JP5630807B2 - Electromagnetic flow meter - Google Patents

Electromagnetic flow meter Download PDF

Info

Publication number
JP5630807B2
JP5630807B2 JP2010063555A JP2010063555A JP5630807B2 JP 5630807 B2 JP5630807 B2 JP 5630807B2 JP 2010063555 A JP2010063555 A JP 2010063555A JP 2010063555 A JP2010063555 A JP 2010063555A JP 5630807 B2 JP5630807 B2 JP 5630807B2
Authority
JP
Japan
Prior art keywords
flow
fluid
period
magnetic flux
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010063555A
Other languages
Japanese (ja)
Other versions
JP2011196811A (en
Inventor
博 瀬尾
博 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2010063555A priority Critical patent/JP5630807B2/en
Publication of JP2011196811A publication Critical patent/JP2011196811A/en
Application granted granted Critical
Publication of JP5630807B2 publication Critical patent/JP5630807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、定量ポンプから間欠的な脈流になって流れる流体の流量を計測するための電磁流量計に関する。   The present invention relates to an electromagnetic flow meter for measuring the flow rate of a fluid flowing in an intermittent pulsating flow from a metering pump.

定量ポンプは、その名の通り、ある程度の定量性を有してはいるものの、実際には製品毎に吐出量の差があったり、経年使用による吐出量の変化等があるため、流量を実測したいという要望があった。これに対し、本願出願人は先に、定量ポンプから間欠的な脈流になって流れる流体の流量を計測するための電磁流量計を提案している(例えば、特許文献1参照)。   As the name suggests, the metering pump has a certain amount of quantification, but in reality there are differences in the discharge rate for each product, and there is a change in the discharge rate over time, so the flow rate is measured. There was a request to do. On the other hand, the applicant of the present application has previously proposed an electromagnetic flow meter for measuring the flow rate of fluid flowing in an intermittent pulsating flow from a metering pump (see, for example, Patent Document 1).

特開2008−286540号公報(段落[0025]、第2図)JP 2008-286540 A (paragraph [0025], FIG. 2)

ところで、本願発明者は、間欠的な脈流となって流される流体の流量を正確に計測するための電磁流量計を開発すべく鋭意研究を行ってきたところ、流体を定量ポンプによって吐出したときには、磁束の有無に拘わらず1対の検知電極間に脈動ノイズ成分が発生し、その脈動ノイズ成分が流体の流速に比例した真の流量に重畳して、1対の検知電極間で検出される実測の流量に誤差が生じる(図5参照)ことを見出した。   By the way, the inventor of the present application has intensively studied to develop an electromagnetic flow meter for accurately measuring the flow rate of fluid flowing as an intermittent pulsating flow. When the fluid is discharged by a metering pump, A pulsation noise component is generated between a pair of detection electrodes regardless of the presence or absence of magnetic flux, and the pulsation noise component is superimposed on a true flow rate proportional to the fluid flow velocity and detected between the pair of detection electrodes. It was found that an error occurred in the actually measured flow rate (see FIG. 5).

本発明は、上記事情に鑑みてなされたものであって、定量ポンプにより間欠的な脈流となって流される流体の流量を正確に計測することが可能な電磁流量計の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electromagnetic flow meter capable of accurately measuring the flow rate of fluid flowing as an intermittent pulsating flow by a metering pump. .

上記目的を達成するためになされた請求項1の発明に係る電磁流量計は、流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、計測流路の側方に配置された電磁コイルから計測流路内の流体に磁束を付与し、1対の検知電極間に生じた電位差に基づいて、流体の流量を検出する電磁流量計において、計測流路内の流体が流れていない滞留期間と、計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、脈流状態判別手段による判別結果に基づき、各滞留期間中に磁束の向きを反転させ、磁束の向きを流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、複数脈分の流量の和を演算するところに特徴を有する。
請求項2の発明に係る電磁流量計は、流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、計測流路の側方に配置された電磁コイルから計測流路内の流体に磁束を付与し、1対の検知電極間に生じた電位差に基づいて、流体の流量を検出する電磁流量計において、計測流路内の流体が流れていない滞留期間と、計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、脈流状態判別手段による判別結果に基づき、各滞留期間中に磁束の向きを反転させ、磁束の向きを流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、連続した偶数個の脈流分毎に流量の相加平均を演算し、その相加平均を積算して流体の流量を演算するところに特徴を有する。
請求項3の発明に係る電磁流量計は、流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、計測流路の側方に配置された電磁コイルから計測流路内の流体に磁束を付与し、1対の検知電極間に生じた電位差に基づいて、流体の流量を検出する電磁流量計において、計測流路内の流体が流れていない滞留期間と、計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、脈流状態判別手段による判別結果に基づき、各滞留期間中に磁束の向きを反転させ、磁束の向きを流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、連続した偶数個の脈流分毎に流量の和を演算し、その和を積算して流体の流量を演算するところに特徴を有する。
The electromagnetic flowmeter according to the invention of claim 1 made to achieve the above object has a pair of detection electrodes opposed to each other in a measurement flow channel in which a fluid flows as an intermittent pulsating flow from a metering pump. In addition, an electromagnetic flowmeter that applies magnetic flux to the fluid in the measurement flow path from the electromagnetic coil disposed on the side of the measurement flow path and detects the flow rate of the fluid based on the potential difference generated between the pair of detection electrodes. , A pulsating state discriminating means for discriminating between a residence period in which the fluid in the measuring channel does not flow and a flowing period in which one pulse of fluid flows in the measuring channel, and discrimination by the pulsating state discriminating unit based on the results, to reverse the direction of the magnetic flux in each dwell period, and a coil excitation control means for varying alternating the orientation of the magnetic flux for each flow period, and you calculating the flow rate sum of the multiple pulse component rollers It has the characteristics.
The electromagnetic flowmeter according to the invention of claim 2 is provided with a pair of detection electrodes opposed to each other in a measurement flow path in which fluid flows as an intermittent pulsating flow from a metering pump, and on the side of the measurement flow path. In an electromagnetic flowmeter that applies a magnetic flux to a fluid in a measurement channel from a disposed electromagnetic coil and detects a flow rate of the fluid based on a potential difference generated between a pair of detection electrodes, the fluid in the measurement channel is Based on the result of discrimination by the pulsating flow state discriminating means and the pulsating flow state discriminating means for discriminating between the non-flowing residence period and the flow period during which one pulse of fluid flows in the measurement channel, Coil excitation control means that reverses the direction of the magnetic flux and alternately changes the direction of the magnetic flux every flow period, calculates the arithmetic average of the flow rate for every even number of pulsating flow, and the arithmetic average It is characterized in that the flow rate of the fluid is calculated by integrating.
The electromagnetic flowmeter according to the invention of claim 3 is provided with a pair of detection electrodes opposed to each other in a measurement flow channel in which fluid flows as an intermittent pulsating flow from a metering pump, and on the side of the measurement flow channel. In an electromagnetic flowmeter that applies a magnetic flux to a fluid in a measurement channel from a disposed electromagnetic coil and detects a flow rate of the fluid based on a potential difference generated between a pair of detection electrodes, the fluid in the measurement channel is Based on the result of discrimination by the pulsating flow state discriminating means and the pulsating flow state discriminating means for discriminating between the non-flowing residence period and the flow period during which one pulse of fluid flows in the measurement channel, Coil excitation control means that reverses the direction of the magnetic flux and alternately changes the direction of the magnetic flux for each flow period, calculates the sum of the flow rate for every even number of pulsating flow, and sums the sum It is characterized by calculating the flow rate of fluid.

請求項の発明は、請求項1乃至3の何れか1の請求項に記載の電磁流量計において、脈流状態判別手段は、定量ポンプが吐出動作より予め定められた所定時間だけ前に出力するトリガ信号を受けて、滞留期間と流動期間とを判別するように構成されたところに特徴を有する。 According to a fourth aspect of the present invention, in the electromagnetic flowmeter according to any one of the first to third aspects, the pulsating flow state determining means outputs the metering pump a predetermined time before the discharge operation. It is characterized in that it is configured to discriminate between a residence period and a flow period upon receiving a trigger signal.

請求項の発明に係る電磁流量計は、流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、計測流路の側方に配置された電磁コイルから計測流路内の流体に磁束を付与し、1対の検知電極間に生じた電位差に基づいて、流体の流量を検出する電磁流量計において、流体の脈流回数をカウントする脈流カウント手段と、脈流カウント手段によるカウント結果に基づき、予め定められた所定複数脈流回数分の流体が流れる毎に磁束の向きを反転させるコイル励磁制御手段とを備え、複数脈分の流量の和を演算するところに特徴を有する。 The electromagnetic flowmeter according to the invention of claim 5 is provided with a pair of detection electrodes opposed to each other in a measurement flow channel in which fluid flows as an intermittent pulsating flow from a metering pump, and on the side of the measurement flow channel. A magnetic flux is applied to the fluid in the measurement channel from the arranged electromagnetic coil, and the number of pulsating flows of the fluid is counted in an electromagnetic flow meter that detects the flow rate of the fluid based on a potential difference generated between a pair of detection electrodes. and pulsating counting means for, based on the count result of the pulsating counting means, and a coil excitation control means for inverting the direction of the magnetic flux for each flow preset predetermined plurality pulsating number of times of the fluid, multiple pulse having said combined partial flow to the you calculation time.

[請求項1乃至3の発明]
請求項1乃至3の電磁流量計は、計測流路内の流体が流れていない滞留期間と、計測流路内に1脈分の流体が流れる流動期間とを脈流状態判別手段によって判別し、その脈流状態判別手段による判別結果に基づき、コイル励磁制御手段が各滞留期間中に磁束の向きを反転させかつ、磁束の向きを流動期間毎に交互に異ならせる。ここで、磁束の有無に拘わらず1対の検知電極間に発生するノイズ成分は、磁束が一の方向を向いたときに検出される流量を、真の流量よりも増加させる流量増加ノイズ成分となる一方、磁束が他の方向を向いたときに検出される流量を、真の流量よりも減少させる流量減少ノイズ成分となる。そして、請求項1の電磁流量計は、複数脈分の流量の和、即ち、磁束が一の方向を向いたときに検出される所定の脈数分の流量と、磁束が他の方向を向いたときに検出される同一脈数分の流量との和を演算することで、同じ脈数分の流量増加ノイズ成分と流量減少ノイズ成分とを相殺させることができる。また、請求項2の電磁流量計は、連続した偶数個の脈流分毎に流量の相加平均を演算し、その相加平均を積算して流体の流量を演算することで、同じ脈数分の流量増加ノイズ成分と流量減少ノイズ成分とを相殺させることができる。また、請求項3の電磁流量計は、連続した偶数個の脈流分毎に流量の和を演算し、その和を積算して流体の流量を演算することで、同じ脈数分の流量増加ノイズ成分と流量減少ノイズ成分とを相殺させることができる。これにより、定量ポンプにより間欠的な脈流となって流される流体の流量を正確に計測することが可能になる。
[Inventions of Claims 1 to 3 ]
The electromagnetic flowmeter according to any one of claims 1 to 3, wherein the pulsating flow state determining means determines a residence period in which the fluid in the measurement channel does not flow and a flow period in which one pulse of fluid flows in the measurement channel, Based on the determination result by the pulsating flow state determination means, the coil excitation control means reverses the direction of the magnetic flux during each staying period, and alternately changes the direction of the magnetic flux for each flow period. Here, the noise component generated between the pair of detection electrodes regardless of the presence or absence of magnetic flux is a flow rate increasing noise component that increases the flow rate detected when the magnetic flux is directed in one direction, more than the true flow rate. On the other hand, it becomes a flow rate reduction noise component that reduces the flow rate detected when the magnetic flux is directed in the other direction than the true flow rate. The electromagnetic flow meter according to claim 1 is the sum of the flow rates for a plurality of pulses, that is, the flow rate for a predetermined pulse number detected when the magnetic flux is directed in one direction, and the magnetic flux is directed in the other direction. By calculating the sum of the flow rates for the same number of pulses detected at the same time, the flow rate increase noise component and the flow rate decrease noise component for the same number of pulses can be canceled. Further, the electromagnetic flow meter according to claim 2 calculates the arithmetic average of the flow rate for every continuous even number of pulsating flows, integrates the arithmetic average, and calculates the flow rate of the fluid, thereby obtaining the same pulse number. The flow rate increase noise component and the flow rate decrease noise component can be offset. In addition, the electromagnetic flow meter according to claim 3 calculates the sum of the flow rate for every continuous even number of pulsating flows, adds the sum and calculates the flow rate of the fluid, thereby increasing the flow rate by the same pulse number. The noise component and the flow rate reduction noise component can be offset. By these, it is possible to accurately measure the flow rate of a fluid flowing in a intermittent pulsating flow by a metering pump.

[請求項の発明]
請求項の発明によれば、定量ポンプの吐出動作の間隔が不規則に変化した場合でも、確実に滞留期間中に磁束の向きを反転させることができる。
[Invention of claim 4 ]
According to the invention of claim 4 , even when the interval of the discharge operation of the metering pump changes irregularly, the direction of the magnetic flux can be reliably reversed during the staying period.

[請求項の発明]
請求項の電磁流量計は、流体の脈流を脈流カウント手段でカウントし、そのカウント結果に基づいて、予め定められた所定複数脈流回数分の流体が流れる毎に、磁束の向きを反転させる。ここで、磁束の有無に拘わらず1対の検知電極間に発生するノイズ成分は、磁束が一の方向を向いたときに検出される流量を、真の流量よりも増加させる流量増加ノイズ成分となる一方、磁束が他の方向を向いたときに検出される流量を、真の流量よりも減少させる流量減少ノイズ成分となる。そして、磁束が一の方向を向いたときに検出される複数脈流回数分の流量と、磁束が他の方向を向いたときに検出される同一複数脈流回数分の流量との和を演算することで、複数脈流回数分の流量増加ノイズ成分と、同一複数脈流回数分の流量減少ノイズ成分とを相殺させることができる。これにより、定量ポンプにより間欠的な脈流となって流される流体の流量を正確に計測することが可能になる。
[Invention of claim 5 ]
The electromagnetic flow meter according to claim 5 counts the pulsating flow of the fluid with the pulsating flow counting means, and changes the direction of the magnetic flux every time a predetermined number of pulsating flows flow based on the count result. Invert. Here, the noise component generated between the pair of detection electrodes regardless of the presence or absence of magnetic flux is a flow rate increasing noise component that increases the flow rate detected when the magnetic flux is directed in one direction, more than the true flow rate. On the other hand, it becomes a flow rate reduction noise component that reduces the flow rate detected when the magnetic flux is directed in the other direction than the true flow rate. Then, the sum of the flow rate for the multiple pulsating flow times detected when the magnetic flux is directed in one direction and the flow rate for the same multiple pulsating flow times detected when the magnetic flux is directed in the other direction is calculated. By doing so, it is possible to cancel the flow rate increase noise component for the number of times of multiple pulsating flows and the flow rate decrease noise component for the same number of times of pulsating flows. This makes it possible to accurately measure the flow rate of the fluid that flows as an intermittent pulsating flow by the metering pump.

本発明の第1実施形態に係る電磁流量計と定量ポンプの概念図Schematic diagram of electromagnetic flow meter and metering pump according to first embodiment of the present invention 定量ポンプ及び電磁流量計のブロック図Block diagram of metering pump and electromagnetic flow meter (A)磁束の時間変化を示すグラフ、(B)流速の時間変化を示すグラフ、(C)真の流量の時間変化を示すグラフ、(D)脈動ノイズ成分の時間変化を示すグラフ、(E)磁束の時間変化を示すグラフ(A) Graph showing time change of magnetic flux, (B) Graph showing time change of flow velocity, (C) Graph showing time change of true flow rate, (D) Graph showing time change of pulsation noise component, (E ) Graph showing the time variation of magnetic flux (A)磁束の時間変化を示すグラフ、(B)流速の時間変化を示すグラフ、(C)真の流量の時間変化を示すグラフ、(D)脈動ノイズ成分の時間変化を示すグラフ(A) Graph showing time change of magnetic flux, (B) Graph showing time change of flow velocity, (C) Graph showing time change of true flow rate, (D) Graph showing time change of pulsation noise component. 脈動ノイズ成分が含まれた流量信号の概念図Conceptual diagram of a flow signal containing pulsation noise components

[第1実施形態]
以下、本発明の第1実施形態を図1〜図3に基づいて説明する。図1に示すように、液体タンク50から延びた管路51の途中には定量ポンプ40が備えられている。定量ポンプ40は、例えば、公知なダイアフラム式の電磁定量ポンプであって、ダイアフラム44(図2参照)の往復動により、液体タンク50に貯留された液体が一定量ずつ吐出される。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a metering pump 40 is provided in the middle of a pipeline 51 extending from the liquid tank 50. The metering pump 40 is, for example, a known diaphragm-type electromagnetic metering pump, and the liquid stored in the liquid tank 50 is discharged by a certain amount by the reciprocating motion of the diaphragm 44 (see FIG. 2).

図2に示すように定量ポンプ40は、ダイアフラム44の吐出動作の起因となるトリガ信号X1を出力するタイミング発生回路41、トリガ信号X1に基づいてダイアフラム44を駆動するダイアフラム駆動回路42及び、タイミング発生回路41から出力されたトリガ信号X1を、予め設定された所定時間T10(図3参照)が経過した後にダイアフラム駆動回路42に入力させるための遅延回路43を備えている。即ち、定量ポンプ40は、ダイアフラム44が吐出動作を開始する所定時間T10だけ前にトリガ信号X1を出力する。そして、トリガ信号X1を出力する毎にダイアフラム44を1回だけ吐出動作させ、毎回一定量の液体を間欠的な脈流にして送出している。なお、トリガ信号X1の出力間隔(液体の吐出間隔)は任意に設定することができる。   As shown in FIG. 2, the metering pump 40 includes a timing generation circuit 41 that outputs a trigger signal X1 that causes a discharge operation of the diaphragm 44, a diaphragm drive circuit 42 that drives the diaphragm 44 based on the trigger signal X1, and a timing generator. A delay circuit 43 is provided for inputting the trigger signal X1 output from the circuit 41 to the diaphragm drive circuit 42 after a predetermined time T10 (see FIG. 3) has been set. That is, the metering pump 40 outputs the trigger signal X1 only a predetermined time T10 before the diaphragm 44 starts the discharge operation. Then, each time the trigger signal X1 is output, the diaphragm 44 is discharged only once, and a constant amount of liquid is sent in an intermittent pulsating flow every time. The output interval of the trigger signal X1 (liquid discharge interval) can be arbitrarily set.

定量ポンプ40から間欠的な脈流になって流される液体の流量を計測するために、管路51のうち定量ポンプ40より下流側には、本発明に係る電磁流量計10が設けられている。図2に示すように、電磁流量計10は、検出器20と変換器30とから構成されている。   In order to measure the flow rate of the liquid flowing in an intermittent pulsating flow from the metering pump 40, the electromagnetic flow meter 10 according to the present invention is provided on the downstream side of the metering pump 40 in the pipeline 51. . As shown in FIG. 2, the electromagnetic flow meter 10 includes a detector 20 and a converter 30.

検出器20は、定量ポンプ40から吐出された液体が流れる計測管21と、計測管21の側方から計測管21内の計測流路21Aを横切るように磁束を付与する電磁コイル22と、計測管21に固定され計測流路21A内で磁束及び液体の流れの向きと直交する方向に対向配置された1対の検知電極23,23とを備えている。   The detector 20 includes a measurement tube 21 through which the liquid discharged from the metering pump 40 flows, an electromagnetic coil 22 that applies magnetic flux across the measurement channel 21A in the measurement tube 21 from the side of the measurement tube 21, and a measurement. A pair of detection electrodes 23, 23 fixed to the tube 21 and disposed opposite to each other in a direction orthogonal to the direction of magnetic flux and liquid flow in the measurement channel 21 </ b> A are provided.

一方、変換器30は、定量ポンプ40からのトリガ信号X1が入力するコントロール回路31(本発明の「脈流状態判別手段」に相当する)、電磁コイル22に流す励磁電流Ieを制御する励磁回路32(本発明の「コイル励磁制御手段」に相当する)、1対の検知電極23,23間に生じた電位差を流量信号として取得するサンプリング回路33、サンプリング回路33が取得した流量信号を取り込んで演算処理を行う信号処理回路34を備えている。   On the other hand, the converter 30 includes a control circuit 31 (corresponding to the “pulsating flow state determination means” of the present invention) to which the trigger signal X1 from the metering pump 40 is input, and an excitation circuit that controls the excitation current Ie flowing through the electromagnetic coil 22. 32 (corresponding to the “coil excitation control means” of the present invention), a sampling circuit 33 for acquiring a potential difference generated between the pair of detection electrodes 23 and 23 as a flow signal, and a flow signal acquired by the sampling circuit 33 is acquired. A signal processing circuit 34 for performing arithmetic processing is provided.

電磁コイル22に励磁電流Ieが流され、計測管21内の液体に磁束が付与された状態でその磁束に直交して液体が流れると、1対の検知電極23,23間に液体の流速に比例した電位差が生じる。その電位差に基づいて、信号処理回路34が流速及び流量を演算する。   When an exciting current Ie is passed through the electromagnetic coil 22 and a liquid flows in a state perpendicular to the magnetic flux in a state where the magnetic flux is applied to the liquid in the measuring tube 21, the liquid flow velocity is increased between the pair of detection electrodes 23 and 23. A proportional potential difference occurs. Based on the potential difference, the signal processing circuit 34 calculates the flow velocity and flow rate.

ここで、1対の検知電極23,23間には、磁束の有無に拘わらず吐出動作が起きる毎に毎回ほぼ一定の脈動ノイズ成分が発生する(図3(D)参照)。即ち、計測流路21A内を脈流になって液体が流れるときに1対の検知電極23,23間で検出される実測の流量(電位差)は、流速に比例した真の流量(真の電位差、図3(C)参照)に脈動ノイズ成分が重畳したものである。なお、脈動ノイズ成分は、液体が静止状態から流動状態に急峻に変化することで1対の検知電極23,23間の電位バランスが変化するために生じるものと推測される。   Here, an almost constant pulsation noise component is generated between the pair of detection electrodes 23 and 23 each time an ejection operation occurs regardless of the presence or absence of magnetic flux (see FIG. 3D). That is, the actual flow rate (potential difference) detected between the pair of detection electrodes 23 and 23 when the liquid flows in a pulsating manner in the measurement channel 21A is a true flow rate (true potential difference) proportional to the flow velocity. FIG. 3C) is a pulsation noise component superimposed. Note that the pulsation noise component is presumed to be generated because the potential balance between the pair of detection electrodes 23 and 23 changes due to a sudden change of the liquid from the stationary state to the flowing state.

変換器30は図示しない外部出力端子を備えており、ここに表示器52(図1参照)や、その他外部機器を接続することで、流量の演算結果を外部に出力することができる。また、定量ポンプ40に接続することで、流量の演算結果を定量ポンプ40のフィードバック制御に使用することも可能である。   The converter 30 includes an external output terminal (not shown), and the flow rate calculation result can be output to the outside by connecting a display 52 (see FIG. 1) and other external devices. Further, by connecting to the metering pump 40, the calculation result of the flow rate can be used for feedback control of the metering pump 40.

本実施形態の電磁流量計10の構成は以上であり、次に、本実施形態の作用及び効果について図3を参照しつつ説明する。   The configuration of the electromagnetic flow meter 10 of the present embodiment is as described above. Next, the operation and effect of the present embodiment will be described with reference to FIG.

定量ポンプ40を起動すると、タイミング発生回路41がダイアフラム44の吐出動作よりも予め定められた所定時間T10だけ前にトリガ信号X1を出力する(図3(A)参照)。即ち、トリガ信号X1が遅延回路43を介してダイアフラム駆動回路42に入力し、トリガ信号X1の出力タイミングから所定時間T10だけ遅れてダイアフラム44が1回だけ吐出動作を行う。この1回の吐出動作により一定量の液体が吐出され、計測流路21A内で液体が所定の流動期間T11に亘って流動する(図3(B)参照)。   When the metering pump 40 is activated, the timing generation circuit 41 outputs the trigger signal X1 before a predetermined time T10 before the discharge operation of the diaphragm 44 (see FIG. 3A). That is, the trigger signal X1 is input to the diaphragm drive circuit 42 via the delay circuit 43, and the diaphragm 44 performs the discharge operation only once after a predetermined time T10 from the output timing of the trigger signal X1. A fixed amount of liquid is discharged by this single discharge operation, and the liquid flows in the measurement flow path 21A over a predetermined flow period T11 (see FIG. 3B).

一方、トリガ信号X1は電磁流量計10に備えたコントロール回路31に対しても出力される。コントロール回路31は、トリガ信号X1を受信すると直ちに励磁回路32、サンプリング回路33、信号処理回路34に駆動指令を出力する。   On the other hand, the trigger signal X1 is also output to the control circuit 31 provided in the electromagnetic flow meter 10. The control circuit 31 outputs a drive command to the excitation circuit 32, the sampling circuit 33, and the signal processing circuit 34 immediately after receiving the trigger signal X1.

励磁回路32は、コントロール回路31からの駆動指令を受けると直ちに、電磁コイル22に対して一の方向に励磁電流Ieを流す。これにより、計測流路21Aを一の方向に横切る磁束が発生する。図3(A)に示すように、励磁電流Ieは、トリガ信号X1の出力タイミングを起点として所定の給電期間T12に亘って流される。また、給電期間T12は、1回の流動期間T11より長くなっている。   As soon as the excitation circuit 32 receives the drive command from the control circuit 31, the excitation circuit 32 causes the excitation current Ie to flow in one direction with respect to the electromagnetic coil 22. Thereby, the magnetic flux which crosses the measurement flow path 21A in one direction is generated. As shown in FIG. 3A, the excitation current Ie is allowed to flow for a predetermined power supply period T12 starting from the output timing of the trigger signal X1. In addition, the power supply period T12 is longer than one flow period T11.

ここで、図3(E)に示すように、励磁電流Ieの供給開始直後と供給停止直後(給電期間T12の開始直後と終了直後)の所定期間T14(以下、「過渡応答期間T14」という)は、電磁コイル22が持つインダクタンス等の影響で励磁電流Ieの大きさ、即ち、磁束の強度が徐変する。過渡応答期間T14中に検知電極23,23間に発生する電位差には、励磁電流Ieの大きさ(磁束強度)の変化に比例した磁束微分ノイズ(所謂、「90度ノイズ」)が重畳し得る。   Here, as shown in FIG. 3E, a predetermined period T14 (hereinafter referred to as “transient response period T14”) immediately after the start of supply of the excitation current Ie and immediately after the stop of supply (immediately after the start and end of the power supply period T12). The magnitude of the excitation current Ie, that is, the strength of the magnetic flux gradually changes due to the influence of the inductance and the like of the electromagnetic coil 22. Magnetic potential differential noise (so-called “90 degree noise”) proportional to a change in the magnitude (magnetic flux intensity) of the excitation current Ie can be superimposed on the potential difference generated between the detection electrodes 23 and 23 during the transient response period T14. .

磁束微分ノイズの影響を排除するために、本実施形態の電磁流量計10では、給電期間T12のうち、過渡応答期間T14を除いた期間、即ち、磁束が一定方向及び一定強度に保持されている定常期間T13に1脈分の流動期間T11が収まるように1回当たりの給電期間T12の長さ及び所定時間T10が予め設定されている(図3(A)及び同図(B)参照)。   In order to eliminate the influence of magnetic flux differential noise, in the electromagnetic flow meter 10 of the present embodiment, a period excluding the transient response period T14 in the power feeding period T12, that is, the magnetic flux is held in a constant direction and a constant intensity. The length of the power supply period T12 and the predetermined time T10 per time are set in advance so that the flow period T11 for one pulse falls within the steady period T13 (see FIGS. 3A and 3B).

サンプリング回路33は、トリガ信号X1の出力タイミングを起点として所定時間T10が経過したとき(即ち、ダイアフラム44の吐出動作と同時)に1対の検知電極23,23間に生じた電位差(流量信号)のサンプリングを開始し、流動期間T11と同じ期間、サンプリングを継続する。   The sampling circuit 33 has a potential difference (flow rate signal) generated between the pair of detection electrodes 23 and 23 when a predetermined time T10 has elapsed from the output timing of the trigger signal X1 (that is, simultaneously with the discharge operation of the diaphragm 44). And sampling is continued for the same period as the flow period T11.

図3(B)に示すように、計測管21内を1脈分の液体が流れた後、しばらくの間は、計測流路21A内を液体が流れない滞留期間T15になる。この滞留期間T15中に、電磁流量計10は計測流路21A内を横切る磁束の向きを反転させる。   As shown in FIG. 3 (B), after the liquid for one pulse flows in the measurement tube 21, the residence time T15 during which the liquid does not flow in the measurement channel 21A is set for a while. During this dwell period T15, the electromagnetic flow meter 10 reverses the direction of the magnetic flux traversing the measurement flow path 21A.

即ち、滞留期間T15になると励磁回路32に備えた切替スイッチ35(図2参照)が切り替わり、その後、ダイアフラム44に次の吐出動作を行わせるための次のトリガ信号X1が入力すると、電磁コイル22に対して前回とは逆方向に励磁電流Ieが流れる。これにより、計測流路21A内を横切る磁束の向きが前回とは逆向きになる。そして、トリガ信号X1の出力を起点として、上述したタイミングでダイアフラム44が吐出動作を行うと共に、サンプリング回路33が1対の検知電極23,23間に生じた電位差をサンプリングする。以下、トリガ信号X1を受ける毎、即ち、1脈分の流動期間T11毎に励磁回路32は磁束の向きを交互に異ならせ、各流動期間T11で1対の検知電極23,23間の電位差をサンプリングする。   That is, when the dwell period T15 is reached, the changeover switch 35 (see FIG. 2) provided in the excitation circuit 32 is switched, and thereafter, when the next trigger signal X1 for causing the diaphragm 44 to perform the next discharge operation is input, the electromagnetic coil 22 is entered. On the other hand, the exciting current Ie flows in the direction opposite to the previous time. Thereby, the direction of the magnetic flux crossing the measurement flow path 21A is opposite to the previous direction. Then, starting from the output of the trigger signal X1, the diaphragm 44 performs the discharge operation at the timing described above, and the sampling circuit 33 samples the potential difference generated between the pair of detection electrodes 23 and 23. Hereinafter, every time the trigger signal X1 is received, that is, every flow period T11 for one pulse, the excitation circuit 32 alternately changes the direction of the magnetic flux, and the potential difference between the pair of detection electrodes 23, 23 is changed in each flow period T11. Sampling.

信号処理回路34は、サンプリング回路33によりサンプリングされた各流動期間T11の実測の電位差を積分して、各流動期間T11における実測の1脈分の流量を演算すると共に、複数の流動期間T11における複数脈分の流量を積算して積算流量を演算する。   The signal processing circuit 34 integrates the measured potential difference of each flow period T11 sampled by the sampling circuit 33, calculates the flow rate for one measured pulse in each flow period T11, and outputs a plurality of flows in the plurality of flow periods T11. The integrated flow rate is calculated by integrating the flow rate of the pulse.

詳細には、磁束の向きが互いに反対でかつ連続した2回の流動期間T11,T11において検出された実測の流量の和を演算すると共に、和を演算する2回の流動期間T11,T11の組み合わせを順次1つずらしてそれぞれ相加平均を演算し、その平均値を、前回までの積算流量に加算していく。より具体的には、定量ポンプ40の起動後、1回目と2回目の流動期間T11,T11に検出された流量の和を演算して積算流量とし、次に、2回目と3回目の流動期間T11,T11に検出された流量の平均を演算して前回の積算流量に加算し、次に、3回目と4回目の流動期間T11,T11に検出された流量の平均を演算して前回の積算流量に加算し、以下、脈流が発生する毎にこの演算処理を繰り返す。   Specifically, the direction of the magnetic flux is opposite to each other and the sum of the actually measured flow rates detected in two continuous flow periods T11 and T11 is calculated, and the combination of the two flow periods T11 and T11 for calculating the sum Are sequentially shifted one by one to calculate the arithmetic mean, and the average value is added to the previous integrated flow rate. More specifically, after starting the metering pump 40, the sum of the flow rates detected in the first and second flow periods T11 and T11 is calculated to obtain an integrated flow rate, and then the second and third flow periods. The average of the flow rates detected at T11 and T11 is calculated and added to the previous integrated flow rate, and then the average of the flow rates detected during the third and fourth flow periods T11 and T11 is calculated and the previous integrated flow rate is calculated. The calculation process is repeated every time a pulsating flow is generated.

ところで、上述の如く磁束の向きが互いに反対になった2回の流動期間T11,T11にて検出された2脈分の流量の和を演算すると、結果的に、それら各流動期間T11,T11にて検出された各流量に含まれる脈動ノイズ成分N1,N1を相殺することができる。その理由を以下説明する。   By the way, when the sum of the flow rates of the two pulses detected in the two flow periods T11 and T11 in which the directions of the magnetic fluxes are opposite to each other as described above is calculated, as a result, in each of the flow periods T11 and T11. Thus, the pulsation noise components N1 and N1 included in each detected flow rate can be canceled out. The reason will be described below.

図3(B)は、計測流路21A内における実際の流速の時間変化を示す概念図、同図(C)は、上記実際の流速に対して、1対の検知電極23,23間にノイズが生じないと仮定した場合に検出される真の流量(真の電位差)の時間変化の概念図、同図(D)は、1対の検知電極23,23間に発生する脈動ノイズ成分の時間変化を示す概念図である。   FIG. 3B is a conceptual diagram showing the change over time of the actual flow velocity in the measurement flow path 21A, and FIG. 3C shows noise between the pair of detection electrodes 23 and 23 with respect to the actual flow velocity. FIG. 4D is a conceptual diagram of the time change of the true flow rate (true potential difference) detected when it is assumed that no occurrence occurs. FIG. 4D shows the time of the pulsation noise component generated between the pair of detection electrodes 23, 23. It is a conceptual diagram which shows a change.

図3(C)に示すように、1対の検知電極23,23にノイズが生じないと仮定した場合、各流動期間T11において1対の検知電極23,23間で検出される真の流量(電位差)は、各流動期間T11中の流速(同図(B)参照)に比例する。なお、本実施形態の電磁流量計10は、計測流路21Aを横切る磁束の向きを流動期間T11毎に一の方向と他の方向とに交互に反転させているので、1対の検知電極23,23間で生じる電位差の正負の符号は流動期間T11毎に交互に反転する。   As shown in FIG. 3C, when it is assumed that no noise occurs in the pair of detection electrodes 23, 23, the true flow rate detected between the pair of detection electrodes 23, 23 in each flow period T11 ( The potential difference is proportional to the flow velocity (see FIG. 5B) during each flow period T11. In the electromagnetic flow meter 10 of the present embodiment, the direction of the magnetic flux crossing the measurement flow path 21A is alternately reversed between one direction and the other direction for each flow period T11. , 23, the sign of the potential difference between them is alternately inverted every flow period T11.

ところで、実際に1対の検知電極23,23にて検出される流量(電位差)は、図3(C)のように、単純に流速に比例した値とはならず、流速に比例した真の流量(真の電位差)に、脈動ノイズ成分(同図(D)参照)が重畳したものとなる。   By the way, the flow rate (potential difference) actually detected by the pair of detection electrodes 23, 23 is not simply a value proportional to the flow rate as shown in FIG. A pulsation noise component (see FIG. 4D) is superimposed on the flow rate (true potential difference).

ここで、図3(C)に示す流速に比例した真の流量を、流動期間T11の古い方から順に「R1」,「R2」,「R3」,「R4」とし、同図(D)に示すように各流動期間T11に発生する毎回ほぼ一定の脈動ノイズ成分をそれぞれ「N1」とすると、磁束が一の方向を向いた1回目の流動期間T11では、真の流量R1に対して脈動ノイズ成分N1が同符号なので、検出された流量は「R1+N1」と表すことができる。一方、磁束が他の方向を向いた2回目の流動期間T11では、真の流量R2に対して脈動ノイズ成分N1が逆符号なので、検出された流量は「R2−N1」と表すことができる。   Here, the true flow rate proportional to the flow velocity shown in FIG. 3C is set to “R1”, “R2”, “R3”, “R4” in order from the oldest flow period T11, and FIG. As shown in the figure, assuming that a pulsation noise component that is almost constant every time generated in each flow period T11 is “N1”, in the first flow period T11 in which the magnetic flux is directed in one direction, the pulsation noise with respect to the true flow rate R1. Since the component N1 has the same sign, the detected flow rate can be expressed as “R1 + N1”. On the other hand, in the second flow period T11 in which the magnetic flux is directed in the other direction, since the pulsation noise component N1 has an opposite sign with respect to the true flow rate R2, the detected flow rate can be expressed as “R2-N1”.

つまり、磁束が一の方向を向いた1回目の流動期間T11に検出された流量は、真の流量R1より脈動ノイズ成分N1だけ大きい値となり、磁束が他の方向を向いた2回目の流動期間T11に検出された流量は、真の流量R2より脈動ノイズ成分N1だけ小さい値となる。ここで、磁束が一の方向を向いたときに発生する脈動ノイズ成分N1は、1対の検知電極23,23間で検出される流量を、真の流量より増加させる本発明の「流量増加ノイズ成分」に相当し、磁束が他の方向を向いたときに発生する脈動ノイズ成分N1は、1対の検知電極23,23間で検出される流量を、真の流量より減少させる本発明の「流量減少ノイズ成分」に相当する。   That is, the flow rate detected in the first flow period T11 in which the magnetic flux is directed in one direction is a value larger by the pulsation noise component N1 than the true flow rate R1, and the second flow period in which the magnetic flux is directed in the other direction. The flow rate detected at T11 is smaller by a pulsation noise component N1 than the true flow rate R2. Here, the pulsation noise component N1 generated when the magnetic flux is directed in one direction is the “flow rate increasing noise” of the present invention, which increases the flow rate detected between the pair of detection electrodes 23, 23 from the true flow rate. The pulsation noise component N1 generated when the magnetic flux is directed in the other direction corresponds to the “component” and reduces the flow rate detected between the pair of detection electrodes 23, 23 from the true flow rate. Corresponds to the “flow reduction noise component”.

そして、これら1回目と2回目の各流動期間T11,T11にて検出された2脈分の流量の和「(R1+N1)+(R2−N1)」を演算すると、結果的に、1回目と2回目の各流動期間T11,T11にて検出された各流量に含まれる脈動ノイズ成分N1,N1(即ち、流量増加ノイズ成分と流量減少ノイズ成分)が相殺され、1回目と2回目の各流動期間T11,T11における真の流量の和「R1+R2」、即ち、積算流量が算出される。   When the sum of the flow rates of two pulses detected in the first and second flow periods T11 and T11 “(R1 + N1) + (R2−N1)” is calculated, the first and second flows are obtained. The pulsation noise components N1 and N1 (that is, the flow increase noise component and the flow decrease noise component) included in the flow rates detected in the first flow periods T11 and T11 are canceled out, and the first and second flow periods. A sum “R1 + R2” of true flow rates at T11 and T11, that is, an integrated flow rate is calculated.

1回目の流動期間T11と同様に、磁束が一の方向を向いた3回目の流動期間T11に検出された流量は「R3+N1」と表すことができる。つまり、3回目の流動期間T11に検出された流量は、流量増加ノイズ成分としての脈動ノイズ成分N1を含んでおり、真の流量R3より脈動ノイズ成分N1だけ大きい値となる。そして、2回目と3回目の各流動期間T11,T11に検出された2脈分の流量の和「(R2−N1)+(R3+N1)」を演算すると、結果的に、2回目と3回目の各流動期間T11,T11で検出された各流量に含まれる脈動ノイズ成分N1,N1(流量増加ノイズ成分と流量減少ノイズ成分)が相殺され、2回目と3回目の各流動期間T11,T11における真の流量の和「R2+R3」が算出される。この真の流量の和(即ち、1対の検知電極23,23間で検出された流量の和)を2で除した平均値「(R2+R3)/2」を3回目の流動期間T11で流れた流量として前回の積算流量「R1+R2」に加算することで、3回目の流動期間T11が終了した時点での積算流量が算出される。   Similarly to the first flow period T11, the flow rate detected in the third flow period T11 in which the magnetic flux is directed in one direction can be expressed as “R3 + N1”. That is, the flow rate detected in the third flow period T11 includes the pulsation noise component N1 as the flow rate increase noise component, and is a value larger than the true flow rate R3 by the pulsation noise component N1. When the sum of the flow rates of the two pulses detected in the second and third flow periods T11 and T11 “(R2−N1) + (R3 + N1)” is calculated, the second and third times are obtained as a result. The pulsation noise components N1 and N1 (flow rate increase noise component and flow rate decrease noise component) included in each flow rate detected in each flow period T11 and T11 are canceled out, and true in each flow period T11 and T11 for the second time and the third time. The sum of the flow rates of “R2 + R3” is calculated. The average value “(R2 + R3) / 2” obtained by dividing the sum of the true flow rates (that is, the sum of the flow rates detected between the pair of detection electrodes 23 and 23) by 2 was flown in the third flow period T11. By adding to the previous integrated flow rate “R1 + R2” as the flow rate, the integrated flow rate at the end of the third flow period T11 is calculated.

更に、2回目の流動期間T11と同様に磁束が他の方向を向いた4回目の流動期間T11に検出された流量は「R4−N1」と表すことができる。つまり、4回目の流動期間T11に検出された流量は、流量減少ノイズ成分としての脈動ノイズ成分N1を含んでおり、真の流量R4より脈動ノイズ分N1だけ小さい値となる。そして、3回目と4回目の各流動期間T11,T11に検出された2脈分の流量の和「(R3+N1)+(R4−N1)」を演算することで、結果的に、3回目と4回目の各流動期間T11,T11に検出された各流量に含まれる脈動ノイズ成分N1,N1(流量増加ノイズ成分と流量減少ノイズ成分)が相殺され、3回目と4回目の各流動期間T11,T11における真の流量の和「R3+R4」が算出される。この真の流量の和(即ち、1対の検知電極23,23間で検出された流量の和)を2で除した平均値「(R2+R3)/2」を4回目の流動期間T11で流れた流量として、前回までの積算流量に加算することで、4回目の流動期間T11が終了した時点での積算流量が算出される。   Further, the flow rate detected in the fourth flow period T11 in which the magnetic flux is directed in the other direction as in the second flow period T11 can be expressed as “R4-N1”. That is, the flow rate detected in the fourth flow period T11 includes the pulsation noise component N1 as the flow rate reduction noise component, and is a value smaller than the true flow rate R4 by the pulsation noise component N1. Then, by calculating the sum “(R3 + N1) + (R4−N1)” of the flow rates of the two pulses detected in the third and fourth flow periods T11 and T11, the third and fourth times are obtained. The pulsation noise components N1 and N1 (flow rate increase noise component and flow rate decrease noise component) included in each flow rate detected in the respective flow periods T11 and T11 are canceled, and the third and fourth flow periods T11 and T11 are canceled out. The sum of the true flow rates at “R3 + R4” is calculated. The average value “(R2 + R3) / 2” obtained by dividing the sum of the true flow rates (that is, the sum of the flow rates detected between the pair of detection electrodes 23 and 23) by 2 was flown in the fourth flow period T11. As the flow rate, by adding to the previous integrated flow rate, the integrated flow rate at the end of the fourth flow period T11 is calculated.

以下同様に、新しい流動期間T11(脈流)が発生する毎に、最新の流動期間T11と前回の流動期間T11とで検出された2脈分の流量の和を演算すると共に、その組み合わせにおける流量の平均値を前回の流動期間T11(脈流)が終了した時点での積算流量に加算する。即ち、1脈毎に積算流量を加算する。   Similarly, every time a new flow period T11 (pulsating flow) occurs, the sum of the flow rates for the two pulses detected in the latest flow period T11 and the previous flow period T11 is calculated, and the flow rate in the combination is calculated. Is added to the integrated flow rate at the end of the previous flow period T11 (pulsating flow). That is, the integrated flow rate is added for each pulse.

このように、本実施形態の電磁流量計10は、計測流路21A内の液体が流れていない滞留期間T15と、計測流路21A内に1脈分の液体が流れる流動期間T11とを、定量ポンプ40が吐出動作より予め定められた所定時間T10だけ前に出力するトリガ信号X1を受信することで判別し、励磁回路32が各滞留期間T15中に磁束の向きを反転させかつ、磁束の向きを流動期間T11毎に交互に異ならせる。ここで、磁束の有無に拘わらず1対の検知電極23,23間に発生する脈動ノイズ成分N1は、磁束が一の方向を向いたときに検出される流量を、真の流量R1,R3よりも増加させる流量増加ノイズ成分となる一方、磁束が他の方向を向いたときに検出される流量を、真の流量R2,R4よりも減少させる流量減少ノイズ成分となる。そして、複数脈分(本実施形態では、2脈分)の流量の和、即ち、磁束が一の方向を向いたときに検出される所定の脈数分(1脈分)の流量と、磁束が他の方向を向いたときに検出される同一脈数分(1脈分)の流量との和を演算することで、同じ脈数分の流量増加ノイズ成分と流量減少ノイズ成分とを相殺させることができる。これにより、定量ポンプ40により間欠的な脈流となって流される流体の流量を正確に計測することが可能になる。   As described above, the electromagnetic flow meter 10 of the present embodiment quantifies the residence period T15 in which the liquid in the measurement channel 21A does not flow and the flow period T11 in which one pulse of liquid flows in the measurement channel 21A. The pump 40 determines by receiving a trigger signal X1 that is output only a predetermined time T10 before the discharge operation, and the excitation circuit 32 reverses the direction of the magnetic flux during each stay period T15, and the direction of the magnetic flux. Are alternately changed for each flow period T11. Here, regardless of the presence or absence of magnetic flux, the pulsation noise component N1 generated between the pair of detection electrodes 23 and 23 has a flow rate detected when the magnetic flux is directed in one direction from the true flow rates R1 and R3. The flow rate increase noise component is also increased, while the flow rate detected when the magnetic flux is directed in the other direction is a flow rate decrease noise component that decreases the true flow rates R2 and R4. The sum of the flow rates of a plurality of pulses (in this embodiment, 2 pulses), that is, the flow rate of a predetermined number of pulses (one pulse) detected when the magnetic flux is directed in one direction, and the magnetic flux The flow increase noise component and the flow decrease noise component for the same number of pulses are canceled out by calculating the sum of the flow rate for the same number of pulses (one pulse) that is detected when the head is directed in the other direction. be able to. This makes it possible to accurately measure the flow rate of the fluid that flows as an intermittent pulsating flow by the metering pump 40.

[第2実施形態]
上記第1実施形態では、1脈分の液体が流れる毎に磁束の向きを反転させていたが、本実施形態では、予め定められた所定複数脈流回数分(本実施形態では、例えば3脈分)の液体が流れる毎に、磁束を反転させるようにしてある。その他の構成は、上記第1実施形態と同一であるので、重複する説明は省略する。
[Second Embodiment]
In the first embodiment, the direction of the magnetic flux is reversed every time the liquid for one pulse flows. However, in this embodiment, a predetermined number of pulsations (for example, three pulses in the present embodiment). Minute), the magnetic flux is reversed. The other configuration is the same as that of the first embodiment, and a duplicate description is omitted.

電磁流量計10に備えたコントロール回路31は、トリガ信号X1が予め定められた所定複数回(3回)入力する毎に1回、励磁回路32に駆動指令を出力するように構成され、励磁回路32は駆動指令が入力する毎に切替スイッチ35を切り替える。ここで、コントロール回路31は、本発明の「脈流カウント手段」に相当する。   The control circuit 31 provided in the electromagnetic flow meter 10 is configured to output a drive command to the excitation circuit 32 once every time the trigger signal X1 is input a predetermined predetermined number of times (three times). 32 switches the changeover switch 35 every time a drive command is input. Here, the control circuit 31 corresponds to the “pulsating flow counting means” of the present invention.

そして、磁束が一の方向を向いたときに検出された流量増加ノイズ成分としての脈動ノイズ成分N1を含む複数脈流回数分(3脈分)の流量と、磁束が他の方向を向いたときに検出された流量減少ノイズ成分としての脈動ノイズ成分N1を含む同一複数脈流回数分(3脈分)との計6脈分の流量の和を演算することで、複数脈流回数分(3脈分)の流量増加ノイズ成分と、同一複数脈流回数分(3脈分)の流量減少ノイズ成分とを相殺することができる。本実施形態の構成でも、上記第1実施形態と同等の効果を奏する。なお、上記した所定複数脈流回数は、3脈分に限定するものではない。   When the magnetic flux is directed in the other direction, the flow rate corresponding to a plurality of pulsating flows (three pulses) including the pulsation noise component N1 as the flow increase noise component detected when the magnetic flux is directed in one direction, and the magnetic flux is directed in the other direction. By calculating the sum of the flow rate for a total of 6 pulses including the same multiple pulsation frequency count (3 pulsations) including the pulsation noise component N1 as the flow rate reduction noise component detected in (3), the multiple pulsation frequency count (3 It is possible to cancel out the flow rate increase noise component (pulse amount) and the flow rate decrease noise component corresponding to the same plural number of pulsating flows (for three pulses). The configuration of this embodiment also has the same effect as the first embodiment. Note that the predetermined number of pulsating flows is not limited to three.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記第1実施形態では、流量増加ノイズ成分としての脈動ノイズ成分N1を含む1脈分の流量と、流量減少ノイズ成分としての脈動ノイズ成分N1を含む1脈分の流量との和を演算して、それらの各流量に含まれる脈動ノイズ成分N1,N1を相殺していたが、流量増加ノイズ成分を含む複数脈分の流量と、流量減少ノイズ成分を含む同一複数脈分の流量との和を演算して、脈動ノイズ成分N1,N1を相殺してもよい。   (1) In the first embodiment, the sum of the flow rate for one pulse including the pulsation noise component N1 as the flow rate increase noise component and the flow rate for one pulse including the pulsation noise component N1 as the flow rate decrease noise component is calculated. The pulsation noise components N1 and N1 included in the respective flow rates are canceled out, and the flow rate for the plurality of pulses including the flow rate increase noise component and the flow rate for the same plurality of pulses including the flow rate decrease noise component are calculated. May be calculated to cancel the pulsating noise components N1 and N1.

(2)上記第1実施形態では、磁束が反転しかつ連続した2脈分の流量の和を演算すると共に、その和を演算する2つの脈流の組み合わせを、順次1つずつずらして、1脈毎に積算流量を加算していたが、例えば、1〜10回目の各流動期間T11における流量の和に、11〜20回目の各流動期間T11における流量の和を積算、21〜30回目の各流動期間T11における流量の和を積算、31〜40回目の各流動期間T11における流量の和を積算・・・、というように、連続した所定偶数脈分の流量の和を演算し、所定偶数脈毎に積算流量を加算していってもよい。   (2) In the first embodiment, the sum of the flow rates of two consecutive pulses with reversed magnetic flux is calculated, and the combination of the two pulsating flows for calculating the sum is sequentially shifted one by one. The integrated flow rate is added for each pulse. For example, the sum of the flow rates in the 11th to 20th flow periods T11 is added to the sum of the flow rates in the 1st to 10th flow periods T11, and the 21st to 30th times. The sum of the flow rates in each flow period T11 is integrated, the sum of the flow rates in the 31st to 40th flow periods T11 is integrated, and so on. The integrated flow rate may be added for each pulse.

(3)上記第1実施形態において電磁流量計10は、定量ポンプ40からのトリガ信号X1を受けて励磁を開始する構成であったが、1対の検知電極23,23間の電位差が、予め設定した所定値以下になった場合に流動期間T11から滞留期間T15に移行したと判別し、この滞留期間T15に励磁を開始するようにしてもよい。   (3) In the first embodiment, the electromagnetic flow meter 10 is configured to start excitation in response to the trigger signal X1 from the metering pump 40. However, the potential difference between the pair of detection electrodes 23 and 23 is determined in advance. It may be determined that the flow period T11 has shifted to the dwell period T15 when the value is equal to or less than the set predetermined value, and excitation may be started during the dwell period T15.

(4)また、定量ポンプ40が一定周期で液体を吐出するならば、電磁流量計10に時間計測手段を設けておき、定量ポンプ40の吐出周期に基づいて予め設定した時間間隔ごとに磁束の向きを反転させてもよい。   (4) In addition, if the metering pump 40 discharges liquid at a constant cycle, the electromagnetic flow meter 10 is provided with a time measuring means, and the magnetic flux is generated at a predetermined time interval based on the discharge cycle of the metering pump 40. The direction may be reversed.

(5)上記第1及び第2実施形態では、磁束の向きが反転する前後に無励磁期間を設けていたが、無励磁期間を設けずに磁束の向きを反転させてもよい。   (5) In the first and second embodiments, the non-excitation period is provided before and after the direction of the magnetic flux is reversed. However, the direction of the magnetic flux may be reversed without providing the non-excitation period.

(6)サンプリング回路33によるサンプリング期間と流動期間T11の長さは同じである必要はなく、サンプリング期間の長さが流動期間T11の長さ以上かつ、定常期間T13の長さ以下であればよい。   (6) The length of the sampling period by the sampling circuit 33 and the flow period T11 do not have to be the same, and the length of the sampling period may be not less than the length of the flow period T11 and not more than the length of the steady period T13. .

10 電磁流量計
21A 計測流路
22 電磁コイル
23,23 検知電極
31 コントロール回路
32 励磁回路
40 定量ポンプ
T11 流動期間
T15 滞留期間
X1 トリガ信号
DESCRIPTION OF SYMBOLS 10 Electromagnetic flowmeter 21A Measurement flow path 22 Electromagnetic coil 23, 23 Detection electrode 31 Control circuit 32 Excitation circuit 40 Metering pump T11 Flow period T15 Residence period X1 Trigger signal

Claims (5)

流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、前記計測流路の側方に配置された電磁コイルから前記計測流路内の流体に磁束を付与し、前記1対の検知電極間に生じた電位差に基づいて、前記流体の流量を検出する電磁流量計において、
前記計測流路内の流体が流れていない滞留期間と、前記計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、
前記脈流状態判別手段による判別結果に基づき、各前記滞留期間中に前記磁束の向きを反転させ、前記磁束の向きを前記流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、
数脈分の流量の和を演算することを特徴とする電磁流量計。
A pair of detection electrodes are arranged opposite to each other in a measurement flow path in which a fluid flows as an intermittent pulsating flow from a metering pump, and an electromagnetic coil disposed on the side of the measurement flow path allows the measurement flow path to enter the measurement flow path. In an electromagnetic flowmeter that applies a magnetic flux to the fluid of the fluid and detects the flow rate of the fluid based on a potential difference generated between the pair of sensing electrodes.
A pulsating flow state discriminating means for discriminating a residence period in which the fluid in the measurement channel does not flow and a flow period in which one pulse of fluid flows in the measurement channel;
Coil excitation control means for reversing the direction of the magnetic flux during each stay period based on the determination result by the pulsating flow state determination means, and alternately changing the direction of the magnetic flux for each flow period,
Electromagnetic flow meter, wherein the benzalkonium to calculating the flow rate sum of the multiple pulse min.
流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、前記計測流路の側方に配置された電磁コイルから前記計測流路内の流体に磁束を付与し、前記1対の検知電極間に生じた電位差に基づいて、前記流体の流量を検出する電磁流量計において、A pair of detection electrodes are arranged opposite to each other in a measurement flow path in which a fluid flows as an intermittent pulsating flow from a metering pump, and an electromagnetic coil disposed on the side of the measurement flow path allows the measurement flow path to enter the measurement flow path. In an electromagnetic flowmeter that applies a magnetic flux to the fluid of the fluid and detects the flow rate of the fluid based on a potential difference generated between the pair of sensing electrodes.
前記計測流路内の流体が流れていない滞留期間と、前記計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、A pulsating flow state discriminating means for discriminating a residence period in which the fluid in the measurement channel does not flow and a flow period in which one pulse of fluid flows in the measurement channel;
前記脈流状態判別手段による判別結果に基づき、各前記滞留期間中に前記磁束の向きを反転させ、前記磁束の向きを前記流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、Coil excitation control means for reversing the direction of the magnetic flux during each stay period based on the determination result by the pulsating flow state determination means, and alternately changing the direction of the magnetic flux for each flow period,
連続した偶数個の脈流分毎に流量の相加平均を演算し、その相加平均を積算して前記流体の流量を演算することを特徴とする電磁流量計。An electromagnetic flow meter that calculates an arithmetic average of flow rates for every even number of continuous pulsating flows, and calculates the flow rate of the fluid by integrating the arithmetic averages.
流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、前記計測流路の側方に配置された電磁コイルから前記計測流路内の流体に磁束を付与し、前記1対の検知電極間に生じた電位差に基づいて、前記流体の流量を検出する電磁流量計において、A pair of detection electrodes are arranged opposite to each other in a measurement flow path in which a fluid flows as an intermittent pulsating flow from a metering pump, and an electromagnetic coil disposed on the side of the measurement flow path allows the measurement flow path to enter the measurement flow path. In an electromagnetic flowmeter that applies a magnetic flux to the fluid of the fluid and detects the flow rate of the fluid based on a potential difference generated between the pair of sensing electrodes.
前記計測流路内の流体が流れていない滞留期間と、前記計測流路内に1脈分の流体が流れる流動期間とを判別するための脈流状態判別手段と、A pulsating flow state discriminating means for discriminating a residence period in which the fluid in the measurement channel does not flow and a flow period in which one pulse of fluid flows in the measurement channel;
前記脈流状態判別手段による判別結果に基づき、各前記滞留期間中に前記磁束の向きを反転させ、前記磁束の向きを前記流動期間毎に交互に異ならせるコイル励磁制御手段とを備え、Coil excitation control means for reversing the direction of the magnetic flux during each stay period based on the determination result by the pulsating flow state determination means, and alternately changing the direction of the magnetic flux for each flow period,
連続した偶数個の脈流分毎に流量の和を演算し、その和を積算して前記流体の流量を演算することを特徴とする電磁流量計。An electromagnetic flowmeter that calculates a sum of flow rates for every even number of continuous pulsating flows, and calculates the flow rate of the fluid by adding the sums.
前記脈流状態判別手段は、前記定量ポンプが吐出動作より予め定められた所定時間だけ前に出力するトリガ信号を受けて、前記滞留期間と前記流動期間とを判別するように構成されたことを特徴とする請求項1乃至3の何れか1の請求項に記載の電磁流量計。The pulsating flow state determining means is configured to receive the trigger signal output by the metering pump a predetermined time before the discharge operation and determine the staying period and the flow period. The electromagnetic flow meter according to any one of claims 1 to 3, wherein the electromagnetic flow meter is characterized in that 流体が定量ポンプから間欠的な脈流となって流される計測流路内に1対の検知電極を対向配置すると共に、前記計測流路の側方に配置された電磁コイルから前記計測流路内の流体に磁束を付与し、前記1対の検知電極間に生じた電位差に基づいて、前記流体の流量を検出する電磁流量計において、A pair of detection electrodes are arranged opposite to each other in a measurement flow path in which a fluid flows as an intermittent pulsating flow from a metering pump, and an electromagnetic coil disposed on the side of the measurement flow path allows the measurement flow path to enter the measurement flow path. In an electromagnetic flowmeter that applies a magnetic flux to the fluid of the fluid and detects the flow rate of the fluid based on a potential difference generated between the pair of sensing electrodes.
前記流体の脈流回数をカウントする脈流カウント手段と、Pulsating flow counting means for counting the number of pulsating flows of the fluid;
前記脈流カウント手段によるカウント結果に基づき、予め定められた所定の複数脈流回数分の流体が流れる毎に前記磁束の向きを反転させるコイル励磁制御手段とを備え、Coil excitation control means for reversing the direction of the magnetic flux every time a predetermined number of pulsating flow times flows based on the counting result by the pulsating flow counting means,
複数脈分の流量の和を演算することを特徴とする電磁流量計。  An electromagnetic flowmeter that calculates the sum of the flow rates of multiple pulses.
JP2010063555A 2010-03-19 2010-03-19 Electromagnetic flow meter Active JP5630807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063555A JP5630807B2 (en) 2010-03-19 2010-03-19 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063555A JP5630807B2 (en) 2010-03-19 2010-03-19 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JP2011196811A JP2011196811A (en) 2011-10-06
JP5630807B2 true JP5630807B2 (en) 2014-11-26

Family

ID=44875230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063555A Active JP5630807B2 (en) 2010-03-19 2010-03-19 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP5630807B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115328B (en) * 2018-07-15 2020-10-30 东北石油大学 Automatic monitoring analyzer for electromagnetic noise of oil transportation pump unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759941Y2 (en) * 1977-11-14 1982-12-21
JP2687261B2 (en) * 1991-10-03 1997-12-08 山武ハネウエル株式会社 Electromagnetic flow meter
JP2001194195A (en) * 2000-01-13 2001-07-19 Yokogawa Electric Corp Electromagnetic flow meter, and filling apparatus using the electromagnetic flow meter
JP3595244B2 (en) * 2000-06-06 2004-12-02 株式会社山武 Filling machine
JP4683412B2 (en) * 2005-05-11 2011-05-18 愛知時計電機株式会社 Electromagnetic flow meter
JP4986043B2 (en) * 2007-06-07 2012-07-25 愛知時計電機株式会社 Electromagnetic flow meter

Also Published As

Publication number Publication date
JP2011196811A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2010079568A1 (en) Flow rate measurement device
EP2631610B1 (en) Flow-rate measurement device
RU2013157314A (en) ELECTROMAGNETIC FLOW METER WITH VARIABLE FREQUENCY
AU2009290654B2 (en) Bi-directional fluidic oscillator flow meter
KR100440759B1 (en) Flow rate measuring device
KR101744682B1 (en) Vibratory flowmeter and method for average flow rate
JP5630807B2 (en) Electromagnetic flow meter
JP6183309B2 (en) Flow meter and insulation deterioration diagnosis system
JP4986043B2 (en) Electromagnetic flow meter
JP6481443B2 (en) Electromagnetic flow meter
JP2006292377A (en) Ultrasonic type gas meter
JP6229852B2 (en) Electromagnetic flow meter
CN111417841B (en) Method for determining the viscosity of a medium by means of a coriolis mass flowmeter and coriolis mass flowmeter for carrying out the method
JP2004144744A (en) Ultrasonic flowmeter
JP2010019858A (en) Ultrasonic flowmeter
JP5489167B2 (en) Electromagnetic flow meter
JP2008286540A (en) Electromagnetic flowmeter
JP2002062179A (en) Gas meter
CN213147944U (en) Magnetic flowmeter
RU2489686C2 (en) Electromagnetic method of flow measurement
JP2014109450A (en) Electromagnetic flowmeter
JP2019191108A (en) Pulse output device, electromagnetic flowmeter, and pulse output method
RU2650720C1 (en) Vibration flowmeter and a method for generating digital frequency output signals
JP2006058222A (en) Method and apparatus for sensing flow rate
JP5548951B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5630807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250