JP5633068B2 - Hydrogen generation catalyst and hydrogen generation method - Google Patents

Hydrogen generation catalyst and hydrogen generation method Download PDF

Info

Publication number
JP5633068B2
JP5633068B2 JP2010121565A JP2010121565A JP5633068B2 JP 5633068 B2 JP5633068 B2 JP 5633068B2 JP 2010121565 A JP2010121565 A JP 2010121565A JP 2010121565 A JP2010121565 A JP 2010121565A JP 5633068 B2 JP5633068 B2 JP 5633068B2
Authority
JP
Japan
Prior art keywords
hydrogen
iridium
catalyst
nickel
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010121565A
Other languages
Japanese (ja)
Other versions
JP2011245428A (en
Inventor
強 徐
強 徐
クマール サンジェイ シンハ
クマール サンジェイ シンハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010121565A priority Critical patent/JP5633068B2/en
Priority to US12/956,106 priority patent/US9028793B2/en
Publication of JP2011245428A publication Critical patent/JP2011245428A/en
Application granted granted Critical
Publication of JP5633068B2 publication Critical patent/JP5633068B2/en
Priority to US14/686,382 priority patent/US9227178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、水素発生用触媒及び水素発生方法に関する。   The present invention relates to a hydrogen generation catalyst and a hydrogen generation method.

燃料電池へ供給される水素ガスの発生方法としては、水を電気分解する方法;金属と酸を反応させる方法;水素化金属に水を反応させる方法;メチルアルコールまたは天然ガスを水蒸気で改質する方法;水素吸蔵合金、活性炭、カーボンナノチューブ、リチウム−窒素系材料等の水素貯蔵材料から水素を放出させる方法等、各種の方法が知られている。しかしながら、これらの方法は、水素を発生させるために大量のエネルギーを必要とすること、使用原料に対する水素発生量が少ないこと、大規模な設備を必要とすること等の欠点がある。このため、これらの方法は、工場規模での水素の生産や実験室で用いる程度の量の水素発生には利用可能であるが、所要量の水素燃料を継続的に供給でき、しかも小型化が要求される、自動車搭載用燃料電池;携帯電話用、パーソナルコンピュータ用等のポータブル燃料電池等の水素供給方法としては不適当である。   Hydrogen gas supplied to the fuel cell can be generated by electrolyzing water; reacting metal with acid; reacting water with metal hydride; reforming methyl alcohol or natural gas with steam Methods: Various methods are known, such as a method of releasing hydrogen from a hydrogen storage material such as a hydrogen storage alloy, activated carbon, carbon nanotube, or lithium-nitrogen material. However, these methods have drawbacks such as requiring a large amount of energy to generate hydrogen, a small amount of hydrogen generation with respect to the raw materials used, and a large-scale facility. For this reason, these methods can be used for production of hydrogen on a factory scale or generation of hydrogen to the extent that it can be used in laboratories. However, the required amount of hydrogen fuel can be continuously supplied and the size can be reduced. It is not suitable as a hydrogen supply method for required fuel cells for automobiles; portable fuel cells for mobile phones, personal computers, and the like.

一方、LiAlH4、NaBH4などの金属水素化合物は、水素化試薬として実験室等で用いられ
ているが、水と接触すると一時的に多量の水素を発生して爆発的現象をもたらすために、取り扱いを慎重にする必要があり、やはり上記した燃料電池の水素供給源としては不適当である。
On the other hand, metal hydrides such as LiAlH 4 and NaBH 4 are used in laboratories as hydrogenation reagents, but when they come into contact with water, a large amount of hydrogen is temporarily generated to cause an explosive phenomenon. It must be handled with care and is also unsuitable as a hydrogen source for the fuel cell described above.

NaBH4等のテトラヒドロホウ酸塩(下記特許文献1、2、非特許文献1、2等参照)や
化学式:NH3BH3で表されるボラン・アンモニア(下記特許文献3、非特許文献3,4等参照)の加水分解反応を利用して水素を放出させる方法も報告されているが、これらの方法は、生成物であるホウ酸化合物の回収・再生の点で問題がある。
Tetrahydroborate such as NaBH 4 (see Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 below) and borane / ammonia represented by the chemical formula: NH 3 BH 3 (Patent Document 3 and Non-Patent Documents 3 and 3 below) 4), the method of releasing hydrogen using a hydrolysis reaction has also been reported. However, these methods have problems in terms of recovery and regeneration of a boric acid compound as a product.

ヒドラジン(H2NNH2)は、室温で液体であり、高い水素含有量(12.5 重量 %)を有す
るために水素源として有望と考えられており、触媒反応により窒素と水素に分解できることが報告されている。例えば、下記特許文献4には、ヒドラジンおよびその誘導体を、ニッケル、コバルト、鉄、銅、パラジウム、白金等の水素発生触媒能を有する金属と接触させて水素を発生させる方法が開示されている。しかしながら、これらの金属触媒について、ヒドラジンの分解反応における水素発生触媒能を検討したところ、必ずしも十分な水素生成量が得られていない(下記非特許文献5参照)。
Hydrazine (H 2 NNH 2 ) is a liquid at room temperature and has a high hydrogen content (12.5 wt%) and is considered a promising source of hydrogen, and it has been reported that it can be decomposed into nitrogen and hydrogen by catalytic reaction. ing. For example, Patent Document 4 below discloses a method of generating hydrogen by bringing hydrazine and its derivatives into contact with a metal having a hydrogen generation catalytic ability such as nickel, cobalt, iron, copper, palladium, platinum or the like. However, when these metal catalysts were examined for their ability to catalyze hydrogen generation in the decomposition reaction of hydrazine, a sufficient amount of hydrogen was not necessarily obtained (see Non-Patent Document 5 below).

また、特許文献5には、アンモニアまたはヒドラジンを水素源として用い、これを窒素と水素に分解して燃料電池に供給する分解器を備える水素製造装置が開示されている。しかしながら、特許文献5には、ヒドラジンを分解して水素を発生させる方法については具体的な開示がない。   Patent Document 5 discloses a hydrogen production apparatus including a decomposer that uses ammonia or hydrazine as a hydrogen source, decomposes it into nitrogen and hydrogen, and supplies it to the fuel cell. However, Patent Document 5 does not specifically disclose a method for decomposing hydrazine to generate hydrogen.

特許文献6及び7には、ロジウムをアルミナまたはシリカを含む担体に担持させた触媒とヒドラジン水溶液とを接触させて水素を発生させる方法が開示されている。しかしながら、これらの方法では、ヒドラジンからの水素発生率が低く、十分な水素発生量が得られていない。   Patent Documents 6 and 7 disclose a method of generating hydrogen by bringing a catalyst in which rhodium is supported on a support containing alumina or silica and an aqueous hydrazine solution into contact with each other. However, in these methods, the hydrogen generation rate from hydrazine is low, and a sufficient amount of hydrogen generation is not obtained.

特開2001−19401号公報Japanese Patent Laid-Open No. 2001-19401 特開2002−241102号公報JP 2002-241102 A 特開2006−213563号公報JP 2006-213563 A 特開2004−244251号公報Japanese Patent Laid-Open No. 2004-244251 特開2003−40602号公報JP 2003-40602 A 特開2007−269514号公報JP 2007-269514 A 特開2007−269529号公報JP 2007-269529 A

S. C. Amendola 他、International Journal of Hydrogen Energy, 25 (2000), 969-975.S. C. Amendola et al., International Journal of Hydrogen Energy, 25 (2000), 969-975. ; Z. P. Li他、Journal of Power Source, 126 (2004) 28-33.Z. P. Li et al., Journal of Power Source, 126 (2004) 28-33. M. Chandra, Q. Xu, Journal of Power Sources 156 (2006) 190-194.M. Chandra, Q. Xu, Journal of Power Sources 156 (2006) 190-194. Q. Xu, M. Chandra, Journal of Power Sources 163 (2006) 364-370.Q. Xu, M. Chandra, Journal of Power Sources 163 (2006) 364-370. Sanjay Kumar Singh, Xin-Bo Zhang, Qiang Xu, J. Am. Chem. Soc., 131 (2009) 9894-9895.Sanjay Kumar Singh, Xin-Bo Zhang, Qiang Xu, J. Am. Chem. Soc., 131 (2009) 9894-9895.

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、ヒドラジンの分解反応を利用する水素発生方法において、水素を選択性よく高効率・低コストで発生させることができる方法を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and its main purpose is to generate hydrogen with high selectivity and high efficiency and low cost in a hydrogen generation method utilizing a decomposition reaction of hydrazine. It is to provide a method that can be made to.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、ヒドラジン又はその水和物を水素発生源とする場合に、イリジウムとニッケルの複合金属を触媒とすることによって、従来知られている金属触媒を用いる場合と比較して、非常に高い選択率で効率よく且つ低コストで水素を発生させることが可能となることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, when hydrazine or its hydrate is used as a hydrogen generation source, by using a composite metal of iridium and nickel as a catalyst, the selection is very high compared to the case of using a conventionally known metal catalyst. It has been found that hydrogen can be generated efficiently and at low cost, and the present invention has been completed here.

即ち、本発明は、下記の水素発生用触媒及び水素発生方法を提供するものである。
1. イリジウム化合物ニッケル化合物、及び臭化ヘキサデシルトリメチルアンモニウムを含有する水溶液に還元剤を加えて、イリジウムイオン及びニッケルイオンを還元する方法により得られるイリジウムとニッケルの複合金属からなる、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物の分解反応による水素発生用触媒。
2. イリジウムとニッケルの複合金属が、イリジウムとニッケルの合金、金属間化合物又は固溶体である上記項1に記載の水素発生用触媒。
3. イリジウムとニッケルの複合金属におけるイリジウムの含有率が0.1〜39モル%の範囲である上記項1又は2に記載の水素発生用触媒。
4. 上記項1〜3のいずれかに記載の水素発生用触媒を、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物に接触させることを特徴とする水素発生方法。
5. 上記項4の方法によって発生させた水素を燃料電池の水素源として供給することを特徴とする、燃料電池への水素供給方法。
That is, the present invention provides the following hydrogen generation catalyst and hydrogen generation method.
1. Hydrazine and its hydration comprising a composite metal of iridium and nickel obtained by adding a reducing agent to an aqueous solution containing an iridium compound, a nickel compound , and hexadecyltrimethylammonium bromide to reduce iridium ions and nickel ions A catalyst for hydrogen generation by a decomposition reaction of at least one compound selected from the group consisting of compounds.
2. Item 2. The hydrogen generation catalyst according to Item 1, wherein the composite metal of iridium and nickel is an alloy of iridium and nickel, an intermetallic compound, or a solid solution.
3. Item 3. The hydrogen generation catalyst according to Item 1 or 2, wherein the iridium content in the composite metal of iridium and nickel is in the range of 0.1 to 39 mol%.
4). 4. A hydrogen generation method, wherein the hydrogen generation catalyst according to any one of Items 1 to 3 is contacted with at least one compound selected from the group consisting of hydrazine and hydrates thereof.
5. A method for supplying hydrogen to a fuel cell, comprising supplying hydrogen generated by the method of item 4 above as a hydrogen source for the fuel cell.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明の水素発生方法では、水素発生源として、化学式:H2NNH2で表されるヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を用いる。ヒドラジン(無水物及び一水和物)は公知化合物であり、室温では液体である。 In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine represented by the chemical formula: H 2 NNH 2 and hydrates thereof is used as the hydrogen generation source. Hydrazine (anhydride and monohydrate) is a known compound and is liquid at room temperature.

ヒドラジンの触媒による分解反応としては、一般に、下記式( 1 )で示される水素及
び窒素が生成するヒドラジン完全分解反応、又は 式( 2 ) で示されるアンモニアと窒素が生成するヒドラジン部分分解反応が進行すると考えられている。
In general, a hydrazine-catalyzed decomposition reaction involves a hydrazine complete decomposition reaction in which hydrogen and nitrogen represented by the following formula (1) are generated, or a hydrazine partial decomposition reaction in which ammonia and nitrogen are represented by the formula (2). It is considered to be.

24→ N2 + 2H2 ・・・ (1)
3N24→ N2 + 4NH3 ・・・(2)
N 2 H 4 → N 2 + 2H 2 (1)
3N 2 H 4 → N 2 + 4NH 3 (2)

上述した非特許文献5には、ロジウム触媒の存在下におけるヒドラジンの分解反応について記載されており、ロジウム金属を触媒とする場合には、式( 1 )で示されるヒドラジン完全分解反応よりも、式( 2 )で示されるヒドラジン部分分解反応が優先的に進行して、多量のアンモニアが生成することが記載されている。また、その他の金属触媒については、白金、パラジウム、ニッケル、銅、鉄等の金属を触媒として用いる場合には、ヒドラジンの分解反応は進行せず、コバルト、ルテニウム、イリジウム等金属を触媒とする場合には、ヒドラジンの完全分解反応は僅かに進行するが、主に部分分解反応が進行して、多量のアンモニアが生成する。   Non-Patent Document 5 described above describes the decomposition reaction of hydrazine in the presence of a rhodium catalyst. When rhodium metal is used as a catalyst, the hydrazine complete decomposition reaction represented by the formula (1) is more effective. It is described that the hydrazine partial decomposition reaction represented by (2) proceeds preferentially to produce a large amount of ammonia. For other metal catalysts, when metals such as platinum, palladium, nickel, copper and iron are used as catalysts, the decomposition reaction of hydrazine does not proceed, and metals such as cobalt, ruthenium and iridium are used as catalysts. In this case, the complete decomposition reaction of hydrazine proceeds slightly, but the partial decomposition reaction mainly proceeds to produce a large amount of ammonia.

更に、本発明者の研究によれば、イリジウムと銅の複合金属、イリジウムと鉄の複合金属、イリジウムとコバルトの複合金属等を触媒とする場合には、完全分解による水素発生反応の選択率の向上は認められないことが明らかとなっている。   Furthermore, according to the research of the present inventors, when the catalyst is a composite metal of iridium and copper, a composite metal of iridium and iron, a composite metal of iridium and cobalt, etc., the selectivity of the hydrogen generation reaction by complete decomposition is improved. It is clear that no improvement is observed.

これに対して、本発明で用いるイリジウムとニッケルの複合金属を触媒とする場合には、アンモニアが生成する部分分解反応が抑制され、水素が生成する完全分解反応が選択的に進行する。   On the other hand, when the composite metal of iridium and nickel used in the present invention is used as a catalyst, the partial decomposition reaction in which ammonia is generated is suppressed, and the complete decomposition reaction in which hydrogen is generated selectively proceeds.

以下、本発明で用いるイリジウムとニッケルの複合金属触媒及び該触媒を用いる水素発生方法について、具体的に説明する。   Hereinafter, the composite metal catalyst of iridium and nickel used in the present invention and a hydrogen generation method using the catalyst will be specifically described.

イリジウム・ニッケル複合金属触媒
本発明の水素発生方法で用いるイリジウムとニッケルの複合金属触媒は、イリジウムとニッケルの混合物ではなく、イリジウムとニッケルが、密接な相互関係にある複合金属であることが必要である。このような複合金属の具体例としては、合金、金属間化合物、固溶体などを例示できる。
Iridium / nickel composite metal catalyst The iridium / nickel composite metal catalyst used in the hydrogen generation method of the present invention is not a mixture of iridium and nickel, but a composite metal in which iridium and nickel are closely related to each other. is there. Specific examples of such composite metals include alloys, intermetallic compounds, and solid solutions.

前述した通り、イリジウム単独で触媒して用いる場合には主に部分分解反応が進行して、多量のアンモニアが生成し、またニッケル金属を単独で触媒して用いる場合には、ヒドラジンの分解反応は進行しない。また、イリジウムとニッケル金属の単なる物理混合物については、イリジウム単独の場合と比べて、ヒドラジンの完全分解反応の選択性の向上が見られない。   As described above, when iridium alone is used as a catalyst, a partial decomposition reaction mainly proceeds to produce a large amount of ammonia. When nickel metal is used alone as a catalyst, the decomposition reaction of hydrazine is Does not progress. Further, the mere physical mixture of iridium and nickel metal shows no improvement in the selectivity of the complete decomposition reaction of hydrazine as compared with the case of iridium alone.

これに対して、イリジウムとニッケルを複合化した金属触媒を用いる場合には、驚くべきことに、上記式( 1 )で示されるヒドラジンの完全分解反応が選択性よく進行して、非常に効率良く水素を発生させることができる。   On the other hand, when a metal catalyst in which iridium and nickel are combined is used, surprisingly, the complete decomposition reaction of hydrazine represented by the above formula (1) proceeds with good selectivity and is very efficient. Hydrogen can be generated.

イリジウムとニッケルの複合金属におけるイリジウムとニッケルの比率については、IrとNiの合計モル数を基準として、Irの比率が0.1〜39モル%程度の範囲内において、Ir単独の場合と比べてヒドラジンの完全分解反応による水素発生反応に対する選択性が高くなり、特に、Irの比率が1〜25モル%程度の範囲において、非常に高い選択率でヒドラジンの完全分解反応が進行して、効率よく水素を発生させることができる。   Regarding the ratio of iridium and nickel in the composite metal of iridium and nickel, the ratio of Ir is within the range of about 0.1 to 39 mol% based on the total number of moles of Ir and Ni, compared with the case of Ir alone. The selectivity for the hydrogen generation reaction due to the complete decomposition reaction of hydrazine is enhanced. Particularly, the complete decomposition reaction of hydrazine proceeds at a very high selectivity in the range where the ratio of Ir is about 1 to 25 mol%. Hydrogen can be generated.

イリジウムとニッケルの複合金属触媒の製造方法については、特に限定はないが、例えば、イリジウム化合物とニッケル化合物を含む水溶液に還元剤を加えて、イリジウムイオ
ン及びニッケルイオンを還元して金属化することによって、目的とするイリジウムとニッケルの複合金属を得ることができる。そのほか、イリジウム化合物を含む水溶液に還元剤を添加してイリジウムイオンを還元した後、さらにニッケル化合物を添加して還元する方法や、ニッケル化合物を含む水溶液に還元剤を添加して、ニッケルイオンを還元した後、さらにイリジウム化合物を加えて還元する方法等も採用できる。特に、イリジウム化合物とニッケル化合物を含む水溶液に還元剤を加えて、イリジウムイオン及びニッケルイオンを還元する方法によれば、均一性に優れた金属触媒を得ることができる。これらの方法で用いるイリジウム化合物及びニッケル化合物については特に限定はないが、溶媒中に可溶性の化合物でれば良く、例えば、イリジウム又はニッケルの塩化物、硝酸塩、硫酸塩などの金属塩や各種金属錯体を用いることができる。
There is no particular limitation on the method for producing the composite metal catalyst of iridium and nickel. For example, by adding a reducing agent to an aqueous solution containing an iridium compound and a nickel compound, the iridium ion and nickel ion are reduced and metallized. As a result, the target composite metal of iridium and nickel can be obtained. In addition, after reducing a iridium ion by adding a reducing agent to an aqueous solution containing an iridium compound, the nickel compound is further reduced by adding a nickel compound, or a reducing agent is added to an aqueous solution containing the nickel compound to reduce nickel ions. Then, a method of adding an iridium compound for reduction and the like can also be employed. In particular, according to a method in which a reducing agent is added to an aqueous solution containing an iridium compound and a nickel compound to reduce iridium ions and nickel ions, a metal catalyst having excellent uniformity can be obtained. The iridium compound and nickel compound used in these methods are not particularly limited, but may be any compound that is soluble in a solvent. For example, metal salts such as iridium or nickel chloride, nitrate, sulfate, and various metal complexes Can be used.

これらのイリジウム化合物及びニッケル化合物を還元するために用いる還元剤としては、特に限定はないが、例えば、テトラヒドロホウ酸ナトリウム、ヒドラジン自身など、イリジウム化合物とニッケル化合物を還元できるものであれば特に限定なく利用できる。   The reducing agent used for reducing these iridium compounds and nickel compounds is not particularly limited as long as it can reduce iridium compounds and nickel compounds, such as sodium tetrahydroborate and hydrazine itself. Available.

イリジウムとニッケルの複合金属の大きさについては特に限定はないが、例えば、粒径が1〜100nm程度の超微粒子状態の複合金属が活性が高い点で有利である。尚、この場合の複合金属の粒径は、電子顕微鏡によって測定した値である。   The size of the composite metal of iridium and nickel is not particularly limited. For example, a composite metal in an ultrafine particle state having a particle size of about 1 to 100 nm is advantageous in that it has high activity. In this case, the particle diameter of the composite metal is a value measured by an electron microscope.

イリジウムとニッケルの複合金属には、更に、触媒活性に悪影響のない範囲内において、他の金属が複合化してもよい。   The iridium and nickel composite metal may be further composited with other metals within a range that does not adversely affect the catalytic activity.

イリジウムとニッケルの複合金属は、シリカ、アルミナ、ジルコニア、活性炭などの担体に担持させた担持触媒として用いてもよい。このような担持触媒の製造方法については、特に限定的ではないが、例えば、イリジウム化合物とニッケル化合物を含む溶液中に担体を分散させた状態で、イリジウム化合物とニッケル化合物を還元することによって得ることができる。担持量については特に限定はないが、例えば、イリジウムとニッケルの複合金属と担体の合計量を基準として、該複合金属の量が0.1〜20重量%程度であることが好ましく、0.5〜10重量%程度であることがより好ましく、1〜5重量%程度であることが更に好ましい。   The composite metal of iridium and nickel may be used as a supported catalyst supported on a support such as silica, alumina, zirconia, or activated carbon. The method for producing such a supported catalyst is not particularly limited. For example, it can be obtained by reducing the iridium compound and the nickel compound in a state where the carrier is dispersed in a solution containing the iridium compound and the nickel compound. Can do. The amount supported is not particularly limited. For example, the amount of the composite metal is preferably about 0.1 to 20% by weight based on the total amount of the composite metal of iridium and nickel and the carrier, More preferably, it is about 10 to 10 weight%, More preferably, it is about 1 to 5 weight%.

水素発生方法
本発明の水素発生方法では、水素発生源としては、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を用いる。ヒドラジン及びその水和物の種類について特に限定はなく、一般に市販されているものをそのまま使用できる。また、水素発生に悪影響の無い限りその他の成分が同時に含まれていても良い。
Hydrogen Generation Method In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine and hydrates thereof is used as the hydrogen generation source. There is no limitation in particular about the kind of hydrazine and its hydrate, What is generally marketed can be used as it is. Further, other components may be included at the same time as long as there is no adverse effect on the hydrogen generation.

これらの化合物の内で、ヒドラジンの無水物(H2NNH2)を原料とする場合には、ヒドラジンに対して12.5重量%の水素が発生するので水素発生効率が高いが、発火性があるために安全性に問題がある。一方、ヒドラジン一水和物(H2NNH2・H2O)を水素発生源と
する場合には、ヒドラジン一水和物に対して8重量%の水素が発生するので、無水物を原料とする場合と比較すると水素発生効率は多少劣るが、なお高い水素発生効率を有するものであり、更に、安全性が良好となる。このため、安全性を考慮すると、ヒドラジン一水和物、又はこれを更に水に希釈した水溶液を用いればよい。本発明では、特に、安全性と水素の発生効率の両方を考慮すると、ヒドラジン濃度が40〜64重量%程度の水溶液を用いることが好ましい。
Among these compounds, when anhydrous hydrazine (H 2 NNH 2 ) is used as a raw material, hydrogen generation efficiency is high because 12.5% by weight of hydrogen is generated with respect to hydrazine. Because there is a problem with safety. On the other hand, in the case of hydrazine monohydrate (H 2 NNH 2 · H 2 O) and hydrogen source, since 8 wt% of hydrogen is generated for hydrazine monohydrate, and the raw material anhydride The hydrogen generation efficiency is somewhat inferior to that in the case where it is performed. However, the hydrogen generation efficiency is still high, and the safety is further improved. For this reason, in consideration of safety, hydrazine monohydrate or an aqueous solution obtained by further diluting it may be used. In the present invention, it is preferable to use an aqueous solution having a hydrazine concentration of about 40 to 64% by weight, considering both safety and hydrogen generation efficiency.

本発明の水素発生方法では、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を水素発生源として用い、これを上記したイリジウムとニッケルの複合金属からなる触媒に接触させればよい。具体的な方法については特に限定はなく、例えば
、反応容器中にヒドラジンと触媒を加えて、混合する方法などを採用できる。また、触媒を充填した反応器にヒドラジン水溶液を導入し、触媒層を通過させる方法も採用できる。
In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine and hydrates thereof is used as a hydrogen generation source, and this is brought into contact with the above-described catalyst made of a composite metal of iridium and nickel. Good. A specific method is not particularly limited, and for example, a method of adding hydrazine and a catalyst in a reaction vessel and mixing them can be employed. Moreover, the method of introduce | transducing hydrazine aqueous solution to the reactor filled with the catalyst, and letting it pass a catalyst layer is also employable.

イリジウムとニッケルの複合金属からなる触媒の使用量については、特に限定的ではなく、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物1モルに対して、イリジウムとニッケルの複合金属の量を0.0001〜10モル程度という広い範囲から選択することが可能である。特に、反応速度、触媒コスト等のバランスを考慮すると、例えば、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物1モルに対して、上記複合金属量を0.01〜0.5モル程度とすることが好ましい。尚、触媒層を通過させる方法では、ヒドラジン又はその水和物溶液の流速と接触時間を考慮して触媒層の触媒量を決めればよい。   The amount of the catalyst comprising the composite metal of iridium and nickel is not particularly limited, and the composite metal of iridium and nickel is used with respect to 1 mol of at least one compound selected from the group consisting of hydrazine and hydrates thereof. Can be selected from a wide range of about 0.0001 to 10 mol. In particular, considering the balance of reaction rate, catalyst cost, and the like, for example, the amount of the composite metal is 0.01 to 0.00 with respect to 1 mol of at least one compound selected from the group consisting of hydrazine and hydrates thereof. It is preferably about 5 moles. In the method of passing through the catalyst layer, the catalyst amount of the catalyst layer may be determined in consideration of the flow rate of hydrazine or its hydrate solution and the contact time.

水素発生反応の反応温度は、特に限定はないが、0℃〜80℃程度とすることが好ましく、10〜50℃程度とすることがより好ましい。   The reaction temperature of the hydrogen generation reaction is not particularly limited, but is preferably about 0 ° C to 80 ° C, and more preferably about 10 to 50 ° C.

反応時の反応系内の圧力や雰囲気については特に限定はなく、適宜選択できる。   There is no limitation in particular about the pressure and atmosphere in the reaction system at the time of reaction, and it can select suitably.

発生した水素の利用方法
本発明方法によれば、ヒドラジンの分解による水素発生反応が選択性よく進行して、効率よく水素を生成させることができる。
Method for Utilizing Generated Hydrogen According to the method of the present invention, hydrogen generation reaction by decomposition of hydrazine proceeds with good selectivity, and hydrogen can be generated efficiently.

発生した水素は、例えば、燃料電池用の燃料として燃料電池に直接供給することができる。特に、本発明の水素発生方法は、室温付近の温度で水素を発生させることができ、しかも水素発生速度、発生量等を制御可能であることから、自動車搭載用燃料電池;携帯電話用、パーソナルコンピュータ用等のポータブル燃料電池等の水素供給方法として有用性が高い方法である。   The generated hydrogen can be directly supplied to the fuel cell as fuel for the fuel cell, for example. In particular, the hydrogen generation method of the present invention can generate hydrogen at a temperature near room temperature, and can control the hydrogen generation rate, generation amount, etc., so that it is a fuel cell for automobiles; This method is highly useful as a hydrogen supply method for computers and other portable fuel cells.

発生した水素については、例えば、水素吸蔵合金を充填した容器内に捕集して貯蔵することが可能である。また、水素吸蔵合金を用い、温度を平衡圧力―温度関係に従って調整することによって、発生した水素の系内圧力を制御することも可能である。   The generated hydrogen can be collected and stored in a container filled with a hydrogen storage alloy, for example. It is also possible to control the internal pressure of the generated hydrogen by using a hydrogen storage alloy and adjusting the temperature according to the equilibrium pressure-temperature relationship.

本発明の水素発生方法によれば、高温に加熱することなく、制御可能な条件下で効率よく水素ガスを発生させることができる。   According to the hydrogen generation method of the present invention, hydrogen gas can be efficiently generated under controllable conditions without heating to a high temperature.

また、本発明の水素発生用触媒は、イリジウムの含有率が低い場合にも高い活性を示すことから、低コストの触媒とすることができる。   Moreover, since the catalyst for hydrogen generation of the present invention exhibits high activity even when the iridium content is low, it can be a low-cost catalyst.

本発明方法によって発生した水素ガスは、例えば、自動車搭載用燃料電池、ポータブル燃料電池等の燃料として有用性が高いものである。   The hydrogen gas generated by the method of the present invention is highly useful as a fuel for, for example, a fuel cell for automobiles and a portable fuel cell.

実施例1で得られた触媒粒子の透過型電子顕微鏡(TEM)像。The transmission electron microscope (TEM) image of the catalyst particle obtained in Example 1. FIG. 実施例1で得られた触媒粒子の高角度散乱暗視野(走査透過電子顕微鏡)(HAADF−STEM)像及びEDSスペクトル。The high angle scattering dark field (scanning transmission electron microscope) (HAADF-STEM) image and EDS spectrum of the catalyst particle obtained in Example 1. 実施例1、比較例1、比較例2及び比較例3において測定したヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフ。The graph which shows the relationship between the molar ratio of the discharge gas with respect to the hydrazine monohydrate measured in Example 1, the comparative example 1, the comparative example 2, and the comparative example 3, and reaction time. 実施例1〜3において測定したヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフ。The graph which shows the relationship between the molar ratio of the discharge gas with respect to the hydrazine monohydrate measured in Examples 1-3, and reaction time. ニッケル−イリジウムナノ粒子触媒におけるIr含有量(mol%)と、水素生成反応の選択率との関係を示すグラフ。The graph which shows the relationship between Ir content (mol%) in a nickel-iridium nanoparticle catalyst, and the selectivity of hydrogen production reaction.

以下、実施例及び比較例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1
容量30 mlの二つ口フラスコに、NiCl2・6H2O (0.045 g)、H2IrCl6(0.004 g)、臭化ヘキサデシルトリメチルアンモニウム (CTAB, 95%)(0.100 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、50℃で5分間加熱してから室温に戻し、NaBH4(0.020 g) 水
溶液(1.5 mL)を入れて5分間激しく反応容器を振とうさせて、Ni0.95Ir0.05ナノ粒子触媒を形成した。
Example 1
To a 30 ml two-necked flask, add NiCl 2 · 6H 2 O (0.045 g), H 2 IrCl 6 (0.004 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.100 g), and water ( 2.5 mL), ultrasonically stirred for 5 minutes, heated at 50 ° C. for 5 minutes, and then returned to room temperature. Then, NaBH 4 (0.020 g) aqueous solution (1.5 mL) was added and the reaction vessel was shaken vigorously for 5 minutes. Thus, a Ni 0.95 Ir 0.05 nanoparticle catalyst was formed.

得られたNi0.95Ir0.05ナノ粒子触媒の透過型電子顕微鏡(TEM)像を図1に示す。図1
から明らかなように、該触媒は、粒径5 nm程度の超微粒子であった。
A transmission electron microscope (TEM) image of the obtained Ni 0.95 Ir 0.05 nanoparticle catalyst is shown in FIG. FIG.
As is clear from the above, the catalyst was ultrafine particles having a particle size of about 5 nm.

また、図2に該Ni0.95Ir0.05ナノ粒子触媒の高角度散乱暗視野(走査透過電子顕微鏡)(HAADF−STEM)像を示し、図中の点において測定したIrとNiのEDSスペクトル強度を図中の右上部に示す。図2に示すEDSスペクトルから明らかなように、IrとNiは同一位置に存在しており、それぞれ個別の金属粒子として存在するのではなく、原子レベルで共存する合金化された状態であることが確認できる。 FIG. 2 shows a high-angle scattering dark field (scanning transmission electron microscope) (HAADF-STEM) image of the Ni 0.95 Ir 0.05 nanoparticle catalyst, and the Ir and Ni EDS spectral intensities measured at the points in the figure. Shown in the upper right part. As apparent from the EDS spectrum shown in FIG. 2, Ir and Ni are present at the same position, and are not present as individual metal particles, but are in an alloyed state coexisting at the atomic level. I can confirm.

次いで、この二つ口フラスコにシリンジでヒドラジン一水和物(H2NNH2・H2O, 99%)(0.1mL、1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入ったトラップを通過させてアンモニアを吸収させた後、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に2ml、10分後に4.3ml、20分後に8.5ml、50分後に22ml、100分後に42ml、150分後に60ml、300分後に105ml、405分後に130ml、450分後に144ml、540分後に146mlのガス放出が観測された。 Then, the two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1mL, 1.97 mmol) were charged, and stirring was continued at room temperature. The released gas was passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 2 ml 5 minutes after the start of stirring, 4.3 ml after 10 minutes, 8.5 ml after 20 minutes, 22 ml after 50 minutes, 42 ml after 100 minutes, 60 ml after 150 minutes, 105 ml after 300 minutes, 130 ml after 405 minutes, 144 ml after 450 minutes After 540 minutes, 146 ml outgassing was observed.

図3は、原料として用いたヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフである。また、図3には、後述する比較例1、比較例2及び比較例3の結果も示す。   FIG. 3 is a graph showing the relationship between the molar ratio of the released gas to the hydrazine monohydrate used as a raw material and the reaction time. Moreover, in FIG. 3, the result of the comparative example 1, the comparative example 2, and the comparative example 3 mentioned later is also shown.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して3倍モルであった。このガス放出量は、ヒドラジンの完全分解による水素発生反応の選択率が100%の場合に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 3 times the mol of hydrazine used as a raw material. This gas release amount corresponds to the case where the selectivity of the hydrogen generation reaction by the complete decomposition of hydrazine is 100%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

比較例1
容量30 mlの二つ口フラスコに、NiCl2・6H2O (0.047 g)、臭化ヘキサデシルトリメチルアンモニウム(CTAB, 95%)(0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌した後、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間激しく反応容器を振とうさせて、Niナノ粒子触媒を形成させた。
Comparative Example 1
Place NiCl 2 · 6H 2 O (0.047 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.105 g), and water (2.5 mL) into a 30 ml two-necked flask for more than 5 minutes. After stirring by sonication, an aqueous solution of NaBH 4 (0.020 g) (1.5 mL) was added, and the reaction vessel was shaken vigorously for 2 minutes to form a Ni nanoparticle catalyst.

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において120分間攪拌したが、ガス放出は観測されなかった。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, was stirred for 120 minutes at room temperature, outgassing observed It was.

比較例2
容量30 mlの二つ口フラスコにIrCl3(0.058 g)、臭化ヘキサデシルトリメチルアンモニ
ウム(CTAB, 95%)(0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌した後、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間激しく反応容器を振とうさせ、Irナノ粒子
触媒を形成させた。
Comparative Example 2
IrCl 3 (0.058 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.105 g), and water (2.5 mL) were placed in a 30-ml two-necked flask and subjected to ultrasonic stirring for 5 minutes. NaBH 4 (0.020 g) aqueous solution (1.5 mL) was added, and the reaction vessel was vigorously shaken for 2 minutes to form an Ir nanoparticle catalyst.

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入ったトラップを通過させてアンモニアを吸収させた後、水素及び窒素のみをガスビューレットに導入し、放出量を測定した。攪拌開始1分後に4ml、2分後に7ml、4分後に11ml、6分後に14ml、10分後に17.5ml、20分後に21.5ml、30分後に23ml、40分後に23.5ml、50分後に24ml、60分後に24mlのガス放出が観測された。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, and stirring was continued at room temperature. The released gas was passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 4 ml after 1 minute of stirring, 7 ml after 2 minutes, 11 ml after 4 minutes, 14 ml after 6 minutes, 17.5 ml after 10 minutes, 21.5 ml after 20 minutes, 23 ml after 30 minutes, 23.5 ml after 40 minutes, 50 minutes Later, 24 ml outgassing was observed after 60 min and 60 min.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して0.5倍モルであった。このガス放出量は、ヒドラジンの完全分解による水素発生反応の選択率が7%の場合に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 0.5 times mol of hydrazine used as a raw material. This gas release amount corresponds to a case where the selectivity of the hydrogen generation reaction by complete decomposition of hydrazine is 7%.

比較例3
比較例1及び比較例2と同様の方法でNiナノ粒子とIrナノ粒子をそれぞれ形成し、乾燥させた。この方法で得られたNiナノ粒子11.2 mg及びIrナノ粒子 2 mgを容量30 mlの二つ
口フラスコに入れ、攪拌して水(4 mL)で分散させた。
Comparative Example 3
Ni nanoparticles and Ir nanoparticles were formed by the same method as in Comparative Example 1 and Comparative Example 2, respectively, and dried. Ni nanoparticles 11.2 mg and Ir nanoparticles 2 mg obtained by this method were placed in a 30 ml two-necked flask, stirred and dispersed with water (4 mL).

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入ったトラップを通過させてアンモニアを吸収させた後、水素及び窒素のみをガスビューレットに導入し、放出量を測定した。攪拌開始10分後に2ml、30分後に4ml、60分後に6.5ml、120分後に10ml、180分後に13ml、240分後に16ml、330分後に20ml、360分後に22ml、390分後に23ml、480分後に23mlのガス放出が観測された。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, and stirring was continued at room temperature. The released gas was passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 10 minutes after starting stirring, 4 ml after 30 minutes, 6.5 ml after 60 minutes, 10 ml after 120 minutes, 13 ml after 180 minutes, 16 ml after 240 minutes, 20 ml after 330 minutes, 22 ml after 360 minutes, 23 ml after 390 minutes, 480 After 23 minutes, an outgassing of 23 ml was observed.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して0.5倍モルであった。このガス放出量は、ヒドラジンの完全分解による水素発生反応の選択率が7%の場合に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 0.5 times mol of hydrazine used as a raw material. This gas release amount corresponds to a case where the selectivity of the hydrogen generation reaction by complete decomposition of hydrazine is 7%.

この結果から明らかなように、Niナノ粒子とIrナノ粒子の混合物を触媒とする場合には、比較例2におけるIrナノ粒子のみからなら触媒を用いた場合と同じ水素生成反応の選択率であり、ヒドラジンの完全分解・水素生成反応の選択性の向上は認められなかった。   As is clear from this result, when the mixture of Ni nanoparticles and Ir nanoparticles is used as a catalyst, the selectivity of the hydrogen generation reaction is the same as when using the catalyst only from Ir nanoparticles in Comparative Example 2. The selectivity of hydrazine complete decomposition and hydrogen generation reaction was not observed.

実施例2
容量30 mlの二つ口フラスコに、NiCl2・6H2O (0.043 g)、H2IrCl6 (0.008 g)、臭化ヘ
キサデシルトリメチルアンモニウム (CTAB, 95%)(0.100 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、50℃で5分間加熱してから室温に戻し、NaBH4(0.020 g)
水溶液(1.5 mL)を入れて5分間激しく反応容器を振とうさせ、Ni0.90Ir0.10ナノ粒子触媒を形成した。
Example 2
To a 30 ml two-necked flask, add NiCl 2 · 6H 2 O (0.043 g), H 2 IrCl 6 (0.008 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.100 g), and water ( 2.5 mL), ultrasonically stirred for 5 minutes, heated at 50 ° C for 5 minutes, and then returned to room temperature. NaBH 4 (0.020 g)
An aqueous solution (1.5 mL) was added and the reaction vessel was vigorously shaken for 5 minutes to form a Ni 0.90 Ir 0.10 nanoparticle catalyst.

次いで、この二つ口フラスコにシリンジでヒドラジン一水和物(H2NNH2・H2O, 99%)(0.1
mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入った
トラップを通過させてアンモニアを吸収させた後、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に3ml、10分後に7ml、20分後に13ml、40分後に29.5ml、60分後に45ml、80分後に62ml、120分後に90ml、180分後に119ml、210分後に130ml、240分後に139ml、270分後に1
45ml、300分後に146mlのガス放出が観測された。
Next, hydrazine monohydrate (H 2 NNH 2H 2 O, 99%) (0.1%) was added to the two -necked flask with a syringe.
mL, 1.97 mmol) was added and stirring was continued at room temperature. The released gas was passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 3 ml after 5 minutes from the start of stirring, 7 ml after 10 minutes, 13 ml after 20 minutes, 29.5 ml after 40 minutes, 45 ml after 60 minutes, 62 ml after 80 minutes, 90 ml after 120 minutes, 119 ml after 180 minutes, 130 ml after 210 minutes, 240 139 ml after 1 minute, 1 after 270 minutes
An outgassing of 146 ml was observed after 45 ml and 300 minutes.

図4は、原料として用いたヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフである。図4には、実施例1の結果と、後述する実施例3の結果も合わせて示す。   FIG. 4 is a graph showing the relationship between the molar ratio of the released gas to the hydrazine monohydrate used as a raw material and the reaction time. FIG. 4 also shows the results of Example 1 and the results of Example 3 described later.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して3.0倍モルであった。このガス放出量は、ヒドラジンの完全分解による水素発生反応の選択率が100%の場合に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 3.0 times the mol of hydrazine used as a raw material. This gas release amount corresponds to the case where the selectivity of the hydrogen generation reaction by the complete decomposition of hydrazine is 100%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

実施例3
容量30 mlの二つ口フラスコにNiCl2・6H2O (0.036 g)、H2IrCl6(0.020 g)、臭化ヘキサデシルトリメチルアンモニウム (CTAB, 95%)(0.100 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、50℃で5分間加熱してから室温に戻し、NaBH4(0.020 g) 水溶
液(1.5 mL)を入れて5分間激しく反応容器を振とうさせ、Ni0.75Ir0.25ナノ粒子触媒を形成した。
Example 3
A 30 ml two-necked flask was charged with NiCl 2 · 6H 2 O (0.036 g), H 2 IrCl 6 (0.020 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.100 g), and water (2.5 After 5 minutes of ultrasonic agitation, heat at 50 ° C. for 5 minutes and then return to room temperature. Add NaBH 4 (0.020 g) aqueous solution (1.5 mL) and shake the reaction vessel vigorously for 5 minutes. A Ni 0.75 Ir 0.25 nanoparticle catalyst was formed.

次いで、この二つ口フラスコにシリンジでヒドラジン一水和物(H2NNH2・H2O, 99%)(0.1
mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入った
トラップを通過させてアンモニアを吸収させた後、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に6ml、10分後に12ml、20分後に25ml、40分後に47ml、60分後に66ml、80分後に81.5ml、100分後に94ml、120分後に105ml、150分後に116ml、180分後に123ml、210分後に126ml、270分後に126mlのガス放出が観測された。
Next, hydrazine monohydrate (H 2 NNH 2H 2 O, 99%) (0.1%) was added to the two -necked flask with a syringe.
mL, 1.97 mmol) was added and stirring was continued at room temperature. The released gas was passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 6 ml after starting 5 minutes, 12 ml after 10 minutes, 25 ml after 20 minutes, 47 ml after 40 minutes, 66 ml after 60 minutes, 81.5 ml after 80 minutes, 94 ml after 100 minutes, 105 ml after 120 minutes, 116 ml after 150 minutes, 180 ml Outgassing of 123 ml after minutes, 126 ml after 210 minutes and 126 ml after 270 minutes was observed.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して2.6倍モルであった。このガス放出量は、ヒドラジンの完全分解による水素発生反応の選択率が85%の場合に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 2.6 moles compared to hydrazine used as a raw material. This gas release amount corresponds to the case where the selectivity of the hydrogen generation reaction by complete decomposition of hydrazine is 85%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

実施例4
実施例1のニッケル−イリジウムナノ粒子の製造方法において、NiCl2・6H2OとH2IrCl6の使用量を変更して、Ni0.99Ir0.01ナノ粒子触媒、Ni0.60Ir0.40ナノ粒子触媒、Ni0.50Ir0.50ナノ粒子触媒、及びNi0.25Ir0.75ナノ粒子触媒を作製した。それぞれの触媒を用いて、実施例1と同様の方法でヒドラジン一水和物を原料とする放出ガスの測定実験を行い、水素及び窒素の放出量から、ヒドラジンの完全分解反応による水素発生反応に対する選択率を求めた。
Example 4
In the method for producing nickel-iridium nanoparticles of Example 1, the amounts of NiCl 2 · 6H 2 O and H 2 IrCl 6 were changed to obtain Ni 0.99 Ir 0.01 nanoparticle catalyst, Ni 0.60 Ir 0.40 nanoparticle catalyst, Ni 0.50 Ir 0.50 nanoparticle catalyst and Ni 0.25 Ir 0.75 nanoparticle catalyst were prepared. Using each catalyst, an emission gas measurement experiment using hydrazine monohydrate as a raw material was performed in the same manner as in Example 1. From the amount of hydrogen and nitrogen released, the hydrogen generation reaction by the complete decomposition reaction of hydrazine was performed. The selectivity was determined.

図5は、実施例4の結果と実施例1〜3、比較例1及び比較例2の結果に基づいて求めたニッケル−イリジウムナノ粒子触媒におけるIr含有量(mol%)と、水素生成反応の選択率との関係を示すグラフである。   FIG. 5 shows the Ir content (mol%) in the nickel-iridium nanoparticle catalyst determined based on the results of Example 4 and the results of Examples 1 to 3, Comparative Example 1 and Comparative Example 2, and the hydrogen generation reaction. It is a graph which shows the relationship with a selection rate.

図5から、IrとNiの合計モル数に対するIrの比率が0.1〜39モル%の範囲において、ヒドラジンの完全分解反応による水素発生反応に対する選択率が向上することが確認できる。   From FIG. 5, it can be confirmed that the selectivity for the hydrogen generation reaction by the complete decomposition reaction of hydrazine is improved when the ratio of Ir to the total number of moles of Ir and Ni is 0.1 to 39 mol%.

Claims (5)

イリジウム化合物ニッケル化合物、及び臭化ヘキサデシルトリメチルアンモニウムを含有する水溶液に還元剤を加えて、イリジウムイオン及びニッケルイオンを還元する方法により得られるイリジウムとニッケルの複合金属からなる、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物の分解反応による水素発生用触媒。 Hydrazine and its hydration comprising a composite metal of iridium and nickel obtained by adding a reducing agent to an aqueous solution containing an iridium compound, a nickel compound , and hexadecyltrimethylammonium bromide to reduce iridium ions and nickel ions A catalyst for hydrogen generation by a decomposition reaction of at least one compound selected from the group consisting of compounds. イリジウムとニッケルの複合金属が、イリジウムとニッケルの合金、金属間化合物又は固溶体である請求項1に記載の水素発生用触媒。 The catalyst for hydrogen generation according to claim 1, wherein the composite metal of iridium and nickel is an alloy of iridium and nickel, an intermetallic compound, or a solid solution. イリジウムとニッケルの複合金属におけるイリジウムの含有率が0.1〜39モル%の範囲である請求項1又は2に記載の水素発生用触媒。 The catalyst for hydrogen generation according to claim 1 or 2, wherein the iridium content in the composite metal of iridium and nickel is in the range of 0.1 to 39 mol%. 請求項1〜3のいずれかに記載の水素発生用触媒を、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物に接触させることを特徴とする水素発生方法。 A method for generating hydrogen, comprising contacting the hydrogen generating catalyst according to any one of claims 1 to 3 with at least one compound selected from the group consisting of hydrazine and hydrates thereof. 請求項4の方法によって発生させた水素を燃料電池の水素源として供給することを特徴とする、燃料電池への水素供給方法。 A method for supplying hydrogen to a fuel cell, comprising supplying hydrogen generated by the method of claim 4 as a hydrogen source for the fuel cell.
JP2010121565A 2009-12-02 2010-05-27 Hydrogen generation catalyst and hydrogen generation method Expired - Fee Related JP5633068B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010121565A JP5633068B2 (en) 2010-05-27 2010-05-27 Hydrogen generation catalyst and hydrogen generation method
US12/956,106 US9028793B2 (en) 2009-12-02 2010-11-30 Catalyst for generating hydrogen and method for generating hydrogen
US14/686,382 US9227178B2 (en) 2009-12-02 2015-04-14 Catalyst for generating hydrogen and method for generating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121565A JP5633068B2 (en) 2010-05-27 2010-05-27 Hydrogen generation catalyst and hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2011245428A JP2011245428A (en) 2011-12-08
JP5633068B2 true JP5633068B2 (en) 2014-12-03

Family

ID=45411345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121565A Expired - Fee Related JP5633068B2 (en) 2009-12-02 2010-05-27 Hydrogen generation catalyst and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP5633068B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751516B2 (en) * 2011-09-07 2015-07-22 国立研究開発法人産業技術総合研究所 Hydrogen generation catalyst and hydrogen generation method
JP2018141235A (en) * 2017-02-27 2018-09-13 国立大学法人京都大学 Method for producing solid-solution alloy particulate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266893A (en) * 1975-12-02 1977-06-02 Kuraray Co Ltd Method of producing reduced ni catalyst
JPS5927616B2 (en) * 1977-02-03 1984-07-06 武田薬品工業株式会社 Decomposition catalyst for hydrazine and hydroxylamine
JPH03254835A (en) * 1990-03-06 1991-11-13 Agency Of Ind Science & Technol Catalyst for decomposing hydrazine
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor

Also Published As

Publication number Publication date
JP2011245428A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
Singh et al. Nanocatalysts for hydrogen generation from hydrazine
US9227178B2 (en) Catalyst for generating hydrogen and method for generating hydrogen
Guo et al. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride
Lu et al. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage
Zou et al. Immobilization of Ni–Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane
Singh et al. Temperature-induced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine
Zhang et al. Facile synthesis of NiPt–CeO2 nanocomposite as an efficient catalyst for hydrogen generation from hydrazine borane
Günbatar et al. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature
Karahan et al. Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: highly efficient and fast hydrogen generation system at room temperature
Çakanyıldırım et al. Nickel-based bimetallic nanocatalysts in high-extent dehydrogenation of hydrazine borane
Wang et al. One-step synthesis of Cu@ FeNi core–shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane
Rakap et al. Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution
Singh et al. Highly-dispersed surfactant-free bimetallic Ni–Pt nanoparticles as high-performance catalyst for hydrogen generation from hydrous hydrazine
Huang et al. Nickel–ceria nanowires embedded in microporous silica: controllable synthesis, formation mechanism, and catalytic applications
Paksoy et al. Nanocrystalline cobalt–nickel–boron (metal boride) catalysts for efficient hydrogen production from the hydrolysis of sodium borohydride
Park et al. A highly active and stable palladium catalyst on a gC 3 N 4 support for direct formic acid synthesis under neutral conditions
Hannauer et al. Transition metal-catalyzed dehydrogenation of hydrazine borane N2H4BH3 via the hydrolysis of BH3 and the decomposition of N2H4
Fan et al. Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor
Yang et al. Strategic synthesis of graphene supported trimetallic Ag-based core–shell nanoparticles toward hydrolytic dehydrogenation of amine boranes
Karatas et al. Catalytic methanolysis and hydrolysis of hydrazine-borane with monodisperse Ru NPs@ nano-CeO2 catalyst for hydrogen generation at room temperature
Song-Il et al. High catalytic kinetic performance of amorphous CoPt NPs induced on CeOx for H2 generation from hydrous hydrazine
Shan et al. Carbon-supported Ni3B nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane
Netskina et al. Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts
Kilinc et al. High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst
Konopatsky et al. Microstructure and catalytic properties of Fe3O4/BN, Fe3O4 (Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5633068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees