.5000 82.52 1.497820
3 461.0795 0.1000
4 96.8810 8.0000 82.52 1.497820
5 -2446.3946 0.1000
6 74.8396 8.0000 65.46 1.603001
7 635.5296 (d1)
8 301.7367 2.2000 42.72 1.834807
9 35.0104 9.1179
10 -83.6050 2.0000 70.41 1.487490
11 42.3925 6.0000 23.78 1.846660
12 647.2222 4.5999
13 -49.2733 2.2000 65.46 1.603001
14 -2747.7138 (d2)
15 350.7655 2.0000 28.46 1.728250
16 91.4253 6.5000 65.46 1.603001
17 -94.5881 0.1000
18 143.9361 5.5000 65.46 1.603001
19 -132.9507 (d3)
20 -84.4304 2.5000 52.31 1.754999
21 -211.8686 (d4)
22 0.0000 1.0000 (開口絞りS)
23 44.5401 2.0000 32.35 1.850260
24 30.5381 9.0000 65.46 1.603001
25 -8165.2768 25.0000
26 -197.5962 4.0000 32.35 1.850260
27 -34.4924 2.0000 54.66 1.729157
28 47.2773 5.0000
29 147.5802 2.0000 32.35 1.850260
30 52.0642 6.0000 82.52 1.497820
31 -60.9696 0.1000
32 37.8007 6.0000 82.52 1.497820
33 394.5473 5.0000
34 -47.6819 2.0000 44.88 1.639300
35 -113.6656 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.90 〜 2.90 〜 2.90
ω = 17.12 〜 8.94 〜 6.14

[ズームレンズ群データ]
レンズ群 焦点距離
第1レンズ群 92.254
第2レンズ群 -28.021
第3レンズ群 64.313
第4レンズ群 -187.499
第5レンズ群 111.815
(Table 1)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 207.2519 2.0000 32.35 1.850 260
2 77.5141 9.5000 82.52 1.497820
3 461.0795 0.1000
4 96.8810 8.0000 82.52 1.497820
5 -2446.3946 0.1000
6 74.8396 8.0000 65.46 1.603001
7 635.5296 (d1)
8 301.7367 2.2000 42.72 1.834807
9 35.0104 9.1179
10 -83.6050 2.0000 70.41 1.487490
11 42.3925 6.0000 23.78 1.846660
12 647.2222 4.5999
13 -49.2733 2.2000 65.46 1.603001
14 -2747.7138 (d2)
15 350.7655 2.0000 28.46 1.728250
16 91.4253 6.5000 65.46 1.603001
17 -94.5881 0.1000
18 143.9361 5.5000 65.46 1.603001
19 -132.9507 (d3)
20 -84.4304 2.5000 52.31 1.754999
21 -211.8686 (d4)
22 0.0000 1.0000 (Aperture stop S)
23 44.5401 2.0000 32.35 1.850 260
24 30.5381 9.0000 65.46 1.603001
25 -8165.2768 25.0000
26 -197.5962 4.0000 32.35 1.850260
27 -34.4924 2.0000 54.66 1.729157
28 47.2773 5.0000
29 147.5802 2.0000 32.35 1.850 260
30 52.0642 6.0000 82.52 1.497820
31 -60.9696 0.1000
32 37.8007 6.0000 82.52 1.497820
33 394.5473 5.0000
34 -47.6819 2.0000 44.88 1.639300
35 -113.6656 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.90 to 2.90 to 2.90
ω = 17.12 to 8.94 to 6.14

[Zoom lens group data]
Lens group Focal length 1st lens group 92.254
Second lens group -28.021
Third lens group 64.313
Fourth lens group -187.499
Fifth lens group 111.815

この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表2に、この第1実施例に係る変倍光学系ZL1の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データ、Bf及び全長を示す。   In the first embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 2 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system ZL1 according to the first example.

(表2)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.000 23.001 30.816
d2 29.816 15.626 2.943
d3 6.617 14.919 19.787
d4 17.113 2.000 2.000
Bf 58.166 58.166 58.166
全長 253.180 253.180 253.180
(Table 2)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.000 23.001 30.816
d2 29.816 15.626 2.943
d3 6.617 14.919 19.787
d4 17.113 2.000 2.000
Bf 58.166 58.166 58.166
Total length 253.180 253.180 253.180

次の表3に、この第1実施例における条件式対応値を示す。なおこの表3において、fGnは第5レンズ群G5の焦点距離を、fwは広角端状態における全系の焦点距離を、fGfは合焦レンズ群Gf(第3レンズ群G3)の焦点距離を、fVRは防振レンズ群(第2部分群G5b)の焦点距離を、ftは望遠端状態における全系の焦点距離を、fnは負の屈折力を有するレンズ群のうち、最も物体側に位置するレンズ群(第2レンズ群G2)の焦点距離をそれぞれ表している。以降の実施例においても、特にことわりのない場合は、この符号の説明は同様である。   Table 3 below shows values corresponding to the conditional expressions in the first embodiment. In Table 3, fGn is the focal length of the fifth lens group G5, fw is the focal length of the entire system in the wide-angle end state, fGf is the focal length of the focusing lens group Gf (third lens group G3), fVR is the focal length of the anti-vibration lens group (second partial group G5b), ft is the focal length of the entire system in the telephoto end state, and fn is located closest to the object side among the lens groups having negative refractive power. The focal length of each lens group (second lens group G2) is shown. In the following embodiments, the description of the reference numerals is the same unless otherwise specified.

(表3)
(1)fGn/fVR=-1.827
(2)|fGf/fGn|=0.575
(3)|fGn|/ft=0.570
(4)|fVR|/fw=0.857
(Table 3)
(1) fGn / fVR = -1.827
(2) | fGf / fGn | = 0.575
(3) | fGn | /ft=0.570
(4) | fVR | /fw=0.857

この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図3(a)に、望遠端状態での無限遠合焦状態の収差図を図4(a)に、広角端状態での近距離物体合焦状態の収差図を図5(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図5(b)に、望遠端状態での近距離物体合焦状態の収差図を図5(c)にそれぞれ示す。また、第1実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図2(b)に示し、第1実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図3(b)に示し、第1実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図4(b)に示す。   FIG. 2A shows an aberration diagram in the infinite focus state in the wide-angle end state of this first embodiment, and FIG. 3A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 4A shows an aberration diagram in the infinite focus state in the end state, FIG. 5A shows an aberration diagram in the short distance object focus state in the wide angle end state, and a short distance in the intermediate focal length state. FIG. 5B shows an aberration diagram in the object in-focus state, and FIG. 5C shows an aberration diagram in the near-field object in-focus state in the telephoto end state. Further, FIG. 2B shows a meridional lateral aberration diagram when the shake correction is performed with respect to the rotational shake of 0.40 ° in the infinite focus state at the wide-angle end state in the first embodiment, and FIG. FIG. 3B shows a meridional lateral aberration diagram when shake correction is performed for 0.30 ° rotational shake in the infinite focus state at the intermediate focal length state in the telephoto end state of the first embodiment. FIG. 4B shows a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in the infinitely focused state.

各収差図において、FNOはFナンバーを、Aは半画角を、Yは像高を、H0は物体高を、dはd線(λ=587.6nm)を、gはg線(λ=435.6nm)をそれぞれ示している。また、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。なお、この収差図の説明は以降の実施例においても同様である。各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。   In each aberration diagram, FNO is the F number, A is the half field angle, Y is the image height, H0 is the object height, d is the d-line (λ = 587.6 nm), and g is the g-line (λ = 435.6 nm). In the aberration diagrams showing astigmatism, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. The description of this aberration diagram is the same in the following examples. As is apparent from the respective aberration diagrams, in the first embodiment, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

〔第2実施例〕
図6は、第2実施例に係る変倍光学系ZL2の構成を示す図であり、n=5としたとき、すなわち、5群構成の変倍光学系ZL2を示している。この図6の変倍光学系ZL2において、第1レンズ群G1は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズ、物体側に凸面を向けた正メニスカスレンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14から構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた正メニスカスレンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズから構成される。第3レンズ群G3は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合レンズ、及び、両凸レンズL33から構成される。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成される。第5レンズ群G5において、第1部分群G5aは、物体側より順に、両凸レンズL51と両凹レンズL52との接合レンズから構成され、第2部分群G5bは、物体側より順に、物体側に凹面を向けた正メニスカスレンズL53と両凹レンズL54との接合レンズから構成され、第3部分群G5cは、物体側より順に、物体側に凸面を向けた負メニスカスレンズL55と両凸レンズL56との接合レンズ、両凸レンズL57、及び、物体側に凹面を向けた負メニスカスレンズL58から構成される。開口絞りSは、第1部分群G5aと第2部分群G5bとの間であって、第1部分群G5aの最も像側に位置する。
[Second Embodiment]
FIG. 6 is a diagram illustrating the configuration of the variable magnification optical system ZL2 according to the second example. When n = 5, that is, the variable magnification optical system ZL2 having a five-group configuration is illustrated. In the variable magnification optical system ZL2 in FIG. 6, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. The positive meniscus lens L13 has a convex surface facing the object side, and the positive meniscus lens L14 has a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side And a negative meniscus lens L25 having a concave surface facing the object side. The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 and a biconvex lens L32 having a convex surface directed toward the object side, and a biconvex lens L33. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. In the fifth lens group G5, the first partial group G5a is composed of a cemented lens of a biconvex lens L51 and a biconcave lens L52 in order from the object side, and the second partial group G5b is concave on the object side in order from the object side. The third partial group G5c is a cemented lens of a negative meniscus lens L55 and a biconvex lens L56 having a convex surface directed toward the object side in order from the object side. , A biconvex lens L57, and a negative meniscus lens L58 having a concave surface facing the object side. The aperture stop S is located between the first partial group G5a and the second partial group G5b and closest to the image side of the first partial group G5a.

なお、この第2実施例の広角端状態においては、防振係数は1.00であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G5bの移動量は0.50(mm)である。また、第2実施例の中間焦点距離状態においては、防振係数は1.00であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.71(mm)である。また、第2実施例の望遠端状態においては、防振係数は1.00であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は1.03(mm)である。   In the wide angle end state of the second embodiment, the image stabilization coefficient is 1.00 and the focal length is 71.4 (mm). Therefore, the second correction for correcting the rotation shake of 0.40 ° is performed. The moving amount of the two subgroup G5b is 0.50 (mm). Further, in the intermediate focal length state of the second embodiment, the image stabilization coefficient is 1.00 and the focal length is 135.0 (mm), so that the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G5b is 0.71 (mm). Further, in the telephoto end state of the second embodiment, since the image stabilization coefficient is 1.00 and the focal length is 196.0 (mm), the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G5b is 1.03 (mm).

以下の表4に、第2実施例の諸元の値を掲げる。   Table 4 below lists values of specifications of the second embodiment.

(表4)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 138.9420 2.0000 32.35 1.850260
2 74.8515 10.0000 82.52 1.497820
3 499.1083 0.1000
4 86.7613 8.0000 82.52 1.497820
5 437.0393 0.1000
6 84.2569 7.0000 82.52 1.497820
7 938.7139 (d1)
8 384.1157 2.0000 40.94 1.806100
9 35.6165 9.6847
10 -131.1744 2.0000 70.41 1.487490
11 42.3484 4.5000 23.78 1.846660
12 163.1687 5.0588
13 -53.5772 4.0000 22.76 1.808095
14 -32.5969 2.0000 42.72 1.834807
15 -234.9579 (d2)
16 510.9139 2.0000 32.35 1.850260
17 86.7071 7.0000 65.46 1.603001
18 -83.2647 0.1000
19 103.7337 6.0000 65.46 1.603001
20 -116.8560 (d3)
21 -103.1415 2.5000 42.72 1.834807
22 -342.0133 (d4)
23 58.8589 7.0000 42.72 1.834807
24 -140.2358 2.0000 23.78 1.846660
25 198.9539 3.0000
26 0.0000 20.0000 (開口絞りS)
27 -183.3956 4.0000 23.78 1.846660
28 -45.0249 2.0000 41.96 1.667551
29 57.8421 5.0000
30 383.3560 2.0000 50.23 1.719995
31 39.1251 7.0000 82.52 1.497820
32 -82.1158 0.1000
33 45.2987 7.0000 82.52 1.497820
34 -153.4974 7.5493
35 -47.9028 2.0000 32.35 1.850260
36 -82.5403 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.90 〜 2.90 〜 2.90
ω = 17.09 〜 8.94 〜 6.14

[ズームレンズ群データ]
レンズ群 焦点距離
第1レンズ群 98.419
第2レンズ群 -26.611
第3レンズ群 59.321
第4レンズ群 -177.745
第5レンズ群 114.057
(Table 4)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 138.9420 2.0000 32.35 1.850 260
2 74.8515 10.0000 82.52 1.497820
3 499.1083 0.1000
4 86.7613 8.0000 82.52 1.497820
5 437.0393 0.1000
6 84.2569 7.0000 82.52 1.497820
7 938.7139 (d1)
8 384.1157 2.0000 40.94 1.806100
9 35.6165 9.6847
10 -131.1744 2.0000 70.41 1.487490
11 42.3484 4.5000 23.78 1.846660
12 163.1687 5.0588
13 -53.5772 4.0000 22.76 1.808095
14 -32.5969 2.0000 42.72 1.834807
15 -234.9579 (d2)
16 510.9139 2.0000 32.35 1.850 260
17 86.7071 7.0000 65.46 1.603001
18 -83.2647 0.1000
19 103.7337 6.0000 65.46 1.603001
20 -116.8560 (d3)
21 -103.1415 2.5000 42.72 1.834807
22 -342.0133 (d4)
23 58.8589 7.0000 42.72 1.834807
24 -140.2358 2.0000 23.78 1.846660
25 198.9539 3.0000
26 0.0000 20.0000 (Aperture stop S)
27 -183.3956 4.0000 23.78 1.846660
28 -45.0249 2.0000 41.96 1.667551
29 57.8421 5.0000
30 383.3560 2.0000 50.23 1.719995
31 39.1251 7.0000 82.52 1.497820
32 -82.1158 0.1000
33 45.2987 7.0000 82.52 1.497820
34 -153.4974 7.5493
35 -47.9028 2.0000 32.35 1.850260
36 -82.5403 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.90 to 2.90 to 2.90
ω = 17.09 to 8.94 to 6.14

[Zoom lens group data]
Lens group Focal length 1st lens group 98.419
Second lens group -26.611
Third lens group 59.321
Fourth lens group -177.745
5th lens group 114.057

この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表5に、この第2実施例に係る変倍光学系ZL2の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離での可変間隔データ、Bf及び全長を示す。   In the second embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 5 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system ZL2 according to the second example.

(表5)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.000 25.437 33.995
d2 24.330 12.566 2.000
d3 4.668 10.865 14.953
d4 21.950 4.080 2.000
Bf 63.539 63.539 63.539
全長 259.180 259.180 259.180
(Table 5)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.000 25.437 33.995
d2 24.330 12.566 2.000
d3 4.668 10.865 14.953
d4 21.950 4.080 2.000
Bf 63.539 63.539 63.539
Total length 259.180 259.180 259.180

次の表6に、この第2実施例における条件式対応値を示す。   Table 6 below shows values corresponding to the conditional expressions in the second embodiment.

(表6)
(1)fGn/fVR=-1.399
(2)|fGf/fGn|=0.520
(3)|fGn|/ft=0.582
(4)|fVR|/fw=1.142
(Table 6)
(1) fGn / fVR = -1.399
(2) | fGf / fGn | = 0.520
(3) | fGn | /ft=0.582
(4) | fVR | /fw=1.142

この第2実施例の広角端状態での無限遠合焦状態の収差図を図7(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図8(a)に、望遠端状態での無限遠合焦状態の収差図を図9(a)に、広角端状態での近距離物体合焦状態の収差図を図10(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図10(b)に、望遠端状態での近距離物体合焦状態の収差図を図10(c)に示す。また、第2実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図7(b)に示し、第2実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図8(b)に示し、第2実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図9(b)に示す。これらの各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。   FIG. 7A shows an aberration diagram in the infinite focus state in the wide-angle end state of this second embodiment, and FIG. 8A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 9A shows an aberration diagram in the infinite focus state in the end state, FIG. 10A shows an aberration diagram in the short distance object focus state in the wide angle end state, and a short distance in the intermediate focal length state. FIG. 10B shows an aberration diagram in the object in-focus state, and FIG. 10C shows an aberration diagram in the near-field object in-focus state in the telephoto end state. Further, FIG. 7B shows a meridional lateral aberration diagram when the shake correction is performed with respect to the rotational shake of 0.40 ° in the infinitely focused state at the wide-angle end state in the second embodiment. FIG. 8B shows a meridional lateral aberration diagram when the shake correction for the 0.30 ° rotational shake is performed in the infinite focus state at the intermediate focal length state in FIG. 8B, and in the telephoto end state of the second embodiment. FIG. 9B shows a meridional lateral aberration diagram when shake correction is performed with respect to rotational shake of 0.30 ° in the infinitely focused state. As is apparent from these respective aberration diagrams, in the second example, it is understood that various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

〔第3実施例〕
図11は、第3実施例に係る変倍光学系ZL3の構成を示す図であり、n=5としたとき、すなわち、5群構成の変倍光学系ZL3を示している。この図11の変倍光学系ZL3において、第1レンズ群G1は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズ、物体側に凸面を向けた正メニスカスレンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14から構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた正メニスカスレンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズから構成される。第3レンズ群G3は、物体側より順に、物体側に凹面を向けた正メニスカスレンズL31、及び、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33との接合レンズから構成される。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成される。第5レンズ群G5において、第1部分群G5aは、物体側より順に、両凸レンズL51、及び、物体側に凸面を向けた正メニスカスレンズL52から構成され、第2部分群G5bは、物体側より順に、物体側に凹面を向けた正メニスカスレンズL53と両凹レンズL54との接合レンズ、及び、物体側に凸面を向けた負メニスカスレンズL55から構成され、第3部分群G5cは、物体側より順に、両凸レンズL56、両凸レンズL57、及び、物体側に凹面を向けた負メニスカスレンズL58から構成される。開口絞りSは、第5レンズ群G5の最も物体側に位置し、第1部分群G5aに含まれる。
[Third embodiment]
FIG. 11 is a diagram illustrating the configuration of the variable magnification optical system ZL3 according to the third example. When n = 5, that is, the variable magnification optical system ZL3 having a five-group configuration is illustrated. In the variable magnification optical system ZL3 of FIG. 11, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. The positive meniscus lens L13 has a convex surface facing the object side, and the positive meniscus lens L14 has a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side And a negative meniscus lens L25 having a concave surface facing the object side. The third lens group G3 includes, in order from the object side, a positive meniscus lens L31 having a concave surface facing the object side, and a cemented lens of a negative meniscus lens L32 having a convex surface facing the object side and a biconvex lens L33. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. In the fifth lens group G5, the first partial group G5a includes, in order from the object side, a biconvex lens L51 and a positive meniscus lens L52 having a convex surface facing the object side. The second partial group G5b is formed from the object side. In order, it is composed of a cemented lens of a positive meniscus lens L53 and a biconcave lens L54 having a concave surface facing the object side, and a negative meniscus lens L55 having a convex surface facing the object side, and the third subgroup G5c is in order from the object side. , A biconvex lens L56, a biconvex lens L57, and a negative meniscus lens L58 having a concave surface facing the object side. The aperture stop S is located closest to the object side of the fifth lens group G5 and is included in the first partial group G5a.

なお、この第3実施例の広角端状態においては、防振係数は1.30であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G5bの移動量は0.38(mm)である。また、第3実施例の中間焦点距離状態においては、防振係数は1.30であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.54(mm)である。また、第3実施例の望遠端状態においては、防振係数は1.30であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.79(mm)である。   In the wide angle end state of the third embodiment, the image stabilization coefficient is 1.30 and the focal length is 71.4 (mm). The moving amount of the two subgroup G5b is 0.38 (mm). Further, in the intermediate focal length state of the third embodiment, the image stabilization coefficient is 1.30 and the focal length is 135.0 (mm), so that the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G5b is 0.54 (mm). Further, in the telephoto end state of the third embodiment, since the image stabilization coefficient is 1.30 and the focal length is 196.0 (mm), the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G5b is 0.79 (mm).

以下の表7に、この第3実施例の諸元の値を掲げる。   Table 7 below shows values of specifications of the third embodiment.

(表7)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 150.1075 2.2000 28.69 1.795041
2 77.1608 9.5000 82.52 1.497820
3 756.3684 0.1000
4 82.5453 8.0000 82.52 1.497820
5 581.7849 0.0000
6 73.1642 8.0000 82.52 1.497820
7 427.5813 (d1)
8 214.3299 2.0000 42.72 1.834807
9 33.7853 12.1976
10 -109.2380 2.0000 82.52 1.497820
11 39.0214 6.0000 23.78 1.846660
12 220.3271 4.2950
13 -55.0435 4.0000 25.68 1.784723
14 -31.3217 2.0000 42.72 1.834807
15 -1128.7256 (d2)
16 -4413.9629 4.0000 37.95 1.723420
17 -90.7104 0.1000
18 74.5140 2.0000 22.79 1.808090
19 42.9390 9.0000 65.46 1.603001
20 -133.3513 (d3)
21 -90.0000 2.5000 23.78 1.846660
22 -222.6096 (d4)
23 0.0000 2.0000 (開口絞りS)
24 181.5274 4.0000 82.52 1.497820
25 -226.9093 0.1000
26 42.1406 4.0000 82.52 1.497820
27 81.5898 17.0000
28 -5404.9164 4.0000 28.46 1.728250
29 -46.9905 1.6000 53.71 1.579570
30 64.5686 3.5000
31 1040.8030 1.6000 55.52 1.696797
32 57.6196 5.0000
33 329.9937 4.5000 82.52 1.497820
34 -56.0769 1.1857
35 41.0985 6.0000 82.52 1.497820
36 -1567.9225 4.0871
37 -49.0618 2.0000 23.78 1.846660
38 -109.7403 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.90 〜 2.90 〜 2.90
ω = 16.97 〜 8.90 〜 6.12

[ズームレンズ群データ]
レンズ群 焦点距離
第1レンズ群 87.956
第2レンズ群 -24.084
第3レンズ群 55.399
第4レンズ群 -180.000
第5レンズ群 110.905
(Table 7)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 150.1075 2.2000 28.69 1.795041
2 77.1608 9.5000 82.52 1.497820
3 756.3684 0.1000
4 82.5453 8.0000 82.52 1.497820
5 581.7849 0.0000
6 73.1642 8.0000 82.52 1.497820
7 427.5813 (d1)
8 214.3299 2.0000 42.72 1.834807
9 33.7853 12.1976
10 -109.2380 2.0000 82.52 1.497820
11 39.0214 6.0000 23.78 1.846660
12 220.3271 4.2950
13 -55.0435 4.0000 25.68 1.784723
14 -31.3217 2.0000 42.72 1.834807
15 -1128.7256 (d2)
16 -4413.9629 4.0000 37.95 1.723420
17 -90.7104 0.1000
18 74.5140 2.0000 22.79 1.808090
19 42.9390 9.0000 65.46 1.603001
20 -133.3513 (d3)
21 -90.0000 2.5000 23.78 1.846660
22 -222.6096 (d4)
23 0.0000 2.0000 (Aperture stop S)
24 181.5274 4.0000 82.52 1.497820
25 -226.9093 0.1000
26 42.1406 4.0000 82.52 1.497820
27 81.5898 17.0000
28 -5404.9164 4.0000 28.46 1.728250
29 -46.9905 1.6000 53.71 1.579570
30 64.5686 3.5000
31 1040.8030 1.6000 55.52 1.696797
32 57.6196 5.0000
33 329.9937 4.5000 82.52 1.497820
34 -56.0769 1.1857
35 41.0985 6.0000 82.52 1.497820
36 -1567.9225 4.0871
37 -49.0618 2.0000 23.78 1.846660
38 -109.7403 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.90 to 2.90 to 2.90
ω = 16.97 to 8.90 to 6.12

[Zoom lens group data]
Lens group Focal length 1st lens group 87.956
Second lens group -24.084
Third lens group 55.399
4th lens group -180.000
5th lens group 110.905

この第3実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表8に、この第3実施例に係る変倍光学系ZL3の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離での可変間隔データ、Bf及び全長を示す。   In the third example, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 8 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system ZL3 according to the third example.

(表8)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.089 21.088 27.934
d2 24.923 12.762 2.000
d3 5.167 11.520 15.477
d4 16.232 3.041 3.000
Bf 60.304 60.304 60.304
全長 247.180 247.180 247.180
(Table 8)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.089 21.088 27.934
d2 24.923 12.762 2.000
d3 5.167 11.520 15.477
d4 16.232 3.041 3.000
Bf 60.304 60.304 60.304
Total length 247.180 247.180 247.180

次の表9に、この第3実施例における条件式対応値を示す。   Table 9 below shows values corresponding to the conditional expressions in the third embodiment.

(表9)
(1)fGn/fVR=-1.953
(2)|fGf/fGn|=0.500
(3)|fGn|/ft=0.566
(4)|fVR|/fw=0.795
(Table 9)
(1) fGn / fVR = -1.953
(2) | fGf / fGn | = 0.500
(3) | fGn | /ft=0.566
(4) | fVR | /fw=0.795

この第3実施例の広角端状態での無限遠合焦状態の収差図を図12(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図13(a)に、望遠端状態での無限遠合焦状態の収差図を図14(a)に、広角端状態での近距離物体合焦状態の収差図を図15(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図15(b)に、望遠端状態での近距離物体合焦状態の収差図を図15(c)に示す。また、第3実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図12(b)に示し、第3実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図13(b)に示し、第3実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図14(b)に示す。これらの各収差図から明らかなように、この第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。   FIG. 12A shows an aberration diagram in the infinite focus state in the wide-angle end state of this third embodiment, and FIG. 13A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 14A shows an aberration diagram in the infinite focus state in the end state, FIG. 15A shows an aberration diagram in the short distance object focus state in the wide angle end state, and a short distance in the intermediate focal length state. FIG. 15B shows an aberration diagram in the object in-focus state, and FIG. 15C shows an aberration diagram in the short-distance object in-focus state in the telephoto end state. FIG. 12B shows a meridional lateral aberration diagram when the shake correction is performed for the 0.40 ° rotational shake in the infinitely focused state at the wide-angle end state in the third embodiment. FIG. FIG. 13B shows a meridional lateral aberration diagram when the shake correction is performed for the 0.30 ° rotational shake in the infinite focus state at the intermediate focal length state in FIG. 13B, and in the telephoto end state of the third embodiment. FIG. 14B shows a meridional lateral aberration diagram when shake correction is performed for 0.30 ° rotational shake in the infinite focus state. As is apparent from these aberration diagrams, in the third embodiment, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained. .

〔第4実施例〕
図16は、第4実施例に係る変倍光学系ZL4の構成を示す図であり、n=4としたとき、すなわち、4群構成の変倍光学系ZL4を示している。なお、この第4実施例では、「第1レンズ群G1の前部分レンズ群G1a」が前述した「最も物体側に配置された正の屈折力を有する第1レンズ群」に相当し、「第1レンズ群G1の後部分レンズ群G1b」が前述した「前記第1レンズ群の像面側に配置された第2レンズ群」に相当し、「第4レンズ群G4」が前述した「最も像面側に配置された正の屈折力を有する第G n レンズ群」に相当し、「第2レンズ群G2及び第3レンズ群G3」が前述した「前記第2レンズ群と前記第G n レンズ群との間に配置された少なくとも一つのレンズ群」に相当する。この図16の変倍光学系ZL4において、第1レンズ群G1の前部分レンズ群G1aは、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズ、及び、両凸レンズL13から構成され、後部分レンズ群G1bは、物体側より順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズから構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL24から構成される。第3レンズ群G3は、物体側より順に、物体側に凹面を向けた正メニスカスレンズL31、及び、両凸レンズL32と両凹レンズL33との接合レンズから構成される。第4レンズ群G4において、第1部分群G4aは、物体側より順に、物体側に凸面を向けた正メニスカスレンズL41、及び、物体側に凸面を向けた正メニスカスレンズL42から構成され、第2部分群G4bは、物体側より順に、物体側に凹面を向けた正メニスカスレンズL43と両凹レンズL44との接合レンズから構成され、第3部分群G4cは、物体側より順に、両凸レンズL45、両凸レンズL46、及び、物体側に凹面を向けた負メニスカスレンズL47から構成される。開口絞りSは、第4レンズ群G4の最も物体側に位置し、第1部分群G4aに含まれる。
[Fourth embodiment]
FIG. 16 is a diagram illustrating the configuration of the variable magnification optical system ZL4 according to the fourth example. When n = 4, that is, the variable magnification optical system ZL4 having a four-group configuration is illustrated. In the fourth example, “the front lens group G1a of the first lens group G1” corresponds to the “first lens group having a positive refractive power disposed on the most object side” described above. The rear lens group G1b of one lens group G1 corresponds to the “second lens group arranged on the image plane side of the first lens group” described above, and the “fourth lens group G4” corresponds to the “most image”. the equivalent to G n lens unit "," the second lens group G2 and the third lens group G3 "was above" the second lens group the G n lens having a positive refractive power disposed on the side This corresponds to “at least one lens group disposed between the groups”. In the variable magnification optical system ZL4 of FIG. 16, the front lens group G1a of the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and The rear lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side. The The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side The negative meniscus lens L24 facing The third lens group G3 includes, in order from the object side, a positive meniscus lens L31 having a concave surface directed toward the object side, and a cemented lens of a biconvex lens L32 and a biconcave lens L33. In the fourth lens group G4, the first partial group G4a includes, in order from the object side, a positive meniscus lens L41 having a convex surface facing the object side, and a positive meniscus lens L42 having a convex surface facing the object side. The subgroup G4b is composed of a cemented lens of a positive meniscus lens L43 having a concave surface facing the object side and a biconcave lens L44 in order from the object side, and the third subgroup G4c is composed of a biconvex lens L45, both lenses in order from the object side. The lens includes a convex lens L46 and a negative meniscus lens L47 having a concave surface facing the object side. The aperture stop S is located closest to the object side of the fourth lens group G4 and is included in the first partial group G4a.

なお、この第4実施例の広角端状態においては、防振係数は1.00であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G4bの移動量は0.50(mm)である。また、第4実施例の中間焦点距離状態においては、防振係数は1.00であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G4bの移動量は0.71(mm)である。また、第4実施例の望遠端状態においては、防振係数は1.00であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G4bの移動量は1.03(mm)である。   In the wide angle end state of the fourth embodiment, the image stabilization coefficient is 1.00 and the focal length is 71.4 (mm). The moving amount of the two subgroup G4b is 0.50 (mm). Further, in the intermediate focal length state of the fourth embodiment, the image stabilization coefficient is 1.00 and the focal length is 135.0 (mm), so that the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G4b is 0.71 (mm). Further, in the telephoto end state of the fourth embodiment, since the image stabilization coefficient is 1.00 and the focal length is 196.0 (mm), the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G4b is 1.03 (mm).

以下の表10に、この第4実施例の諸元の値を掲げる。   Table 10 below lists values of specifications of the fourth embodiment.

(表10)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 1045.9991 2.0000 37.16 1.834000
2 97.1615 11.0000 82.52 1.497820
3 -456.3712 0.1000
4 101.1567 9.0000 82.52 1.497820
5 -557.8689 (d1)
6 74.2367 2.0000 39.58 1.804398
7 51.0499 11.0000 49.78 1.617720
8 486.7171 (d2)
9 1114.6545 2.0000 42.72 1.834807
10 36.6691 7.8157
11 -80.7935 2.0000 70.41 1.487490
12 39.9085 5.5000 23.78 1.846660
13 431.9436 3.9771
14 -53.1722 2.0000 65.46 1.603001
15 434.1583 (d3)
16 -242.6876 4.0000 28.69 1.795041
17 -60.5190 0.1000
18 65.5165 8.0000 65.46 1.603001
19 -63.3283 2.0000 23.78 1.846660
20 290.8761 (d4)
21 0.0000 2.0000 (開口絞りS)
22 54.2771 4.0000 82.52 1.497820
23 155.7161 0.1000
24 49.4783 3.0000 82.52 1.497820
25 79.4482 20.0000
26 -135.1336 4.0000 23.78 1.846660
27 -38.1621 2.0000 35.91 1.664460
28 60.6022 5.0000
29 105.0514 5.0000 82.52 1.497820
30 -95.4182 7.0498
31 81.3474 6.0000 82.52 1.497820
32 -92.9849 2.7410
33 -40.2997 2.0000 32.35 1.850260
34 -82.0021 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.91 〜 2.91 〜 2.91
ω = 16.90 〜 8.81 〜 6.05

[ズームレンズ群データ]
レンズ群 焦点距離
前部分レンズ群 229.571
後部分レンズ群 165.806
第2レンズ群 -26.418
第3レンズ群 76.245
第4レンズ群 110.040
(Table 10)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 1045.9991 2.0000 37.16 1.834000
2 97.1615 11.0000 82.52 1.497820
3 -456.3712 0.1000
4 101.1567 9.0000 82.52 1.497820
5 -557.8689 (d1)
6 74.2367 2.0000 39.58 1.804398
7 51.0499 11.0000 49.78 1.617720
8 486.7171 (d2)
9 1114.6545 2.0000 42.72 1.834807
10 36.6691 7.8157
11 -80.7935 2.0000 70.41 1.487490
12 39.9085 5.5000 23.78 1.846660
13 431.9436 3.9771
14 -53.1722 2.0000 65.46 1.603001
15 434.1583 (d3)
16 -242.6876 4.0000 28.69 1.795041
17 -60.5190 0.1000
18 65.5165 8.0000 65.46 1.603001
19 -63.3283 2.0000 23.78 1.846660
20 290.8761 (d4)
21 0.0000 2.0000 (Aperture stop S)
22 54.2771 4.0000 82.52 1.497820
23 155.7161 0.1000
24 49.4783 3.0000 82.52 1.497820
25 79.4482 20.0000
26 -135.1336 4.0000 23.78 1.846660
27 -38.1621 2.0000 35.91 1.664460
28 60.6022 5.0000
29 105.0514 5.0000 82.52 1.497820
30 -95.4182 7.0498
31 81.3474 6.0000 82.52 1.497820
32 -92.9849 2.7410
33 -40.2997 2.0000 32.35 1.850 260
34 -82.0021 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.91 to 2.91 to 2.91
ω = 16.90-8.81-6.05

[Zoom lens group data]
Lens group Focal length front lens group 229.571
Rear lens group 165.806
Second lens group -26.418
Third lens group 76.245
Fourth lens group 110.040

この第4実施例において、第1レンズ群G1の前部分レンズ群G1aと後部分レンズ群G1bとの軸上空気間隔d1、後部分レンズ群G1bと第2レンズ群G2との軸上空気間隔d2、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d3、及び、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d4は変倍に際して変化する。次の表11に、この第4実施例に係る変倍光学系ZL4の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離での可変間隔データ、Bf及び全長を示す。   In the fourth example, the axial air distance d1 between the front partial lens group G1a and the rear partial lens group G1b of the first lens group G1, and the axial air distance d2 between the rear partial lens group G1b and the second lens group G2. The on-axis air distance d3 between the second lens group G2 and the third lens group G3 and the on-axis air distance d4 between the third lens group G3 and the fourth lens group G4 change during zooming. Table 11 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system ZL4 according to the fourth example.

ここで、第4実施例の変倍光学系ZL4では、変倍の際に前部分レンズ群G1aと後部分レンズ群G1bとは、それぞれ独立して移動可能である。詳しくは、変倍光学系ZL4では、変倍の際に前部分レンズ群G1aは光軸上の位置を固定されており、後部分レンズ群G1bは像面側に移動する。この場合、変倍光学系ZL4は5群構成ともいえる。また、5群構成の変倍光学系ZL4では合焦の際に、物体側から数えて4番目のレンズ群が移動する。   Here, in the variable magnification optical system ZL4 of the fourth example, the front partial lens group G1a and the rear partial lens group G1b can move independently during zooming. Specifically, in the zoom optical system ZL4, the position of the front lens group G1a on the optical axis is fixed during zooming, and the rear lens group G1b moves to the image plane side. In this case, it can be said that the variable magnification optical system ZL4 has a five-group configuration. Further, in the variable magnification optical system ZL4 having the five-group configuration, the fourth lens group as counted from the object side moves during focusing.

(表11)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.000 8.560 10.000
d2 2.000 24.609 32.890
d3 25.910 14.258 3.000
d4 29.722 12.206 13.743
Bf 61.103 61.103 61.103
全長 256.119 256.119 256.119
(Table 11)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.000 8.560 10.000
d2 2.000 24.609 32.890
d3 25.910 14.258 3.000
d4 29.722 12.206 13.743
Bf 61.103 61.103 61.103
Total length 256.119 256.119 256.119

次の表12に、この第4実施例における条件式対応値を示す。なお、この第4実施例では、条件式対応値の符号において、fGnは第4レンズ群G4の焦点距離を、fVRは防振レンズ群(第2部分群G4b)の焦点距離を、それぞれ表している。その他の符号の説明については、第1実施例の符号の説明と同様である。   Table 12 below shows values corresponding to the conditional expressions in the fourth embodiment. In the fourth embodiment, in the sign of the value corresponding to the conditional expression, fGn represents the focal length of the fourth lens group G4, and fVR represents the focal length of the image stabilizing lens group (second partial group G4b). Yes. The description of the other symbols is the same as that of the first embodiment.

(表12)
(1)fGn/fVR=-1.382
(2)|fGf/fGn|=0.693
(3)|fGn|/ft=0.561
(4)|fVR|/fw=1.115
(Table 12)
(1) fGn / fVR = -1.382
(2) | fGf / fGn | = 0.693
(3) | fGn | /ft=0.561
(4) | fVR | /fw=1.115

この第4実施例の広角端状態での無限遠合焦状態の収差図を図17(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図18(a)に、望遠端状態での無限遠合焦状態の収差図を図19(a)に、広角端状態での近距離物体合焦状態の収差図を図20(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図20(b)に、望遠端状態での近距離物体合焦状態の収差図を図20(c)にそれぞれ示す。また、第4実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図17(b)に示し、第4実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図18(b)に示し、第4実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図19(b)に示す。   FIG. 17A shows an aberration diagram in the infinite focus state in the wide-angle end state of this fourth embodiment, and FIG. 18A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 19A shows an aberration diagram in the infinite focus state in the end state, FIG. 20A shows an aberration diagram in the near object focus state in the wide angle end state, and FIG. 20A shows the short distance in the intermediate focal length state. FIG. 20B shows an aberration diagram in the object in-focus state, and FIG. 20C shows an aberration diagram in the near-field object in-focus state in the telephoto end state. Further, FIG. 17B shows a meridional lateral aberration diagram when the shake correction is performed with respect to the rotational shake of 0.40 ° in the infinitely focused state at the wide-angle end state in the fourth example, and FIG. 17B shows the fourth example. FIG. 18B shows a meridional lateral aberration diagram when shake correction is performed for 0.30 ° rotational shake in the infinite focus state at the intermediate focal length state in FIG. 18B, and in the telephoto end state of the fourth embodiment. FIG. 19B shows a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in the infinite focus state.

〔第5実施例〕
図21は、第5実施例に係る変倍光学系ZL5の構成を示す図であり、n=5としたとき、すなわち、5群構成の変倍光学系ZL5を示している。この図21の変倍光学系ZL5において、第1レンズ群G1は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズ、両凸レンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14から構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL24から構成される。第3レンズ群G3は、物体側より順に、物体側に凸面を向けた正メニスカスレンズL31と物体側に凸面を向けた負メニスカスレンズL32との接合レンズから構成される。第4レンズ群G4は、物体側より順に、物体側に凹面を向けた正メニスカスレンズL41、及び、両凸レンズL42と両凹レンズL43との接合レンズから構成される。第5レンズ群G5において、第1部分群G5aは、物体側に凸面を向けた正メニスカスレンズL51から構成され、第2部分群G5bは、物体側より順に、両凸レンズL52と両凹レンズL53との接合レンズ、及び、両凹レンズL54から構成され、第3部分群G5cは、物体側より順に、両凸レンズL55、及び、両凸レンズL56と物体側に凹面を向けた負メニスカスレンズL57との接合レンズから構成される。開口絞りSは、第5レンズ群G5の最も物体側に位置し、第1部分群G5aに含まれる。
[Fifth embodiment]
FIG. 21 is a diagram showing a configuration of a variable magnification optical system ZL5 according to the fifth example. When n = 5, that is, a variable magnification optical system ZL5 having a five-group configuration is shown. In the variable magnification optical system ZL5 of FIG. 21, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, a biconvex lens L13, and an object It comprises a positive meniscus lens L14 having a convex surface on the side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side The negative meniscus lens L24 facing The third lens group G3 includes, in order from the object side, a cemented lens of a positive meniscus lens L31 having a convex surface facing the object side and a negative meniscus lens L32 having a convex surface facing the object side. The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a cemented lens of a biconvex lens L42 and a biconcave lens L43. In the fifth lens group G5, the first partial group G5a includes a positive meniscus lens L51 having a convex surface directed toward the object side, and the second partial group G5b includes, in order from the object side, a biconvex lens L52 and a biconcave lens L53. The third partial group G5c includes, in order from the object side, a biconvex lens L55, a biconvex lens L56, and a negative meniscus lens L57 having a concave surface facing the object side. Composed. The aperture stop S is located closest to the object side of the fifth lens group G5 and is included in the first partial group G5a.

なお、この第5実施例の広角端状態においては、防振係数は1.00であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G5bの移動量は0.50(mm)である。また、第5実施例の中間焦点距離状態においては、防振係数は1.00であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.71(mm)である。また、第5実施例の望遠端状態においては、防振係数は1.00であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は1.03(mm)である。   In the wide-angle end state of the fifth embodiment, the image stabilization coefficient is 1.00 and the focal length is 71.4 (mm). The moving amount of the two subgroup G5b is 0.50 (mm). Further, in the intermediate focal length state of the fifth embodiment, the image stabilization coefficient is 1.00 and the focal length is 135.0 (mm), so that the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G5b is 0.71 (mm). Further, in the telephoto end state of the fifth embodiment, since the image stabilization coefficient is 1.00 and the focal length is 196.0 (mm), the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G5b is 1.03 (mm).

以下の表13に、この第5実施例の諸元の値を掲げる。   Table 13 below provides values of specifications of the fifth embodiment.

(表13)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 547.8686 2.0000 32.35 1.850260
2 127.0457 9.0000 82.52 1.497820
3 -387.4049 0.1000
4 101.3137 8.0000 82.52 1.497820
5 -1800.9098 0.1000
6 66.1166 8.0000 82.52 1.497820
7 235.5025 (d1)
8 106.3241 2.0000 37.16 1.834000
9 30.3987 12.4957
10 -72.3427 2.0000 70.41 1.487490
11 37.6638 5.5000 23.78 1.846660
12 303.0536 4.1346
13 -44.9339 2.0000 65.46 1.603001
14 -1269.0712 (d2)
15 59.3815 4.0000 47.93 1.717004
16 227.8818 2.0000 42.72 1.834807
17 63.6840 (d3)
18 -274.5014 4.0000 42.24 1.799520
19 -75.2662 0.1000
20 74.6839 8.0000 65.46 1.603001
21 -55.3310 2.0000 32.35 1.850260
22 4084.7965 (d4)
23 0.0000 2.0000 (開口絞りS)
24 51.4321 5.0000 82.52 1.497820
25 2335.6701 20.0000
26 213.2867 4.0000 23.78 1.846660
27 -57.2867 1.5000 31.07 1.688931
28 116.1082 2.5000
29 -213.4066 1.5000 46.47 1.582670
30 57.4789 5.0000
31 146.7888 4.0000 69.98 1.518601
32 -72.6641 0.6223
33 84.7129 9.0000 52.31 1.517420
34 -32.2458 2.0000 32.35 1.850260
35 -265.8952 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.91 〜 2.91 〜 2.91
ω = 16.69 〜 8.79 〜 6.06

[ズームレンズ群データ]
レンズ群 焦点距離
第1レンズ群 93.218
第2レンズ群 -26.822
第3レンズ群 59448.564
第4レンズ群 86.438
第5レンズ群 119.455
(Table 13)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 547.8686 2.0000 32.35 1.850 260
2 127.0457 9.0000 82.52 1.497820
3 -387.4049 0.1000
4 101.3137 8.0000 82.52 1.497820
5 -1800.9098 0.1000
6 66.1166 8.0000 82.52 1.497820
7 235.5025 (d1)
8 106.3241 2.0000 37.16 1.834000
9 30.3987 12.4957
10 -72.3427 2.0000 70.41 1.487490
11 37.6638 5.5000 23.78 1.846660
12 303.0536 4.1346
13 -44.9339 2.0000 65.46 1.603001
14 -1269.0712 (d2)
15 59.3815 4.0000 47.93 1.717004
16 227.8818 2.0000 42.72 1.834807
17 63.6840 (d3)
18 -274.5014 4.0000 42.24 1.799520
19 -75.2662 0.1000
20 74.6839 8.0000 65.46 1.603001
21 -55.3310 2.0000 32.35 1.850 260
22 4084.7965 (d4)
23 0.0000 2.0000 (Aperture stop S)
24 51.4321 5.0000 82.52 1.497820
25 2335.6701 20.0000
26 213.2867 4.0000 23.78 1.846660
27 -57.2867 1.5000 31.07 1.688931
28 116.1082 2.5000
29 -213.4066 1.5000 46.47 1.582670
30 57.4789 5.0000
31 146.7888 4.0000 69.98 1.518601
32 -72.6641 0.6223
33 84.7129 9.0000 52.31 1.517420
34 -32.2458 2.0000 32.35 1.850260
35 -265.8952 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.91 to 2.91 to 2.91
ω = 16.69 to 8.79 to 6.06

[Zoom lens group data]
Lens Group Focal Length First Lens Group 93.218
Second lens group -26.822
Third lens group 59448.564
Fourth lens group 86.438
5th lens group 119.455

この第5実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表14に、この第5実施例に係る変倍光学系ZL5の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離での可変間隔データ、Bf及び全長を示す。   In the fifth embodiment, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 14 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL5 according to the fifth example.

(表14)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.683 24.724 32.437
d2 24.804 16.117 2.000
d3 9.527 4.934 5.838
d4 17.138 8.376 13.875
Bf 72.476 72.476 72.476
全長 259.180 259.180 259.180
(Table 14)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.683 24.724 32.437
d2 24.804 16.117 2.000
d3 9.527 4.934 5.838
d4 17.138 8.376 13.875
Bf 72.476 72.476 72.476
Total length 259.180 259.180 259.180

次の表15に、この第5実施例における条件式対応値を示す。   Table 15 below shows values corresponding to the conditional expressions in the fifth embodiment.

(表15)
(1)fGn/fVR=-1.412
(2)|fGf/fGn|=0.724
(3)|fGn|/ft=0.609
(4)|fVR|/fw=1.185
(Table 15)
(1) fGn / fVR = -1.412
(2) | fGf / fGn | = 0.724
(3) | fGn | /ft=0.609
(4) | fVR | /fw=1.185

この第5実施例の広角端状態での無限遠合焦状態の収差図を図22(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図23(a)に、望遠端状態での無限遠合焦状態の収差図を図24(a)に、広角端状態での近距離物体合焦状態の収差図を図25(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図25(b)に、望遠端状態での近距離物体合焦状態の収差図を図25(c)に示す。また、第5実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図22(b)に示し、第5実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図23(b)に示し、第5実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図24(b)に示す。これらの各収差図から明らかなように、この第5実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。   FIG. 22A shows an aberration diagram in the infinite focus state in the wide-angle end state of this fifth embodiment, and FIG. 23A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 24A shows an aberration diagram in the infinitely focused state in the end state, FIG. 25A shows an aberration diagram in the near-distance object focused state in the wide-angle end state, and FIG. FIG. 25B shows an aberration diagram in the object in-focus state, and FIG. 25C shows an aberration diagram in the near-field object in-focus state in the telephoto end state. Further, FIG. 22B shows a meridional lateral aberration diagram when the shake correction is performed with respect to the rotational shake of 0.40 ° in the infinite focus state at the wide-angle end state in the fifth embodiment, and FIG. 22B shows the fifth embodiment. FIG. 23 (b) shows a meridional lateral aberration diagram when shake correction is performed for 0.30 ° rotational shake in the infinite focus state at the intermediate focal length state of FIG. 23, and in the telephoto end state of the fifth embodiment. FIG. 24B shows a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in the infinitely focused state. As is apparent from these respective aberration diagrams, in this fifth embodiment, it is understood that various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained. .

〔第6実施例〕
図26は、第6実施例に係る変倍光学系ZL6の構成を示す図であり、n=5としたとき、すなわち、5群構成の変倍光学系ZL6を示している。この図26の変倍光学系ZL6において、第1レンズ群G1は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズ、両凸レンズL13、及び、物体側に凸面を向けた正メニスカスレンズL14から構成される。第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凹面を向けた正メニスカスレンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズから構成される。第3レンズ群G3は、物体側より順に、物体側に凹面を向けた正メニスカスレンズL31、及び、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33との接合レンズから構成される。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成される。第5レンズ群G5において、第1部分群G5aは、物体側より順に、両凸レンズL51、及び、物体側に凸面を向けた正メニスカスレンズL52から構成され、第2部分群G5bは、物体側より順に、両凸レンズL53と両凹レンズL54との接合レンズ、及び、物体側に凸面を向けた負メニスカスレンズL55から構成され、第3部分群G5cは、物体側より順に、両凸レンズL56、両凸レンズL57、及び、物体側に凹面を向けた負メニスカスレンズL58から構成される。開口絞りSは、第1部分群G5aと第2部分群G5bとの間であって、第1部分群G5aの最も像側に位置する。
[Sixth embodiment]
FIG. 26 is a diagram illustrating the configuration of the variable magnification optical system ZL6 according to the sixth example. When n = 5, that is, the variable magnification optical system ZL6 having a five-group configuration is illustrated. In the variable magnification optical system ZL6 of FIG. 26, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, a biconvex lens L13, and an object It comprises a positive meniscus lens L14 having a convex surface on the side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented lens of a biconcave lens L22 and a positive meniscus lens L23 having a convex surface facing the object side, and a concave surface facing the object side And a negative meniscus lens L25 having a concave surface facing the object side. The third lens group G3 includes, in order from the object side, a positive meniscus lens L31 having a concave surface facing the object side, and a cemented lens of a negative meniscus lens L32 having a convex surface facing the object side and a biconvex lens L33. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. In the fifth lens group G5, the first partial group G5a includes, in order from the object side, a biconvex lens L51 and a positive meniscus lens L52 having a convex surface facing the object side. The second partial group G5b is formed from the object side. In order, the lens is composed of a cemented lens of a biconvex lens L53 and a biconcave lens L54, and a negative meniscus lens L55 having a convex surface facing the object side. And a negative meniscus lens L58 having a concave surface directed toward the object side. The aperture stop S is located between the first partial group G5a and the second partial group G5b and closest to the image side of the first partial group G5a.

なお、この第6実施例の広角端状態においては、防振係数は1.30であり、焦点距離は71.4(mm)であるので、0.40°の回転振れを補正するための第2部分群G5bの移動量は0.38(mm)である。また、第6実施例の中間焦点距離状態においては、防振係数は1.30であり、焦点距離は135.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.54(mm)である。また、第6実施例の望遠端状態においては、防振係数は1.30であり、焦点距離は196.0(mm)であるので、0.30°の回転振れを補正するための第2部分群G5bの移動量は0.79(mm)である。   In the sixth embodiment, in the wide-angle end state, the image stabilization coefficient is 1.30 and the focal length is 71.4 (mm). The moving amount of the two subgroup G5b is 0.38 (mm). Further, in the intermediate focal length state of the sixth embodiment, the image stabilization coefficient is 1.30 and the focal length is 135.0 (mm), and therefore the first for correcting the rotational shake of 0.30 °. The moving amount of the two subgroup G5b is 0.54 (mm). Further, in the telephoto end state of the sixth embodiment, the image stabilization coefficient is 1.30 and the focal length is 196.0 (mm), so that the second for correcting the rotational shake of 0.30 °. The movement amount of the subgroup G5b is 0.79 (mm).

以下の表16に、この第6実施例の諸元の値を掲げる。   Table 16 below provides values of specifications of the sixth embodiment.

(表16)
面番号 曲率半径 面間隔 アッベ数 屈折率
1 381.3020 2.5000 28.69 1.795041
2 106.4250 8.8000 82.52 1.497820
3 -1149.1256 0.1000
4 98.2127 8.5000 82.52 1.497820
5 -1919.4180 0.1000
6 66.6347 8.5000 82.52 1.497820
7 293.0617 (d1)
8 228.7827 2.1000 46.62 1.816000
9 33.2041 10.0000
10 -117.4258 2.1000 70.41 1.487490
11 37.9960 6.2000 23.78 1.846660
12 287.5696 4.2000
13 -53.8038 3.3000 25.43 1.805181
14 -38.9730 2.1000 46.62 1.816000
15 -2687.3318 (d2)
16 -1365.0388 3.8000 44.78 1.743997
17 -93.5331 0.1000
18 77.7004 2.4000 23.78 1.846660
19 47.7610 8.8000 65.46 1.603001
20 -130.8829 (d3)
21 -90.0052 2.5000 23.78 1.846660
22 -222.5672 (d4)
23 156.5810 3.8000 82.52 1.497820
24 -223.4996 0.1000
25 48.3764 4.0000 82.52 1.497820
26 104.4479 6.6000
27 0.0000 15.4000 (開口絞りS)
28 629.9782 3.8000 28.46 1.728250
29 -55.4480 1.6000 53.71 1.579570
30 55.4345 4.0000
31 482.0258 1.6000 39.57 1.804400
32 58.8315 4.0000
33 182.5454 5.0000 82.52 1.497820
34 -61.2108 0.1000
35 40.0944 6.5000 82.52 1.497820
36 -880.4337 4.7500
37 -53.2131 2.0000 32.35 1.850260
38 -148.8412 (Bf)

広角端 中間焦点距離 望遠端
f = 71.40 〜 135.00 〜 196.00
F.NO = 2.89 〜 2.89 〜 2.89
ω = 16.96 〜 8.90 〜 6.12

[ズームレンズ群データ]
レンズ群 焦点距離
第1レンズ群 92.597
第2レンズ群 -26.083
第3レンズ群 57.143
第4レンズ群 -180.041
第5レンズ群 111.174
(Table 16)
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 381.3020 2.5000 28.69 1.795041
2 106.4250 8.8000 82.52 1.497820
3 -1149.1256 0.1000
4 98.2127 8.5000 82.52 1.497820
5 -1919.4180 0.1000
6 66.6347 8.5000 82.52 1.497820
7 293.0617 (d1)
8 228.7827 2.1000 46.62 1.816000
9 33.2041 10.0000
10 -117.4258 2.1000 70.41 1.487490
11 37.9960 6.2000 23.78 1.846660
12 287.5696 4.2000
13 -53.8038 3.3000 25.43 1.805181
14 -38.9730 2.1000 46.62 1.816000
15 -2687.3318 (d2)
16 -1365.0388 3.8000 44.78 1.743997
17 -93.5331 0.1000
18 77.7004 2.4000 23.78 1.846660
19 47.7610 8.8000 65.46 1.603001
20 -130.8829 (d3)
21 -90.0052 2.5000 23.78 1.846660
22 -222.5672 (d4)
23 156.5810 3.8000 82.52 1.497820
24 -223.4996 0.1000
25 48.3764 4.0000 82.52 1.497820
26 104.4479 6.6000
27 0.0000 15.4000 (Aperture stop S)
28 629.9782 3.8000 28.46 1.728250
29 -55.4480 1.6000 53.71 1.579570
30 55.4345 4.0000
31 482.0258 1.6000 39.57 1.804400
32 58.8315 4.0000
33 182.5454 5.0000 82.52 1.497820
34 -61.2108 0.1000
35 40.0944 6.5000 82.52 1.497820
36 -880.4337 4.7500
37 -53.2131 2.0000 32.35 1.850 260
38 -148.8412 (Bf)

Wide angle end Intermediate focal length Telephoto end
f = 71.40 to 135.00 to 196.00
F.NO = 2.89 to 2.89 to 2.89
ω = 16.96 to 8.90 to 6.12

[Zoom lens group data]
Lens group Focal length 1st lens group 92.597
Second lens group -26.083
Third lens group 57.143
Fourth lens group -180.041
Fifth lens group 111.174

この第6実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表17に、この第6実施例に係る変倍光学系ZL6の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離での可変間隔データ、Bf及び全長を示す。   In the sixth example, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 17 below shows variable interval data, Bf, and the total length at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL6 according to the sixth example.

(表17)
[可変間隔データ]
広角端 中間焦点距離 望遠端
d1 2.054 23.103 30.776
d2 25.896 13.196 2.011
d3 5.289 12.530 16.871
d4 19.899 4.308 3.480
Bf 53.787 53.787 53.787
全長 246.275 246.275 246.275
(Table 17)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end
d1 2.054 23.103 30.776
d2 25.896 13.196 2.011
d3 5.289 12.530 16.871
d4 19.899 4.308 3.480
Bf 53.787 53.787 53.787
Total length 246.275 246.275 246.275

次の表18に、この第6実施例における条件式対応値を示す。   Table 18 below shows values corresponding to the conditional expressions in the sixth embodiment.

(表18)
(1)fGn/fVR=-2.095
(2)|fGf/fGn|=0.511
(3)|fGn|/ft=0.568
(4)|fVR|/fw=0.744
(Table 18)
(1) fGn / fVR = −2.095
(2) | fGf / fGn | = 0.511
(3) | fGn | /ft=0.568
(4) | fVR | /fw=0.744

この第6実施例の広角端状態での無限遠合焦状態の収差図を図27(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図28(a)に、望遠端状態での無限遠合焦状態の収差図を図29(a)に、広角端状態での近距離物体合焦状態の収差図を図30(a)に、中間焦点距離状態での近距離物体合焦状態の収差図を図30(b)に、望遠端状態での近距離物体合焦状態の収差図を図30(c)に示す。また、第6実施例の広角端状態での無限遠合焦状態において0.40°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図27(b)に示し、第6実施例の中間焦点距離状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図28(b)に示し、第6実施例の望遠端状態での無限遠合焦状態において0.30°の回転振れに対する振れ補正を行った時のメリディオナル横収差図を図29(b)に示す。これらの各収差図から明らかなように、この第6実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。   FIG. 27A shows an aberration diagram in the infinite focus state in the wide-angle end state of this sixth embodiment, and FIG. 28A shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 29A shows an aberration diagram in the infinite focus state in the end state, FIG. 30A shows an aberration diagram in the short distance object focus state in the wide angle end state, and FIG. 30A shows the short distance in the intermediate focal length state. FIG. 30B shows an aberration diagram in the object in-focus state, and FIG. 30C shows an aberration diagram in the near-field object in-focus state in the telephoto end state. FIG. 27B shows a meridional lateral aberration diagram when the shake correction is performed for the 0.40 ° rotational shake in the infinitely focused state at the wide-angle end state in the sixth embodiment. FIG. 28 (b) shows a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in the infinite focus state at the intermediate focal length state of FIG. 28, and in the telephoto end state of the sixth embodiment. FIG. 29 (b) shows a meridional lateral aberration diagram when shake correction is performed with respect to a rotational shake of 0.30 ° in the infinite focus state. As is apparent from these respective aberration diagrams, in the sixth embodiment, it is understood that various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained. .

ZL(ZL1〜ZL6) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 G4a 第1部分群 G4b 第2部分群
G4c 第3部分群 G5 第5レンズ群
G5a 第1部分群 G5b 第2部分群 G5c 第3部分群
S 開口絞り 1 電子スチルカメラ(光学機器)
ZL (ZL1 to ZL6) Variable power optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G4a First partial group G4b Second partial group G4c Third partial group G5 Fifth lens group G5a First partial group G5b Second partial group G5c Third partial group S Aperture stop 1 Electronic still camera (optical equipment)

Claims (9)

物体側より順に、最も物体側に配置された正の屈折力を有する第1レンズ群と、第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
最も像面側に配置された正の屈折力を有する第Gnレンズ群を有し、
変倍に際し、前記第1レンズ群と前記第Gnレンズ群とは固定されており、
互いに隣り合う前記レンズ群間の間隔が、変倍時に変化し、
合焦に際し、前記第2レンズ群と前記第Gnレンズ群との間に配置された少なくとも一つのレンズ群が合焦レンズ群として移動し、
前記第Gnレンズ群の一部である、負の屈折力を有する防振レンズ群を、光軸と略直交方向の成分を持つように移動し、
前記第Gnレンズ群の焦点距離をfGnとし、前記防振レンズ群の焦点距離をfVRとしたとき、次式
−3.5 < fGn/fVR < −0.8
の条件を満足する変倍光学系。
In order from the object side, a first lens group having a positive refractive power disposed closest to the object side, a second lens group, and a third lens group having a positive refractive power,
A Gn lens group having a positive refractive power and arranged closest to the image plane side;
At the time of zooming, the first lens group and the Gn lens group are fixed,
The interval between the lens groups adjacent to each other changes during zooming,
At the time of focusing, at least one lens group disposed between the second lens group and the Gn lens group moves as a focusing lens group,
Moving the anti-vibration lens group having a negative refractive power, which is a part of the Gn lens group, so as to have a component substantially perpendicular to the optical axis;
Wherein the focal length of the G n lens unit and FGn, the focal length of the vibration reduction lens group and the FVR, the following expression -3.5 <fGn / fVR <-0.8
Variable magnification optical system that satisfies the above conditions.
前記第2レンズ群と前記第Gnレンズ群との間には、少なくとも2つのレンズ群を有する請求項に記載の変倍光学系。 Wherein between the second lens group and the third G n lens unit, zooming optical system according to claim 1 having at least two lens groups. 前記第Gnレンズ群は、物体側より順に、
正の屈折力を有する第1部分群と、
負の屈折力を有する第2部分群と、
正の屈折力を有する第3部分群と、を有し、
前記第2部分群が前記防振レンズ群である請求項1または2に記載の変倍光学系。
The Gn lens group is in order from the object side.
A first subgroup having positive refractive power;
A second subgroup having negative refractive power;
A third subgroup having a positive refractive power,
Variable-power optical system according to claim 1 or 2, wherein the second sub group is the vibration reduction lens group.
前記第Gnレンズ群の焦点距離をfGnとし、前記合焦レンズ群の焦点距離をfGfとしたとき、次式
0.20 < |fGf/fGn| < 1.00
の条件を満足する請求項1〜3のいずれか一項に記載の変倍光学系。
Wherein the focal length of the G n lens unit and FGn, when the focal length of the focusing lens group and FGF, the following formula 0.20 <| fGf / fGn | < 1.00
The variable magnification optical system as described in any one of Claims 1-3 which satisfy | fills these conditions.
前記第Gnレンズ群の焦点距離をfGnとし、望遠端状態における全系の焦点距離をftとしたとき、次式
0.40 < |fGn|/ft < 1.00
の条件を満足する請求項1〜4のいずれか一項に記載の変倍光学系。
The focal length of the first G n lens unit and FGn, when the focal length of the entire system at the telephoto end state ft, the following formula 0.40 <| fGn | / ft < 1.00
The zoom lens system according to any one of claims 1 to 4, which satisfies the following condition.
前記防振レンズ群の焦点距離をfVRとし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < |fVR|/fw < 1.90
の条件を満足する請求項1〜5のいずれか一項に記載の変倍光学系。
When the focal length of the anti-vibration lens group is fVR and the focal length of the entire system in the wide-angle end state is fw, the following expression 0.10 <| fVR | / fw <1.90.
The zoom lens system according to any one of claims 1 to 5, which satisfies the following condition.
物体側から順に、
前記第1レンズ群と、
前記第2レンズ群と、
前記第3レンズ群と、
第4レンズ群と、
前記第Gnレンズ群と、を有する請求項1〜6のいずれか一項に記載の変倍光学系。
From the object side,
The first lens group;
The second lens group;
The third lens group;
A fourth lens group;
Variable-power optical system according to any one of claims 1 to 6 having a said first G n lens unit.
前記第4レンズ群が負の屈折力を有する請求項に記載の変倍光学系。 The zoom optical system according to claim 7 , wherein the fourth lens group has a negative refractive power. 請求項1〜8のいずれか一項に記載の変倍光学系を備えた光学機器。 Optical apparatus including the variable magnification optical system according to any one of claims 1-8.
JP2009037562A 2009-02-20 2009-02-20 Variable magnification optical system and optical apparatus equipped with the variable magnification optical system Active JP5633111B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009037562A JP5633111B2 (en) 2009-02-20 2009-02-20 Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
US12/708,951 US8416506B2 (en) 2009-02-20 2010-02-19 Zoom lens, optical apparatus equipped therewith and method for manufacturing the zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037562A JP5633111B2 (en) 2009-02-20 2009-02-20 Variable magnification optical system and optical apparatus equipped with the variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2010191336A JP2010191336A (en) 2010-09-02
JP5633111B2 true JP5633111B2 (en) 2014-12-03

Family

ID=42817415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037562A Active JP5633111B2 (en) 2009-02-20 2009-02-20 Variable magnification optical system and optical apparatus equipped with the variable magnification optical system

Country Status (1)

Country Link
JP (1) JP5633111B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019986A (en) * 2011-07-08 2013-01-31 Fujifilm Corp Variable power optical system for projection and projection type display device
JPWO2013125603A1 (en) * 2012-02-20 2015-07-30 コニカミノルタ株式会社 Zoom lens, imaging device, and portable terminal
KR101919011B1 (en) 2012-05-11 2018-11-16 삼성전자주식회사 Telephoto zoom lens system and photographing apparatus having the same
JP5968096B2 (en) * 2012-06-14 2016-08-10 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP6004828B2 (en) 2012-08-17 2016-10-12 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US9261682B2 (en) 2013-02-05 2016-02-16 Olympus Corporation Zoom lens
KR102001220B1 (en) 2013-03-12 2019-07-17 삼성전자주식회사 Telephoto zoom lens system and photographing apparatus having the same
JP6300507B2 (en) 2013-12-16 2018-03-28 オリンパス株式会社 Zoom lens and zoom lens apparatus having the same
WO2017047760A1 (en) * 2015-09-18 2017-03-23 株式会社ニコン Variable magnification optical system, optical device, imaging device, and production method for variable magnification optical system
JP6747458B2 (en) 2016-02-01 2020-08-26 ソニー株式会社 Zoom lens and optical equipment
JP6649286B2 (en) * 2017-01-05 2020-02-19 富士フイルム株式会社 Zoom lens and imaging device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792431A (en) * 1993-09-22 1995-04-07 Nikon Corp Zoom lens equipped with vibration-proof function
JP3564061B2 (en) * 2000-11-28 2004-09-08 キヤノン株式会社 Zoom lens and optical device using the same
JP3800134B2 (en) * 2002-05-27 2006-07-26 株式会社ニコン Large aperture ratio internal focusing telephoto zoom lens
JP4626135B2 (en) * 2002-10-04 2011-02-02 株式会社ニコン Large aperture ratio internal focusing telephoto zoom lens
JP4388784B2 (en) * 2003-10-14 2009-12-24 フジノン株式会社 Zoom lens with anti-vibration function
JP2005308997A (en) * 2004-04-20 2005-11-04 Sony Corp Zoom lens and imaging device
JP4221670B2 (en) * 2004-09-30 2009-02-12 ソニー株式会社 Zoom lens and imaging device
JP4244033B2 (en) * 2004-10-14 2009-03-25 ソニー株式会社 Zoom lens and imaging device
JP4746329B2 (en) * 2005-01-21 2011-08-10 株式会社シグマ Large aperture telephoto zoom lens
JP4143933B2 (en) * 2005-03-29 2008-09-03 ソニー株式会社 Zoom lens and imaging device
JP4655205B2 (en) * 2005-05-26 2011-03-23 ソニー株式会社 Zoom lens and imaging device
JP4217990B2 (en) * 2006-11-27 2009-02-04 ソニー株式会社 Zoom lens and imaging device
JP5288238B2 (en) * 2007-12-25 2013-09-11 株式会社ニコン Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5332169B2 (en) * 2007-10-02 2013-11-06 株式会社ニコン Zoom lens and optical apparatus having the same

Also Published As

Publication number Publication date
JP2010191336A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5549134B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5565649B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5633111B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP5565650B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
WO2009139253A1 (en) Variable power optical system, optical apparatus equipped with the variable power optical system, and method for manufacturing variable power optical system
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5948840B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
WO2018012624A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP2009009104A (en) Zoom lens and optical apparatus
JP2010145759A (en) Zoom lens, optical apparatus with the zoom lens and method for producing the zoom lens
JP2012113182A (en) Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
JP5157422B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP2013174758A (en) Variable power optical system, optical device having variable power optical system, and method of manufacturing variable power optical system
JP2014035480A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP5326434B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5765533B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP6620998B2 (en) Variable magnification optical system and optical apparatus
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
WO2014034728A1 (en) Variable-magnification optical system, optical device having same variable-magnification optical system, and method for manufacturing variable-magnification optical system
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5326433B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250