JP5631288B2 - Anti-foaming device - Google Patents

Anti-foaming device Download PDF

Info

Publication number
JP5631288B2
JP5631288B2 JP2011220242A JP2011220242A JP5631288B2 JP 5631288 B2 JP5631288 B2 JP 5631288B2 JP 2011220242 A JP2011220242 A JP 2011220242A JP 2011220242 A JP2011220242 A JP 2011220242A JP 5631288 B2 JP5631288 B2 JP 5631288B2
Authority
JP
Japan
Prior art keywords
water
water tank
water discharge
downstream
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011220242A
Other languages
Japanese (ja)
Other versions
JP2012062747A (en
Inventor
貴司 川野
貴司 川野
川根 浩
浩 川根
健 浅野
健 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011220242A priority Critical patent/JP5631288B2/en
Publication of JP2012062747A publication Critical patent/JP2012062747A/en
Application granted granted Critical
Publication of JP5631288B2 publication Critical patent/JP5631288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

本発明は、原子力又は火力などによる発電プラントや化学プラントなどにおいて、河川域や海域に放水を行う放水路及びこの放水路において泡の発生を防止するための発泡防止装置に関する。   The present invention relates to a water discharge channel that discharges water into a river area or a sea area in a power plant or a chemical plant using nuclear power or thermal power, and a foam prevention device for preventing generation of bubbles in the water discharge channel.

原子力又は火力などによる発電プラントに代表される種々のプラントにおいて、取水して冷却水に利用された後の排水を河川域や海域に放水するために、河川域や海域までの放水路が設けられている。この放水路では、外海潮位や水路損失の変動を吸収してサイフォン切れを防止するために、堰を設置して放水ピットが構成されることが多い。このような放水ピットが構成された放水路では、放水される水が堰を越流するときに泡が発生し、この泡により、以下に説明する種々の問題が発生する。   In various plants typified by nuclear power plants or thermal power plants, water discharge channels to river areas and sea areas are provided in order to discharge drainage water after taking water and being used for cooling water to river areas and sea areas. ing. In this spillway, a spillway pit is often constructed by installing a weir to absorb fluctuations in the open sea tide level and channel loss and prevent siphon breakage. In the water discharge channel in which such a water discharge pit is configured, bubbles are generated when the discharged water overflows the weir, and the bubbles cause various problems described below.

又、従来、放水ピットを備えた放水路として、図18(a)に示すように、堰100aを備えた放水ピット100の上流側及び下流側それぞれに放水管101a,101bが設けられた構成のものと、図18(b)に示すように、放水ピット100の上流側に放水管101aが設けられるとともに放水ピット100の下流側を開水路とした構成のものとがある。そして、この図18(a)、(b)それぞれの放水路によると、放水ピット100の堰100aを排水が越えて流れ落ちる落水部102において、空気が巻き込まれて泡が発生する。   Conventionally, as shown in FIG. 18 (a), the water discharge pipes 101a, 101b are provided on the upstream side and the downstream side of the water discharge pit 100 provided with the weir 100a as a water discharge path provided with a water discharge pit. As shown in FIG. 18 (b), there is a configuration in which a water discharge pipe 101 a is provided on the upstream side of the water discharge pit 100 and the downstream side of the water discharge pit 100 is an open channel. 18 (a) and 18 (b), air is entrained and bubbles are generated in the falling portion 102 where the waste water flows down the weir 100a of the water discharge pit 100.

図18(a)に示すように、放水ピット100の上流側及び下流側それぞれに放水管101a,101bが設けられた場合、堰100aの落水部102で発生した泡が下流側の水中に潜り込むことにより、放水管101b内に流れ込む。このように、放水管101b内に泡により空気が流れ込むことで、放水管101b内での圧損が増加するだけでなく、放水ピット100への逆噴射などといった脈動の要因ともなる。一方、図18(b)に示すように、放水ピット100の下流側を開水路とした場合、堰100aの落水部102で発生した泡により、その景観を損なうだけでなく、泡付着によって周辺構造物や漁網などが汚染される原因となる。又、開水路側が海域である場合、機器に対する泡の飛散によって、塩害が生じる可能性がある。   As shown in FIG. 18 (a), when the water discharge pipes 101a and 101b are provided on the upstream side and the downstream side of the water discharge pit 100, bubbles generated in the falling portion 102 of the weir 100a sink into the downstream water. Thus, it flows into the water discharge pipe 101b. As described above, air flows into the water discharge pipe 101b by the bubbles, so that not only the pressure loss in the water discharge pipe 101b increases, but also causes pulsation such as reverse injection into the water discharge pit 100. On the other hand, as shown in FIG. 18 (b), when the downstream side of the water discharge pit 100 is an open channel, not only the scenery is damaged by the foam generated in the falling part 102 of the weir 100a, but also the peripheral structure by the foam adhesion. It will cause pollution of things and fishing nets. In addition, when the open channel side is a sea area, salt damage may occur due to the scattering of bubbles to the equipment.

このように、従来の放水路では、放水ピットの堰の下流側に落水部があり、この落水部において泡が発生するため、この泡に基づく様々な問題が生じる。この泡の発生を防止するために、落水部に有孔板を設けて泡を分散させて、泡のない底層から放水する放水ピットが提案されている(特許文献1参照)。この放水ピットは、堰の下流側に、底部を開放した壁を設けるとともに、堰と壁との間に有孔板が設けられた構成とされる。更に、有孔板の上面に落下水脈の水流の勢いを弱めるための障害物となるシルが設置され、壁に近い有孔板の下流側の孔を通過する流量を小さくしている。これにより、壁に近い下流側に発生する泡の貫入深さを浅くして、泡の少ない排水を放流させるものとしている。   Thus, in the conventional water discharge channel, there is a water falling part on the downstream side of the weir of the water discharge pit, and bubbles are generated in this water falling part, so various problems based on the bubbles arise. In order to prevent generation | occurrence | production of this bubble, the water discharge pit which provides a perforated board in a waterfall part, disperse | distributes a bubble, and discharges water from the bottom layer without a bubble is proposed (refer patent document 1). The water discharge pit has a structure in which a wall having an open bottom is provided on the downstream side of the weir and a perforated plate is provided between the weir and the wall. Furthermore, a sill that is an obstacle to weaken the momentum of the water flow of the falling water veins is installed on the upper surface of the perforated plate, thereby reducing the flow rate passing through the hole on the downstream side of the perforated plate close to the wall. Thereby, the penetration depth of the foam generated on the downstream side near the wall is made shallow, and the waste water with less foam is discharged.

特開2001−4787号公報Japanese Patent Laid-Open No. 2001-4787

しかしながら、特許文献1の放水ピットの構造によると、落水部において障害物となるシルが設置されることで、落下水脈の水流の勢いを弱める構造とされていることから、このシルによって飛沫する泡が発生する可能性がある。そして、前述したように、この泡の飛沫によって、放水ピットの周囲に設置された構造物に塩害が発生することとなる。   However, according to the structure of the water discharge pit of Patent Document 1, since a sill that becomes an obstacle in the falling water part is installed, the water flow of the falling water vein is weakened. May occur. And as mentioned above, salt damage will generate | occur | produce in the structure installed around the water discharge pit by the splash of this foam.

それに対して、特許文献1の放水ピットの構造からシルを除いた場合、有孔板の上面が堰の天端に一致させた高さに設置されているため、堰を越えた水流の多くが壁側まで到達する。これにより、排水の多くが有孔板の壁側の孔を通過するため、壁側での水流の勢いが大きくなってしまう。よって、壁に近い下流側に発生する泡の貫入深さが深くなり、排水に泡を多く混入させてしまうこととなる。   On the other hand, when the sill is removed from the structure of the water discharge pit of Patent Document 1, since the upper surface of the perforated plate is installed at a height matching the top of the weir, most of the water flow beyond the weir is Reach the wall side. As a result, most of the drainage passes through the hole on the wall side of the perforated plate, and the momentum of the water flow on the wall side increases. Therefore, the penetration depth of bubbles generated on the downstream side close to the wall becomes deep, and a lot of bubbles are mixed into the drainage.

このような問題を鑑みて、本発明は、河川域や海域に放水を行う放水路において泡の飛沫及び下流側への泡の混入を低減することができる発泡防止装置を提供することを目的とする。   In view of such a problem, an object of the present invention is to provide a foaming prevention device capable of reducing foam splashes and mixing of bubbles on the downstream side in a water discharge channel that discharges water into a river or sea area. To do.

上記目的を達成するために、本発明の発泡防止装置は、上流側の放水管から放水される排水を貯水する水槽と前記排水を放水する下流側の放水域との間に設置され、前記水槽から前記放水域に前記水槽に貯水された排水を放水させる際の発泡を低減させる発泡防止装置において、前記水槽が、上流側の第1水槽と、上流側の前記第1水槽より深さが深い下流側の第2水槽と、から構成され、前記第2水槽の底部を貫通させて設けられるとともに前記水槽に貯水された排水を前記放水域に放水する複数の放水管を備え、前記複数の放水管が、前記水槽の深さ方向に対して長さが異なるとともに、その天端における給水口の高さ位置が異なり、前記複数の放水管は、内部を流れる排水の流量を絞る絞りを備え、前記第2水槽に設けられる前記複数の放水管のうち、少なくとも前記給水口の高さ位置が高いものに対して、前記給水口を覆うカバーが設けられることを特徴とする。 In order to achieve the above object, the foam prevention device of the present invention is installed between a water tank for storing drainage discharged from an upstream discharge pipe and a downstream discharge area for discharging the drainage, In the foam prevention device for reducing foaming when draining the water stored in the water tank to the water discharge area, the water tank is deeper than the upstream first water tank and the upstream first water tank. a second water tank on the downstream side is composed of, the example Bei multiple water discharge tube second is through the bottom of the tank to discharge water drainage which is water in the tub together provided on the water discharge area, said plurality of The water discharge pipes have different lengths with respect to the depth direction of the water tank, and the height positions of the water supply ports at the top ends thereof are different, and the plurality of water discharge pipes are provided with throttles for restricting the flow rate of drainage flowing inside. The plurality of the second tanks Of water discharge pipe, characterized in that with respect to those height position of at least the water supply port is high, a cover for covering the water inlet is provided.

