JP5630967B2 - 画像処理装置及びその制御方法 - Google Patents

画像処理装置及びその制御方法 Download PDF

Info

Publication number
JP5630967B2
JP5630967B2 JP2009111294A JP2009111294A JP5630967B2 JP 5630967 B2 JP5630967 B2 JP 5630967B2 JP 2009111294 A JP2009111294 A JP 2009111294A JP 2009111294 A JP2009111294 A JP 2009111294A JP 5630967 B2 JP5630967 B2 JP 5630967B2
Authority
JP
Japan
Prior art keywords
image
imaging
tomographic
orientation
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009111294A
Other languages
English (en)
Other versions
JP2010259536A (ja
Inventor
亮 石川
亮 石川
佐藤 清秀
清秀 佐藤
遠藤 隆明
隆明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009111294A priority Critical patent/JP5630967B2/ja
Publication of JP2010259536A publication Critical patent/JP2010259536A/ja
Application granted granted Critical
Publication of JP5630967B2 publication Critical patent/JP5630967B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置及びその制御方法、当該制御方法をコンピュータに実行させるためのプログラム、並びに、当該プログラムを記憶したコンピュータ読み取り可能な記憶媒体に関する。
超音波診断装置は、超音波パルス反射法により、被検体の表面から被検体内部の軟組織の断層画像(超音波画像)を無侵襲に得るための医療用画像機器である。この超音波診断装置は、他の医療用画像機器に比べて、小型で安価であること、X線などの被爆がなく安全性が高いこと、被検体(患者)の近くまで手軽に移動可能なこと、血流イメージングが可能であること等の特長を有している。そのため、心臓、腹部、泌尿器、及び、産婦人科などで広く利用されている。
しかしながら、通常よく用いられている二次元の断層画像を取得する超音波診断装置だけでは、被検体の病変部の三次元的な形状や拡がりを把握することは困難である。そこで、様々な位置で撮影した二次元の断層画像群を統合して、被検体の三次元画像(三次元超音波画像)を生成する試みがなされている。例えば、下記の特許文献1には、超音波診断装置から二次元の断層像(断層画像)を時系列的に複数取得し、この複数の断層像から三次元画像を生成する技術が開示されている。そして、このように、被検体の三次元画像が生成されれば、それに基づく解析や表示を行うことにより、被検体の病変部の三次元的な形状や拡がりを容易に把握することができる。
特開平7−213521号公報
しかしながら、超音波撮影に用いられる超音波は、それが伝播した経路上において吸収・散乱などの影響を受ける。したがって、同一部位を撮影した断層画像同士であっても、異なる方位から撮影した場合には、超音波の伝播経路が異なるために、撮影される断層画像の画素値が異なる可能性がある。このような場合に、従来の技術により、断層画像を統合して被検体の三次元画像(統合画像)を生成すると、断層画像の画素値のばらつきにより、統合画像の画質が低下する恐れがあった。
本発明は、このような問題点に鑑みてなされたものであり、複数の断層画像を統合して統合画像を生成する際に、当該統合画像の画質の低下を抑制する仕組みを提供することを目的とする。
本発明の画像処理装置は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像の中で互いの撮影方位の差が所定の角度範囲内の断層画像を統合する処理を行って統合画像を生成する画像生成手段とを有する。
本発明の画像処理装置における他の態様は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段とを有し、前記画像生成手段は、少なくとも1つの基準方位と前記各撮影方位との関係に応じて前記統合画像を生成の際の優先度を算出し、当該優先度に基づいて前記統合画像を生成する。
また、本発明の画像処理装置におけるその他の態様は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して少なくとも1つの基準方位を算出して取得する基準方位取得手段と、前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段とを有する。
また、本発明の画像処理装置におけるその他の態様は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して前記各撮影方位を複数のクラスに分け、最も多くの撮影方位が分けられたクラスにおける当該撮影方位に基づいて、少なくとも1つの基準方位を算出して取得する基準方位取得手段と、前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段とを有する。
また、本発明の画像処理装置におけるその他の態様は、被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、表示する表示画像に係る指示を取得する指示取得手段と、前記表示画像として前記指示取得手段が断面画像に関する指示を取得した場合、当該指示に基づいて少なくとも1つの基準方位を取得する基準方位取得手段と、前記基準方位と前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段と、前記統合画像から前記表示画像を生成して表示を行う画像処理手段とを有する。
また、本発明は、上述した画像処理装置の制御方法、及び、当該制御方法をコンピュータに実行させるためのプログラム、並びに、当該プログラムを記憶するコンピュータ読み取り可能な記憶媒体を含む。
本発明によれば、複数の断層画像を統合して統合画像を生成する際に、当該統合画像の画質の低下を抑制することができる。
本発明の第1の実施形態に係る画像処理システムの概略構成の一例を示す模式図である。 本発明の第1の実施形態に係る画像処理装置の機能構成の一例を示す模式図である。 本発明の第1の実施形態に係る画像処理装置のハードウェア構成の一例を示す模式図である。 本発明の第1の実施形態に係る画像処理装置の制御方法における処理手順の一例を示すフローチャートである。 本発明の第1の実施形態を示し、図1に示す超音波画像撮影装置の概略構成の一例、及び、被検体の撮影領域の一例を示す模式図である。 本発明の第1の実施形態を示し、図1に示す位置姿勢計測装置の概略構成の一例、及び、超音波プローブ220の位置及び姿勢に関する計測方法の一例を示す模式図である。 本発明の第2の実施形態を示し、図4のステップS105における基準方位の取得方法の詳細な処理手順の一例を示すフローチャートである。 本発明の第3の実施形態に係る画像処理装置の制御方法における処理手順の一例を示すフローチャートである。 本発明の第4の実施形態に係る画像処理装置の制御方法における処理手順の一例を示すフローチャートである。
以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。なお、以下に示す実施形態は、一例に過ぎず、本発明は、図示された構成等に限定されるものではない。
(第1の実施形態)
まず、本発明の第1の実施形態について説明する。
図1は、本発明の第1の実施形態に係る画像処理システム10の概略構成の一例を示す模式図である。
図1に示すように、画像処理システム10は、画像処理装置100、超音波画像撮影装置(断層画像撮影装置)200、位置姿勢計測装置300、及び、ローカル・エリア・ネットワーク(LAN)400を有して構成されている。即ち、図1に示す画像処理システム10は、画像処理装置100が、LAN400を介して、超音波画像撮影装置200及び位置姿勢計測装置300に接続される構成となっている。
なお、図1に示す例では、画像処理装置100と、超音波画像撮影装置200及び位置姿勢計測装置300との接続をLAN400により行う形態について示しているが、本実施形態においては、これに限定されるものではない。例えば、LAN400に換えて、USBやIEEE1394等のインターフェイスを用いる形態であっても、また、インターネット等の外部ネットワークを用いる形態であってもよい。
本実施形態に係る画像処理装置100は、超音波画像撮影装置200で撮影された被検体内部の断層画像(超音波画像)における処理を行う。
超音波画像撮影装置200は、超音波プローブ(図1では不図示)から被検体の内部に超音波を発射し、当該発射した超音波の反射波を観測することにより、被検体内部の断層画像(超音波画像)を撮影する。
本実施形態では、超音波画像撮影装置200は、超音波プローブとして、超音波送受信素子を直線状に並べて配置したリニア・アレイ・プローブを有し、この超音波プローブを被検体にあてることにより、被検体内部の断層画像を撮影可能となっている。この超音波画像撮影装置200で撮影された断層画像は、超音波画像撮影装置200から画像処理装置100へ送信される。
なお、本実施形態においては、超音波画像撮影装置200が、超音波エコーを画像化する装置である場合を例として説明を行うが、本発明の実施においてはこれに限定されるものではない。例えば、超音波画像撮影装置200は、レーザー光源と超音波探触子を有するプローブを用いて光音響効果を画像化する光音響トモグラフィ(PAT:Photo−Acoustic Tomography)装置などであってよい。
位置姿勢計測装置300は、超音波画像撮影装置200が有する超音波プローブに装着され、超音波画像撮影装置200で断層画像を撮影した際の、当該超音波プローブの位置及び姿勢を計測する。位置姿勢計測装置300は、例えば、磁気式センサ(例えば、米国Polhemus社のFASTRAK等)によって構成される。なお、本実施形態の位置姿勢計測装置300としては、超音波プローブの位置及び姿勢が計測できるものであれば、どのように構成されてもよい。
次に、図1に示す画像処理装置100の機能構成について説明する。
図2は、本発明の第1の実施形態に係る画像処理装置100の機能構成の一例を示す模式図である。
図2に示すように、画像処理装置100は、断層画像取得部110、撮影方位取得部120、取得情報記録部130、指示取得部140、画像生成部150、及び、画像表示・出力部160の各機能構成を有して構成されている。
断層画像取得部110は、超音波画像撮影装置200により撮影された、被検体内部の複数の断層画像を超音波画像撮影装置200から取得し、これを取得情報記録部130へ送信する。
撮影方位取得部120は、位置姿勢計測装置300により計測された超音波プローブの位置及び姿勢に関する計測値を、断層画像の取得位置(撮影位置)及び取得方向(撮影方向)の撮影方位に関する計測値として取得する。そして、撮影方位取得部120は、この撮影方位に関する計測値を取得情報記録部130へ送信する。
取得情報記録部130は、断層画像取得部110から送信された断層画像(断層画像群)と、撮影方位取得部120から送信された撮影方位に関する計測値(当該断層画像を撮影した際の超音波プローブの位置及び姿勢に関する計測値)とを対応付けて記録する。そして、取得情報記録部130は、画像生成部150からの要求に基づいて、記録した情報を画像生成部150へ送信する。
指示取得部140は、取得情報記録部130の記録の開始・終了の指示や、画像生成部150、画像表示・出力部160の処理パラメータなどに関する操作者の指示入力を取得する。ここで、指示取得部140が取得した指示の内容は、必要に応じて、取得情報記録部130、画像生成部150、画像表示・出力部160へ送信される。
また、指示取得部140は、基準方位取得部141を備えている。基準方位取得部141は、被検体の三次元画像の生成に用いる断層画像を選択するための基準である基準方位に関する情報を取得する。この基準方位に関する情報は、指示取得部140から画像生成部150へ送信され、後述する画像生成部150の処理対象画像判定部151で使用される。
画像生成部150は、取得情報記録部130から複数の断層画像(断層画像群)及びその撮影方位に関する計測値を取得し、当該撮影方位に関する計測値に基づいて当該断層画像群を統合する処理を行って、被検体の三次元画像を生成するものである。ここで、画像生成部150で生成される被検体の三次元画像は、統合画像を構成する。
図2に示すように、画像生成部150は、その主要な構成要素として、処理対象画像判定部151、座標変換部152、及び、三次元画像保持部153を備えている。
処理対象画像判定部151は、取得情報記録部130から取得した断層画像群のそれぞれの断層画像について、三次元画像を生成する際の統合処理対象とするか否かを判定する。また、この際、処理対象画像判定部151は、取得情報記録部130から取得した、それぞれの断層画像に対応付けられた撮影方位に関する計測値と、基準方位取得部141が取得した基準方位との関係に基づいて行われる。そして、処理対象画像判定部151は、統合処理対象と判定した断層画像とその撮影方位に関する計測値とを、座標変換部152へ送信する。
座標変換部152は、処理対象画像判定部151から送信された断画層像とその撮影方位に関する計測値を取得する。そして、座標変換部152は、それぞれの断層画像を、それぞれの撮影方位に関する計測値に基づいて、生成する三次元画像の画像空間へと座標変換を行う。そして、座標変換部152は、座標変換した結果情報を三次元画像保持部153へ送信する。
三次元画像保持部153は、三次元画像を保持する三次元画像メモリを有している。三次元画像保持部153は、座標変換部152から座標変換した結果情報を取得し、それらを統合して、三次元画像メモリに、統合処理対象の断層画像に基づく被検体の三次元画像を生成して保持する。さらに、三次元画像保持部153は、画像表示・出力部160からの要求に従って、生成し保持した三次元画像を画像表示・出力部160へ送信する。
画像表示・出力部160は、画像生成部150による画像処理により構築された三次元画像を取得する。そして、画像表示・出力部160は、指示取得部140からの指示に従って三次元画像を処理し、表示画像として、例えば被検体内部の断面画像やボリュームレンダリング画像などを生成して表示・出力する。
なお、図2に示す画像処理装置100の各機能構成は、例えばコンピュータのソフトウェア構成として実現される。
次に、図1に示す画像処理装置100にコンピュータを適用した場合のハードウェア構成について説明する。
図3は、本発明の第1の実施形態に係る画像処理装置100のハードウェア構成の一例を示す模式図である。
図3に示すように、画像処理装置100は、CPU301、RAM302、ROM303、外部記憶装置304、モニタ305、キーボード306、マウス307、通信インターフェイス308、及び、バス309の各ハードウェア構成を有して構成されている。
CPU301は、ROM303或いは外部記憶装置304に格納されたプログラムやデータを用いて、当該画像処理装置100全体の制御を行う。
RAM302は、外部記憶装置304(或いはROM303)からロードされたプログラムやデータを一時的に記憶するエリアを備えると共に、CPU301が各種の処理を行うために必要とするワークエリアを備える。
ROM303には、一般に、コンピュータのBIOSや設定データなどが格納されている。
外部記憶装置304は、ハードディスクドライブなどの大容量情報記憶装置として機能する装置であり、例えば、オペレーティングシステムやCPU301が実行するプログラム等を保存する。また、本実施形態の説明において既知の各種の情報やデータは、外部記憶装置304に保存されており、必要に応じて、RAM302にロードされる。なお、本例では、CPU301が実行するプログラムは、外部記憶装置304に記憶されているものとするが、例えば、ROM303に記憶されている形態であってもよい。
モニタ305は、例えば、液晶ディスプレイなどにより構成されている。
キーボード306及びマウス307は、入力デバイスを構成するものであり、操作者は、これらの入力デバイスを用いて、各種の指示を画像処理装置100に与えることができる。
通信インターフェイス308は、画像処理装置100が外部装置との間で各種のデータの通信を行うためのものであり、例えば、IEEE1394やUSB、イーサネット(登録商標)ポート等によって構成されている。通信インターフェイス308を介して取得された情報やデータは、例えば外部記憶装置304に取り込まれ、その後、必要に応じて、RAM302にロードされる。
バス309は、画像処理装置100の内部の各構成要素(301〜308)を相互に通信可能に接続するものである。
ここで、本実施形態においては、例えば、図3に示すCPU301及び外部記憶装置304に記憶されているプログラム、並びに、通信インターフェイス308から、図2に示す断層画像取得部110及び撮影方位取得部120が構成される。また、例えば、図3に示すCPU301及び外部記憶装置304に記憶されているプログラム、並びに、外部記憶装置304等から、図2に示す取得情報記録部130及び画像生成部150が構成される。また、例えば、図3に示すCPU301及び外部記憶装置304に記憶されているプログラム、並びに、キーボード306及びマウス307の入力デバイスから、図2に示す指示取得部140が構成される。また、例えば、図3に示すCPU301及び外部記憶装置304に記憶されているプログラム、並びに、モニタ305(更には外部装置に出力する場合には通信インターフェイス308)から、図2に示す画像表示・出力部160が構成される。
次に、本実施形態に係る画像処理装置100の制御方法の処理手順について説明する。
図4は、本発明の第1の実施形態に係る画像処理装置100の制御方法における処理手順の一例を示すフローチャートである。なお、図4に示すフローチャートの各ステップの処理は、CPU301が外部記憶装置304(或いはROM303)に記憶されているプログラムを実行することにより行われる。
<ステップS101:断層画像の取得>
まず、図4のステップS101において、断層画像取得部110は、超音波画像撮影装置200により撮影された被検体内部の複数の断層画像を超音波画像撮影装置200から取得する。具体的に、断層画像取得部110は、超音波画像撮影装置200に対して被検体内部の断層画像の送信を要求し、超音波画像撮影装置200から送信される断層画像を取得する。そして、断層画像取得部110は、超音波画像撮影装置200から取得した断層画像を取得情報記録部130へ送信する。
ここで、図5を用いて、超音波画像撮影装置200の超音波プローブと、この超音波プローブにより撮影される撮影領域の関係について説明する。
図5は、本発明の第1の実施形態を示し、図1に示す超音波画像撮影装置200の概略構成の一例、及び、被検体の撮影領域の一例を示す模式図である。
図5に示すように、超音波画像撮影装置200は、超音波画像撮影装置本体(断層画像撮影装置本体)210と、超音波プローブ220を有して構成されている。また、超音波プローブ220の表面には、直線状に複数配置された超音波送受信素子221が設けられている。
超音波プローブ220は、超音波画像撮影装置本体210と通信可能に接続されており、被検体内部501の断層画像を撮影する際には、被検体表面502と接するように配設される。超音波プローブ220の表面に設けられた各超音波送受信素子221は、超音波画像撮影装置本体210からの制御信号に基づいて、図示するように超音波ビーム222を被検体内部501の撮影領域503に送信する。また、各超音波送受信素子221は、送信した超音波ビーム222が撮影領域503内に存在する組織界面等で反射した際の反射波を受信する。
超音波画像撮影装置本体210は、各超音波送受信素子221が受信した、超音波ビーム222の反射波に基づいて、被検体内部501の超音波画像(断層画像)を生成する。なお、超音波プローブ220の移動・回転等に伴って撮影領域503も移動・回転するため、被検体内部501の断層画像を様々な位置・姿勢から撮影することができる。また、本実施形態では、操作者が超音波プローブ220をフリーハンドで移動・回転しながら様々な位置・姿勢から撮影した被検体内部501の断層画像を、断層画像取得部110が取得するものとする。
<ステップS102:撮影方位の取得>
図4のステップS101の処理が終了すると、ステップS102に進む。
ステップS102に進むと、撮影方位取得部120は、ステップS101で取得された断層画像が撮影された際の撮影方位の情報(撮影方位に関する計測値)を取得する。具体的に、撮影方位取得部120は、位置姿勢計測装置300に対して超音波プローブ220の位置及び姿勢に関する計測値の送信を要求し、位置姿勢計測装置300からの当該計測値を、断層画像の撮影位置及び撮影方向の撮影方位に関する計測値として取得する。そして、撮影方位取得部120は、位置姿勢計測装置300から取得した撮影方位に関する計測値を取得情報記録部130へ送信する。
ここで、図6を用いて、位置姿勢計測装置300による超音波プローブ220の位置及び姿勢に関する計測について説明する。
図6は、本発明の第1の実施形態を示し、図1に示す位置姿勢計測装置300の概略構成の一例、及び、超音波プローブ220の位置及び姿勢に関する計測方法の一例を示す模式図である。
図6に示すように、位置姿勢計測装置300は、位置姿勢計測装置本体310と、計測基準センサ320と、計測センサ330を有して構成されている。
計測基準センサ320は、位置姿勢計測装置本体310と通信可能に接続されており、本実施形態においては、超音波画像(断層画像)の撮影を行う空間中に固定して設置されている。
計測センサ330は、位置姿勢計測装置本体310と通信可能に接続されており、超音波プローブ220に固定して装着され、操作者による超音波プローブ220の移動・回転に伴って超音波プローブ220に追随して移動・回転等する。
位置姿勢計測装置本体310は、計測基準センサ320及び計測センサ330と通信可能に接続され、これらのセンサの駆動や受信信号の取得などを行うことによって、計測基準センサ320に対する計測センサ330の相対的な位置及び姿勢を計測する。
なお、位置姿勢計測装置300が磁気式センサ方式によって構成される場合には、位置姿勢計測装置本体310、計測基準センサ320及び計測センサ330は、それぞれ、コントローラ、トランスミッタ(磁場発生源)、レシーバによって構成される。
前述したように、計測センサ330は、超音波プローブ220に対して固定して装着されているため、両者の位置及び姿勢は一定の関係を保つことになる。したがって、その位置及び姿勢の関係が明らかであれば、位置姿勢計測装置300の計測結果に基づいて、超音波プローブ220の位置及び姿勢を算出することが可能である。この算出処理は、画像処理装置100が行うようにしてもよいし、位置姿勢計測装置300が行うようにしてもよい。本実施形態では、計測センサ330と超音波プローブ220との位置及び姿勢の関係を、予め位置姿勢計測装置300に設定する。そして、位置姿勢計測装置300が、超音波プローブ220の位置及び姿勢を計測して、画像処理装置100の撮影方位取得部120に送信するものとする。ここで、超音波プローブ220の位置は、撮影される断層画像の画像座標の原点と一致し、また、超音波プローブ220の姿勢は、断層画像の横方向をx軸、縦方向をy軸として定義されるものとする。
撮影方位取得部120が撮影方位として取得する超音波プローブ220の位置及び姿勢に関する計測値は、それぞれ、以下の(1)式に示す位置を表すベクトルtと、(2)式に示す姿勢を表す行列Rで表すことができる。
Figure 0005630967
この場合、例えば、撮影される断層画像の画像座標(u,v)に映し出されている被検体の部位の位置は、以下の(3)式の計算により、計測基準センサ320の位置を基準とした三次元空間中の座標(x,y,z)に変換することが可能である。
Figure 0005630967
本実施形態では、図5及び図6に示すように、超音波ビーム222は、断層画像中で縦方向(y軸)に上から下に向かうものとしている。したがって、超音波ビーム222の方向は、計測基準センサ320の位置を基準とした三次元空間中において、以下の(4)式に示すベクトルnとなる。
Figure 0005630967
<ステップS103:取得情報の記録>
図4のステップS102の処理が終了すると、ステップS103に進む。
ステップS103に進むと、取得情報記録部130は、ステップS101で取得された断層画像と、ステップS102で取得された撮影方位に関する計測値(当該断層画像を撮影した際の超音波プローブの位置及び姿勢に関する計測値)とを対応付けて記録する。
なお、本実施形態において、ステップS101〜ステップS103の処理は、後工程のステップS104において撮影終了と判断されるまで繰り返し実行される。そして、取得情報記録部130は、断層画像取得部110及び撮影方位取得部120から送信される情報を逐次、対応付けて記録する。
このとき、例えば、取得情報記録部130は、ステップS101及びステップS102において取得した情報に、ステップS101からステップS104までの処理の繰り返し回数などの情報を付して記録する。これにより、逐次記録される、断層画像と、撮影方位(当該断層画像を撮影した際の超音波プローブの位置及び姿勢)の情報との対応関係が明らかになる。なお、本発明の実施は、この方法に限らず、例えば繰り返しごとに断層画像と撮影方位の情報を結合したデータを生成して記録してもよいし、各情報を取得した時刻を付して記録するようにしてもよい。いずれにしても、取得情報記録部130は、断層画像とそれを撮影した際の撮影方位の情報との対応が分かるように記録する。
<ステップS104:撮影終了の判断>
図4のステップS103の処理が終了すると、ステップS104に進む。
ステップS104に進むと、取得情報記録部130は、指示取得部140が得た操作者の指示情報に基づいて、被検体内部の断層画像の撮影を終了するか否かを判断する。この処理は、例えば画像処理装置100のモニタ305に「記録終了」ボタン等のGUI(グラフィカル・ユーザ・インターフェース)画面を表示し、その「記録終了」ボタンに対する操作者の操作を指示取得部140が取得することで行う。なお、本発明の実施は、これに限らず、例えば、ステップS101からステップS103までの処理の繰り返し回数(撮影回数)を記録しておき、その繰り返し回数が予め設定した値に到達した際に、撮影終了と判断する形態であってもよい。
そして、ステップS104の判断の結果、被検体内部の断層画像の撮影を終了しない場合には、ステップS101に戻り、ステップS101以降の処理を再度行う。一方、ステップS104の判断の結果、被検体内部の断層画像の撮影を終了する場合には、ステップS105に進む。
<ステップS105:基準方位の取得>
ステップS105に進むと、画像生成部150は、三次元画像の生成を行う際のパラメータとなる基準方位の情報を、基準方位取得部141から取得する。この基準方位の情報は、三次元の実空間中における方向を表す情報である。ここで、三次元空間中における基準方位の情報は、例えば、以下の(5)式のように、その空間における方向ベクトルvとして表すことができる。
Figure 0005630967
ここで、基準方位取得部141は、基準方位の情報として、キーボード306やマウス307を用いて操作者が入力した、(5)式のvx,vy,vzの数値を取得する。また、基準方位の情報の取得における他の方法として、例えば、画像処理装置100に基準方位の取得のための基準方位センサを通信可能に接続し、その計測値を基準方位取得部141が取得するようにしてもよい。この基準方位センサとしては、例えば、位置姿勢計測装置300に(超音波プローブ220の位置及び姿勢を計測する計測センサ330とは別に)追加して設けた計測センサを用いることができる。また、超音波プローブ220の位置及び姿勢を計測する計測センサ330がその機能を兼ねる構成としてもよい。
さらに、基準方位の情報の取得におけるその他の方法として、取得情報記録部130に記録された断層画像の中から1つの断層画像(基準断層画像)を選択する操作者の指示を取得し、その基準断層画像が撮影された撮影方位を基準方位としてもよい。この形態によれば、基準方位の設定を簡便かつ直感的に行うことができるという効果が期待できる。なお、基準断層画像の指示の取得は、断層画像をモニタ305に順次表示しながら操作者に基準断層画像の選択を行わせるような一般的なユーザインタフェースを、基準方位取得部141が備えることによって実現できる。また、基準断層画像を1つではなく複数選択できるようにして、基準断層画像の撮影方向の平均値などを基準方位として取得するようにしてもよい。さらに、基準断層画像の撮影方向の分布などに基づいて、後述するステップS108で行う判定処理の閾値cを算出してもよい。この場合、操作者の意図に対して、より柔軟に、基準方位や判定処理の閾値cを設定できるという効果が期待できる。
また、後述のステップS112で画像表示・出力部160が生成する表示画像が、操作者が指示した三次元空間中の任意断面に対応する断面画像である場合には、その断面の生成に適した基準方位を動的に設定してもよい。即ち、表示したい断面に関する操作者の指示(仮想的なプローブの位置と姿勢)を指示取得部140から取得し、その断面を撮影する仮想的なプローブの方位を基準方位として設定する。なお、この場合には、表示する断面の指定に応じて基準方位が動的に変化するので、ステップS105からステップS112までの一連の処理を、断面の指定が変化するごとに繰り返し実行することになる。もちろん、基準方位を指定する各種の方法を兼ね備えていて、指示取得部140を介して操作者が任意の方法を選択できるような構成であってもよい。
<ステップS106:1組の取得情報の読み出し>
図4のステップS105の処理が終了すると、ステップS106に進む。
ステップS106に進むと、画像生成部150は、取得情報記録部130から、1組の取得情報(1組の断層画像及びその撮影方位の情報)の読み出し処理を行う。この処理は、ステップS106からステップS111までの繰り返し処理の度ごとに、取得情報記録部130に記録された取得情報の複数組(断層画像とその撮影方位の情報の組)の中からそれぞれを1つの組を順次読み出す。
なお、この読み出し処理は、取得情報記録部130で記録した全ての取得情報の組を対象として繰り返し実行してもよい。また、操作者の指示で読み出し対象の取得情報の組を選択できるようにしてもよい。このように、読み出し対象の取得情報の組を選択できるようにすることで、取得情報記録部130に記録した取得情報の組の中から三次元画像の生成に不要な取得情報の組を処理対象から予め除くことができ、不要な処理やメモリ容量を削減できる効果がある。
なお、本実施形態では、取得情報記録部130で記録した全ての取得情報の組のそれぞれに対して、ステップS106からステップS111までの処理を繰り返し行う場合を例として説明する。
<ステップS107:角度差の算出>
図4のステップS106の処理が終了すると、ステップS107に進む。
ステップS107に進むと、画像生成部150の処理対象画像判定部151は、ステップS106で読み出した撮影方位の情報と、ステップS105で取得した基準方位の情報とに基づいて、撮影方位における基準方位との角度差を算出する処理を行う。
処理対象画像判定部151は、撮影方位における基準方位との角度差として、例えば、撮影方位に係る(4)式のベクトルnと基準方位に係る(5)式のベクトルvとの間の内積dを、以下の(6)式の計算によって求め、これを角度差とする。
Figure 0005630967
このとき、(6)式の内積dは、−1から+1までの範囲の実数値を取る可能性があり、d=1の場合には、基準方位と撮影方位(超音波プローブ220の姿勢)が同じ方向を向いていることを意味する。また、d=−1の場合には、基準方位と撮影方位(超音波プローブ220の姿勢)が互いに逆の方向を向いていることを意味する。
なお、上述した説明では、撮影方位に係る(4)式のベクトルnと基準方位に係る(5)式のベクトルvとの内積を角度差とする場合を例として説明したが、当該角度差を求める方法はこれに限定されるものではない。例えば、ベクトルnとベクトルvとが三次元空間中でなす角度θを算出して、それを角度差としてもよい。この場合の角度差の値は、以下の(7)式に示すように、(6)式で求めた内積dのアークコサインにより得られる。
Figure 0005630967
<ステップS108:処理対象画像の判断>
図4のステップS107の処理が終了すると、ステップS108に進む。
ステップS108に進むと、処理対象画像判定部151は、ステップS107で算出した角度差に基づいて、ステップS106で読み出した断層画像が、三次元画像の生成に用いる処理対象画像となるか否かを判断する。具体的に、本実施形態では、ステップS107で算出した角度差が、予め設定した閾値cよりも大きい場合には処理対象画像となると判断し、それ以外の場合には処理対象画像でないと判断する。
例えば、閾値cを0とすれば、ステップS107で算出した角度差が0よりも大きい断層画像だけが処理対象画像となる。この角度差を(6)式に示す内積で定義した場合には、ステップS107で取得した基準方位に対して90度以内の範囲で撮影された断層画像だけが処理対象画像となる。また、閾値cを大きくすれば、基準方位に対してより狭い角度範囲から撮影された断層画像に処理対象画像を限定することができる。また、閾値cを小さくすれば、より広い角度範囲から撮影された断層画像を処理対象画像にすることができる。これにより、画像処理装置100に入力された断層画像の中から、基準方位と一定の角度範囲内の断層画像を処理対象画像として選択することができる。
そして、ステップS108の判断の結果、ステップS106で読み出した断層画像が処理対象画像とならない場合には、ステップS111に進む。一方、ステップS108の判断の結果、ステップS106で読み出した断層画像が処理対象画像となる場合には、ステップS109に進む。
<ステップS109:座標変換処理>
ステップS109に進むと、座標変換部152は、三次元画像の生成に用いる処理対象画像と判定された断層画像ついて、その撮影方位の情報に基づいて、生成する三次元画像の画像空間へ座標変換処理を行う。
具体的に、座標変換部152は、処理対象画像である断層画像の全画素の画像座標に対して、(3)式の計算を行うことにより座標変換を行って、各画素が射影される三次元画像上の座標値を算出する。そして、座標変換部152は、座標変換した結果情報である三次元画像上の座標値とその画素値を、三次元画像保持部153へ送信する。
なお、本実施形態では、処理対象画像である断層画像の全画素について座標変換処理を行う場合を例として説明したが、本発明の実施はこれに限定されるものではない。例えば、超音波撮影で得た断層画像以外に撮影パラメータなどの文字情報や、撮影位置を表すシェーマ画像などが断層画像上に重畳されている場合には、その領域ついてマスク処理を施すなどして処理対象から除くことが望ましい。また、三次元画像の生成に用いたくない領域が断層画像中に存在する場合には、その領域にマスク処理を施すことが望ましい。これにより、三次元画像に不必要な情報が混入することを防ぐことができる。
<ステップS110:座標変換結果情報の記録>
図4のステップS109の処理が終了すると、ステップS110に進む。
ステップS110に進むと、三次元画像保持部153は、ステップS109において座標変換部152から送信された座標変換した結果情報(三次元画像上の座標値とその画素値の情報)を、内部の三次元画像メモリに反映させて記録する。
例えば、三次元画像保持部153は、ステップS109で座標変換された結果情報が、画素値a、三次元画像上での座標値(x,y,z)の情報である場合、三次元画像メモリ
における三次元配列のメモリ座標(x,y,z)の値を画素値aに書き換える。この処理
を、ステップS109で座標変換された断層画像の全画素に対して行うことにより、ステップS106で読み出した断層画像を三次元空間中の撮影領域に従って、三次元画像メモリにおける三次元配列に反映して記録することができる。
なお、本実施形態では複数の断層画像に対して上述した処理を行うため、これらの断層画像間において三次元的に同一の位置で撮影されたものが存在する場合がある。このような場合、上述した処理によれば、最後に座標変換処理された画素値によって生成される三次元画像の画素値が決定されることになるが、本発明の実施はこれに限定されるものではない。例えば、三次元画像メモリの同一のメモリ座標に対して複数回の入力処理が生じた場合に、これらの値を保持しておき、複数の入力値の平均値や最大値などを三次元画像の画素値として保持するように構成することもできる。また、例えば、三次元画像メモリのあるメモリ座標に対して一度も入力処理が行われなかった場合には、そのメモリ座標に近いメモリ座標で既に入力処理が行われていれば、その値を入力処理して補間するようにしてもよい。このとき、既に入力処理が行われた最も近接するメモリ座標の値を用いてもよい。また、ある範囲内で既に入力処理が行われたメモリ座標を複数選択して、これらを入力処理するメモリ座標との距離などに応じて重み付けして入力する値を決めてもよい。また、生成する三次元画像の各画素の画素値を、その画素に最も近い位置で撮影した断層画像上の画素から得るようにしてもよい。上述した方法を用いれば、欠損のない或いは欠損の少ない三次元画像を生成することができる。
また、本実施形態では、取得した断層画像の各画素を座標変換して三次元画像の画素を決定する場合を例として説明したが、本発明の実施はこれに限定されない。例えば、ステップS109及びステップS110の処理は、複数の断層画像を統合して三次元画像を生成する何れの方法で代用してもよい。例えば、生成する三次元画像の範囲を予め指定し、その範囲の各画素について、最も近い位置を撮影した断層画像の画素を探すような処理にしてもよい。また、前記指定する領域は、必ずしも三次元的な範囲である必要はなく、例えば三次元空間中の二次元断面を指定してもよい。この方法を用いれば、三次元画像として生成したい断層画像の画素についてだけ処理を行うことができるため、三次元画像を効率良く生成できる効果がある。特に、後工程のステップS112で生成される表示画像が断層画像であって、かつ、ステップS105において表示断面に応じて基準方位を設定している場合には、この方法が有効である。
<ステップS111:取得情報の読み出し終了の判断>
図4のステップS110の処理が終了した場合、或いは、ステップS108においてステップS106で読み出した断層画像が処理対象画像とならないと判断された場合には、ステップS111に進む。
ステップS111に進むと、画像生成部150は、取得情報記録部130に記録された全ての取得情報の読み出しが終了したか否かを判断する。
ステップS111の判断の結果、取得情報記録部130に記録された全ての取得情報については読み出しが終了していない場合には、ステップS106に戻って、ステップS106以降の処理を再度行う。一方、ステップS111の判断の結果、取得情報記録部130に記録された全ての取得情報の読み出しが終了した場合には、統合処理対象の全ての断層画像を統合した被検体の三次元画像が三次元画像メモリに生成された状態となり、ステップS112に進む。
<ステップS112:表示画像の生成及び出力>
ステップS112に進むと、画像表示・出力部160は、画像生成部150が生成した三次元画像を取得し、指示取得部140から操作者の指示を取得して、表示画像の生成を行う。そして、画像表示・出力部160は、生成した表示画像をモニタ305などに出力する。以上により、図4のフローチャートにおける処理が終了する。
例えば、画像表示・出力部160は、指示取得部140から三次元空間中の断面に関する操作者の指示を取得した場合、それに基づいて三次元画像の断面画像を表示画像として生成して、これをモニタ305などに表示する。なお、画像表示・出力部160の処理はこれに限らない。例えば、画像表示・出力部160は、三次元空間中の視点位置に関する情報を指示取得部140から取得した場合、その視点から三次元画像を観察した場合のボリュームレンダリング画像や、最大値投影画像(MIP画像)を表示画像として生成してもよい。また、画像表示・出力部160は、上述した以外のいかなる可視化手法で表示画像を生成してもよく、どのような表示画像を生成するかについては操作者が選択できる構成であることが望ましい。
なお、図4に示す例では、統合処理対象の各断層画像の座標変換処理ごとに、その座標変換の結果情報を三次元画像メモリに反映させて三次元画像の生成を行うものであったが、本発明の実施はこれに限定されるものではない。例えば、まず、統合処理対象の全ての断層画像の座標変換処理を行い、その後、一括して全ての座標変換の結果情報を統合して、三次元画像メモリに、統合処理対象の断層画像に基づく被検体の三次元画像を生成して保持(記録)するようにしてもよい。この場合は、ステップS109の処理後に、ステップS111の処理を行い、ステップS111において取得情報記録部130に記録された全ての取得情報の読み出しが終了したと判断された際に、ステップS110の処理を行う形態を採る。
また、以上の処理により生成された三次元画像は、診断支援を行う他のアプリケーションから読み出し可能な形で外部記憶装置304に保存してもよく、また、通信インターフェイス308を介して外部装置へ出力してもよい。
以上説明したように、第1の実施形態における画像処理装置では、各断層画像における各撮影方位に基づいて複数の断層画像を統合して被検体内部の三次元画像(統合画像)を生成するようにしている。具体的には、断層画像群の中から、操作者が指示した基準方位に近い撮影方位における断層画像を選択してこれを統合し、三次元画像(統合画像)を生成するようにしている。
かかる構成によれば、断層画像が様々な方位から撮影されたものである場合であっても、撮影方位のばらつきのよる画質低下を抑制した、高画質な三次元画像(統合画像)を生成することができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
第1実施形態では、基準方位を取得する際に、操作者からの指示に基づき取得するものであったが、第2の実施形態では、取得情報(断層画像群とそれらの撮影方位の情報)に基づいて適応的に決定する。
なお、第2の実施形態に係る画像処理システムの概略構成については、図1に示す第1の実施形態に係る画像処理システム10の概略構成と同様の形態となる。
また、第2の実施形態に係る画像処理装置の機能構成については、基本的には、図2に示す第1の実施形態に係る画像処理装置100の機能構成と同様である。ただし、第2の実施形態に係る画像処理装置の機能構成では、図2に示す基準方位取得部141が指示取得部140から独立して設けられている。そして、第2の実施形態では、基準方位取得部141が、取得情報記録部130からの取得情報を受けて基準方位を算出し、その算出の結果得られた基準方位の情報を画像生成部150へ送信する形態を採る。
具体的に、本実施形態の基準方位取得部141は、取得情報記録部130に記録された断層画像の取得方向(撮影方向)に関する情報をクラスタリング処理することによっていくつかのクラスに分離し、この分離した結果に基づいて基準方位を決定する。なお、ここでのクラスタリングの方法には、いかなる方法を用いてもよいが、ここでは、一般的によく知られたk−平均法(k−measn法)を用いる場合を例として説明する。
また、第2の実施形態に係る画像処理装置のハードウェア構成については、図3に示す第1の実施形態に係る画像処理装置100のハードウェア構成と同様の形態となる。この際、本実施形態の基準方位取得部141は、例えば、図3に示すCPU301及び外部記憶装置304に記憶されているプログラムから構成される。
また、第2の実施形態に係る画像処理装置の制御方法における処理手順については、図4に示す第1の実施形態に係る画像処理装置100の制御方法における処理手順のフローチャートと同様である。ただし、第2の実施形態では、図4のステップS105における基準方位の取得方法が第1の実施形態とは異なっている。
図7は、本発明の第2の実施形態を示し、図4のステップS105における基準方位の取得方法の詳細な処理手順の一例を示すフローチャートである。なお、図7に示すフローチャートの各ステップの処理は、CPU301が外部記憶装置304(或いはROM303)に記憶されているプログラムを実行することにより行われる。
<ステップS201:撮影方位の読み出し>
まず、図7のステップS201において、基準方位取得部141は、取得情報記録部130に記録された取得情報から、撮影方位の情報(ここでは、超音波プローブ220の姿勢に関する情報)を全て読み出す。
ここで読み出した個々の撮影方位の情報は、(4)式に示す超音波ビーム222の方向ベクトルnの形態をとるものとする。また、ここでは読み出された方向ベクトルnがM個の場合を例とし、読み出された方向ベクトルnを、下記の(8)式に示すようにniと記述するものとする。
Figure 0005630967
なお、ここでは、取得情報記録部130に記録した取得情報から、撮影方位の情報(具体的には、超音波プローブ220の姿勢に関する情報)の全てを読み出す場合を例として説明したが、本発明の実施はこれに限定されるものではない。例えば、操作者による選択指示を指示取得部140が取得し、基準方位取得部141は、指示取得部140が取得した当該指示に基づいて、取得情報記録部130に記録した取得情報の中から処理対象となる情報を選択できるようにしてもよい。この場合には、取得情報記録部130に不要な情報が含まれている場合に、操作者は、当該情報を除外して処理を実行させる指示を画像処理装置に与えることができ、不要な処理を省ける効果がある。
<ステップS202:ラベル割り当て>
図7のステップS201の処理が終了すると、ステップS202に進む。
ステップS202に進むと、基準方位取得部141は、ステップS201で読み出した方位ベクトルniのそれぞれに対して、複数のラベルのうちの何れか1つのラベルを適当に割り当てる。このラベル割り当て処理としては、例えば、4種類のラベル(A,B,C,D)を割り当てるものとする。そして、このラベル割り当てに係る情報は、複数の方向ベクトルniと対応付けて記録するものとする。
<ステップS203:各ラベル毎の平均方位の算出>
図7のステップS202の処理が終了すると、ステップS203に進む。
ステップS203に進むと、基準方位取得部141は、ステップS202において各方向ベクトルniに割り当てたラベルを参照し、同一のラベルが割り当てられた方向ベクトル毎に、平均方向ベクトル(平均方位)を算出する。ここでは、ラベルAに対して算出された平均方向ベクトルをna、ラベルBに対して算出された平均方向ベクトルをnb、ラベルCに対して算出された平均方向ベクトルをnc、ラベルDに対して算出された平均方向ベクトルをndと記述する。
このステップS203の処理は、後工程であるステップS205の判断ステップの結果によって、繰り返し処理される場合がある。この場合には、ステップS204で各方向ベクトルniに割り当てられるラベルに従って、上記の処理を行うことになる。
<ステップS204:最近傍ラベルの割り当て>
図7のステップS203の処理が終了すると、ステップS204に進む。
ステップS204に進むと、基準方位取得部141は、方向ベクトルniのそれぞれに対して、ステップS203で算出した各ラベル毎の平均方向ベクトルとのベクトル間の差異を算出し、最も差異の小さいラベル(最近傍ラベル)を割り当てる処理を行う。この処理は、例えば、各niに対して、na、nb、nc、ndとの内積をそれぞれ計算し、その値が最も大きくなるラベルを最近傍ラベルとして割り当てるようにするものである。
<ステップS205:ラベル変更の有無の判断>
図7のステップS204の処理が終了すると、ステップS205に進む。
ステップS205に進むと、基準方位取得部141は、方向ベクトルniのそれぞれに対して、ステップS202で割り当てたラベルとステップS204で割り当てたラベルとを比較し、少なくとも1つ以上のラベルの割り当てに変更があったか否かを判断する。
ステップS205の判断の結果、少なくとも1つ以上のラベルの割り当てに変更があった場合には、ステップS203に戻り、ステップS203以降の処理を再度行う。一方、ステップS205の判断の結果、ラベルの割り当てに変更がなかった場合には、ステップS206に進む。
なお、ステップS203〜ステップS205の処理は、ステップS205の判断によって、繰り返して処理が行われる場合がある。この場合、ステップS205における上述したラベルの比較処理は、直前に行われたステップS204のラベル割り当てと、1回前の繰り返し処理のときにステップS204で割り当てられたラベルとの比較を行うこととする。
<ステップS206:最多ラベルの選択>
ステップS206に進むと、基準方位取得部141は、ステップS204においてそれぞれの方向ベクトルniに割り当てられたラベルを参照し、最も多く割り当てられたラベルを求める。この処理は、各ラベルに対してカウント処理を行い、カウント値が最大となるラベルを選択することで実現できる。またカウント処理をステップS204の段階で行い、ステップS206では、その結果を参照して最大値を求めるようにしてもよい。
<ステップS208:基準方位の決定>
図7のステップS206の処理が終了すると、ステップS207に進む。
ステップS207に進むと、基準方位取得部141は、ステップS206で選択された最多ラベルに対応する平均方位をステップS203の処理結果から取得し、その平均方位を基準方位として決定する。そして、基準方位取得部141は、決定した基準方位を画像生成部150へ送信する。
以上のステップS201〜ステップS207の処理を経ることにより、本実施形態における図4のステップS105の処理が終了する。
以上説明したように、第2の実施形態における画像処理装置では、超音波プローブ220の動きに基づく撮影方位に応じて適応的に基準方位を決定するようにしている。具体的には、断層画像群の中から、同様な撮影方位で撮影されたという条件を満たす最多数の断層画像群を適応的に選択してこれを統合し、三次元画像(統合画像)を生成するようにしている。
かかる構成によれば、第1の実施形態における効果に加えて、操作者による基準方位を設定が不要となるという効果が得られる。言い換えると、断層画像の撮影が様々な方位からなされている場合であっても、撮影方向のばらつきのよる画質低下を抑制した高画質な三次元画像(統合画像)の生成を、超音波プローブの動きに基づく撮影方位に応じて適応的に実行できるという効果がある。
なお、本実施形態では、断層画像(超音波画像)が撮影された撮影方位をk−平均法によってクラスタリングし、最も多くのクラスに基づいて基準方位を決定する処理を例として説明したが、本発明の実施はこれに限定されるものではない。例えば、超音波プローブ220がとりうる方位に対して立体角で数度刻みに基準方位の候補を設定し、それぞれの基準方位候補について、角度差が閾値以内となる断層画像群の数をカウントする。そして、カウント値が最も大きくなる基準方位候補を、以後の処理の基準方位とするようにしてもよい。これによれば、上述した第2の実施形態における効果に加えて、より簡便な処理で基準方位を取得することができる効果がある。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。
第1実施形態では、撮影方向が基準方位から一定範囲内に含まれている断層画像を全て同列に扱うものであった。第3の実施形態に係る画像処理装置では、断層画像の撮影方向と基準方位との角度差が小さい断層画像を優先的に用いて三次元画像を生成する形態である。
なお、第3の実施形態に係る画像処理システムの概略構成については、図1に示す第1の実施形態に係る画像処理システム10の概略構成と同様の形態となる。また、第3の実施形態に係る画像処理装置の機能構成については、図2に示す第1の実施形態に係る画像処理装置100の機能構成と同様の形態となる。この際、第3の実施形態の三次元画像保持部153には、第1の実施形態で説明した三次元画像メモリに加えて、三次元優先度メモリを備えて構成されている。また、第3の実施形態に係る画像処理装置のハードウェア構成については、図3に示す第1の実施形態に係る画像処理装置100のハードウェア構成と同様の形態となる。
また、第3の実施形態に係る画像処理装置の制御方法における処理手順については、図4に示す第1の実施形態に係る画像処理装置100の制御方法における処理手順に対して、ステップS108〜ステップS110の処理が異なっている。
図8は、本発明の第3の実施形態に係る画像処理装置の制御方法における処理手順の一例を示すフローチャートである。ここで、図8には、図4におけるステップS108〜ステップS110の処理に替える処理が示されている。なお、図8に示すフローチャートの各ステップの処理は、CPU301が外部記憶装置304(或いはROM303)に記憶されているプログラムを実行することにより行われる。
第3の実施形態に係る画像処理装置の制御方法では、まず、図4に示すステップS101〜ステップS107の処理を経る。
<ステップS301:優先度の算出>
図4のステップS107の処理が終了すると、ステップS301に進む。
ステップS301に進むと、画像生成部150の処理対象画像判定部151は、ステップS107で算出した断層画像の撮影方位と基準方位との角度差に基づいて、三次元画像の生成に係る優先度を算出する。ここでは、例えば、角度差d(−1〜1の範囲の内積値)を0から1に正規化した値を優先度とする。
なお、優先度の算出処理は、いかなる方法を用いてもよく、例えば、角度差dが小さい場合に優先度を大きくなるような、何れの算出方法を用いてもよい。また、これ以外にも、角度差dが、ある閾値よりも大きい場合に高い優先度を設定し、それ以外の場合に低い優先度を設定するようにしてもよい。
また、ここで、第1の実施形態における閾値による処理を、優先度による処理と組み合わせて用いてもよい。この場合、角度差dが、閾値cから0までの場合の内積値を0から1に正規化することにより、優先度を定義すればよい(このとき、角度差dが閾値c以上である場合の優先度は0となる)。そして、優先度が0の断層画像に関しては、後工程であるステップS302〜ステップS307の処理を実行しないようにしてもよい。この場合、断層画像の優先度を考慮しつつ、画質の劣化を招くような角度差dの大きな断層画像の排除が可能となる。
<ステップS302:座標変換処理>
図8のステップS301の処理が終了すると、ステップS302に進む。
ステップS302に進むと、座標変換部152は、第1の実施形態における図4のステップS109と同様の座標変換処理を行う。
ここで、以下に説明するステップS303〜ステップS307の処理は、ステップS302で座標変換された断層画像の各画素毎に繰り返し処理される。
<ステップS303:画素値・優先度の読み出し>
図8のステップS302の処理が終了すると、ステップS303に進む。
ステップS303に進むと、三次元画像保持部153は、ステップS302で座標変換された断層画像中のある1画素に対して、それに対応する三次元画像メモリの画素値及び三次元優先度メモリの優先度の値を読み出す。このステップS303の読み出し処理は、後工程であるステップS307の判断の結果、画素値の読み出し終了と判断されるまで繰り返し処理され、その度ごとに、未処理の画素に対する、上述した画素値及び優先度の値の読み出し処理を行う。
<ステップS304:優先度の比較判断>
図8のステップS303の処理が終了すると、ステップS304に進む。
ステップS304に進むと、三次元画像保持部153は、ステップS301で算出された優先度が、ステップS303で読み出した優先度よりも高い(大きい)か否かを判断する。
ステップS304の判断の結果、ステップS301で算出された優先度が、ステップS303で読み出した優先度よりも高くない(大きくない)場合には、ステップS307に進む。一方、ステップS304の判断の結果、ステップS301で算出された優先度が、ステップS303で読み出した優先度よりも高い(大きい)場合には、ステップS305に進む。
<ステップS305:座標変換結果情報の記録>
ステップS305に進むと、三次元画像保持部153は、第1の実施形態における図4のステップS110と同様に、ステップS109で座標変換された結果情報(三次元画像上の座標値とその画素値の情報)を、内部の三次元画像メモリに反映させて記録する。
<ステップS306:優先度の記録>
図8のステップS305の処理が終了すると、ステップS306に進む。
ステップS306に進むと、三次元画像保持部153は、ステップS301で算出した優先度を、内部の三次元優先度メモリに反映させて記録する。
<ステップS307:画素値の読み出し終了の判断>
図8のステップS306の処理が終了すると、ステップS307に進む。
ステップS307に進むと、三次元画像保持部153は、処理対象の断層画像における全ての画素に対して、画素値の読み出しを終了したか否かを判断する。
ステップS307の判断の結果、処理対象の断層画像における全ての画素に対しては画素値の読み出しを終了していない場合には、ステップS303に戻り、ステップS303以降の処理を再度行う。一方、ステップS307の判断の結果、処理対象の断層画像における全ての画素に対して画素値の読み出しを終了した場合には、図4のステップS111に移行する。その後、図4のステップS111及びステップS112の処理を経て、第3の実施形態に係る画像処理装置の制御方法における処理手順が終了する。
なお、優先度の高い断層画像の画素を優先する方法であれば、上記の手順以外の処理によって三次元画像を生成してもよい。例えば、全ての断層画像について予め優先度を算出して、優先度の低い順に断層画像をソートした後に、第1の実施形態と同様の方法で三次元画像の生成を行ってもよい。この方法では、優先度の高い画像ほど後から処理されるので、優先度の低い断層画像から得た画素値が優先度の高い断層画像から得た画素値で上書きされる。その結果、優先度を保持する三次元優先度メモリを用いることなく、同様の効果を得ることができる。
以上説明したように、第3の実施形態における画像処理装置では、断層画像群の中から、操作者が指定した方位に近い断層画像の画素値を優先的に使用して、三次元画像(統合画像)を生成するようにしている。
かかる構成によれば、断層画像が様々な方位から撮影されたものである場合であっても、撮影方位のばらつきのよる画質低下を抑制した、高画質な三次元画像(統合画像)を生成することができる。また、第1実施形態と比べて、閾値が不要であるという点において、設定の煩雑さを回避できる。また、閾値を設ける場合であっても、指定した方位により近い断層画像が優先されるので、より均質な統合画像が得られることが期待できる。
(第4の実施形態)
次に、本発明の第4の実施形態について説明する。
上述した第1〜第3の実施形態では、1つの基準方位を取得して1つの三次元画像を生成するものであったが、第4の実施形態では、複数の基準方位を取得して、それぞれの基準方位に対応する複数の三次元画像を生成する形態である。
なお、第4の実施形態に係る画像処理システムの概略構成については、図1に示す第1の実施形態に係る画像処理システム10の概略構成と同様の形態となる。
また、第4の実施形態に係る画像処理装置の機能構成については、図2に示す第1の実施形態に係る画像処理装置100の機能構成と同様の形態となる。この際、第3の実施形態では、基準方位取得部141は、複数の基準方位を取得し、これに伴って、画像生成部150は、当該複数の基準方位のそれぞれに対して三次元画像を生成する。そのため、三次元画像保持部153は、複数の基準方位のそれぞれ対応する、複数の三次元画像メモリを備えている。さらに、画像表示・出力部160は、指示取得部140で取得する操作者の指示に従って、複数の三次元画像から選択した三次元画像を表示対象として表示画像の生成及び出力を行う。
また、第3の実施形態に係る画像処理装置のハードウェア構成については、図3に示す第1の実施形態に係る画像処理装置100のハードウェア構成と同様の形態となる。
次に、本実施形態に係る画像処理装置の制御方法の処理手順について説明する。
図9は、本発明の第4の実施形態に係る画像処理装置の制御方法における処理手順の一例を示すフローチャートである。なお、図9に示すフローチャートの各ステップの処理は、CPU301が外部記憶装置304(或いはROM303)に記憶されているプログラムを実行することにより行われる。
<ステップS401:断層画像の取得>
まず、図9のステップS401において、断層画像取得部110は、超音波画像撮影装置200により撮影された被検体内部の断層画像を超音波画像撮影装置200から取得する。このステップS401の処理の詳細は、図4のステップS101の処理と同様である。
<ステップS402:撮影方位の取得>
図9のステップS401の処理が終了すると、ステップS402に進む。
ステップS402に進むと、撮影方位取得部120は、ステップS401で取得された断層画像が撮影された際の撮影方位の情報(撮影方位に関する計測値)を取得する。このステップS402の処理の詳細は、図4のステップS102の処理と同様である。
<ステップS403:取得情報の記録>
図9のステップS402の処理が終了すると、ステップS403に進む。
ステップS403に進むと、取得情報記録部130は、ステップS401で取得された断層画像と、ステップS402で取得された撮影方位に関する計測値(当該断層画像を撮影した際の超音波プローブの位置及び姿勢に関する計測値)とを対応付けて記録する。このステップS403の処理の詳細は、図4のステップS103の処理と同様である。
<ステップS404:撮影終了の判断>
図9のステップS403の処理が終了すると、ステップS404に進む。
ステップS404に進むと、取得情報記録部130は、指示取得部140が得た操作者の指示情報に基づいて、被検体内部の断層画像の撮影を終了するか否かを判断する。このステップS404の処理の詳細は、図4のステップS104の処理と同様である。
ステップS404の判断の結果、被検体内部の断層画像の撮影を終了しない場合には、ステップS401に戻り、ステップS401以降の処理を再度行う。一方、ステップS404の判断の結果、被検体内部の断層画像の撮影を終了する場合には、ステップS405に進む。
<ステップS405:基準方位の取得>
ステップS405に進むと、画像生成部150は、三次元画像の生成を行う際のパラメータであり、予め定めた数(複数)の基準方位の情報を、基準方位取得部141から取得する。なお、取得する基準方位の数を予め設定せずに、その数を操作者が指示する構成であってもよい。
ここで、基準方位の取得方法は、第1の実施形態のように操作者が設定する方法であってもよいし、第2の実施形態のように取得情報記録部130が保持する取得情報から適応的に算出する方法であってもよい。なお、取得情報記録部130が保持する取得情報から基準方位を算出する場合には、第2の実施形態における処理とは異なり、各クラスの平均方位を算出して、これを複数の基準方位として設定すればよい。
<ステップS406:1組の取得情報の読み出し>
図9のステップS405の処理が終了すると、ステップS406に進む。
ステップS406に進むと、画像生成部150は、取得情報記録部130から、1組の取得情報(1組の断層画像及びその撮影方位の情報)の読み出し処理を行う。このステップS405の処理の詳細は、図4のステップS105の処理と同様である。
なお、この処理は、ステップS406からステップS413までの繰り返し処理の度ごとに、取得情報記録部130に記録された取得情報の複数組(断層画像とその撮影方位の情報の組)の中からそれぞれを1つの組を順次読み出す。
<ステップS407:基準方位の設定>
図9のステップS406の処理が終了すると、ステップS407に進む。
ステップS407に進むと、画像生成部150は、ステップS405で取得した複数の基準方位の中から1つの基準方位を設定する。この後工程であるステップS408〜ステップS412の処理では、このステップS407で設定した未処理の基準方位を対象として処理を実行する。
<ステップS408:角度差の算出>
図9のステップS407の処理が終了すると、ステップS408に進む。
ステップS408に進むと、画像生成部150の処理対象画像判定部151は、ステップS406で読み出した撮影方位の情報と、ステップS407で設定した基準方位の情報とに基づいて、撮影方位における基準方位との角度差を算出する処理を行う。このステップS408の処理の詳細は、図4のステップS107の処理と同様である。
<ステップS409:処理対象画像の判断>
図9のステップS408の処理が終了すると、ステップS409に進む。
ステップS409に進むと、処理対象画像判定部151は、ステップS408で算出した角度差に基づいて、ステップS406で読み出した断層画像が、三次元画像の生成に用いる処理対象画像となるか否かを判断する。このステップS409の処理の詳細は、図4のステップS108の処理と同様である。
そして、ステップS409の判断の結果、ステップS406で読み出した断層画像が処理対象画像とならない場合には、ステップS412に進む。一方、ステップS409の判断の結果、ステップS406で読み出した断層画像が処理対象画像となる場合には、ステップS410に進む。
<ステップS410:座標変換処理>
ステップS410に進むと、座標変換部152は、三次元画像の生成に用いる処理対象画像と判定された断層画像ついて、その撮影方位の情報に基づいて、生成する三次元画像の画像空間へ座標変換処理を行う。このステップS410の処理の詳細は、図4のステップS109の処理と同様である。
<ステップS411:座標変換結果情報の記録>
図9のステップS410の処理が終了すると、ステップS411に進む。
ステップS411に進むと、三次元画像保持部153は、ステップS410において座標変換部152から送信された座標変換した結果情報(三次元画像上の座標値とその画素値の情報)を、内部の対応する三次元画像メモリに反映させて記録する。ここで、本実施形態では、それぞれの基準方位を用いて生成する三次元画像が、それぞれ別の三次元画像メモリに記録されることから、それぞれの基準方位の処理ごとに、座標変換結果情報が対応する三次元画像メモリに反映されて記録される。
<ステップS412:全ての基準方位の処理終了の判断>
図9のステップS411の処理が終了した場合、或いは、ステップS409においてステップS406で読み出した断層画像が処理対象画像とならないと判断された場合には、ステップS412に進む。
ステップS412に進むと、画像生成部150は、ステップS405で取得した全ての基準方位の処理が終了したか否かを判断する。
ステップS412の判断の結果、ステップS405で取得した全ての基準方位については処理が終了していない場合には、ステップS407に戻って、ステップS407以降の処理を再度行う。一方、ステップS412の判断の結果、ステップS405で取得した全ての基準方位について処理が終了した場合には、ステップS413に進む。
<ステップS413:取得情報の読み出し終了の判断>
ステップS413に進むと、画像生成部150は、取得情報記録部130に記録された全ての取得情報の読み出しが終了したか否かを判断する。このステップS414の処理の詳細は、図4のステップS411の処理と同様である。
ステップS413の判断の結果、取得情報記録部130に記録された全ての取得情報については読み出しが終了していない場合には、ステップS406に戻って、ステップS406以降の処理を再度行う。一方、ステップS413の判断の結果、取得情報記録部130に記録された全ての取得情報の読み出しが終了した場合には、ステップS414に進む。
<ステップS414:表示画像の生成及び出力>
ステップS414に進むと、画像表示・出力部160は、まず、画像生成部150が生成した複数の三次元画像を取得する。そして、画像表示・出力部160は、表示対象とする三次元画像の選択及びその表示方法などの操作者の指示を指示取得部140から取得して、表示画像の生成及びその表示等の出力を行う。以上により、図9のフローチャートにおける処理が終了する。
ここで、表示対象とする三次元画像の選択に関する操作者の指示の取得は、例えば複数の三次元画像のそれぞれに対して表示画像の生成処理を行い、それを並べて表示するなどして、その画像の中から操作者が希望する画像を選択できるようにしてもよい。これにより操作者は、表示させたい三次元画像を、実際にその画像を観察しながら選択することができる。なお、画像生成方法に関する操作者の指示の取得や、取得した指示に基づく画像の生成処理は、第1の実施形態と同一であるので、その説明は省略する。
なお、表示したい断面画像に関する操作者の指示(仮想的なプローブの位置と姿勢)を指示取得部140から取得し、それに基づいて三次元画像の断面画像を表示画像として生成して表示する場合には、表示する三次元画像を動的に切り替えてもよい。即ち、指定した断面を表す仮想プローブの方位と最も近い基準方位によって生成した三次元画像を選択し、それを用いて断面画像を生成してもよい。
第4の実施形態によれば、第1の実施形態の効果に加えて、複数の方位のそれぞれを基準として生成された複数の三次元画像(統合画像)の中から、希望する三次元画像を選択できる仕組みを提供することができる。
−変形例1−
上述した第4の実施形態の説明では、取得した複数のそれぞれの基準方位に関して、断層画像の撮影方向がその基準方位に十分に近い場合に、その断層画像を選択して三次元画像を生成する形態について説明したが、本発明の実施はこれに限らない。
例えば、撮影した複数の断層画像のそれぞれに対し、その撮影方位に最も近い基準方位を選択し、座標変換した断層画像をその基準方位に対応する三次元画像に記録するように構成することもできる。この場合、図9のステップS407及びステップS412の処理は行わない。そして、図9のステップS409では、前記の判断処理を行うのではなく、ステップS405で取得した複数の基準方位の中から断層画像の撮影方向に最も近いものを選択する処理を行う。なお、これら以外の処理は、第4の実施形態と同様の処理を行う。
これにより、撮影された断層画像は少なくとも1つ以上の三次元画像に記録されることになり、撮影された断層画像を有効に利用できる効果がある。また、第4の実施形態におけるステップS409の処理で使われる角度差の閾値cを設定する必要がないため、当該設定の手間を省くことができる効果がある。
−変形例2−
上述した第4の実施形態の説明では、図9のステップS405において操作者の指示に基づいて複数の基準方位を取得する場合を例に説明したが、本発明の実施はこれに限らない。例えば、断層画像の撮影方位としてとりうる方位を等間隔などに分割し、分割したそれぞれの方位を基準方位としてステップS405において取得するようにしてもよい。
これにより、操作者は、基準方位の設定を行う必要が無く、操作を簡便にできる効果がある。
(本発明の他の実施形態)
前述した本発明の各実施形態に係る画像処理装置の制御方法を示す図4、図7〜図9の各ステップは、コンピュータのCPU(301)が記憶媒体(303或いは304等)に記憶されているプログラムを実行することによって実現できる。このプログラム及び当該プログラムを記憶したコンピュータ読み取り可能な記録媒体は本発明に含まれる。
また、本発明は、例えば、システム、装置、方法、プログラム若しくは記憶媒体等としての実施形態も可能であり、具体的には、複数の機器から構成されるシステムに適用してもよいし、また、1つの機器からなる装置に適用してもよい。
なお、本発明は、前述した各実施形態の機能を実現するソフトウェアのプログラム(実施形態では図4、図7〜図9に示すフローチャートに対応したプログラム)を、システム或いは装置に直接、或いは遠隔から供給するものを含む。そして、そのシステム或いは装置のコンピュータが前記供給されたプログラムコードを読み出して実行することによっても達成される場合も本発明に含まれる。
したがって、本発明の機能処理をコンピュータで実現するために、前記コンピュータにインストールされるプログラムコード自体も本発明を実現するものである。つまり、本発明は、本発明の機能処理を実現するためのコンピュータプログラム自体も含まれる。
その場合、プログラムの機能を有していれば、オブジェクトコード、インタプリタにより実行されるプログラム、OSに供給するスクリプトデータ等の形態であってもよい。
プログラムを供給するための記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、MO、CD−ROM、CD−R、CD−RWなどがある。また、磁気テープ、不揮発性のメモリカード、ROM、DVD(DVD−ROM,DVD−R)などもある。
その他、プログラムの供給方法としては、クライアントコンピュータのブラウザを用いてインターネットのホームページに接続する。そして、前記ホームページから本発明のコンピュータプログラムそのもの、若しくは圧縮され自動インストール機能を含むファイルをハードディスク等の記録媒体にダウンロードすることによっても供給できる。
また、本発明のプログラムを構成するプログラムコードを複数のファイルに分割し、それぞれのファイルを異なるホームページからダウンロードすることによっても実現可能である。つまり、本発明の機能処理をコンピュータで実現するためのプログラムファイルを複数のユーザに対してダウンロードさせるWWWサーバも、本発明に含まれるものである。
また、本発明のプログラムを暗号化してCD−ROM等の記憶媒体に格納してユーザに配布し、所定の条件をクリアしたユーザに対し、インターネットを介してホームページから暗号化を解く鍵情報をダウンロードさせる。そして、ダウンロードした鍵情報を使用することにより暗号化されたプログラムを実行してコンピュータにインストールさせて実現することも可能である。
また、コンピュータが、読み出したプログラムを実行することによって、前述した各実施形態の機能が実現される。その他、そのプログラムの指示に基づき、コンピュータ上で稼動しているOSなどが、実際の処理の一部又は全部を行い、その処理によっても前述した各実施形態の機能が実現され得る。
さらに、記録媒体から読み出されたプログラムが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれる。その後、そのプログラムの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部又は全部を行い、その処理によっても前述した各実施形態の機能が実現される。
なお、前述した各実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
100:画像処理装置、110:断層画像取得部、120:撮影方位取得部、130:取得情報記録部、140:指示取得部、141:基準方位取得部、150:画像生成部、151:処理対象画像判定部、152:座標変換部、153:三次元画像保持部、160:画像表示・出力部、200:超音波画像撮影装置、300:位置姿勢計測装置

Claims (19)

  1. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、
    前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像の中で互いの撮影方位の差が所定の角度範囲内の断層画像を統合する処理を行って統合画像を生成する画像生成手段と
    を有することを特徴とする画像処理装置。
  2. 前記統合画像を生成の際の基準となる少なくとも1つの基準方位を取得する基準方位取得手段を更に有し、
    前記画像生成手段は、前記基準方位と前記各撮影方位との関係に応じて、前記統合画像を生成することを特徴とする請求項1に記載の画像処理装置。
  3. 前記画像生成手段は、前記基準方位と前記各撮影方位との角度差に応じて、前記統合画像を生成することを特徴とする請求項2に記載の画像処理装置。
  4. 前記画像生成手段は、前記角度差と予め設定された閾値との比較の結果に応じて、前記統合画像を生成することを特徴とする請求項3に記載の画像処理装置。
  5. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、
    前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段と
    を有し、
    前記画像生成手段は、少なくとも1つの基準方位と前記各撮影方位との関係に応じて前記統合画像を生成の際の優先度を算出し、当該優先度に基づいて前記統合画像を生成することを特徴とする画像処理装置。
  6. 前記基準方位取得手段は、前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位に基づき前記基準方位を算出して取得することを特徴とする請求項2に記載の画像処理装置。
  7. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、
    前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して少なくとも1つの基準方位を算出して取得する基準方位取得手段と、
    前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段と
    を有することを特徴とする画像処理装置。
  8. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、
    前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して前記各撮影方位を複数のクラスに分け、最も多くの撮影方位が分けられたクラスにおける当該撮影方位に基づいて、少なくとも1つの基準方位を算出して取得する基準方位取得手段と、
    前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段と
    を有することを特徴とする画像処理装置。
  9. 表示する表示画像に係る指示を取得する指示取得手段と、
    前記指示取得手段が取得した指示に基づいて、前記統合画像から前記表示画像を生成し、当該表示画像の表示を行う画像表示手段と
    を更に有することを特徴とする請求項1乃至8のいずれか1項に記載の画像処理装置。
  10. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得手段と、
    表示する表示画像に係る指示を取得する指示取得手段と、
    前記表示画像として前記指示取得手段が断面画像に関する指示を取得した場合、当該指示に基づいて少なくとも1つの基準方位を取得する基準方位取得手段と、
    前記基準方位と前記撮影方位取得手段において前記各断層画像ごとに取得した各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成手段と、
    前記統合画像から前記表示画像を生成して表示を行う画像処理手段と
    を有することを特徴とする画像処理装置。
  11. 前記複数の断層画像を取得する断層画像取得手段を更に有することを特徴とする請求項1乃至10のいずれか1項に記載の画像処理装置。
  12. 前記断層画像取得手段は、前記断層画像として前記被検体内部の超音波画像を取得することを特徴とする請求項11に記載の画像処理装置。
  13. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置の制御方法であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得ステップと、
    前記撮影方位取得ステップにおいて前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像の中で互いの撮影方位の差が所定の角度範囲内の断層画像を統合する処理を行って統合画像を生成する画像生成ステップと
    を有することを特徴とする画像処理装置の制御方法。
  14. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置の制御方法であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得ステップと、
    前記撮影方位取得ステップにおいて前記各断層画像ごとに取得した各撮影方位に基づいて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成ステップと
    を有し、
    前記画像生成ステップは、少なくとも1つの基準方位と前記各撮影方位との関係に応じて前記統合画像を生成の際の優先度を算出し、当該優先度に基づいて前記統合画像を生成することを特徴とする画像処理装置の制御方法。
  15. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置の制御方法であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得ステップと、
    前記撮影方位取得ステップにおいて前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して少なくとも1つの基準方位を算出して取得する基準方位取得ステップと、
    前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成ステップと
    を有することを特徴とする画像処理装置の制御方法。
  16. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置の制御方法であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得ステップと、
    前記撮影方位取得ステップにおいて前記各断層画像ごとに取得した各撮影方位をクラスタリング処理して前記各撮影方位を複数のクラスに分け、最も多くの撮影方位が分けられたクラスにおける当該撮影方位に基づいて、少なくとも1つの基準方位を算出して取得する基準方位取得ステップと、
    前記基準方位と前記各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成ステップと
    を有することを特徴とする画像処理装置の制御方法。
  17. 被検体内部を撮影して得られた複数の断層画像を処理する画像処理装置の制御方法であって、
    前記複数の断層画像における各断層画像について、当該断層画像を撮影した際の撮影方位を取得する撮影方位取得ステップと、
    表示する表示画像に係る指示を取得する指示取得ステップと、
    前記表示画像として前記指示取得ステップが断面画像に関する指示を取得した場合、当該指示に基づいて少なくとも1つの基準方位を取得する基準方位取得ステップと、
    前記基準方位と前記撮影方位取得ステップにおいて前記各断層画像ごとに取得した各撮影方位との関係に応じて、前記複数の断層画像を統合する処理を行って統合画像を生成する画像生成ステップと、
    前記統合画像から前記表示画像を生成して表示を行う画像処理ステップと
    を有することを特徴とする画像処理装置の制御方法。
  18. 請求項13乃至17のいずれか1項に記載の画像処理装置の制御方法の各ステップをコンピュータに実行させるためのプログラム。
  19. 請求項18に記載のプログラムを記憶したことを特徴とするコンピュータ読み取り可能な記憶媒体。
JP2009111294A 2009-04-30 2009-04-30 画像処理装置及びその制御方法 Expired - Fee Related JP5630967B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111294A JP5630967B2 (ja) 2009-04-30 2009-04-30 画像処理装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111294A JP5630967B2 (ja) 2009-04-30 2009-04-30 画像処理装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2010259536A JP2010259536A (ja) 2010-11-18
JP5630967B2 true JP5630967B2 (ja) 2014-11-26

Family

ID=43358158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111294A Expired - Fee Related JP5630967B2 (ja) 2009-04-30 2009-04-30 画像処理装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP5630967B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200399A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 超音波診断装置
JP5722182B2 (ja) * 2011-09-28 2015-05-20 富士フイルム株式会社 光音響撮像装置および光音響撮像方法
JP2013128760A (ja) * 2011-11-22 2013-07-04 Fujifilm Corp 光音響画像生成装置および光音響画像生成方法
JP6695475B2 (ja) * 2019-04-26 2020-05-20 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
WO2023171272A1 (ja) * 2022-03-09 2023-09-14 富士フイルム株式会社 超音波診断装置、超音波診断装置の制御方法および測距装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780819B2 (ja) * 2000-03-08 2011-09-28 Geヘルスケア・ジャパン株式会社 超音波診断装置
US7450746B2 (en) * 2002-06-07 2008-11-11 Verathon Inc. System and method for cardiac imaging
JP2004261245A (ja) * 2003-02-28 2004-09-24 Aloka Co Ltd 超音波診断装置
JP4668592B2 (ja) * 2004-11-25 2011-04-13 オリンパス株式会社 体腔内プローブ装置
JP4894498B2 (ja) * 2006-12-20 2012-03-14 パナソニック株式会社 超音波診断装置
JP2009045097A (ja) * 2007-08-13 2009-03-05 Univ Of Miyazaki 三次元画像生成装置及び三次元画像生成方法

Also Published As

Publication number Publication date
JP2010259536A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
CN106659474B (zh) 用于自诊断和远程诊断的超声诊断设备以及操作超声诊断设备的方法
JP6640922B2 (ja) 超音波診断装置及び画像処理装置
JP4847334B2 (ja) 超音波撮像装置及び投影像生成方法
JP5400466B2 (ja) 画像診断装置、画像診断方法
JP4470187B2 (ja) 超音波装置、超音波撮像プログラム及び超音波撮像方法
US20120154400A1 (en) Method of reducing noise in a volume-rendered image
JP6097452B2 (ja) 超音波撮像システム及び超音波撮像方法
JP2017526467A (ja) 即時のユーザフィードバックのためのマルチビート心エコー取得のための品質メトリック
US10402074B2 (en) Ultrasound imaging apparatus and method of controlling the same
US10299763B2 (en) Ultrasound imaging apparatus and method of controlling the same
JP5630967B2 (ja) 画像処理装置及びその制御方法
US10667796B2 (en) Method and system for registering a medical image with a graphical model
JP7216131B2 (ja) 超音波画像のシーケンスを視覚化する方法、コンピュータプログラム製品及び超音波システム
JP2016067559A (ja) 医用画像診断装置、画像処理装置、画像処理方法及び画像処理プログラム
US20200037999A1 (en) Method, apparatus, and system for adjusting brightness of ultrasound image by using prestored gradation data and images
CN114947932A (zh) 一种超声成像方法及超声成像系统
KR20200096125A (ko) 초음파 진단을 위한 처방적 안내
US20190388061A1 (en) Ultrasound diagnosis apparatus displaying shear wave data for object and method for operating same
JP2011125569A (ja) 画像処理装置、画像処理方法、画像処理システム及びプログラム
JP2019162314A (ja) 情報処理装置、情報処理方法、及びプログラム
KR101851221B1 (ko) 초음파 영상 장치 및 그 제어 방법
JP5693412B2 (ja) 画像処理装置、画像処理方法
CN106170254A (zh) 超声波观测装置
CN106580365B (zh) 超声设备及其控制方法
US10456112B2 (en) Ultrasound diagnosis apparatus, ultrasound diagnosis method and computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5630967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees