JP5630876B2 - Heat-resistant PtRh alloy - Google Patents

Heat-resistant PtRh alloy Download PDF

Info

Publication number
JP5630876B2
JP5630876B2 JP2012173152A JP2012173152A JP5630876B2 JP 5630876 B2 JP5630876 B2 JP 5630876B2 JP 2012173152 A JP2012173152 A JP 2012173152A JP 2012173152 A JP2012173152 A JP 2012173152A JP 5630876 B2 JP5630876 B2 JP 5630876B2
Authority
JP
Japan
Prior art keywords
mass
alloy
phosphorus
ptrh
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012173152A
Other languages
Japanese (ja)
Other versions
JP2012224945A (en
Inventor
今井 庸介
庸介 今井
土井 義規
義規 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2012173152A priority Critical patent/JP5630876B2/en
Publication of JP2012224945A publication Critical patent/JP2012224945A/en
Application granted granted Critical
Publication of JP5630876B2 publication Critical patent/JP5630876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Contacts (AREA)
  • Resistance Heating (AREA)

Description

本発明は、エネルギー関連部材、航空・宇宙産業用部材、高融点材料製造用の構造材等の高温領域で使用される耐熱PtRh合金に関する。   The present invention relates to a heat-resistant PtRh alloy used in a high temperature region such as energy-related members, members for aerospace industry, structural materials for manufacturing high melting point materials.

耐熱材料に使用される白金族元素は、Pt、Ir、Rhが知られており、中でもPtは、純Pt、Pt合金や強化Pt等の形態で、高融点材料溶解坩堝や高温用器具等の構造材料、熱電対やヒーター線、温度センサー、スパークプラグ用電極等の電気材料として工業的に幅広く使用されている。その代表的な理由は、数ある金属の中で比較的融点が高く、蒸気圧が低いため消耗しにくく、酸化しにくく、また、化学的安定性が高いという特徴があるからである。   Platinum group elements used for heat-resistant materials are known as Pt, Ir, and Rh. Among them, Pt is in the form of pure Pt, Pt alloy, reinforced Pt, etc. It is widely used industrially as electrical materials such as structural materials, thermocouples and heater wires, temperature sensors, and electrodes for spark plugs. The typical reason is that among a number of metals, the melting point is relatively high and the vapor pressure is low, so that it is difficult to wear out, hardly oxidize, and has high chemical stability.

純Ptや強化Ptは、真空、不活性雰囲気、大気等、雰囲気を選ばず高温でも使用が可能である。ただし、還元雰囲気下ではリン、鉛、ヒ素、ホウ素、ビスマス、けい素、亜鉛等の軽元素との接触により400〜500℃程度の低温で反応して合金化し、融点降下や脆化を起こして破壊に至ることがある。
加えて、純Ptや強化Ptは融点が1769℃であるため、1500℃以上の高温では、耐熱性が不十分な場合がある。その場合には、融点の高い元素と合金化して用いられ、具体的には、酸化消耗に強いPtRh合金がよく使われる。PtRh合金は、合金化によって純Ptや強化Ptに比べ融点が高くなり、常用温度が高くできる。しかし、還元雰囲気下では純Ptや強化Ptと同様にリン、鉛、ヒ素、ホウ素、ビスマス、けい素、亜鉛等の軽元素と接触して反応し、融点降下や脆化といった異常を起こす。Ptとこれら軽元素との合金の融点が、Ptと比べ極端に低いことは、相平衡状態図に明らかにされている。このような注意は、例えば非特許文献1などに開示されている。
Pure Pt and reinforced Pt can be used at high temperatures regardless of the atmosphere such as vacuum, inert atmosphere, air, and the like. However, in a reducing atmosphere, contact with light elements such as phosphorus, lead, arsenic, boron, bismuth, silicon, and zinc reacts at a low temperature of about 400 to 500 ° C to form an alloy, causing melting point drop and embrittlement. May lead to destruction.
In addition, since pure Pt and reinforced Pt have a melting point of 1769 ° C., heat resistance may be insufficient at a high temperature of 1500 ° C. or higher. In that case, it is used by alloying with an element having a high melting point, and specifically, a PtRh alloy that is resistant to oxidation consumption is often used. The PtRh alloy has a higher melting point than that of pure Pt or reinforced Pt due to alloying, and can increase the normal temperature. However, in a reducing atmosphere, as with pure Pt and reinforced Pt, it reacts with light elements such as phosphorus, lead, arsenic, boron, bismuth, silicon, and zinc, causing abnormalities such as melting point drop and embrittlement. It is clear from the phase equilibrium diagram that the melting point of alloys of Pt and these light elements is extremely low compared to Pt. Such attention is disclosed in Non-Patent Document 1, for example.

一方、PtRh合金に関する技術の開示として、特許文献1がある。当該技術は、Wを0.5〜5.0 mass%、Rhを1.0〜20.0 mass%、残部をPtとする電極材料であり、従来のPtRh合金に比べて1000℃以上の熱処理後の引張強さの低下防止や使用時の破断防止を目的としたもので強度の向上が図られている。   On the other hand, there is Patent Literature 1 as a disclosure of the technology related to the PtRh alloy. This technology is an electrode material with 0.5 to 5.0 mass% W, 1.0 to 20.0 mass% Rh, and the balance Pt, and prevents a decrease in tensile strength after heat treatment at 1000 ° C or higher compared to conventional PtRh alloys. In order to prevent breakage during use, the strength is improved.

また、特許文献2に耐熱合金として、Ptを75〜96 mass%、Rhを1〜20 mass%、更にRu及び/又は Irを3〜5 mass%含有する耐熱合金を用いたガラス繊維用ブッシングが開示されている。当該技術は、従来のPtRh合金では高温クリープ強度が弱いことや強化Ptではビッカース硬さが高過ぎるためブッシングの成形が困難な点を解決しようとしたものである。   Patent Document 2 discloses a bushing for glass fiber using a heat-resistant alloy containing 75 to 96 mass% of Pt, 1 to 20 mass% of Rh, and 3 to 5 mass% of Ru and / or Ir as a heat-resistant alloy. It is disclosed. This technology is intended to solve the problems that conventional PtRh alloys have low high-temperature creep strength and that reinforced Pt has a Vickers hardness that is too high to form a bushing.

プラチナメタルズレビュー、 1958、 2(4)、 pp. 120-123Platinum Metals Review, 1958, 2 (4), pp. 120-123 特開昭53−51124号公報JP-A-53-51124 特開2003−48741号公報JP 2003-48741 A

PtRh合金は耐熱材料として利用範囲が広がる中で、高温強度などの機械的性質の改善に関する技術開発が多くなされてきたが、リン、鉛、ヒ素、ホウ素、ビスマス、けい素、亜鉛等の軽元素との接触によって異常を来たす点については、耐熱合金の耐食性改善という観点からその必要性はあったものの、今まで着目されてこなかった。PtRh合金と軽元素の接触による異常は、還元雰囲気や低酸素分圧の雰囲気でPtRh合金と接触した軽元素が、金属表面及び内部の結晶粒界に沿って拡散し、Ptとの低融点合金を生成するために起こる。   PtRh alloy has been widely used as a heat-resistant material, and many technological developments have been made to improve mechanical properties such as high-temperature strength, but light elements such as phosphorus, lead, arsenic, boron, bismuth, silicon, and zinc. Although there was a need to improve the corrosion resistance of heat-resistant alloys, the point that caused abnormalities due to contact with the steel has not been noticed until now. Anomaly caused by contact between PtRh alloy and light element is that light element that contacts PtRh alloy in a reducing atmosphere or low oxygen partial pressure atmosphere diffuses along the metal surface and internal grain boundaries, and is a low melting point alloy with Pt. Happens to produce.

そこで本発明は、前記従来のPtRh合金において未だ不十分な耐食性の改善を技術的課題とし、具体的には、Pによる腐食に強い耐熱性PtRh合金を提供することを目的とするものである。   Therefore, the present invention aims at providing a heat-resistant PtRh alloy that is resistant to corrosion by P, in particular, to improve the corrosion resistance still insufficient in the conventional PtRh alloy.

本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、PtRhに、Reを1.0〜5.0 mass%、Wを1.0〜5.0 mass%、Irを1.0〜5.0 mass%、Ruを0.3〜5.0 mass%の少なくとも1種を含有し、更にRhを20〜40 mass%及び残部をPtとすることにより、本発明を完成するに至った。   As a result of intensive studies to achieve the above problems, the present inventors have determined that PtRh has a Re of 1.0 to 5.0 mass%, a W of 1.0 to 5.0 mass%, an Ir of 1.0 to 5.0 mass%, and a Ru of 0.3. The present invention was completed by containing at least one of ˜5.0 mass%, further setting Rh to 20 to 40 mass% and the balance to Pt.

本発明の合金は、PtRh合金であり、Reを1.0〜5.0 mass%、Wを1.0〜5.0 mass%、Irを1.0〜5.0 mass%、Ruを0.3〜5.0 mass%として、前記Re、W、Ir及びRuの少なくとも1種の元素を含有し、Rhを20〜40 mass%及び残部をPtとする。   The alloy of the present invention is a PtRh alloy, wherein Re is 1.0 to 5.0 mass%, W is 1.0 to 5.0 mass%, Ir is 1.0 to 5.0 mass%, Ru is 0.3 to 5.0 mass%, Re, W, Ir And at least one element of Ru, Rh being 20 to 40 mass% and the balance being Pt.

Re、Wの範囲を1.0〜5.0 mass%に限定する理由は、0.1 mass%未満だと、リンと接触する際に十分な耐食性が得られず、また5.0 mass%より多いと耐熱材料に不利とされる高温領域での酸化揮発が激しくなるためである。   The reason for limiting the range of Re and W to 1.0 to 5.0 mass% is that if it is less than 0.1 mass%, sufficient corrosion resistance cannot be obtained when contacting with phosphorus, and if it exceeds 5.0 mass%, it is disadvantageous for heat resistant materials. This is because the oxidization and volatilization in the high temperature region becomes intense.

Irの範囲を1.0〜5.0 mass%に限定する理由は、0.3 mass%未満だと、リンと接触する際に十分な耐食性が得られず、また5.0 mass%より多いと耐熱材料に不利とされる高温領域での酸化揮発が激しくなるためである。   The reason for limiting the range of Ir to 1.0 to 5.0 mass% is that if it is less than 0.3 mass%, sufficient corrosion resistance cannot be obtained when contacting with phosphorus, and if it exceeds 5.0 mass%, it is disadvantageous for heat resistant materials This is because oxidation and volatilization in a high temperature region becomes intense.

Ruの範囲を0.3〜5.0 mass%に限定する理由は、0.3 mass%未満だと、リンと接触する際に十分な耐食性が得られず、また5.0 mass%より多いと耐熱材料に不利とされる高温領域での酸化揮発が激しくなるためである。   The reason for limiting the range of Ru to 0.3-5.0 mass% is that if it is less than 0.3 mass%, sufficient corrosion resistance cannot be obtained when contacting with phosphorus, and if it exceeds 5.0 mass%, it is disadvantageous for heat-resistant materials This is because oxidation and volatilization in a high temperature region becomes intense.

Rhの範囲を20〜40 mass%に限定する理由は、10 mass%未満だと、リンと接触する際に十分な耐食性が得られず、40 mass%より多いと合金が脆くなり加工性を低下させるためである。   The reason for limiting the Rh range to 20 to 40 mass% is that if it is less than 10 mass%, sufficient corrosion resistance cannot be obtained when contacting with phosphorus, and if it exceeds 40 mass%, the alloy becomes brittle and the workability is reduced. This is to make it happen.

前記組成の合金によれば、リンによる腐食に強く、十分な耐熱性を有するので、溶解用坩堝や器具などの構造材料及び熱電対、ヒーター線などの電気材料の信頼性を向上させ、その耐久性を高めることができる。
なお、前記組成の合金のうち、Re及びRhを含むPtRh合金としたときは、リンによる腐食ばかりか、Pbによる腐食にも強くすることができる。
The alloy having the above composition is resistant to corrosion by phosphorus and has sufficient heat resistance, thus improving the reliability of structural materials such as melting crucibles and appliances and electrical materials such as thermocouples and heater wires, and its durability. Can increase the sex.
Of the alloys having the above composition, when a PtRh alloy containing Re and Rh is used, it can be strong against corrosion caused not only by phosphorus but also by Pb.

以下、具体的に説明する。   This will be specifically described below.

参考例合金(参考例12)の耐リン性試験後の断面Cross section of the reference example alloy ( reference example 12 ) after the phosphorus resistance test 従来合金(比較例1)の耐リン性試験後の断面Cross section of conventional alloy (Comparative Example 1) after phosphorus resistance test 参考例合金(1.0Cr添加PtRh合金)のRh添加量と耐リン性の関係を表すグラフGraph showing the relationship between the Rh addition amount and phosphorus resistance of the reference alloy (1.0Cr-added PtRh alloy) 添加元素量と耐リン性の関係を表すグラフGraph showing the relationship between the amount of added elements and phosphorus resistance 参考例合金と従来合金の耐鉛性を表すグラフGraph showing lead resistance of reference alloy and conventional alloy

(試料の作製)
表1に示す組成のPtRh合金のインゴットは、原料金属を所定量に配合し、アーク溶解炉により溶製して得た。一定の加工率となるよう圧延加工と熱処理を繰返し行い、板厚0.5mmまで加工した。最終的にプレス加工で所定の形状に打ち抜いて試験片とし、次の各試験方法により評価した。
なお、インゴットの溶製には真空溶解炉やプラズマ溶解炉などの手段を用いることもできる。
(Sample preparation)
An ingot of a PtRh alloy having the composition shown in Table 1 was obtained by blending raw metal in a predetermined amount and melting it in an arc melting furnace. Rolling and heat treatment were repeatedly performed to obtain a constant processing rate, and processing was performed to a plate thickness of 0.5 mm. Finally, it was punched into a predetermined shape by press working to obtain a test piece, which was evaluated by the following test methods.
For melting the ingot, means such as a vacuum melting furnace and a plasma melting furnace can be used.

(硬さ試験)
硬さ試験は、前記試験片の加工材及び焼鈍材を、それぞれマイクロビッカース硬さ試験機を用いて、荷重200gf、荷重印加時間10秒の条件で行った。
(Hardness test)
In the hardness test, the processed material and the annealed material of the test piece were each subjected to a load of 200 gf and a load application time of 10 seconds using a micro Vickers hardness tester.

(耐リン性試験)
耐リン性試験は、前記方法で作成した試験片と赤リンを耐熱容器に密封し、不活性ガス中で800℃、1時間熱処理した後の試験片断面を金属顕微鏡で観察した。耐リン性は式1によって定義され、数値が高いほど耐食性が高いことを表す。
式1: 耐リン性(%)=未反応部分の厚さ/試験片の断面厚さ×100
(Phosphorus resistance test)
In the phosphorus resistance test, the test piece and red phosphorus prepared by the above method were sealed in a heat-resistant container, and the cross section of the test piece after heat treatment in an inert gas at 800 ° C. for 1 hour was observed with a metal microscope. Phosphorous resistance is defined by Formula 1, and the higher the value, the higher the corrosion resistance.
Formula 1: Phosphorus resistance (%) = thickness of unreacted portion / cross-sectional thickness of test piece × 100

(酸化揮発性の試験)
前記方法で作製した試験片の試験前の質量を測定し、大気中1200℃の電気炉内で、20時間熱処理した後の試験片の質量を測定した。試験片の質量変化を式2によって求め、酸化揮発性を評価した。マイナスは酸化揮発による質量減少を表し、プラスは酸化増量を表す。
式2: 質量変化(%)=(試験後の質量−試験前の質量)/試験前の質量×100
(Oxidation volatility test)
The mass before the test of the test piece produced by the above method was measured, and the mass of the test piece after heat treatment for 20 hours in an electric furnace at 1200 ° C. in the atmosphere was measured. The mass change of the test piece was obtained by Equation 2, and the oxidation volatility was evaluated. A minus represents a mass decrease due to oxidation volatilization, and a plus represents an oxidation increase.
Formula 2: Mass change (%) = (mass after test−mass before test) / mass before test × 100

(耐鉛性試験)
耐鉛性試験は、前記方法で作製した試験片を800℃の電気炉内で溶融鉛ガラス中に浸せきし、8時間保持した後、取り出して、試験片断面を金属顕微鏡により観察した。断面表層に現れる鉛との反応層の厚さを測定して、式3により耐鉛性を評価した。ここでいう耐鉛性は、従来合金(比較例1)との反応層厚さの比であり、数値が低いほど耐食性に優れることを表す。
式3: 耐鉛性 =(試験片の鉛との反応層厚さ)/(比較例1の鉛との反応層厚さ)
(Lead resistance test)
In the lead resistance test, the test piece produced by the above method was immersed in molten lead glass in an electric furnace at 800 ° C., held for 8 hours, taken out, and the cross section of the test piece was observed with a metal microscope. The thickness of the reaction layer with lead appearing in the cross-sectional surface layer was measured, and the lead resistance was evaluated by Equation 3. Lead resistance here is the ratio of the thickness of the reaction layer with the conventional alloy (Comparative Example 1), and the lower the value, the better the corrosion resistance.
Formula 3: Lead resistance = (reaction layer thickness with lead of test piece) / (reaction layer thickness with lead of Comparative Example 1)

(結果)
前記試験の結果を表2に示す。
参考例合金のすべては、比較例7を除く比較例合金より耐リン性に優れていた。
(result)
The results of the test are shown in Table 2.
All of the reference example alloys were more excellent in phosphorus resistance than the comparative example alloys except comparative example 7.

参考例のPtRh合金は、従来のPtRh合金(比較例1)に比べ、前記反応層の厚さが薄く、リンとの反応を効果的に抑制していた。その一例を図1に示す。これに対し、比較例1及び強化Ptとして知られる比較例2、さらに比較例3〜6は、リンと著しく反応し、厚い反応層が形成されていた。その一例を図2に示す。純Ptにおいても図2同様に厚い反応層が観察された。 The PtRh alloy of the reference example had a thinner reaction layer than the conventional PtRh alloy (Comparative Example 1), and effectively suppressed the reaction with phosphorus. An example is shown in FIG. In contrast, Comparative Example 1 and Comparative Example 2 known as reinforced Pt, and further Comparative Examples 3 to 6, reacted significantly with phosphorus, and a thick reaction layer was formed. An example is shown in FIG. Also in pure Pt, a thick reaction layer was observed as in FIG.

参考例のPtRh合金においては、Rhの添加量は10 mass%以上で耐リン性を50%以上にまで高める効果があった(図3)。 In the PtRh alloy of the reference example, the amount of Rh added was 10 mass% or more, and the phosphorus resistance was increased to 50% or more (FIG. 3).

参考例のPtRh合金においては、添加元素の種類及び添加量によって耐リン性を高める効果に若干の差はあるものの、いずれも耐リン性が30%以上まで高まった。
従来のPtRh合金(比較例1)や本発明の範囲から外れる組成の合金(比較例2〜6)では、参考例より耐リン性が劣り、Ptに添加する元素の種類及び量によっては、極端に耐リン性を悪化させるものもあった(表2及び図4)。
In the PtRh alloy of the reference example , although there was a slight difference in the effect of increasing the phosphorus resistance depending on the type and amount of the additive element, the phosphorus resistance increased to 30% or more in all cases.
Conventional PtRh alloys (Comparative Example 1) and alloys with compositions outside the scope of the present invention (Comparative Examples 2 to 6) are inferior in phosphorus resistance to the reference examples , and depending on the type and amount of elements added to Pt, Some of them deteriorated phosphorus resistance (Table 2 and FIG. 4).

参考例のPtRh合金の質量変化は、増減を示したが、その量は±0.1%以内と極わずかで、高温使用に問題を生じるほどではなかった。
比較例1〜比較例6の合金の質量変化は、参考例と同程度に小さかったが、比較例7は、-0.58%と大きく減量し、酸化揮発が激しかった。
The change in the mass of the PtRh alloy of the reference example showed an increase or decrease, but the amount was as small as ± 0.1%, which was not so high as to cause problems in high temperature use.
Although the mass change of the alloys of Comparative Examples 1 to 6 was as small as that of the Reference Example , Comparative Example 7 was greatly reduced to −0.58% and the oxidation volatilization was severe.

参考例のPtRh合金のうち、参考例2、参考例5、参考例12、参考例24は、従来例合金に比べて耐リン性に優れるばかりか、耐鉛性も優れていた(図5)。 Of PtRh alloy of Reference Example, Reference Example 2, Reference Example 5, Reference Example 12, Reference Example 24, not only excellent in phosphorus as compared to the conventional example alloy was superior to耐鉛(Figure 5) .

Claims (3)

PtRh合金において、Reを1.0〜5.0 mass%(ただし1.0%を除く)、Wを1.0〜5.0 mass%(ただし1.0%を除く)、Irを1.0〜5.0 mass%(ただし1.0%を除く)、Ruを0.3〜5.0 mass%の少なくとも1種を含有し、Rhを20〜40 mass%(ただし20%を除く)及び残部をPtとすることを特徴とする耐熱PtRh合金。 For PtRh alloys, Re is 1.0 to 5.0 mass% (excluding 1.0%) , W is 1.0 to 5.0 mass% (excluding 1.0%) , Ir is 1.0 to 5.0 mass% (excluding 1.0%) , Ru Is a heat-resistant PtRh alloy characterized by containing at least one of 0.3 to 5.0 mass%, Rh of 20 to 40 mass% (excluding 20%) and the balance being Pt. 請求項1記載の合金からなることを特徴とする構造材料。   A structural material comprising the alloy according to claim 1. 請求項1記載の合金からなることを特徴とする電気材料。   An electrical material comprising the alloy according to claim 1.
JP2012173152A 2012-08-03 2012-08-03 Heat-resistant PtRh alloy Active JP5630876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012173152A JP5630876B2 (en) 2012-08-03 2012-08-03 Heat-resistant PtRh alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012173152A JP5630876B2 (en) 2012-08-03 2012-08-03 Heat-resistant PtRh alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007198573A Division JP5105990B2 (en) 2007-07-31 2007-07-31 Heat-resistant PtRh alloy

Publications (2)

Publication Number Publication Date
JP2012224945A JP2012224945A (en) 2012-11-15
JP5630876B2 true JP5630876B2 (en) 2014-11-26

Family

ID=47275424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012173152A Active JP5630876B2 (en) 2012-08-03 2012-08-03 Heat-resistant PtRh alloy

Country Status (1)

Country Link
JP (1) JP5630876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952584B (en) * 2014-05-20 2016-08-17 重庆材料研究院有限公司 For surveying platinum rhodium thermocouple microfilament material and the preparation method of molten steel temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535248B2 (en) * 1971-10-27 1978-02-25
JPS5351124A (en) * 1976-10-22 1978-05-10 Tanaka Precious Metal Ind Material for electrodes
JPH11172349A (en) * 1997-12-08 1999-06-29 Furuya Kinzoku:Kk Heat resistant alloy, and bushing for glass fiber spinning using the alloy
JP4981473B2 (en) * 2007-02-15 2012-07-18 日本特殊陶業株式会社 Spark plug for internal combustion engine

Also Published As

Publication number Publication date
JP2012224945A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5105990B2 (en) Heat-resistant PtRh alloy
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
TWI548867B (en) Platinum-based thermocouple
EP3031936A1 (en) Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
TWI431127B (en) Titanium alloy excellent in strength, electrical conductivity and bending workability and a method for manufacturing the same
EP3031937A1 (en) Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
US11131008B2 (en) Heat-resistant Ir alloy
JP5187925B2 (en) Conductive material
TWI518183B (en) Corrosion resistant high nickel alloy and its manufacturing method
JP5630876B2 (en) Heat-resistant PtRh alloy
WO2019102716A1 (en) Mold material for casting and copper alloy material
JP4953212B2 (en) Ni-Cr alloy for thermocouple
US20230392248A1 (en) Dispersion-hardened precious-metal alloy
JP4991433B2 (en) Spark plug for internal combustion engine
WO2018117135A1 (en) Heat-resistant ir alloy
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
JP6278812B2 (en) Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
JP6604869B2 (en) Platinum palladium rhodium alloy
JP2011006791A (en) Increase in solid content of iridium, increase in solid content of rhodium, and alloys of iridium and alloys of rhodium
JP5522998B2 (en) Heat resistant alloy
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP6095562B2 (en) Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
JP7315206B2 (en) heat resistant material
US20220282358A1 (en) Heat-resistant ir alloy
JP2022060168A (en) Wire with platinum composition for contacting temperature sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5630876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250