又、前記第2水槽に設けられる前記複数の放水管が、上流側から下流側に向かって、前記給水口が低い位置にあるものから前記給水口が高い位置にあるものとなる順番で、配置されるものとしても構わない。また、前記第2水槽に設けられる前記複数の放水管の前記給水口のうち、最も高さの低い給水口は、前記放水域が最低水位になったときでも、前記第2水槽に貯水された水の水面下に位置しても構わない。 Further, the plurality of water discharge pipes provided in the second water tank are arranged in an order from the upstream side to the downstream side in which the water supply port is in a low position to the water supply port in a high position. It doesn't matter if it is done. Of the water supply ports of the plurality of water discharge pipes provided in the second water tank, the water supply port having the lowest height is stored in the second water tank even when the water discharge area is at the lowest water level. It may be located below the surface of the water.

更に、前記給水口が高い位置にある前記第2水槽に設けられる前記放水管の排出口に入口が接続され、接続された前記放水管からの排水を旋回させて空気と分離させるサイクロン装置と、前記サイクロン装置の蓋部に接続されて、前記サイクロン装置で分離された空気を空中に排出する空気排出管と、を備えるものとしても構わない。   Furthermore, an inlet is connected to the outlet of the water discharge pipe provided in the second water tank in which the water supply port is at a high position, and a cyclone device for rotating and separating the drainage from the connected water discharge pipe, An air discharge pipe connected to the lid of the cyclone device and discharging the air separated by the cyclone device into the air may be provided.

本発明の発泡防止装置によれば、河川域や海域に放水を行う放水路において泡の飛沫及び下流側への泡の混入を低減することができる。   According to the anti-foaming device of the present invention, it is possible to reduce the splash of bubbles and the mixing of bubbles downstream in a water discharge channel that discharges water into a river or sea area.

第1の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of a 1st reference example. 図1の放水路の上面図である。It is a top view of the water discharge channel of FIG. 第2の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of a 2nd reference example. 図3の放水路の上面図である。It is a top view of the water discharge channel of FIG. 第3の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of the 3rd reference example. 第3の参考例の放水路の別の構成を示す概略断面図である。It is a schematic sectional drawing which shows another structure of the water discharge channel of a 3rd reference example. 図6の放水路の高水位時と低水位時の状態を示す図である。It is a figure which shows the state at the time of the high water level and low water level of the water discharge channel of FIG. 第4の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of the 4th reference example. 第5の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of the 5th reference example . 図9の放水路の上面図である。It is a top view of the water discharge channel of FIG. 図9の放水路の水位が変化した各段階における状態を示す図である。It is a figure which shows the state in each step | level where the water level of the water discharge channel of FIG. 9 changed. 施形態の放水路の構成を示す概略断面図である。It is a schematic sectional view showing a structure of a spillway of implementation forms. 図12の放水路における放水管とカバーの関係を示す図である。It is a figure which shows the relationship between the water discharge pipe and cover in the water discharge path of FIG. 第6の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of the 6th reference example . 第7の参考例の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the water discharge channel of the 7th reference example. 図16の放水路の高水位時と低水位時の状態を示す図である。It is a figure which shows the state at the time of the high water level and low water level of the water discharge channel of FIG. 第7の参考例の放水路の別の構成を示す概略断面図である。It is a schematic sectional drawing which shows another structure of the water discharge channel of a 7th reference example. 従来の放水路の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional water discharge channel.

第1の参考例
本発明に関する第1の参考例について、図面を参照して説明する。図1は、本参考例の放水路構成を示す断面図である。
< First Reference Example >
The first reference example concerning the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a water discharge channel configuration of the present reference example .

図1に示す放水路は、発電所プラントの復水器で冷却水として使用された海水又は河川水を排水する放水管1と、放水管1からの排水を貯水する上流側水槽2と、上流側水槽2の下流側を堰き止める堰3と、堰3の下流側に構成される下流側水槽4と、下流側水槽4の下流側に設置され底部を開いて下流側に開放した壁5と、堰3と壁5の間の下流側水槽4を覆うとともに多複数の貫通した孔6aを備える有孔板6と、を備える。即ち、上流側水槽2と下流側水槽4が放水ピットとして機能する。   The drainage channel shown in FIG. 1 includes a drainage pipe 1 that drains seawater or river water used as cooling water in a condenser of a power plant, an upstream water tank 2 that stores drainage from the drainage pipe 1, and an upstream A weir 3 that dams the downstream side of the side water tank 2, a downstream water tank 4 that is configured on the downstream side of the weir 3, and a wall 5 that is installed on the downstream side of the downstream water tank 4 and that opens at the bottom and opens downstream. And a perforated plate 6 that covers the downstream water tank 4 between the weir 3 and the wall 5 and includes a plurality of through holes 6a. That is, the upstream water tank 2 and the downstream water tank 4 function as a water discharge pit.

又、有孔板6は、図2の上面図に示すように、水面に対して垂直に貫通した複数の孔6aをマトリクス状に備えた多孔板として構成され、図1に示すように、堰3の天端よりも少し低い位置に設置される。壁5は、その天端が堰3の天端よりも高い位置となるとともに、天端の逆側の下端が下流側水槽4の底と有孔板6との間の高さとなる。即ち、壁5の下端と下流側水槽4の底との間が開放されるとともに、壁5が下流側水槽4の水面側の流れを堰き止める。又、壁5の下端は、壁5の下流側の放水域7における水位が最低水位となる位置よりも高い位置となるように設定される。   Further, as shown in the top view of FIG. 2, the perforated plate 6 is configured as a perforated plate having a plurality of holes 6a penetrating perpendicularly to the water surface in a matrix, and as shown in FIG. It is installed at a position slightly lower than the top of No. 3. The wall 5 has a top end higher than the top end of the weir 3, and a lower end opposite to the top end is a height between the bottom of the downstream water tank 4 and the perforated plate 6. That is, the space between the lower end of the wall 5 and the bottom of the downstream water tank 4 is opened, and the wall 5 blocks the flow on the water surface side of the downstream water tank 4. The lower end of the wall 5 is set so that the water level in the water discharge area 7 on the downstream side of the wall 5 is higher than the position where the lowest water level is reached.

このように構成されることによって、放水管1より放水される排水が堰3で堰き止められて上流側水槽2に一時的に貯水され、堰3を越えた排水が下流側水槽4に流れ込む。このとき、堰3を越えた排水は、有孔板6の孔6aを通過して下流側水槽4に流れ込むが、有孔板6と堰3とで段差が設けられているため、堰3を越えた排水が堰3近傍の段差部分に落とし込まれる。そして、排水の一部が有孔板6の堰3近傍の孔6aを通過して下流側水槽4に流れ込むとともに、排水の残りが有孔板6の表面を壁5に向かって流れながら、壁5までの孔6aを通過して下流側水槽4に流れ込む。   By being configured in this way, the drainage discharged from the discharge pipe 1 is blocked by the weir 3 and temporarily stored in the upstream water tank 2, and the drainage that has passed over the weir 3 flows into the downstream water tank 4. At this time, the waste water that has passed over the weir 3 passes through the hole 6a of the perforated plate 6 and flows into the downstream water tank 4. However, since a step is provided between the perforated plate 6 and the weir 3, The excess drainage is dropped into the stepped portion near the weir 3. And while a part of drainage passes through the hole 6a near the dam 3 of the perforated plate 6 and flows into the downstream water tank 4, the remaining drainage flows on the surface of the perforated plate 6 toward the wall 5, 5 passes through the holes 6 a up to 5 and flows into the downstream water tank 4.

このように、有孔板6と堰3とで段差が形成されるように構成されることで、有孔板6の表面と堰3の天端とを同一高さとした場合のように、壁5側に排水の流れが偏ることを防ぎ、有孔板6表面上で均一に分散させることができる。よって、排水が堰3を超えると、堰3と壁5の間の下流側水槽4を覆う有孔板6によって、その流れが分散され、有孔板6の孔6aを通じて減勢された水流が下流側水槽4に流れ込むこととなる。   In this way, a step is formed between the perforated plate 6 and the weir 3, so that the surface of the perforated plate 6 and the top of the weir 3 are at the same height as in the case of the wall. It is possible to prevent the flow of drainage from being biased toward the side 5 and to uniformly disperse the surface of the perforated plate 6. Therefore, when the drainage exceeds the weir 3, the flow is dispersed by the perforated plate 6 that covers the downstream water tank 4 between the weir 3 and the wall 5, and the water flow that is reduced through the hole 6 a of the perforated plate 6 is generated. It will flow into the downstream water tank 4.

そのため、有孔板6の孔6aより下流側水槽4に流れ込む水量を少なくすることができるため、結果的に、堰3を越えたときに発生する空気による泡の貫入深さを浅くすることができる。尚、このとき、排水路1からの排水の流量が多い放水路であるものほど、壁5への到達量を減らすために、堰3と有孔板6との段差の幅を大きくする。又、有孔板6の開口率が小さいものとしたときも、壁5への到達量を減らすために、堰3と有孔板6との段差の幅を大きくする。   Therefore, the amount of water flowing into the downstream water tank 4 from the hole 6a of the perforated plate 6 can be reduced, and as a result, the penetration depth of bubbles by the air generated when exceeding the weir 3 can be reduced. it can. At this time, the width of the step between the weir 3 and the perforated plate 6 is increased in order to reduce the amount reaching the wall 5 as the discharge channel has a larger flow rate of drainage from the drainage channel 1. Even when the aperture ratio of the perforated plate 6 is small, the step width between the weir 3 and the perforated plate 6 is increased in order to reduce the amount reaching the wall 5.

そして、有孔板6を通じて下流側水槽4に流れ落ちた排水は、壁5の下端と下流側水槽4の底との間の開放部分より、壁5より下流側の放水域7に流れ込むこととなる。このとき、上述したように、下流側水槽4では、有孔板6を通過して流れが分散された排水と共に流入する泡(空気)が、壁5の下端よりも深い位置まで到達することが少ない。そのため、壁6の下端よりも深い位置を越えて放水域7に流れ込む泡(空気)の量を抑制することができる。又、有孔板6全面を排水が流れるようにするとともに、有孔板6に障害物を設けた構成としないため、発生する泡の量も抑制することができる。   And the waste water which flowed down to the downstream water tank 4 through the perforated plate 6 flows into the water discharge area 7 downstream from the wall 5 from the open part between the lower end of the wall 5 and the bottom of the downstream water tank 4. . At this time, as described above, in the downstream water tank 4, the bubbles (air) flowing in along with the drainage that has passed through the perforated plate 6 and the flow is dispersed can reach a position deeper than the lower end of the wall 5. Few. Therefore, the amount of bubbles (air) flowing into the water discharge area 7 beyond the position deeper than the lower end of the wall 6 can be suppressed. In addition, since the drainage flows through the entire surface of the perforated plate 6 and the obstructed plate 6 is not provided with an obstacle, the amount of generated foam can be suppressed.

第2の参考例
本発明に関する第2の参考例について、図面を参照して説明する。図3は、本参考例の放水路の構成を示す断面図である。図3に示す構成において、図1に示す構成と同一の目的で使用する部分については、同一の符号を付して、その詳細な説明は省略する。
< Second Reference Example >
A second reference example relating to the present invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view showing the configuration of the water discharge channel of this reference example . In the configuration shown in FIG. 3, portions used for the same purpose as the configuration shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示す放水路では、図1に示したものと同様、放水管1より放水される排水を上流側水槽2で一時的に貯水し、堰3を越えた排水が有孔板6の孔6aによって分散されて下流側水槽4に流れ込む。このとき、従来と比べて、下流側水槽4内に巻き込む泡(空気)の量を低減できるが、下流側水槽4内に泡(空気)が巻き込まれて、その一部が放水域7に流れ込んでしまう。そのため、本参考例では、放水域7に流れ込もうとする泡(空気)を回収して空中に排出する構成とする。 In the water discharge channel shown in FIG. 3, the water discharged from the water discharge pipe 1 is temporarily stored in the upstream water tank 2, and the water discharged over the weir 3 is the hole of the perforated plate 6, as shown in FIG. 1. It is dispersed by 6a and flows into the downstream water tank 4. At this time, the amount of bubbles (air) entrained in the downstream water tank 4 can be reduced as compared with the conventional case, but bubbles (air) are entrained in the downstream water tank 4 and a part thereof flows into the water discharge area 7. It will end up. Therefore, in this reference example, it is set as the structure which collect | recovers the foam (air) which is going to flow into the water discharge area 7, and discharges it in the air.

即ち、図3に示す放水路は、図1に示すものと異なり、水面に対して垂直な方向に貫通した空気抜き管8aを備えた壁5aと、壁5aの下端において放水域7側まで延長して囲う空気回収部8と、を備える。空気回収部8は、下流側水槽4の底に対向した面を開いたコの字型の断面形状によって構成され、上流側の側面が壁5aの上流側側面と同一面となり、壁5aから下流の放水域7まで延長した構成とされる。又、空気回収部8は、壁5aの下端と接続される部分において、図4の上面図のように壁5aに複数並ぶように設けられた空気抜き管8aと接続された穴を備える。   That is, the water discharge channel shown in FIG. 3 is different from that shown in FIG. 1 and extends to the water discharge area 7 side at the lower end of the wall 5a with the air vent pipe 8a penetrating in the direction perpendicular to the water surface. And an air recovery unit 8 for enclosing. The air recovery unit 8 is configured by a U-shaped cross-sectional shape having an open surface facing the bottom of the downstream water tank 4, and the upstream side surface is flush with the upstream side surface of the wall 5 a and is downstream from the wall 5 a. It is set as the structure extended to the water discharge area 7. Moreover, the air collection | recovery part 8 is provided with the hole connected with the air vent pipe 8a provided in multiple numbers along the wall 5a like the top view of FIG. 4 in the part connected with the lower end of the wall 5a.

第1の参考例の放水路(図1参照)においても、堰3を越えた排水が有孔板6の孔6aによって分散されて下流側水槽4に流れ込む際に、少量の泡(空気)であるが、いくらか巻き込まれて、排水と共に、壁5の下流側となる放水域7に壁5下端の下側より流れ込もうとする。それに対して、本参考例の放水路では、壁5aに空気回収部8が設けられるため、空気回収部8の下側を通って、壁5aの下流側の放水域7に排水が流れるときに、排水と共に流れ込む泡(空気)が空気回収部8に捕獲される。 Also in the water discharge channel (see FIG. 1) of the first reference example , when the waste water that has passed over the weir 3 is dispersed by the holes 6a of the perforated plate 6 and flows into the downstream water tank 4, a small amount of foam (air) is generated. Although it is somewhat involved, it tries to flow into the water discharge area 7 on the downstream side of the wall 5 from the lower side of the lower end of the wall 5 together with the drainage. On the other hand, in the water discharge channel of this reference example , since the air recovery unit 8 is provided on the wall 5a, when drainage flows through the lower side of the air recovery unit 8 to the water discharge area 7 on the downstream side of the wall 5a. The bubbles (air) flowing in along with the waste water are captured by the air recovery unit 8.

そして、空気回収部8の上面側に泡(空気)が移動すると、壁5aを貫通して空気回収部8に接続された空気抜き管8aを通じて、空中に放出される。このように、空気回収部8及び空気抜き管8aを設けることによって、放水域7に排水と流れ込もうとする泡(空気)を捉えて、空中に排出することができ、放水域7に流れ込む泡(空気)の量を低減させることができる。   And if a bubble (air) moves to the upper surface side of the air collection | recovery part 8, it will be discharge | released in the air through the air vent pipe 8a which penetrated the wall 5a and was connected to the air collection | recovery part 8. FIG. In this way, by providing the air recovery section 8 and the air vent pipe 8a, the bubbles (air) that are about to flow into the water discharge area 7 can be caught and discharged into the air, and the bubbles that flow into the water discharge area 7 can be discharged. The amount of (air) can be reduced.

第3の参考例
本発明に関する第3の参考例について、図面を参照して説明する。図5は、本参考例の放水路の構成を示す断面図である。図5に示す構成において、図1に示す構成と同一の目的で使用する部分については、同一の符号を付して、その詳細な説明は省略する。
< Third reference example >
A third reference example relating to the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view showing the configuration of the water discharge channel of this reference example . In the configuration shown in FIG. 5, portions used for the same purpose as the configuration shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示す放水路では、図1に示したもののように、堰3と壁5とで固定支持される有孔板6の代わりに、下流側水槽4に貯水される水の水面に浮かぶ浮体構造物で構成された有孔板6xを備える。この有孔板6xは、堰3と壁5との間で狭持されるが、放水域7の水位、換言すると、下流側水槽4の水位に応じて、その高さ方向の位置が変動する。即ち、図5(a)のように、放水域7が低水位となる場合は、それに応じて有孔板6xが低い位置に移動し、堰3の天端との段差が大きくなり、逆に、図5(b)のように、放水域7が高水位となる場合は、それに応じて有孔板6xが高い位置に移動し、堰3の天端との段差が小さくなる。よって、有孔板6xと下流側水槽4に貯水される水の水面との間の空間をなくすことができるため、この空間によって発生する泡の巻き込みを抑制することができる。   In the water discharge channel shown in FIG. 5, as shown in FIG. 1, instead of the perforated plate 6 fixedly supported by the weir 3 and the wall 5, the floating body floats on the surface of the water stored in the downstream water tank 4. A perforated plate 6x made of a structure is provided. The perforated plate 6x is sandwiched between the weir 3 and the wall 5, but its height position varies depending on the water level of the water discharge area 7, in other words, depending on the water level of the downstream water tank 4. . That is, as shown in FIG. 5 (a), when the water discharge area 7 is at a low water level, the perforated plate 6x moves to a low position accordingly, and the step with the top of the weir 3 becomes large. As shown in FIG. 5B, when the water discharge area 7 is at a high water level, the perforated plate 6x is moved to a higher position accordingly, and the step difference from the top of the weir 3 is reduced. Therefore, since the space between the perforated plate 6x and the water surface of the water stored in the downstream water tank 4 can be eliminated, entrainment of bubbles generated by this space can be suppressed.

又、本参考例においても、図1に示したものと同様、放水管1より放水される排水を上流側水槽2で一時的に貯水し、堰3を越えた排水が有孔板6xの孔6aによって分散されて下流側水槽4に流れ込む。このとき、上述したように、有孔板6xの下面が、下流側水槽4の水面と接しているため、有孔板6xの下面における泡の発生を抑制することができる。そして、下流側水槽4に流れ込んだ排水は、壁5の下端の下側を通って、壁5の下流側となる放水域7に放水される。 Also in this reference example , as shown in FIG. 1, the drainage discharged from the drainage pipe 1 is temporarily stored in the upstream water tank 2, and the drainage beyond the weir 3 passes through the hole of the perforated plate 6x. It is dispersed by 6a and flows into the downstream water tank 4. At this time, as described above, since the lower surface of the perforated plate 6x is in contact with the water surface of the downstream water tank 4, the generation of bubbles on the lower surface of the perforated plate 6x can be suppressed. Then, the waste water flowing into the downstream water tank 4 passes through the lower side of the lower end of the wall 5 and is discharged into the water discharge area 7 on the downstream side of the wall 5.

尚、本参考例において、下流側水槽4の水面に有孔板6xが常に浮いた状態とするため、放水域7が最低水域となったとき、その水面が壁5よりも低くならない位置とするとともに、放水域7が最高水域となったとき、その水面が堰3よりも高くならない位置とする。 In addition, in this reference example , since the perforated plate 6x always floats on the water surface of the downstream water tank 4, when the water discharge area 7 becomes the lowest water area, the water surface does not become lower than the wall 5. At the same time, when the water discharge area 7 becomes the highest water area, the water surface is set at a position that does not become higher than the weir 3.

又、本参考例において、図6に示すように、堰3及び壁5それぞれに、下流側水槽4に向いた面の上下に突起させて設けられた当て止め部3b,3c,5b,5cを備えるようにしても構わない。即ち、放水域7が高水位となる場合は、図7(a)のように、堰3及び壁5それぞれの上側に設けられた当て止め部3b,5bに有孔板6xが当接させて、堰3と有孔板6xとの段差が小さくなることを防ぐことができる。一方、放水域7が低水位となる場合は、図7(b)のように、堰3及び壁5それぞれの下側に設けられた当て止め部3c,5cに有孔板6xが当接させて、堰3と有孔板6xとの段差が大きくなることを防ぐことができる。 Further, in this reference example , as shown in FIG. 6, the stoppers 3 b, 3 c, 5 b, and 5 c provided on the weir 3 and the wall 5 so as to protrude above and below the surface facing the downstream water tank 4 are provided. You may make it prepare. That is, when the water discharge area 7 is at a high water level, the perforated plate 6x is brought into contact with the stoppers 3b and 5b provided on the upper sides of the weir 3 and the wall 5 as shown in FIG. The step between the weir 3 and the perforated plate 6x can be prevented from becoming small. On the other hand, when the water discharge area 7 is at a low water level, the perforated plate 6x is brought into contact with the stoppers 3c and 5c provided below the weir 3 and the wall 5 as shown in FIG. 7B. Thus, an increase in the level difference between the weir 3 and the perforated plate 6x can be prevented.

第4の参考例
本発明に関する第4の参考例について、図面を参照して説明する。図8は、本参考例の放水路の構成を示す断面図である。図8に示す構成において、図1に示す構成と同一の目的で使用する部分については、同一の符号を付して、その詳細な説明は省略する。
< Fourth Reference Example >
A fourth reference example relating to the present invention will be described with reference to the drawings. FIG. 8 is a cross-sectional view showing the configuration of the water discharge channel of this reference example . In the configuration shown in FIG. 8, portions used for the same purpose as the configuration shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示す放水路では、図1に示した構成に対して、壁5の下流側に水面より下に潜った状態となる潜り堰9と、潜り堰9の下流側に放水域7と仕切りとして設置される壁10と、を備え、壁5,10の間に混入した空気を浮上させるための水槽11を構成する。即ち、下流側水槽4の下流側に更にもう一つ壁5,10で水面側が仕切られた水槽11を構成し、その水槽11に、その天端が常に水面下となる潜り堰9が設けられる。又、壁10は、その天端及び下端が壁5の天端及び下端と同様の位置となるように設置される。   In the water discharge channel shown in FIG. 8, compared to the configuration shown in FIG. 1, a diving weir 9 that dives below the water surface on the downstream side of the wall 5, and a water discharge area 7 and a partition on the downstream side of the diving weir 9. And a water tank 11 for levitating air mixed between the walls 5 and 10. That is, a water tank 11 whose water surface side is further partitioned by another wall 5, 10 is formed on the downstream side of the downstream water tank 4, and a submerged weir 9 whose top end is always below the water surface is provided in the water tank 11. . Further, the wall 10 is installed such that the top and bottom ends thereof are in the same positions as the top and bottom ends of the wall 5.

このように構成することで、壁5,10で水面側が仕切られた水槽11では、下流側水槽4から流れ込んだ排水の流れが、潜り堰9によって水面側に向かう上方向に強制的に変更させられる。よって、下流側水槽4から排水と共に流れ込んできた泡(空気)が、この戻り堰9に影響される排水の流れに沿って水面側に向かうため、水面への泡(空気)の浮上を促進することができる。   By configuring in this way, in the water tank 11 where the water surface side is partitioned by the walls 5, 10, the flow of drainage flowing from the downstream water tank 4 is forcibly changed upward by the diving weir 9 toward the water surface side. It is done. Therefore, since the foam (air) that has flowed together with the drainage from the downstream water tank 4 is directed toward the water surface along the flow of the drainage affected by the return weir 9, the rising of the foam (air) to the water surface is promoted. be able to.

そして、水槽11で、下流側水槽4より排水と共に流れ込んだ泡(空気)を空中に放出されると、泡(空気)の混入量が低減した排水が壁10の下側を通って、壁10の下流側の放水域7に放水される。よって、本参考例では、水槽11に潜り堰9を設けて、排水とともに流れ込んだ泡(空気)を水面に向かって流すことで、空中への泡(空気)の放出量を増加させるとともに、泡(空気)の混入量を低減した排水を放水域7へ放水することができる。 And if the foam (air) which flowed with the waste_water | drain from the downstream water tank 4 in the water tank 11 is discharge | released in the air, the waste_water | drain with which the mixing amount of foam (air) reduced passes the lower side of the wall 10, and the wall 10 The water is discharged into the water discharge area 7 on the downstream side. Therefore, in this reference example , the diving weir 9 is provided in the water tank 11, and the amount of foam (air) released into the air is increased by flowing the foam (air) that flows along with the drainage toward the water surface. Drainage in which the amount of (air) is reduced can be discharged into the discharge area 7.

尚、第2〜第4の参考例における各構成を組み合わせても構わない。即ち、第2の参考例の放水路に対して、第3の参考例のように、放水域7の水位に応じて高さ位置が変わる有孔板6xを設けるものとしても構わない。又、第2及び第3の参考例の放水路に対して、第4の参考例のように、潜り堰9及び下流側の壁10を追加した構成としても構わない。 In addition, you may combine each structure in a 2nd-4th reference example . That is, for the water discharge channel of the second reference example , as in the third reference example , a perforated plate 6x whose height position changes according to the water level of the water discharge area 7 may be provided. Moreover, it is good also as a structure which added the diving dam 9 and the wall 10 of the downstream side like the 4th reference example with respect to the water discharge channel of the 2nd and 3rd reference examples .

第5の参考例
本発明の第5の参考例について、図面を参照して説明する。図9は、本参考例の放水路の構成を示す断面図である。
< Fifth Reference Example >
A fifth reference example of the present invention will be described with reference to the drawings. FIG. 9 is a cross-sectional view showing the configuration of the water discharge channel of this reference example .

図9に示す放水路は、発電所プラントの復水器で冷却水として使用された海水又は河川水を排水する放水管1と、放水管1からの排水を貯水する水槽20と、放水域7に対して槽20から放水域7に排水を導く放水管21a〜21cと、を備える。そして、水槽20は、上流側水槽20a(第1水槽)と下流側水槽20b(第2水槽)とによって構成され、上流側水槽20aの底部が下流側水槽20bの底部よりも高い位置にあり、下流側水槽20bの底部が放水域7の底部よりも高い位置にある。更に、下流側水槽20bの下流側には壁20cが形成されることで、下流側水槽20bの底部と壁20cとによって放水域7との仕切りが構成される。   The drainage channel shown in FIG. 9 includes a drainage pipe 1 that drains seawater or river water used as cooling water in a condenser of a power plant, a water tank 20 that stores drainage from the drainage pipe 1, and a drainage area 7. On the other hand, the water discharge pipes 21a-21c which guide drainage from the tank 20 to the water discharge area 7 are provided. And the water tank 20 is comprised by the upstream water tank 20a (1st water tank) and the downstream water tank 20b (2nd water tank), and the bottom part of the upstream water tank 20a is in a position higher than the bottom part of the downstream water tank 20b, The bottom of the downstream water tank 20 b is located higher than the bottom of the water discharge area 7. Furthermore, a wall 20c is formed on the downstream side of the downstream water tank 20b, so that a partition from the water discharge area 7 is configured by the bottom of the downstream water tank 20b and the wall 20c.

又、下流側水槽20bの底部に設けられた穴を貫通するように設置された放水管21a〜21cは、放水管21a,21b,21cの順で、その長さが長いものとされ、水面に対して垂直になるように設置される。そして、放水管21a〜21cの排水口が下流側水槽20bの底部よりも低い位置で同位置となるように設置される。即ち、放水管21aの給水口が最も低い位置となるとともに、放水管21cの給水口が最も高い位置となり、放水管21bの給水口がその間の位置となる。更に、この放水管21a〜21cの内部には、放水管21a〜21c内を流れる排水の流量を絞るための絞り21x〜21zを備え、放水管21a〜21c内を流れる排水に抵抗が与えられる構成とされる。   Further, the water discharge pipes 21a to 21c installed so as to penetrate through the holes provided in the bottom of the downstream water tank 20b are in the order of the water discharge pipes 21a, 21b, and 21c, and the length thereof is long. It is installed so as to be perpendicular to it. And it installs so that the drain outlet of the water discharge pipes 21a-21c may become the same position in the position lower than the bottom part of the downstream water tank 20b. That is, the water supply port of the water discharge pipe 21a is at the lowest position, the water supply port of the water discharge pipe 21c is at the highest position, and the water supply opening of the water discharge pipe 21b is the position therebetween. Further, the water discharge pipes 21a to 21c are provided with throttles 21x to 21z for restricting the flow rate of the waste water flowing through the water discharge pipes 21a to 21c, and resistance is given to the waste water flowing through the water discharge pipes 21a to 21c. It is said.

そして、放水管21a〜21cは、図10の上面図に示すように、下流側水槽20bに対して縦横に配列されたマトリクス状に配置される。又、排水の流れる方向に対して、上流側水槽20aに近い側に放水管21aが配列され、壁20cに近い側に放水管21cが配列され、放水管21a,21cそれぞれが配列されている間の位置に、放水管21bが配列される。即ち、放水管21a〜21cが、下流側に向かって、その給水口が高い位置となるように、放水管21a,21b,21cの順に配列される。   And as shown in the top view of FIG. 10, the water discharge pipes 21a-21c are arrange | positioned at the matrix form arranged vertically and horizontally with respect to the downstream water tank 20b. Further, with respect to the direction in which the drainage flows, the water discharge pipe 21a is arranged on the side close to the upstream water tank 20a, the water discharge pipe 21c is arranged on the side close to the wall 20c, and the water discharge pipes 21a and 21c are arranged. The water discharge pipe 21b is arranged at the position. That is, the water discharge pipes 21a to 21c are arranged in the order of the water discharge pipes 21a, 21b, and 21c so that the water supply ports are positioned higher toward the downstream side.

このように構成するとき、放水域7が高水位である場合、図11(a)に示すように、水槽20においても高水位となり、下流側水槽20bでは、放水管21a〜21c全ての給水口が水槽20に貯水された排水の水面下に位置することとなる。よって、放水管1より放水された排水が、下流側水槽20bに設置された全ての放水管21a〜21cを通じて放水域7に放水されることとなる。よって、上流側の水槽20から下流側の放水域7に放水される排水流量が多くなる。   When comprised in this way, when the water discharge area 7 is a high water level, as shown to Fig.11 (a), also in the water tank 20, it becomes a high water level, and in the downstream water tank 20b, all the water supply pipes 21a-21c water inlet Will be located below the surface of the wastewater stored in the water tank 20. Therefore, the drainage discharged from the water discharge pipe 1 is discharged into the water discharge area 7 through all the water discharge pipes 21a to 21c installed in the downstream water tank 20b. Therefore, the waste water flow rate discharged from the upstream water tank 20 to the downstream water discharge area 7 increases.

又、放水域7が図11(a)の場合よりも水位が低くなって、図11(b)に示すように、水槽20においても図11(a)の場合よりも低い水位となる場合、下流側水槽20bでは、放水管21a,21bの給水口が水槽20に貯水された排水の水面下に位置し、放水管21cの給水口が排水の水面上に位置することとなる。よって、放水管1より放水された排水が、下流側水槽20bに設置された放水管21a,21bを通じて放水域7に放水されることとなる。よって、上流側の水槽20から下流側の放水域7に放水される排水流量が、図11(a)の場合より少なくなる。   Further, when the water discharge area 7 has a lower water level than in the case of FIG. 11 (a), and the water level in the water tank 20 is lower than that in FIG. 11 (a) as shown in FIG. 11 (b), In the downstream water tank 20b, the water supply ports of the water discharge pipes 21a and 21b are located below the surface of the wastewater stored in the water tank 20, and the water supply opening of the water discharge pipe 21c is located on the water surface of the drainage. Therefore, the drainage discharged from the water discharge pipe 1 is discharged into the water discharge area 7 through the water discharge pipes 21a and 21b installed in the downstream water tank 20b. Therefore, the amount of drainage discharged from the upstream water tank 20 to the downstream water discharge area 7 is smaller than in the case of FIG.

更に、放水域7が図11(b)の場合よりも水位が低くなって、図11(c)に示すように、水槽20においても図11(b)の場合よりも低い水位となる場合、下流側水槽20bでは、放水管21aの給水口が水槽20に貯水された排水の水面下に位置し、放水管21b,21cの給水口が排水の水面上に位置することとなる。よって、放水管1より放水された排水が、下流側水槽20bに設置された放水管21aを通じて放水域7に放水されることとなる。よって、上流側の水槽20から下流側の放水域7に放水される排水流量が、図11(b)の場合より更に少なくなる。   Further, when the water discharge area 7 has a lower water level than in the case of FIG. 11 (b) and the water level in the water tank 20 is lower than that in FIG. 11 (b) as shown in FIG. 11 (c), In the downstream water tank 20b, the water supply port of the water discharge pipe 21a is positioned below the surface of the drainage water stored in the water tank 20, and the water supply ports of the water discharge pipes 21b and 21c are positioned above the water surface of the drainage. Therefore, the drainage discharged from the water discharge pipe 1 is discharged into the water discharge area 7 through the water discharge pipe 21a installed in the downstream water tank 20b. Therefore, the flow rate of drainage discharged from the upstream water tank 20 to the downstream water discharge area 7 is further smaller than in the case of FIG.

このように、放水域7での水位が変化することで、水槽20での水位が変化し、この水位の変化に伴って、排水が通る放水管21a〜21cの本数を変えて、水槽20からの排水の放水量を変化させることができる。即ち、高水位となるときは、水槽20からの排水の放水量を多くし、低水位となるときは、水槽20からの排水の放水量を少なくする。これにより、放水域7での水位の変化に比べて、水槽20の水位の変化を小さくすることができる。即ち、長さの異なる放水管21a〜21cを使用することで、放水管21a〜21cによって、放水域7の影響による水槽20での水位変動を吸収させることができる。   Thus, by changing the water level in the water discharge area 7, the water level in the water tank 20 is changed. With the change in the water level, the number of the water discharge pipes 21 a to 21 c through which the drainage passes is changed. The amount of discharged water can be changed. That is, when the water level is high, the amount of discharged water from the water tank 20 is increased, and when the water level is low, the amount of discharged water from the water tank 20 is decreased. Thereby, compared with the change of the water level in the water discharge area 7, the change of the water level of the water tank 20 can be made small. That is, by using the water discharge pipes 21a to 21c having different lengths, the water level fluctuation in the water tank 20 due to the influence of the water discharge area 7 can be absorbed by the water discharge pipes 21a to 21c.

そして、水槽20において、放水管21a〜21cのうち、その給水口が水面下となる放水管に排水が流れ込むため、水槽20から放水域7へ排水を導く部分において、空気との接触部分をほぼなくすことができる。又、放水管21a〜21cそれぞれには、上述したように、その内部に絞り21x〜21zが設けられているため、逆流が防止されることとなる。又、放水管21aの給水口については、放水域7が最低水位となったときにおいても、水槽20に貯水された水に水面下に位置するように設置される。   And in the water tank 20, since drainage flows into the water discharge pipe in which the water supply port is under the water surface among the water discharge pipes 21a to 21c, in the part which guides the waste water from the water tank 20 to the water discharge area 7, the contact part with air is almost Can be eliminated. Moreover, since each of the water discharge pipes 21a to 21c is provided with the throttles 21x to 21z inside as described above, backflow is prevented. In addition, the water supply port of the water discharge pipe 21a is installed so as to be located below the water surface in the water stored in the water tank 20 even when the water discharge area 7 reaches the lowest water level.

更に、本参考例では、放水管21a〜21cにおいて、給水口が高い位置にある放水管21cが壁20c側に設置され、給水口が低い位置にある放水管21aが上流側水槽20a側に設置されるように、給水口が下流側に向かって高くなるように配置されている。
しかしながら、この放水管21a〜21cの配置においては、図9に示す並びに限らず、給水口の高低をランダムに設定するものとしても構わない。尚、本実施形態のように、下流側に向かって順に給水口を高くすることで、低い水位において、排水が導入されない高い給水口の放水管が、排水が導入される低い給水口の放水管よりも上流側に存在することがない。よって、いずれの水位においても、給水口までに放水管自身が障害となることがないため、その泡の発生を抑制することができる。
Furthermore, in this reference example , in the water discharge pipes 21a to 21c, the water discharge pipe 21c having a high water supply port is installed on the wall 20c side, and the water discharge pipe 21a in the low water supply port is installed on the upstream water tank 20a side. As shown, the water supply port is arranged so as to become higher toward the downstream side.
However, the arrangement of the water discharge pipes 21 a to 21 c is not limited to the arrangement shown in FIG. 9, and the water supply ports may be randomly set. In addition, like this embodiment, by increasing the water supply port in order toward the downstream side, the water discharge pipe of the high water supply port that does not introduce drainage at a low water level is the drainage pipe of the low water supply port that introduces drainage. There is no upstream side. Therefore, in any water level, since the water discharge pipe itself does not become an obstacle until the water supply port, generation of bubbles can be suppressed.

施形態>
本発明の実施形態について、図面を参照して説明する。図12は、本実施形態の放水路の構成を示す断面図である。図12に示す構成において、図9に示す構成と同一の目的で使用する部分については、同一の符号を付して、その詳細な説明は省略する。
<Implementation form>
For implementation of the invention will be described with reference to the drawings. FIG. 12 is a cross-sectional view showing the configuration of the water discharge channel of the present embodiment. In the configuration shown in FIG. 12, parts used for the same purpose as those in the configuration shown in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示す放水路では、図9に示した構成に対して、放水管21a〜21cにおいて、それぞれの給水口の上を覆うカバー22a〜22cが設置される。即ち、図9に示す構成では、水槽20における水位が、放水管21a〜21cの給水口付近の位置と一致したときには、給水口において排水と共に空気を吸い込んでしまい、泡の発生源となってしまう。それに対して、図12のように、放水管21a〜21cの給水口がそれぞれ、カバー22a〜22cで覆われるため、水位が給水口付近の位置となったときに、空気が給水口から流入することを防ぐことができる。   In the water discharge channel shown in FIG. 12, covers 22 a to 22 c that cover the respective water supply ports are installed in the water discharge pipes 21 a to 21 c with respect to the configuration shown in FIG. 9. That is, in the configuration shown in FIG. 9, when the water level in the water tank 20 coincides with the position in the vicinity of the water supply port of the water discharge pipes 21 a to 21 c, air is sucked in along with the drainage at the water supply port and becomes a generation source of bubbles. . On the other hand, as shown in FIG. 12, since the water supply ports of the water discharge pipes 21a to 21c are respectively covered with the covers 22a to 22c, when the water level becomes a position near the water supply port, air flows from the water supply port. Can be prevented.

この放水管21a〜21cとカバー22a〜22cの関係を、図13に示す。尚、図10において、放水管21が、図12の放水管21a〜21cを示し、カバー22が、図12のカバー22a〜22cを示す。カバー22は、放水管21の給水口の上側に位置して給水口を覆う蓋面22xと、蓋面22xと外周より放水管21の給水口より下の位置まで延ばした形状の側面22yと、によって構成される。このような形状のカバー22で、放水管21の給水口を覆うため、カバー22と放水管21との間の空間を狭くして、水槽20の水位が放水管21の給水口近傍となったときに吸い込む空気の量を抑えることができる。   The relationship between the water discharge pipes 21a to 21c and the covers 22a to 22c is shown in FIG. In addition, in FIG. 10, the water discharge pipe 21 shows the water discharge pipes 21a-21c of FIG. 12, and the cover 22 shows the covers 22a-22c of FIG. The cover 22 is located above the water supply port of the water discharge pipe 21 and covers the water supply port 22x, and the side surface 22y of the shape extending from the cover surface 22x and the outer periphery to a position below the water supply port of the water discharge pipe 21; Consists of. In order to cover the water supply port of the water discharge pipe 21 with the cover 22 having such a shape, the space between the cover 22 and the water discharge pipe 21 is narrowed, and the water level of the water tank 20 becomes near the water supply port of the water discharge pipe 21. Sometimes the amount of air inhaled can be reduced.

尚、本実施形態において、一番低い位置に給水口が設置される放水管21aについては、放水域7が最低水位となった場合においても、水槽20の水位より放水管21aの給水口が低い位置に位置するように、設置される。これにより、放水管21aの給水口が水槽20に貯水された水の水面下に常に位置するようにすることができる。このとき、放水管21aの給水口が空気に触れることがないため、カバー22aを設置しないものとしても構わない。   In addition, in this embodiment, about the water discharge pipe 21a in which a water supply opening is installed in the lowest position, even when the water discharge area 7 becomes the lowest water level, the water supply opening of the water discharge pipe 21a is lower than the water level of the water tank 20. It is installed so that it is located. Thereby, the water supply port of the water discharge pipe 21a can always be located below the surface of the water stored in the water tank 20. At this time, since the water supply port of the water discharge pipe 21a does not touch the air, the cover 22a may not be installed.

第6の参考例
本発明の第6の参考例について、図面を参照して説明する。図14は、本参考例の放水路の構成を示す断面図である。図14に示す構成において、図9に示す構成と同一の目的で使用する部分については、同一の符号を付して、その詳細な説明は省略する。
< Sixth Reference Example >
A sixth reference example of the present invention will be described with reference to the drawings. FIG. 14 is a cross-sectional view showing the configuration of the water discharge channel of the present reference example . In the configuration shown in FIG. 14, portions used for the same purpose as the configuration shown in FIG. 9 are given the same reference numerals, and detailed description thereof is omitted.

図14に示す放水路では、図9に示した構成に対して、放水管21bを除いた放水管21a,21cのみが配置された構成であるとともに、放水管21cから供給される水を螺旋状に旋回させることで排水から空気を分離するサイクロン装置23と、サイクロン装置23で分離された空気を空中に排出する空気排出管24と、を備える。このとき、サイクロン装置23の入口23aが、放水管21cの排水口に接続される。又、放水管21aについては、放水域7が最低水位となった場合においても、水槽20の水位より放水管21aの給水口が低い位置に位置するように、設置する。   In the water discharge channel shown in FIG. 14, only the water discharge pipes 21 a and 21 c except for the water discharge pipe 21 b are arranged with respect to the structure shown in FIG. 9, and the water supplied from the water discharge pipe 21 c is spirally formed. Are provided with a cyclone device 23 that separates the air from the drainage by swirling the air and an air discharge pipe 24 that discharges the air separated by the cyclone device 23 into the air. At this time, the inlet 23a of the cyclone device 23 is connected to the drain of the water discharge pipe 21c. Moreover, about the water discharge pipe 21a, even when the water discharge area 7 becomes the lowest water level, it is installed so that the water supply port of the water discharge pipe 21a is located at a position lower than the water level of the water tank 20.

このように構成されるとき、図9の構成の場合と同様、放水域7の水位が低いときは、放水管21aのみから水槽20に貯水された排水が放水域7に流れ込み、又、放水域7の水位が高いときは、放水管21a,21cそれぞれから水槽20に貯水された排水が放水域7に流れ込む。このとき、水槽20の水位が放水管21cの給水口位置になるとき、上記実施形態で説明したように、放水管21cによって排水と共に空気が吸い込まれる。 When configured in this way, as in the case of the configuration of FIG. 9, when the water level of the water discharge area 7 is low, the wastewater stored in the water tank 20 flows only from the water discharge pipe 21 a into the water discharge area 7. When the water level of 7 is high, the drainage water stored in the water tank 20 flows into the water discharge area 7 from each of the water discharge pipes 21a and 21c. At this time, when the water level of the water tank 20 becomes the water supply port position of the water discharge pipe 21c, as described in the above embodiment, air is sucked together with the drainage by the water discharge pipe 21c.

しかしながら、本実施形態では、図14のように、サイクロン装置23が設置される構成とされるため、空気が混入した排水が放水管21cを通じてサイクロン装置23に吐出される。そして、サイクロン装置23においては、放水管21からの空気が混入した排水が旋回して出口23bに向かうことで、混入している空気が分離されることとなる。又、分離された空気はサイクロン装置23の上部に向かい、サイクロン23の蓋部の中央に接続された空気排出管24より、空中に排出される。   However, in this embodiment, as shown in FIG. 14, the cyclone device 23 is installed, so that wastewater mixed with air is discharged to the cyclone device 23 through the water discharge pipe 21 c. And in the cyclone apparatus 23, the mixed air will be isolate | separated because the waste_water | drain with which the air from the water discharge pipe 21 mixed turns and goes to the exit 23b. The separated air is directed to the upper part of the cyclone device 23 and discharged into the air from an air discharge pipe 24 connected to the center of the lid of the cyclone 23.

尚、空気排出管24は、下流側水槽20bの底部を貫通するように設けられ、その天端が、水槽20に貯水される排水の最高水位よりも高い位置にとなるように設定される。このとき、空気排出管24の天端を水槽20の壁20cの天端よりも高い位置に設置することで、水槽20に貯水される排水の水位に対して常に高い位置とすることができる。又、放水管21a,21cは、第5の参考例と同様、水槽20に縦横に配列されたマトリクス状に複数配置される。そして、複数の放水管21cそれぞれに対してサイクロン装置及び空気排出管24が設けられるものとしても構わないし、複数の放水管21cに対して1つのサイクロン装置及び空気排出管24が設けられるものとしても構わない。 The air discharge pipe 24 is provided so as to penetrate the bottom of the downstream water tank 20b, and its top end is set to a position higher than the highest water level of the drainage stored in the water tank 20. At this time, by installing the top end of the air discharge pipe 24 at a position higher than the top end of the wall 20 c of the water tank 20, the air discharge pipe 24 can be always positioned higher than the water level of the wastewater stored in the water tank 20. Moreover, the water discharge pipes 21a and 21c are arranged in a matrix form arranged in the water tank 20 vertically and horizontally, similarly to the fifth reference example . The cyclone device and the air discharge pipe 24 may be provided for each of the plurality of water discharge pipes 21c, or one cyclone device and the air discharge pipe 24 may be provided for the plurality of water discharge pipes 21c. I do not care.

尚、本参考例において、上記実施形態と同様、排水管21a,21cそれぞれの給水口に、給水口を覆うためのカバー22a,22cを設けるものとしても構わない。又、本参考例において、給水口の高さ位置が排水管21a,21cの給水口の高さ位置の間となる排水管が設けられるものとし、この排水管に対しても、サイクロン装置及び空気排出管が設置されるものとしても構わない。 In addition, in this reference example , you may provide the cover 22a and 22c for covering a water supply port in each water supply port of the drain pipes 21a and 21c similarly to the said embodiment. In this reference example , a drainage pipe is provided in which the height of the water supply port is between the heights of the water supply ports of the drainage pipes 21a and 21c. A discharge pipe may be installed.

上述の第5参考例、本参考例、さらに上記実施形態において、長さの違う2種類又は3種類の排水管21a〜21cが設置されるものとしたが、水位に対する制御を精細なものとするため、4種類以上の排水管が設置されるものとしても構わない。又、長さの異なる排水管に配列方法については、第5参考例でも記載したように、下流側に向かって給水口が高くなるように設置する方法に限らず、ランダムに設置するものとしても構わない。 In the fifth reference example, the present reference example, and the above-described embodiment, two or three types of drain pipes 21a to 21c having different lengths are installed, but the control on the water level is fine. Therefore, four or more types of drain pipes may be installed. In addition, as described in the fifth reference example , the arrangement method for the drain pipes having different lengths is not limited to the method of installing the water supply port so as to increase toward the downstream side, but may be installed at random. I do not care.

第7の参考例
本発明に関する第7の参考例について、図面を参照して説明する。図15は、本参考例の放水路の構成を示す断面図である。
< Seventh Reference Example >
A seventh reference example relating to the present invention will be described with reference to the drawings. FIG. 15 is a cross-sectional view showing the configuration of the water discharge channel of this reference example.

図15の放水路は、発電所プラントの復水器で冷却水として使用された海水又は河川水を排水する放水管1と、放水管1からの排水を貯水する上流側水槽30と、上流側水槽30の下流側を堰き止める堰31と、堰31の下流側に構成される下流側水槽32と、下流側水槽32に貯水された排水を放水域7に放水するU字形状のサイフォン管33と、上流側水槽30から堰31を貫通して下流水槽32のサイフォン管33に挿入された放水管34と、を備える。   The drainage channel of FIG. 15 includes a drainage pipe 1 for draining seawater or river water used as cooling water in the condenser of the power plant, an upstream water tank 30 for storing drainage from the drainage pipe 1, and an upstream side A weir 31 that dams the downstream side of the water tank 30, a downstream water tank 32 that is configured on the downstream side of the weir 31, and a U-shaped siphon pipe 33 that discharges the wastewater stored in the downstream water tank 32 to the water discharge area 7. And a water discharge pipe 34 inserted through the weir 31 from the upstream water tank 30 and inserted into the siphon pipe 33 of the downstream water tank 32.

このとき、上流側水槽30の底部30aが下流側水槽32の底部32aよりも高い位置にあり、下流側水槽32の底部32aが放水域7の底部よりも高い位置にある。そして、下流側水槽32が、底部32aと壁32bとによって放水域7としきられた構成となっている。又、堰31は、放水域7が高水位となることで上流側水槽30の水位が高くなったとき、その天端が水面下の低い位置となり、逆に、放水域7が低水位となることで上流側水槽30の水位が低くなったとき、その天端が水面よりも高い位置となるように、その高さが設定される。   At this time, the bottom 30 a of the upstream water tank 30 is at a position higher than the bottom 32 a of the downstream water tank 32, and the bottom 32 a of the downstream water tank 32 is at a position higher than the bottom of the water discharge area 7. And the downstream water tank 32 becomes the structure discharged into the water discharge area 7 by the bottom part 32a and the wall 32b. Moreover, when the water level of the upstream water tank 30 becomes high because the water discharge area 7 becomes a high water level, the top end of the weir 31 becomes a low position below the water surface, and conversely, the water discharge area 7 becomes a low water level. Thus, when the water level of the upstream water tank 30 becomes low, its height is set so that its top end is higher than the water surface.

サイフォン管33は、下流側水槽32に設置されて底部32aに対して口がテーパー状に開いた形状となる上流側管33aと、放水域7に設置されて下端となる排水口が底部32aより低い位置となる下流側管33bと、上流側管33aと下流側管33bとを壁32bを越えて接続するU字型管33cと、によって構成される。このサイフォン管33は、最初の設置時において、真空ポンプで空気抜きが成されることで、サイフォン管33内が水で満たされた状態とされる。このようにサイフォン管33を構成することで、上流側管33aの給水口が、下流側管33bの排水口よりも高い位置となり、下流側水槽32の排水がサイフォン管33を通じて放水域7に放水されることとなる。   The siphon pipe 33 is installed in the downstream water tank 32 and has an upstream pipe 33a having a tapered opening with respect to the bottom 32a, and a drain outlet that is installed in the water discharge area 7 and serves as a lower end from the bottom 32a. The downstream side pipe 33b which becomes a low position, and the U-shaped pipe 33c which connects the upstream side pipe 33a and the downstream side pipe 33b across the wall 32b are comprised. When the siphon tube 33 is initially installed, the siphon tube 33 is filled with water by removing air with a vacuum pump. By configuring the siphon pipe 33 in this way, the water supply port of the upstream side pipe 33 a is positioned higher than the drain port of the downstream side pipe 33 b, and the drainage of the downstream water tank 32 is discharged into the water discharge area 7 through the siphon pipe 33. Will be.

又、堰31を貫通するように設けられた放水管34は、上流側水槽30の底部30a側に設けられ、サイフォン管33の上流側管33aの壁を貫通して上流側管33a内部に挿入される。そして、上流側管33aに挿入された放水管34の先端が、下流側水槽32の底部32aに向かって屈曲するような形状とされ、この放水管34の排水口が、上流側管33aの給水口よりも高い位置になるように設置される。   Further, the water discharge pipe 34 provided so as to penetrate the weir 31 is provided on the bottom 30a side of the upstream water tank 30, and penetrates the wall of the upstream pipe 33a of the siphon pipe 33 to be inserted into the upstream pipe 33a. Is done. And the front-end | tip of the water discharge pipe 34 inserted in the upstream pipe 33a is made into a shape bent toward the bottom part 32a of the downstream water tank 32, and the drain of this water discharge pipe 34 is the water supply of the upstream pipe 33a. It is installed to be higher than the mouth.

このように構成したとき、放水域7が低水位である場合、図16(a)に示すように、下流側水槽32の水位がさがるとともに、上流側水槽30において堰31の天端よりも水位が低くなり、堰31を排水が越えることができない状態となる。尚、下流側水槽32では、その水位が放水管34よりも高い位置となり、放水管34が下流側水槽32に貯水された水の水面下に存在する。このとき、上流側水槽30からの排水が、放水管34を通じて、下流側水槽32におけるサイフォン管33の上流側管33a内部に放水される。   When configured in this way, when the water discharge area 7 is at a low water level, the water level of the downstream water tank 32 is lowered and the water level is higher than the top of the weir 31 in the upstream water tank 30 as shown in FIG. Becomes low, and the drainage cannot pass over the weir 31. In the downstream water tank 32, the water level is higher than the water discharge pipe 34, and the water discharge pipe 34 exists below the surface of the water stored in the downstream water tank 32. At this time, the waste water from the upstream water tank 30 is discharged into the upstream pipe 33 a of the siphon pipe 33 in the downstream water tank 32 through the water discharge pipe 34.

そして、サイフォン管33の上流側管33a内部では、放水管34から排水が放水されるが、この放水される方向が上流側管33aの給水口の方向に向かう方向であり、上流側管33aを流れる方向に対して逆側となる。即ち、放水管34から排水が上流側管33aの水の流れに逆流するように排出され、放水管34からの放水に抵抗を与えられることとなる。これにより、放水管34から放水される排水の流量を少なくするため、上流側水槽30における水位変動を抑制することができる。そして、サイフォン管33において、下流側水槽32に貯水された排水が、上流側管33aから給水された後、U字型管33cを通じて下流側管33bより放水域7に排出される。   And in the upstream side pipe 33a of the siphon pipe 33, the drainage is discharged from the water discharge pipe 34. The direction in which the water is discharged is the direction toward the water supply port of the upstream side pipe 33a, and the upstream side pipe 33a is connected to the upstream side pipe 33a. On the opposite side to the direction of flow. That is, drainage is discharged from the water discharge pipe 34 so as to flow backward to the water flow in the upstream pipe 33a, and resistance is given to water discharge from the water discharge pipe 34. Thereby, in order to reduce the flow volume of the waste_water | drain discharged from the water discharge pipe 34, the water level fluctuation | variation in the upstream water tank 30 can be suppressed. In the siphon pipe 33, the wastewater stored in the downstream water tank 32 is supplied from the upstream pipe 33a and then discharged from the downstream pipe 33b to the water discharge area 7 through the U-shaped pipe 33c.

又、放水域7が高水位である場合、図16(b)に示すように、下流側水槽32の水位が上がるとともに、上流側水槽30において堰31の天端よりも水位が高くなり、堰31を排水が越えて下流側水槽32に流れ込む。よって、下流側水槽32に貯水される排水量が多くなるが、サイフォン管33を通じて放水域7へ流れる排水の流量が多くなる。このように、サイフォン管33を通じて放水域7へ流れる排水の流量が多くなるため、上流側水槽30及び下流側水槽32の水位が上昇しすぎるのを抑制することができ、その水位変動を小さくすることができる。   Further, when the water discharge area 7 is at a high water level, as shown in FIG. 16 (b), the water level of the downstream water tank 32 rises, and the water level becomes higher in the upstream water tank 30 than the top of the weir 31. The drainage passes over 31 and flows into the downstream water tank 32. Therefore, although the amount of drainage stored in the downstream water tank 32 increases, the flow rate of drainage flowing through the siphon pipe 33 to the water discharge area 7 increases. Thus, since the flow volume of the waste_water | drain which flows into the discharge area 7 through the siphon pipe 33 increases, it can suppress that the water level of the upstream water tank 30 and the downstream water tank 32 rises too much, and makes the water level fluctuation | variation small. be able to.

参考例では、サイフォン管33を通じて放水域7へ排水を放水するため、放水域7へ放水する排水に泡(空気)が混入することを防ぐことができる。又、上流側水槽30からサイフォン管33の上流側管33a内部まで挿入された放水管34を設けることで、放水域7が低水位となり、全体的に水位が下がったときでも、下流側水槽32に排水が供給される構成とすることができる。これにより、サイフォン管33が常に排水で満たされた状態とすることができ、空気の混入を防ぐことができる。 In this reference example , since the waste water is discharged to the water discharge area 7 through the siphon tube 33, it is possible to prevent bubbles (air) from being mixed into the water discharged to the water discharge area 7. Further, by providing the water discharge pipe 34 inserted from the upstream water tank 30 to the inside of the upstream pipe 33a of the siphon pipe 33, the downstream water tank 32 even when the water discharge area 7 becomes a low water level and the water level is lowered as a whole. It can be set as the structure by which waste water is supplied to. Thereby, the siphon tube 33 can be in a state always filled with drainage, and air can be prevented from being mixed.

尚、本参考例では、放水管34をサイフォン管33の上流側管33a内部に挿入し、屈曲させることで抵抗を与え、放水管34から放水される排水の流量を少なくし、低水位時における水位の変動を抑制させるものとしたが、図17に示すように、放水管34の排水口が上流側管33a外部に在るものとしても構わない。このとき、放水管34の排水口を狭めることで抵抗を設けるものとするが、排水口が狭いと不純物や生物などにより排水口が詰まることがあるため、図15に示すように、上流側管33a内部に挿入し屈曲することで抵抗を与える方が好ましい。 In this reference example , the water discharge pipe 34 is inserted into the upstream pipe 33a of the siphon pipe 33 and bent to give resistance, thereby reducing the flow rate of drainage discharged from the water discharge pipe 34, and at a low water level. Although the fluctuation of the water level is suppressed, as shown in FIG. 17, the drain outlet of the water discharge pipe 34 may be outside the upstream pipe 33a. At this time, resistance is provided by narrowing the drain outlet of the water discharge pipe 34. However, if the drain outlet is narrow, the drain outlet may be clogged with impurities, organisms, etc., so as shown in FIG. It is preferable to provide resistance by inserting and bending inside 33a.

本発明は、原子力又は火力などによる発電プラントや化学プラントなどにおいて、河川域や海域から取水して冷却水などに利用された水を放水するための放水路に適用可能である。 INDUSTRIAL APPLICABILITY The present invention can be applied to a water discharge channel for discharging water taken from a river area or sea area and used as cooling water in a power plant or chemical plant using nuclear power or thermal power.

1 放水管
7 放水域
20 水槽
20a 上流側水槽(第1水槽)
20b 下流側水槽(第2水槽)
21a 放水管
21b 放水管
21c 放水管
22 カバー
23 サイクロン装置
1 Water discharge pipe 7 Water discharge area 20 Water tank 20a Upstream water tank (first water tank)
20b Downstream water tank (second water tank)
21a Water discharge pipe 21b Water discharge pipe 21c Water discharge pipe 22 Cover 23 Cyclone device

Claims (4)

上流側の放水管から放水される排水を貯水する水槽と前記排水を放水する下流側の放水域との間に設置され、前記水槽から前記放水域に前記水槽に貯水された排水を放水させる際の発泡を低減させる発泡防止装置において、
前記水槽が、上流側の第1水槽と、上流側の前記第1水槽より深さが深い下流側の第2水槽と、から構成され、
前記第2水槽の底部を貫通させて設けられるとともに前記水槽に貯水された排水を前記放水域に放水する複数の放水管を備え、
前記複数の放水管が、前記水槽の深さ方向に対して長さが異なるとともに、その天端における給水口の高さ位置が異なり、
前記複数の放水管は、内部を流れる排水の流量を絞る絞りを備え、
前記第2水槽に設けられる前記複数の放水管のうち、少なくとも前記給水口の高さ位置が高いものに対して、前記給水口を覆うカバーが設けられることを特徴とする発泡防止装置。
When the wastewater stored in the water tank is discharged from the water tank to the water discharge area, which is installed between the water tank for storing the water discharged from the upstream discharge pipe and the downstream water discharge area for discharging the waste water. In an anti-foaming device that reduces foaming of
The water tank is composed of an upstream first water tank and a downstream second water tank deeper than the upstream first water tank,
A plurality of water discharge pipes that are provided through the bottom of the second water tank and discharge water stored in the water tank to the water discharge area;
The plurality of water discharge pipes have different lengths with respect to the depth direction of the water tank, and the height position of the water supply port at the top of the water tank is different.
The plurality of water discharge pipes are provided with throttles for reducing the flow rate of drainage flowing through the inside,
The second of the plurality of water discharge pipe provided in the water tank, at least the relative ones height position of the water supply port is high, the water supply port foamed prevention device you characterized in that the cover is provided for covering the.
前記第2水槽に設けられる前記複数の放水管が、上流側から下流側に向かって、前記給水口が低い位置にあるものから前記給水口が高い位置にあるものとなる順番で、配置されることを特徴とする請求項1に記載の発泡防止装置。 The plurality of water discharge pipes provided in the second water tank are arranged in order from the upstream side to the downstream side in which the water supply port is at a low position from the low water supply port. The anti-foaming device according to claim 1 . 前記第2水槽に設けられる前記複数の放水管の前記給水口のうち、最も高さの低い給水口は、前記放水域が最低水位になったときでも、前記第2水槽に貯水された水の水面下に位置することを特徴とする請求項1又は請求項2に記載の発泡防止装置。 Of the water supply ports of the plurality of water discharge pipes provided in the second water tank, the water supply port having the lowest height is the water stored in the second water tank even when the water discharge area is at the lowest water level. The anti-foaming device according to claim 1 , wherein the anti-foaming device is located below the water surface. 前記給水口が高い位置にある前記第2水槽に設けられる前記放水管の排出口に入口が接続され、接続された前記放水管からの排水を旋回させて空気と分離させるサイクロン装置と、
前記サイクロン装置の蓋部に接続されて、前記サイクロン装置で分離された空気を空中に排出する空気排出管と、
を備えることを特徴とする請求項1〜請求項3のいずれか1項に記載の発泡防止装置。
A cyclone device in which an inlet is connected to a discharge port of the water discharge pipe provided in the second water tank in which the water supply port is at a high position, and the waste water from the connected water discharge pipe is swirled and separated from the air;
An air discharge pipe connected to the lid of the cyclone device and discharging the air separated by the cyclone device into the air;
The anti-foaming device according to any one of claims 1 to 3 , further comprising:
JP2011220242A 2011-10-04 2011-10-04 Anti-foaming device Expired - Fee Related JP5631288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220242A JP5631288B2 (en) 2011-10-04 2011-10-04 Anti-foaming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220242A JP5631288B2 (en) 2011-10-04 2011-10-04 Anti-foaming device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006316168A Division JP5010249B2 (en) 2006-11-22 2006-11-22 Anti-foaming device

Publications (2)

Publication Number Publication Date
JP2012062747A JP2012062747A (en) 2012-03-29
JP5631288B2 true JP5631288B2 (en) 2014-11-26

Family

ID=46058722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220242A Expired - Fee Related JP5631288B2 (en) 2011-10-04 2011-10-04 Anti-foaming device

Country Status (1)

Country Link
JP (1) JP5631288B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966080B (en) * 2012-11-09 2014-11-26 广东省水利水电科学研究院 Novel salt spray defoaming facility for thermal power plant and nuclear power plant
CN103541337B (en) * 2013-10-28 2015-07-29 广东省水利水电科学研究院 A kind of for power plant's surface water channel press down bulb apparatus
KR101571606B1 (en) * 2013-11-18 2015-11-25 주식회사 포스코건설 Sea water discharge structure having breaker for reducing bubble occurrence
JP6478699B2 (en) * 2015-02-25 2019-03-06 住友精密工業株式会社 Underwater combustion type vaporizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034878U (en) * 1973-07-26 1975-04-14
JPS6429512A (en) * 1987-04-02 1989-01-31 Tokyo Kyuei Kk Foam preventing multistage overflow dam device
JPH05106214A (en) * 1991-10-15 1993-04-27 Mitsubishi Heavy Ind Ltd Installation method of straightener pipe system at inlet of covered conduit
JP2915682B2 (en) * 1992-03-16 1999-07-05 三菱重工業株式会社 Accumulation water injection tank for reactor emergency water injection device
JP2002239304A (en) * 2001-02-21 2002-08-27 Nippon Steel Corp Foaming preventing structure of seawater discharge passage
JP3831280B2 (en) * 2002-03-19 2006-10-11 Jfeスチール株式会社 Seal pit for drainage
JP4721909B2 (en) * 2006-01-12 2011-07-13 中国電力株式会社 Air mixing prevention device

Also Published As

Publication number Publication date
JP2012062747A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5631288B2 (en) Anti-foaming device
JP5010249B2 (en) Anti-foaming device
JP5272062B2 (en) Anti-foaming device
JP6795325B2 (en) Blocker
JP3831280B2 (en) Seal pit for drainage
JP5944682B2 (en) Oil separation tank
JP2011106196A (en) Water-discharge pit structure
JP2002239304A (en) Foaming preventing structure of seawater discharge passage
JP5164022B2 (en) Tank structure of flush toilet
KR20130125989A (en) Bubble trap device
JP2022090944A (en) Siphon drainage system
JPH08128028A (en) Selective inflow device
JP5164019B2 (en) Flush toilet
JP4358369B2 (en) Structure of water discharge pit
JP6506631B2 (en) Upper installation filter for aquarium fish tank
JP2006307523A (en) Water tank
JP5158618B2 (en) Drainage structure and partition member
JPH0439521B2 (en)
KR101697858B1 (en) A Core for drain board having a three dimensional waterway
JP2823174B2 (en) Bubble canal
KR100372098B1 (en) Caisson with rear reservoir for breakwater
KR100431572B1 (en) Rubble mound Water-inflowing Breakwater
JP5355727B2 (en) Drainage structure
CN201163053Y (en) Fireproof oil smoke-insulation cover
JPH0790828A (en) Outlet structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130625

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5631288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees