JP5629814B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5629814B2
JP5629814B2 JP2013248569A JP2013248569A JP5629814B2 JP 5629814 B2 JP5629814 B2 JP 5629814B2 JP 2013248569 A JP2013248569 A JP 2013248569A JP 2013248569 A JP2013248569 A JP 2013248569A JP 5629814 B2 JP5629814 B2 JP 5629814B2
Authority
JP
Japan
Prior art keywords
layer
side end
light emitting
composition ratio
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248569A
Other languages
Japanese (ja)
Other versions
JP2014039075A (en
Inventor
浩一 橘
浩一 橘
年輝 彦坂
年輝 彦坂
重哉 木村
重哉 木村
名古 肇
肇 名古
布上 真也
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013248569A priority Critical patent/JP5629814B2/en
Publication of JP2014039075A publication Critical patent/JP2014039075A/en
Application granted granted Critical
Publication of JP5629814B2 publication Critical patent/JP5629814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体発光素子に関する。   The present invention relates to a semiconductor light emitting device.

窒化ガリウム(GaN)などの窒化物系III−V族化合物半導体を応用して、高輝度の紫外〜青色・緑色発光ダイオード(LED:Light Emitting Diode)や青紫色〜青色・緑色レーザダイオード(LD:Laser Diode)などの半導体発光素子が開発されている。   Applying nitride-based III-V group compound semiconductors such as gallium nitride (GaN), high-intensity ultraviolet to blue / green light-emitting diodes (LEDs) and blue-violet to blue / green laser diodes (LDs) Semiconductor light emitting devices such as laser diodes have been developed.

LEDの高効率化のためには、GaN系半導体の結晶性を高め、結晶の内部量子効率を高めることが重要である。
また、GaN系半導体、及び、基板として用いられるサファイアなどは、屈折率が非常に高いため、半導体発光素子のチップ内部で多重反射し、光取り出し効率が低くなりやすい。
In order to increase the efficiency of LEDs, it is important to increase the crystallinity of the GaN-based semiconductor and increase the internal quantum efficiency of the crystal.
In addition, since GaN-based semiconductors and sapphire used as a substrate have a very high refractive index, they are subject to multiple reflections inside the chip of the semiconductor light emitting device, and light extraction efficiency tends to be low.

特許文献1には、内部量子効率と輝度を改善し動作電圧を低減するために、n型窒化物半導体層に隣接した量子井戸層のエネルギーバンドギャップをp型窒化物半導体層に隣接した量子井戸層よりも大きくする構成が提案されている。
しかしながら、この技術においても効率の向上には改良の余地がある。
Patent Document 1 discloses that the quantum well layer adjacent to the p-type nitride semiconductor layer has the energy band gap of the quantum well layer adjacent to the n-type nitride semiconductor layer in order to improve internal quantum efficiency and luminance and reduce the operating voltage. Configurations that are larger than the layers have been proposed.
However, even in this technique, there is room for improvement in improving efficiency.

特開2007−123878号公報JP 2007-123878 A

本発明は、内部量子効率が高く、光取り出し効率が高い半導体発光素子を提供する。   The present invention provides a semiconductor light emitting device having high internal quantum efficiency and high light extraction efficiency.

本発明の一態様によれば、窒化物半導体を含むn型半導体層と、窒化物半導体を含むp型半導体層と、前記n型半導体層と前記p型半導体層との間に設けられ、交互に積層された、複数の障壁層と、複数の井戸層と、を有する発光部と、を備え、前記n型半導体層は、n型層と、前記n型層と前記発光部との間に設けられたInを含む窒化物半導体層とを含み、前記複数の井戸層のうちで前記n型半導体層に最も近いn側端井戸層は、InwnGa1−wnNを含み、層厚twn(ナノメートル)を有し、前記複数の障壁層のうちで前記n型半導体層に最も近いn側端障壁層は、InbnGa1−bnNを含み、層厚tbn(ナノメートル)を有し、前記複数の井戸層のうちで前記p型半導体層に最も近いp側端井戸層は、InwpGa1−wpNを含み、前記層厚twnよりも厚い層厚twp(ナノメートル)を有し、前記p側端井戸層よりも前記n型半導体層の側において、前記複数の障壁層のうちで前記p型半導体層に最も近いp側端障壁層は、InbpGa1−bpNを含み、層厚tbp(ナノメートル)を有し、前記wn及び前記wpは、前記bn及び前記bpよりも大きく、n側端平均In組成比を(wn×twn+bn×tbn)/(twn+tbn)とし、p側端平均In組成比を(wp×twp+bp×tbp)/(twp+tbp)としたとき、前記p側端平均In組成比は、前記n側端平均In組成比の1.9倍以上、前記n側端平均In組成比の2.1倍以下であることを特徴とする半導体発光素子が提供される。 According to one embodiment of the present invention, an n-type semiconductor layer including a nitride semiconductor, a p-type semiconductor layer including a nitride semiconductor, and the n-type semiconductor layer and the p-type semiconductor layer are provided alternately. A light-emitting portion having a plurality of barrier layers and a plurality of well layers, and the n-type semiconductor layer is interposed between the n-type layer, the n-type layer, and the light-emitting portion. And an n-side end well layer closest to the n-type semiconductor layer among the plurality of well layers includes In wn Ga 1-wn N and has a layer thickness t The n-side end barrier layer that has wn (nanometer) and is closest to the n-type semiconductor layer among the plurality of barrier layers includes In bn Ga 1-bn N, and has a layer thickness t bn (nanometer) And the p-side end well layer closest to the p-type semiconductor layer among the plurality of well layers is In wp The plurality of barrier layers including Ga 1-wp N, having a layer thickness t wp (nanometer) thicker than the layer thickness t wn, and closer to the n-type semiconductor layer than the p-side end well layer The p-side end barrier layer closest to the p-type semiconductor layer includes In bp Ga 1-bp N, has a layer thickness t bp (nanometer), and the wn and the wp are the bn and The n-side end average In composition ratio is (wn × t wn + bn × t bn ) / (t wn + t bn ), and the p-side end average In composition ratio is (wp × t wp + bp × t bp). ) / (T wp + t bp ), the p-side end average In composition ratio is 1.9 times or more of the n-side end average In composition ratio and 2.1 times the n-side end average In composition ratio. A semiconductor light-emitting device characterized by the following is provided.

本発明によれば、内部量子効率が高く、光取り出し効率が高い半導体発光素子が提供される。   According to the present invention, a semiconductor light emitting device having high internal quantum efficiency and high light extraction efficiency is provided.

半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子の一部を示す模式的断面図である。It is typical sectional drawing which shows a part of semiconductor light-emitting device. 半導体発光素子に関する実験結果を示すグラフ図である。It is a graph which shows the experimental result regarding a semiconductor light-emitting device. 実施形態及び比較例の半導体発光素子の特性を示すグラフ図である。It is a graph which shows the characteristic of the semiconductor light emitting element of embodiment and a comparative example.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

(実施の形態)
図1は、本発明の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。
図2は、本発明の実施形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
図1に表したように、本発明の実施形態に係る半導体発光素子110は、窒化物半導体を含むn型半導体層10と、窒化物半導体を含むp型半導体層20と、n型半導体層10とp型半導体層20との間に設けられた発光部30と、を備える。
(Embodiment)
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to an embodiment of the invention.
FIG. 2 is a schematic cross-sectional view illustrating the configuration of a part of the semiconductor light emitting element according to the embodiment of the invention.
As shown in FIG. 1, the semiconductor light emitting device 110 according to the embodiment of the present invention includes an n-type semiconductor layer 10 including a nitride semiconductor, a p-type semiconductor layer 20 including a nitride semiconductor, and an n-type semiconductor layer 10. And the light emitting unit 30 provided between the p-type semiconductor layer 20 and the p-type semiconductor layer 20.

発光部30は、交互に積層された、複数の障壁層31と、複数の井戸層32と、を有する。例えば、発光部30は、複数の障壁層31と、複数の障壁層31それぞれの間に設けられた井戸層32と、を有する。   The light emitting unit 30 includes a plurality of barrier layers 31 and a plurality of well layers 32 that are alternately stacked. For example, the light emitting unit 30 includes a plurality of barrier layers 31 and a well layer 32 provided between each of the plurality of barrier layers 31.

図1に例示したように、n型半導体層10、発光部30及びp型半導体層20は、Z軸方向に沿って積層される。   As illustrated in FIG. 1, the n-type semiconductor layer 10, the light emitting unit 30, and the p-type semiconductor layer 20 are stacked along the Z-axis direction.

図1に例示したように、n型半導体層10は、例えば、n型GaN層11と、n型GaN層11と発光部30との間に設けられたn型ガイド層12と、を有することができる。n型ガイド層12には、例えば、Siなどのn型不純物がドープされたGaNやInGaNが用いられる。   As illustrated in FIG. 1, the n-type semiconductor layer 10 includes, for example, an n-type GaN layer 11 and an n-type guide layer 12 provided between the n-type GaN layer 11 and the light emitting unit 30. Can do. For the n-type guide layer 12, for example, GaN or InGaN doped with an n-type impurity such as Si is used.

p型半導体層20は、例えば、p型GaNコンタクト層22と、p型GaNコンタクト層22と発光部30との間に設けられた第1p型ガイド層21aと、p型GaNコンタクト層22と第1p型ガイド層21aとの間に設けられた第2p型ガイド層21bと、第1p型ガイド層21aと第2p型ガイド層21bとの間に設けられた第3p型ガイド層21cと、を有することができる。第3p型ガイド層21cは、例えば、電子オーバーフロー層として機能する。p型半導体層20には、例えばMgなどのp型不純物がドープされる。   The p-type semiconductor layer 20 includes, for example, a p-type GaN contact layer 22, a first p-type guide layer 21 a provided between the p-type GaN contact layer 22 and the light emitting unit 30, a p-type GaN contact layer 22, and a first p-type GaN contact layer 22. A second p-type guide layer 21b provided between the first p-type guide layer 21a and a third p-type guide layer 21c provided between the first p-type guide layer 21a and the second p-type guide layer 21b. be able to. The third p-type guide layer 21c functions as an electron overflow layer, for example. The p-type semiconductor layer 20 is doped with a p-type impurity such as Mg.

図1に表したように、本実施形態に係る半導体発光素子110は、例えばサファイアからなる基板5と、その上に設けられたバッファ層6と、バッファ層6の上に設けられたn型GaN層11と、n型GaN層11の上に設けられたn型ガイド層12と、を含むことができる。   As shown in FIG. 1, the semiconductor light emitting device 110 according to this embodiment includes a substrate 5 made of, for example, sapphire, a buffer layer 6 provided thereon, and an n-type GaN provided on the buffer layer 6. The layer 11 and the n-type guide layer 12 provided on the n-type GaN layer 11 can be included.

そして、n型ガイド層12の上に発光部30(障壁層31及び井戸層32)が設けられる。   Then, the light emitting unit 30 (the barrier layer 31 and the well layer 32) is provided on the n-type guide layer 12.

発光部30の上に第1p型ガイド層21aが設けられ、第1p型ガイド層21aの上に第3p型ガイド層21cが設けられ、第3p型ガイド層21cの上に第2p型ガイド層21bが設けられ、第2p型ガイド層21bの上にp型GaNコンタクト層22が設けられる。   A first p-type guide layer 21a is provided on the light emitting unit 30, a third p-type guide layer 21c is provided on the first p-type guide layer 21a, and a second p-type guide layer 21b is provided on the third p-type guide layer 21c. The p-type GaN contact layer 22 is provided on the second p-type guide layer 21b.

上記のような構成を有する積層構造体のp型半導体層20の側の第1主面において、n型半導体層10の一部と、発光部30と、p型半導体層20と、の一部が除去され、第1主面の側においてn型半導体層10が露出している。露出したn型半導体層10に接してn側電極71が設けられ、p型半導体層20に接してp側電極81が設けられる。さらに、p側電極81に接してp側パッド電極82を設けることができる。   Part of the n-type semiconductor layer 10, the light emitting unit 30, and the p-type semiconductor layer 20 on the first main surface on the p-type semiconductor layer 20 side of the stacked structure having the above configuration. The n-type semiconductor layer 10 is exposed on the first main surface side. An n-side electrode 71 is provided in contact with the exposed n-type semiconductor layer 10, and a p-side electrode 81 is provided in contact with the p-type semiconductor layer 20. Further, a p-side pad electrode 82 can be provided in contact with the p-side electrode 81.

図2に表したように、半導体発光素子110の発光部30においては、複数の障壁層31と複数の井戸層32とが、互いに交互に積層される。   As shown in FIG. 2, in the light emitting unit 30 of the semiconductor light emitting device 110, a plurality of barrier layers 31 and a plurality of well layers 32 are alternately stacked.

複数の井戸層32のうちでn型半導体層10に最も近いn側端井戸層32n1は、InwnGa1−wnNを含む。すなわち、n側端井戸層32n1のIn組成比は、wnである。そして、n側端井戸層32n1のZ軸方向に沿った厚さを、層厚twn(n側端井戸層厚twn、ナノメートル)とする。 N-side end well layer 32n1 closest to the n-type semiconductor layer 10 among the plurality of well layers 32 include In wn Ga 1-wn N. That is, the In composition ratio of the n-side end well layer 32n1 is wn. The thickness of the n-side end well layer 32n1 along the Z-axis direction is defined as a layer thickness t wn (n-side end well layer thickness t wn , nanometer).

また、複数の障壁層31のうちでn型半導体層10に最も近いn側端障壁層31n1は、InbnGa1−bnNを含む。すなわち、n側端障壁層31n1のIn組成比は、bnである。そして、n側端障壁層31n1のZ軸方向に沿った厚さを、層厚tbn(n側端障壁層厚tbn、ナノメートル)とする。 In addition, the n-side end barrier layer 31 n 1 closest to the n-type semiconductor layer 10 among the plurality of barrier layers 31 includes In bn Ga 1-bn N. That is, the In composition ratio of the n-side end barrier layer 31n1 is bn. The thickness of the n-side end barrier layer 31n1 along the Z-axis direction is defined as a layer thickness t bn (n-side end barrier layer thickness t bn , nanometer).

また、複数の井戸層32のうちでp型半導体層20に最も近いp側端井戸層32p1は、InwpGa1−wpNを含む。すなわち、p側端井戸層32p1のIn組成比は、wpである。そして、p側端井戸層32p1のZ軸方向に沿った厚さを、層厚twp(p側端井戸層厚twp、ナノメートル)とする。 Further, p-side end well layer 32p1 closest to the p-type semiconductor layer 20 among the plurality of well layers 32 include In wp Ga 1-wp N. That is, the In composition ratio of the p-side end well layer 32p1 is wp. The thickness of the p-side end well layer 32p1 along the Z-axis direction is defined as a layer thickness t wp (p-side end well layer thickness t wp , nanometer).

また、p側端井戸層32p1よりもn型半導体層10の側において、複数の障壁層31のうちでp型半導体層20に最も近いp側端障壁層31p1は、InbpGa1−bpNを含む。すなわち、p側端障壁層31p1のIn組成比は、wpである。p側端障壁層31p1のZ軸方向に沿った厚さを層厚tbp(p側端障壁層厚tbp、ナノメートル)とする。 Further, the p-side end barrier layer 31p1 closest to the p-type semiconductor layer 20 among the plurality of barrier layers 31 on the side of the n-type semiconductor layer 10 relative to the p-side end well layer 32p1 is In bp Ga 1-bp N. including. That is, the In composition ratio of the p-side end barrier layer 31p1 is wp. The layer thickness of the thickness along the Z-axis direction of the p-side end barrier layer 31p1 t bp (p-side end barrier layer thickness t bp, nanometers) and.

なお、本具体例では、p側端井戸層32p1とp型半導体層20との間に、もう1つの障壁層32として、p側端対向障壁層31p0が設けられている。このため、p側端障壁層31p1は、複数の障壁層31のうちで2番目にp型半導体層20に近いことになる。なお、p側端対向障壁層31p0は必要に応じて設けられ、場合によっては、省略可能である。   In this specific example, a p-side end opposing barrier layer 31p0 is provided as another barrier layer 32 between the p-side end well layer 32p1 and the p-type semiconductor layer 20. For this reason, the p-side end barrier layer 31p1 is second closest to the p-type semiconductor layer 20 among the plurality of barrier layers 31. The p-side end opposing barrier layer 31p0 is provided as necessary, and may be omitted depending on circumstances.

そして、n側端平均In組成比Anを(wn×twn+bn×tbn)/(twn+tbn)とする。
そして、p側端平均In組成比Apを(wp×twp+bp×tbp)/(twp+tbp)とする。
本実施形態に係る半導体発光素子110においては、p側端平均In組成比Apは、n側端平均In組成比Anよりも大きく、n側端平均In組成比Anの5倍以下に設定される。
The n-side end average In composition ratio An is set to (wn × t wn + bn × t bn ) / (t wn + t bn ).
The p-side end average In composition ratio Ap is set to (wp × t wp + bp × t bp ) / (t wp + t bp ).
In the semiconductor light emitting device 110 according to the present embodiment, the p-side end average In composition ratio Ap is set to be larger than the n-side end average In composition ratio An and not more than 5 times the n-side end average In composition ratio An. .

このように、In平均組成比pn比Ap/Anを1よりも大きく5以下にすることで、内部量子効率を向上し、光取り出し効率を向上できる。   Thus, by setting the In average composition ratio pn ratio Ap / An to be larger than 1 and 5 or less, the internal quantum efficiency can be improved and the light extraction efficiency can be improved.

すなわち、p側端平均In組成比Apをn側端平均In組成比Anよりも大きくすることで、p側端井戸層32p1に適切な歪みが印加される。そして、n側端平均In組成比Anを低くすることで、n側端井戸層32n1における光吸収を抑制することができる。また、p側端井戸層32p1から、2番目にp型半導体層20に近い井戸層32p2への正孔の注入効率が向上する。これにより、内部量子効率を向上し、光取り出し効率を向上できる。   That is, by setting the p-side end average In composition ratio Ap to be larger than the n-side end average In composition ratio An, an appropriate strain is applied to the p-side end well layer 32p1. And light absorption in n side edge well layer 32n1 can be suppressed by making n side edge average In composition ratio An low. Also, the efficiency of hole injection from the p-side end well layer 32p1 to the well layer 32p2 second closest to the p-type semiconductor layer 20 is improved. Thereby, internal quantum efficiency can be improved and light extraction efficiency can be improved.

このような半導体発光素子110は、例えば以下のようにして製造される。
まず、サファイアからなる基板5の上に、バッファ層6を形成した後、n型不純物がドープされたn型GaN層11を結晶成長させる。n型GaN層11の厚さは、例えば4μm(マイクロメートル)程度である。
Such a semiconductor light emitting device 110 is manufactured as follows, for example.
First, after forming the buffer layer 6 on the substrate 5 made of sapphire, the n-type GaN layer 11 doped with n-type impurities is crystal-grown. The thickness of the n-type GaN layer 11 is, for example, about 4 μm (micrometer).

結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)が用いられる。この他、結晶成長には、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)などを用いることができる。n型不純物には、例えば、Si、Ge及びSnなど種々の元素を用いることが可能である。本具体例では、Siを用いる。Siのドーピング量として、例えば、2×1018cm−3程度が採用される。基板5には、サファイアの他、GaN、SiC、Si及びGaAsなど様々なものを用いることができる。 For crystal growth, for example, metal organic chemical vapor deposition (MOCVD) is used. In addition, molecular beam epitaxy (MBE) or the like can be used for crystal growth. For the n-type impurity, for example, various elements such as Si, Ge, and Sn can be used. In this specific example, Si is used. For example, about 2 × 10 18 cm −3 is employed as the Si doping amount. As the substrate 5, various materials such as GaN, SiC, Si, and GaAs can be used in addition to sapphire.

次に、n型GaN層11の上にn型ガイド層12を結晶成長させる。n型ガイド層12には、例えば、n型不純物が1×1018cm−3程度でドープされたGaNが用いられる。n型ガイド層12の厚さは、例えば、0.1μm程度とされる。 Next, the n-type guide layer 12 is crystal-grown on the n-type GaN layer 11. For the n-type guide layer 12, for example, GaN doped with n-type impurities at about 1 × 10 18 cm −3 is used. The thickness of the n-type guide layer 12 is, for example, about 0.1 μm.

n型GaN層11及びn型ガイド層12を成長させる際の成長温度は、いずれも例えば、1000℃〜1100℃である。   The growth temperature for growing the n-type GaN layer 11 and the n-type guide layer 12 is, for example, 1000 ° C. to 1100 ° C., for example.

また、n型ガイド層12として、GaNの他に、In0.01Ga0.99Nを用いることもできる。n型ガイド層12にIn0.01Ga0.99Nを用いる場合の成長温度は、例えば700℃〜800℃である。なお、n型ガイド層12にIn0.01Ga0.99Nを用いる場合においても、n型ガイド層12の厚さとして、例えば0.1μmが採用できる。 In addition to GaN, In 0.01 Ga 0.99 N can be used as the n-type guide layer 12. The growth temperature when In 0.01 Ga 0.99 N is used for the n-type guide layer 12 is, for example, 700 ° C. to 800 ° C. Even when In 0.01 Ga 0.99 N is used for the n-type guide layer 12, for example, 0.1 μm can be adopted as the thickness of the n-type guide layer 12.

次に、n型ガイド層12の上に、発光部30を形成する。例えば、障壁層31と井戸層32とを交互に積層して形成する。これにより、多重量子井戸(MQW:Multiple Quantum Well)構造が形成される。障壁層31及び井戸層32の構成は上記のように設定される。障壁層31及び井戸層32の成長温度は、例えば700℃〜800℃である。なお、障壁層31には、n型不純物を1×1018cm−3程度でドープしても良く、障壁層31は、アンドープでも良い。 Next, the light emitting unit 30 is formed on the n-type guide layer 12. For example, the barrier layers 31 and the well layers 32 are alternately stacked. Thereby, a multiple quantum well (MQW) structure is formed. The configurations of the barrier layer 31 and the well layer 32 are set as described above. The growth temperature of the barrier layer 31 and the well layer 32 is, for example, 700 ° C. to 800 ° C. The barrier layer 31 may be doped with n-type impurities at about 1 × 10 18 cm −3 , and the barrier layer 31 may be undoped.

発光部30の上に、第1p型ガイド層21aを成長させる。第1p型ガイド層21aにはGaNが用いられる。第1p型ガイド層21aの厚さは、30nm程度以下とされる。第1p型ガイド層21aとなるGaNの成長温度は、例えば1000℃〜1100℃である。p型不純物としては、例えば、MgやZnなど種々の元素を用いることが可能である。ここではMgを用いるものとする。Mgのドーピング量は、4×1018cm−3程度とされる。また、第1p型ガイド層21aとして、例えば、In0.01Ga0.99Nを用いることができる。このときの第1p型ガイド層21aの厚さは、30nm程度とされる。In0.01Ga0.99Nを用いても良い。第1p型ガイド層21aとして、In0.01Ga0.99Nを用いる場合の成長温度は、例えば700℃〜800℃とされる。 A first p-type guide layer 21 a is grown on the light emitting unit 30. GaN is used for the first p-type guide layer 21a. The thickness of the first p-type guide layer 21a is about 30 nm or less. The growth temperature of GaN serving as the first p-type guide layer 21a is, for example, 1000 ° C. to 1100 ° C. As the p-type impurity, for example, various elements such as Mg and Zn can be used. Here, Mg is used. The doping amount of Mg is about 4 × 10 18 cm −3 . In addition, for example, In 0.01 Ga 0.99 N can be used as the first p-type guide layer 21a. At this time, the thickness of the first p-type guide layer 21a is about 30 nm. In 0.01 Ga 0.99 N may be used. The growth temperature in the case where In 0.01 Ga 0.99 N is used as the first p-type guide layer 21 a is set to 700 ° C. to 800 ° C., for example.

次に、第1p型ガイド層21aの上に、第3p型ガイド層21cを形成する。第3p型ガイド層21cには、p型不純物がドープされたAl0.2Ga0.8Nを用いることができる。このときもp型不純物として、Mgを用いることができる。Mgのドーピング量は、例えば、4×1018cm−3程度とされる。第3p型ガイド層21cの厚さは、例えば、10nm程度とされる。第3p型ガイド層21cは、電子オーバーフロー防止層として機能することができる。なお、第3p型ガイド層21cに用いられるAl0.2Ga0.8Nの成長温度は1000〜1100℃である。 Next, a third p-type guide layer 21c is formed on the first p-type guide layer 21a. Al 0.2 Ga 0.8 N doped with p-type impurities can be used for the third p-type guide layer 21c. Also at this time, Mg can be used as the p-type impurity. The doping amount of Mg is, for example, about 4 × 10 18 cm −3 . The thickness of the third p-type guide layer 21c is, for example, about 10 nm. The third p-type guide layer 21c can function as an electron overflow prevention layer. The growth temperature of Al 0.2 Ga 0.8 N used for the third p-type guide layer 21 c is 1000 to 1100 ° C.

次に、第3p型ガイド層21cの上に、第2p型ガイド層21bを成長させる。第2p型ガイド層21bには、例えば、p型GaN層が用いられる。この場合もp型不純物としてMgを用いることができる。Mgは、例えば1×1019cm−3程度でドープされる。第2p型ガイド層21bの厚さは、例えば、50nm程度とされる。第2p型ガイド層21bに用いられるGaN層の成長温度は、例えば1000℃〜1100℃である。 Next, the second p-type guide layer 21b is grown on the third p-type guide layer 21c. For example, a p-type GaN layer is used for the second p-type guide layer 21b. Again, Mg can be used as the p-type impurity. Mg is doped with, for example, about 1 × 10 19 cm −3 . The thickness of the second p-type guide layer 21b is, for example, about 50 nm. The growth temperature of the GaN layer used for the second p-type guide layer 21b is, for example, 1000 ° C. to 1100 ° C.

次に、第2p型ガイド層21bの上に、p型GaNコンタクト層22を形成する。p型GaNコンタクト層22には、例えば、Mgが1×1020cm−3程度でドープされたGaN層が用いられる。p型GaNコンタクト層22の厚さは、例えば60nm程度とされる。 Next, the p-type GaN contact layer 22 is formed on the second p-type guide layer 21b. For the p-type GaN contact layer 22, for example, a GaN layer doped with Mg at about 1 × 10 20 cm −3 is used. The thickness of the p-type GaN contact layer 22 is, for example, about 60 nm.

このような順次結晶成長を行ったウェーハに対して、以下のデバイスプロセスが実施される。
p型GaNコンタクト層22の上に、例えば酸化インジウム錫(ITO)からなるp側電極81が形成される。ITOの厚さは、例えば0.2μmである。ITOの一部の上にはp側パッド電極82として、厚さが例えば1.0μmのAu膜が形成される。
The following device process is performed on the wafer on which such sequential crystal growth has been performed.
A p-side electrode 81 made of indium tin oxide (ITO), for example, is formed on the p-type GaN contact layer 22. The thickness of ITO is, for example, 0.2 μm. An Au film having a thickness of, for example, 1.0 μm is formed as a p-side pad electrode 82 on a part of the ITO.

p側電極81(及びp側パッド電極82)の形成の後、上記の積層構造体の一部にドライエッチングを施し、n型GaN層11の一部を露出させ、n型GaN層11の露出した部分にn側電極71を形成する。n側電極71としては、例えば、チタン−白金−金(Ti/Pt/Au)の複合膜が用いられる。このTi膜の厚さは例えば0.05μm程度であり、Pt膜の厚さは例えば0.05μm程度であり、Au膜の厚さは例えば1.0μm程度である。   After the formation of the p-side electrode 81 (and the p-side pad electrode 82), dry etching is performed on a part of the laminated structure to expose a part of the n-type GaN layer 11, and the n-type GaN layer 11 is exposed. An n-side electrode 71 is formed in the part. As the n-side electrode 71, for example, a composite film of titanium-platinum-gold (Ti / Pt / Au) is used. The thickness of the Ti film is, for example, about 0.05 μm, the thickness of the Pt film is, for example, about 0.05 μm, and the thickness of the Au film is, for example, about 1.0 μm.

このようにして、半導体発光素子110が作製される。
そして、発光部30において、p側端平均In組成比Apをn側端平均In組成比Anよりも大きくし、n側端平均In組成比Anの5倍以下とすることで、内部量子効率が高く、光取り出し効率が高い半導体発光素子が提供できる。
In this way, the semiconductor light emitting device 110 is manufactured.
And in the light emission part 30, internal quantum efficiency is made by making p side edge average In composition ratio Ap larger than n side edge average In composition ratio An, and making it 5 times or less of n side edge average In composition ratio An. A semiconductor light emitting device that is high and has high light extraction efficiency can be provided.

以下、上記のような実施形態の構成を創出する基となった実験結果について説明する。 発明者は、以下のように、発光部30の構成が異なる2種の半導体発光素子111及び半導体発光素子119を作製し、それらの特性を評価した。   Hereinafter, experimental results that serve as a basis for creating the configuration of the embodiment as described above will be described. The inventor manufactured two types of semiconductor light emitting devices 111 and 119 having different configurations of the light emitting unit 30 as follows, and evaluated their characteristics.

半導体発光素子111は、本実施形態の構成を有するので、実施例の1つに対応する。一方、半導体発光素子119は、本実施形態の構成を有していないので比較例(第1比較例)に対応する。   Since the semiconductor light emitting element 111 has the configuration of this embodiment, it corresponds to one of the examples. On the other hand, since the semiconductor light emitting device 119 does not have the configuration of the present embodiment, it corresponds to the comparative example (first comparative example).

半導体発光素子111は、上記の製造方法を適用して作製された。半導体発光素子111の発光部30の構成及びその作製方法は以下である。
発光部30においては、n型ガイド層12の上に、まず、In0.01Ga0.99Nを含むn側端障壁層31n1を形成し、その上に、アンドープのIn0.07Ga0.93Nを含むn側端井戸層32n1を形成した。その上に、さらに、In0.01Ga0.99Nを含む障壁層31と、アンドープのIn0.07Ga0.93Nを含む井戸層32と、交互に4ペア(計8層)形成した。このように、n型半導体層10の側にIn0.07Ga0.93Nを含む井戸層32が5層形成された。上記において井戸層32の厚さは2.5nmであり、障壁層31の厚さは5.0nmである。
The semiconductor light emitting device 111 was manufactured by applying the above manufacturing method. The configuration of the light emitting unit 30 of the semiconductor light emitting device 111 and the manufacturing method thereof are as follows.
In the light emitting unit 30, first, an n-side end barrier layer 31 n 1 containing In 0.01 Ga 0.99 N is formed on the n-type guide layer 12, and an undoped In 0.07 Ga 0 is formed thereon. An n-side well layer 32n1 containing .93N was formed. Furthermore, a barrier layer 31 containing In 0.01 Ga 0.99 N and a well layer 32 containing undoped In 0.07 Ga 0.93 N are alternately formed in four pairs (a total of eight layers). did. Thus, five well layers 32 containing In 0.07 Ga 0.93 N were formed on the n-type semiconductor layer 10 side. In the above, the thickness of the well layer 32 is 2.5 nm, and the thickness of the barrier layer 31 is 5.0 nm.

さらに、その上に、In0.01Ga0.99Nを含む障壁層31と、アンドープのIn0.15Ga0.85Nを含む井戸層32と、を交互に3ペア(計6層)形成した。このように、p型半導体層20の側にIn0.15Ga0.85Nを含む井戸層32が3層形成された。そして、最もp型半導体層20に近い井戸層32の上に、さらに、p側端対向障壁層31p0として、In0.01Ga0.99N層を形成した。
この後、その上に、第1p型ガイド層21aが上記の条件によって形成された。
Further, three pairs (6 layers in total) of barrier layers 31 containing In 0.01 Ga 0.99 N and well layers 32 containing undoped In 0.15 Ga 0.85 N are formed thereon. Formed. In this way, three well layers 32 containing In 0.15 Ga 0.85 N were formed on the p-type semiconductor layer 20 side. Then, on the well layer 32 closest to the p-type semiconductor layer 20, an In 0.01 Ga 0.99 N layer was further formed as the p-side end opposing barrier layer 31p0.
Thereafter, a first p-type guide layer 21a was formed thereon under the above conditions.

このような半導体発光素子111においては、n側端井戸層32n1のIn組成比wnは0.07であり、n側端井戸層厚twnは2.5nmである。また、n側端障壁層31n1のIn組成比bnは0.01であり、n側端障壁層厚tbnは5.0nmである。そして、p側端井戸層32p1のIn組成比wpは0.15であり、p側端井戸層厚twpは2.5nmである。また、また、p側端障壁層31p1のIn組成比wpは、0.01であり、p側端障壁層厚tbpは5.0nmである。 In such a semiconductor light emitting device 111, the In composition ratio wn of the n-side end well layer 32n1 is 0.07, and the n-side end well layer thickness t wn is 2.5 nm. The n-side end barrier layer 31n1 has an In composition ratio bn of 0.01 and an n-side end barrier layer thickness t bn of 5.0 nm. The In composition ratio wp of the p-side end well layer 32p1 is 0.15, and the p-side end well layer thickness twp is 2.5 nm. Further, also, In composition ratio wp of the p-side end barrier layer 31p1 it is 0.01, the p-side end barrier layer thickness t bp is 5.0 nm.

従って、半導体発光素子111における、n側端平均In組成比An=(wn×twn+bn×tbn)/(twn+tbn)は0.030であり、p側端平均In組成比Ap=(wp×twp+bp×tbp)/(twp+tbp)は0.057となる。従って、半導体発光素子111におけるIn平均組成比pn比Ap/Anは、1.9となる。 Therefore, the n-side end average In composition ratio An = (wn × t wn + bn × t bn ) / (t wn + t bn ) in the semiconductor light emitting device 111 is 0.030, and the p-side end average In composition ratio Ap = (Wp * twp + bp * tbp ) / ( twp + tbp ) is 0.057. Therefore, the In average composition ratio pn ratio Ap / An in the semiconductor light emitting device 111 is 1.9.

なお、上記の半導体発光素子111において、n型半導体層10の側に配置された井戸層32(n側端井戸層32n1などが含まれる)に用いられている厚さが2.5nmのIn0.07Ga0.93N層から放出される光のピーク波長は、フォトルミネッセンスの評価結果から、400nmである。一方、p型半導体層20の側に配置された井戸層32(p側端井戸層32p1などが含まれる)に用いられている厚さが2.5nmのIn0.15Ga0.8N層から放出される光のピーク波長は、フォトルミネッセンスの評価結果から、450nmである。 In the semiconductor light emitting device 111 described above, In 0 having a thickness of 2.5 nm is used for the well layer 32 (including the n-side end well layer 32n1 and the like) disposed on the n-type semiconductor layer 10 side. The peak wavelength of light emitted from the 0.07 Ga 0.93 N layer is 400 nm from the evaluation result of photoluminescence. On the other hand, the In 0.15 Ga 0.8 N layer having a thickness of 2.5 nm used for the well layer 32 (including the p-side end well layer 32p1 and the like) disposed on the p-type semiconductor layer 20 side. From the evaluation result of photoluminescence, the peak wavelength of the light emitted from is 450 nm.

一方、半導体発光素子119においては、発光部30の全ての障壁層31が互いに同じ構成を有し、全ての井戸層32が互いに同じ構成を有している。
すなわち、井戸層32のIn組成比は0.15であり、井戸層32はIn0.15Ga0.85Nである。そして、井戸層32の厚さは2.5nmである。そして、障壁層31のIn組成比は0.01であり、障壁層31はIn0.01Ga0.09Nである。そして、障壁層31の厚さは5.0nmである。これ以外は、半導体発光素子111と同様である。
On the other hand, in the semiconductor light emitting device 119, all the barrier layers 31 of the light emitting unit 30 have the same configuration, and all the well layers 32 have the same configuration.
That is, the In composition ratio of the well layer 32 is 0.15, and the well layer 32 is In 0.15 Ga 0.85 N. The thickness of the well layer 32 is 2.5 nm. The In composition ratio of the barrier layer 31 is 0.01, and the barrier layer 31 is In 0.01 Ga 0.09 N. The thickness of the barrier layer 31 is 5.0 nm. Except this, it is the same as the semiconductor light emitting device 111.

半導体発光素子119においては、井戸層32のIn組成比wn及びIn組成比wpは、0.15であり、n側端井戸層厚twnは及びp側端井戸層厚twpは、2.5nmである。障壁層31のIn組成比bn及びIn組成比bpは、0.01であり、n側端障壁層厚tbn及びp側端障壁層厚tbpは、5.0nmである。そして、In平均組成比pn比Ap/Anは、1である。
このような構成を有する半導体発光素子111及び119の特性を評価した。
In the semiconductor light emitting device 119, the In composition ratio wn and the In composition ratio wp of the well layer 32 are 0.15, the n-side end well layer thickness t wn and the p-side end well layer thickness t wp are 2. 5 nm. The barrier layer 31 has an In composition ratio bn and an In composition ratio bp of 0.01, and the n-side end barrier layer thickness t bn and the p-side end barrier layer thickness t bp are 5.0 nm. The In average composition ratio pn ratio Ap / An is 1.
The characteristics of the semiconductor light emitting devices 111 and 119 having such a configuration were evaluated.

図3は、半導体発光素子に関する実験結果を例示するグラフ図である。
すなわち、図3(a)及び図3(b)は、半導体発光素子111及び119の特性の測定結果を例示している。これらの図において、横軸は波長λ(nm)であり、縦軸は、発光強度ELI(mW/nm)である。
FIG. 3 is a graph illustrating the experimental results regarding the semiconductor light emitting device.
That is, FIG. 3A and FIG. 3B illustrate measurement results of characteristics of the semiconductor light emitting devices 111 and 119. In these figures, the horizontal axis is the wavelength λ (nm) and the vertical axis is the emission intensity ELI (mW / nm).

図3(a)に示したように、半導体発光素子111の発光強度ELIの最大値は、約0.74mW/nmである。一方、半導体発光素子119の発光強度ELIの最大値は、約0.62mW/nmである。このように、半導体発光素子111は、半導体発光素子119に比べて、発光強度ELIが高い。   As shown in FIG. 3A, the maximum value of the emission intensity ELI of the semiconductor light emitting device 111 is about 0.74 mW / nm. On the other hand, the maximum value of the emission intensity ELI of the semiconductor light emitting device 119 is about 0.62 mW / nm. Thus, the semiconductor light emitting element 111 has a higher emission intensity ELI than the semiconductor light emitting element 119.

さらに、図3(a)及び図3(b)を比較すると、半導体発光素子111の発光強度ELIの半値全幅FWHMは、半導体発光素子119よりも小さい。   Further, comparing FIG. 3A and FIG. 3B, the full width at half maximum FWHM of the emission intensity ELI of the semiconductor light emitting device 111 is smaller than that of the semiconductor light emitting device 119.

このように、半導体発光素子111は半導体発光素子119に比べて良好な特性を示す。これは、半導体発光素子111において、内部量子効率が高く、光取り出し効率が高いことが原因であると考えられる。   As described above, the semiconductor light emitting element 111 exhibits better characteristics than the semiconductor light emitting element 119. This is considered to be because the semiconductor light emitting device 111 has high internal quantum efficiency and high light extraction efficiency.

一方、半導体発光素子111と半導体発光素子119の特性をさらに比較すると、図3(a)に例示した半導体発光素子111においては、波長λが400nm程度に発光強度ELIの小さいピークが存在しているのみである。   On the other hand, when the characteristics of the semiconductor light emitting device 111 and the semiconductor light emitting device 119 are further compared, the semiconductor light emitting device 111 illustrated in FIG. 3A has a peak with a small emission intensity ELI at a wavelength λ of about 400 nm. Only.

既に説明したように、In0.15Ga0.85N層のピーク波長は450nmであるので、半導体発光素子119のピーク波長が450nmであることは自然である。一方、ピーク波長が450nmであるIn0.15Ga0.85N層を3層と、ピーク波長が400nmであるIn0.07Ga0.93N層を5層、積層した構成を有する半導体発光素子111において、450nmの発光ピークの高さに比べて、400nmの発光ピークの高さは著しく小さい。 As described above, since the peak wavelength of the In 0.15 Ga 0.85 N layer is 450 nm, it is natural that the peak wavelength of the semiconductor light emitting device 119 is 450 nm. On the other hand, a semiconductor light emitting device having a configuration in which three In 0.15 Ga 0.85 N layers having a peak wavelength of 450 nm and five In 0.07 Ga 0.93 N layers having a peak wavelength of 400 nm are stacked. In the element 111, the height of the emission peak at 400 nm is significantly smaller than the height of the emission peak at 450 nm.

半導体発光素子111において、ピーク波長が450nmであるIn0.15Ga0.85N層の数よりも、ピーク波長が400nmであるIn0.07Ga0.93N層の数が多いにもかかわらず、p型半導体層20の側に配置されているIn0.15Ga0.85N層のピーク波長である450nmの発光強度ELIが著しく高い。このように、p型半導体層20に近接する井戸層32の特性が、半導体発光素子の発光特性において支配的である。 In the semiconductor light emitting device 111, the number of In 0.07 Ga 0.93 N layers having a peak wavelength of 400 nm is larger than the number of In 0.15 Ga 0.85 N layers having a peak wavelength of 450 nm. First, the emission intensity ELI at 450 nm, which is the peak wavelength of the In 0.15 Ga 0.85 N layer disposed on the p-type semiconductor layer 20 side, is remarkably high. Thus, the characteristics of the well layer 32 adjacent to the p-type semiconductor layer 20 are dominant in the light emission characteristics of the semiconductor light emitting device.

このことから、p型半導体層20に近接する井戸層32において、電子及び正孔の再結合が支配的に行われているものと推定できる。   From this, it can be presumed that recombination of electrons and holes is dominant in the well layer 32 adjacent to the p-type semiconductor layer 20.

この現象は、発明者により行われた、上記の半導体発光素子111及び119の特性の実測の結果から初めて見出された現象である。   This phenomenon is a phenomenon found for the first time from the result of actual measurement of the characteristics of the semiconductor light emitting devices 111 and 119 performed by the inventors.

本実施形態に係る半導体発光素子の構成は、この新たに見出された現象に基づいて構築されている。すなわち、p型半導体層20に近接する井戸層32の特性(例えばピーク波長)を、半導体発光素子として要求される特性(例えばピーク波長)に合わせ、p型半導体層20から離れた井戸層32の構成は、発光効率が向上し、また、光の吸収が小さくなるように制御する。これにより、半導体発光素子のピーク波長などの発光特性に悪影響を与えないで、内部量子効率を向上し、光取り出し効率を向上することができる。   The configuration of the semiconductor light emitting device according to the present embodiment is constructed based on this newly found phenomenon. That is, the characteristics (for example, peak wavelength) of the well layer 32 adjacent to the p-type semiconductor layer 20 are matched with the characteristics (for example, peak wavelength) required as a semiconductor light emitting element, and the well layer 32 away from the p-type semiconductor layer 20 The configuration is controlled so that light emission efficiency is improved and light absorption is reduced. Thereby, the internal quantum efficiency can be improved and the light extraction efficiency can be improved without adversely affecting the light emission characteristics such as the peak wavelength of the semiconductor light emitting device.

すなわち、本実施形態に係る半導体発光素子110(半導体発光素子111)においては、p側端平均In組成比Apを、n側端平均In組成比Anよりも大きくし、n側端平均In組成比Anの5倍以下にする。これにより、p側端井戸層32p1に適切な歪みを発生させ電子及び正孔の再結合をより促進させる。そして、n側端平均In組成比Anを低くすることで、n側端井戸層32n1における光吸収を抑制する。また、p側端井戸層32p1から、2番目にp型半導体層20に近い井戸層32p2への正孔の注入効率を向上させる。これにより、内部量子効率を向上し、光取り出し効率を向上できる。   That is, in the semiconductor light emitting device 110 (semiconductor light emitting device 111) according to the present embodiment, the p-side end average In composition ratio Ap is larger than the n-side end average In composition ratio An, and the n-side end average In composition ratio is set. Set to 5 times or less than An. As a result, an appropriate strain is generated in the p-side end well layer 32p1, and the recombination of electrons and holes is further promoted. And light absorption in n side edge well layer 32n1 is suppressed by making n side edge average In composition ratio An low. Further, the efficiency of hole injection from the p-side end well layer 32p1 to the well layer 32p2 second closest to the p-type semiconductor layer 20 is improved. Thereby, internal quantum efficiency can be improved and light extraction efficiency can be improved.

例えば、上記の第1比較例の半導体発光素子119においては、井戸層32に用いられたIn0.15Ga0.85N層においては、450nmの波長における吸収係数が5×10cm−1程度であるため、1つの井戸層32当たりに1.2%程度の吸収がおき、光吸収が大きい。これに対し、半導体発光素子111においては、n型半導体層10の側の井戸層32(例えばn側端井戸層32n1など)として、In組成比が小さいIn0.07Ga0.93N層を用いることで、これらの井戸層32におけるエネルギー準位を短波長側へ(高エネルギー側へ)シフトさせている。これにより、450nmの波長における吸収係数が5×10cm−1程度になり、1つの井戸層32当たりに0.12%程度の吸収しか起こらない。これにより、半導体発光素子111においては、光取り出し効率が上昇する。 For example, in the semiconductor light emitting device 119 of the first comparative example, the In 0.15 Ga 0.85 N layer used for the well layer 32 has an absorption coefficient of 5 × 10 4 cm −1 at a wavelength of 450 nm. Therefore, the absorption of about 1.2% per one well layer 32 occurs, and the light absorption is large. In contrast, in the semiconductor light emitting device 111, an In 0.07 Ga 0.93 N layer having a small In composition ratio is used as the well layer 32 on the n-type semiconductor layer 10 side (for example, the n-side end well layer 32n1). By using it, the energy level in these well layers 32 is shifted to the short wavelength side (to the high energy side). As a result, the absorption coefficient at a wavelength of 450 nm is about 5 × 10 3 cm −1 , and only about 0.12% of absorption occurs per well layer 32. Thereby, in the semiconductor light emitting device 111, the light extraction efficiency is increased.

p側端平均In組成比Apがn側端平均In組成比An以下の場合には、p型半導体層20に最も近接するp側端井戸層32p1に大きな歪みが印加され、発光効率が低下し、また、光吸収が大きくなり、光取り出し効率が低下する。また、p側端平均In組成比Apがn側端平均In組成比Anの5倍よりも大きいと、例えば結晶性が悪くなり易く、発光効率が低下する。   When the p-side end average In composition ratio Ap is equal to or less than the n-side end average In composition ratio An, a large strain is applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20, and the light emission efficiency is lowered. In addition, light absorption increases and light extraction efficiency decreases. On the other hand, when the p-side end average In composition ratio Ap is larger than 5 times the n-side end average In composition ratio An, for example, the crystallinity is likely to deteriorate, and the light emission efficiency decreases.

なお、特許文献1において、n型窒化物半導体層に隣接した量子井戸層のエネルギーバンドギャップをp型窒化物半導体層に隣接した量子井戸層よりも大きくする構成が提案されているが、上記のようなp側端平均In組成比Apと、n側端平均In組成比Anと、の関係については着目していない。このため、特許文献1に記載の技術では、本実施形態に係る半導体発光素子で実現できる高い内部量子効率と高い光取り出し効率を得ることは困難であると考えられる。   Patent Document 1 proposes a configuration in which the energy band gap of the quantum well layer adjacent to the n-type nitride semiconductor layer is made larger than that of the quantum well layer adjacent to the p-type nitride semiconductor layer. No attention is paid to the relationship between the p-side end average In composition ratio Ap and the n-side end average In composition ratio An. For this reason, with the technique described in Patent Document 1, it is considered difficult to obtain a high internal quantum efficiency and a high light extraction efficiency that can be realized by the semiconductor light emitting device according to the present embodiment.

図4は、本発明の実施形態及び比較例の半導体発光素子の特性を例示するグラフ図である。
すなわち、同図は、以下に説明する実施形態に係る半導体発光素子110a〜110d、及び、第2比較例の半導体発光素子119aの特性のシミュレーション結果を例示している。
FIG. 4 is a graph illustrating characteristics of the semiconductor light emitting devices of the embodiment and the comparative example.
That is, this figure illustrates the simulation results of the characteristics of the semiconductor light emitting devices 110a to 110d according to the embodiments described below and the semiconductor light emitting device 119a of the second comparative example.

半導体発光素子110aにおいては、n側端井戸層32n1のIn組成比wnは0.07であり、n側端井戸層厚twnは2.5nmである。n側端障壁層31n1のIn組成比bnは0.01であり、n側端障壁層厚tbnは5.0nmである。また、p側端井戸層32p1のIn組成比wpは0.15であり、p側端井戸層厚twpは、2.5nmである。また、p側端障壁層31p1のIn組成比wpは、0.01であり、p側端障壁層厚tbpは、5.0nmである。 In the semiconductor light emitting device 110a, the In composition ratio wn of the n-side end well layer 32n1 is 0.07, and the n-side end well layer thickness t wn is 2.5 nm. The n-side end barrier layer 31n1 has an In composition ratio bn of 0.01 and an n-side end barrier layer thickness t bn of 5.0 nm. In addition, the In composition ratio wp of the p-side end well layer 32p1 is 0.15, and the p-side end well layer thickness twp is 2.5 nm. Further, In composition ratio wp of the p-side end barrier layer 31p1 it is 0.01, the p-side end barrier layer thickness t bp is 5.0 nm.

そして、全部の井戸層32の数(n側端井戸層32n1及びp側端井戸層32p1を含む数)は、8である。そして、全部の障壁層31の数(n側端障壁層31n1、p側端障壁層31p1及びp側端対向障壁層31p0を含む数)は、9である。そして、n側端井戸層32n1及びp側端井戸層32p1を除く他の井戸層32の構成は、n側端井戸層32n1と同じとした。そして、p側端対向障壁層31p0の構成は、p側端障壁層31p1と同じとした。そして、n側端障壁層31n1、p側端障壁層31p1及びp側端対向障壁層31p0を除く障壁層31の構成は、n側端障壁層31n1と同じとした。   The number of all well layers 32 (the number including the n-side end well layer 32n1 and the p-side end well layer 32p1) is eight. The number of all barrier layers 31 (the number including the n-side end barrier layer 31n1, the p-side end barrier layer 31p1, and the p-side end opposing barrier layer 31p0) is nine. The configuration of the other well layers 32 excluding the n-side end well layer 32n1 and the p-side end well layer 32p1 is the same as that of the n-side end well layer 32n1. The configuration of the p-side end opposing barrier layer 31p0 is the same as that of the p-side end barrier layer 31p1. The configuration of the barrier layer 31 excluding the n-side end barrier layer 31n1, the p-side end barrier layer 31p1, and the p-side end opposing barrier layer 31p0 is the same as that of the n-side end barrier layer 31n1.

このように、半導体発光素子110aにおいては、p側端井戸層32p1におけるIn組成比wpは、n側端井戸層32n1におけるIn組成比wnよりも高い。
半導体発光素子110aにおける、n側端平均In組成比Anは0.030であり、p側端平均In組成比Apは0.057となる。従って、半導体発光素子110aにおけるIn平均組成比pn比Ap/Anは、1.9となる。
Thus, in the semiconductor light emitting device 110a, the In composition ratio wp in the p-side end well layer 32p1 is higher than the In composition ratio wn in the n-side end well layer 32n1.
In the semiconductor light emitting device 110a, the n-side end average In composition ratio An is 0.030, and the p-side end average In composition ratio Ap is 0.057. Therefore, the In average composition ratio pn ratio Ap / An in the semiconductor light emitting device 110a is 1.9.

半導体発光素子110bにおいては、半導体発光素子110aにおいて、p側端井戸層32p1を、厚さが3.5nmのIn0.13Ga0.87Nとしたものである。
このように、半導体発光素子110bにおいては、p側端井戸層厚twpは、n側端井戸層厚twnをよりも厚い。
半導体発光素子110bにおけるn側端平均In組成比Anは、0.030であり、p側端平均In組成比Apは、0.059となる。従って、半導体発光素子110bにおけるIn平均組成比pn比Ap/Anは、2.0となる。
In the semiconductor light emitting device 110b, in the semiconductor light emitting device 110a, the p-side end well layer 32p1 is made of In 0.13 Ga 0.87 N having a thickness of 3.5 nm.
As described above, in the semiconductor light emitting device 110b, the p-side end well layer thickness t wp is larger than the n-side end well layer thickness t wn .
In the semiconductor light emitting device 110b, the n-side end average In composition ratio An is 0.030, and the p-side end average In composition ratio Ap is 0.059. Therefore, the In average composition ratio pn ratio Ap / An in the semiconductor light emitting device 110b is 2.0.

半導体発光素子110cにおいては、半導体発光素子110aにおいて、p側端障壁層31p1のIn組成比bpを0.03としたものである。
このように、半導体発光素子110cにおいては、p側端障壁層31p1おけるIn組成比bpは、n側端障壁層31n1におけるIn組成比bnよりも高い。
半導体発光素子110cにおけるn側端平均In組成比Anは、0.030であり、p側端平均In組成比Apは、0.070となる。従って、半導体発光素子110dにおけるIn平均組成比pn比Ap/Anは、2.3となる。
In the semiconductor light emitting device 110c, the In composition ratio bp of the p-side end barrier layer 31p1 is 0.03 in the semiconductor light emitting device 110a.
Thus, in the semiconductor light emitting device 110c, the In composition ratio bp in the p-side end barrier layer 31p1 is higher than the In composition ratio bn in the n-side end barrier layer 31n1.
In the semiconductor light emitting device 110c, the n-side end average In composition ratio An is 0.030, and the p-side end average In composition ratio Ap is 0.070. Therefore, the In average composition ratio pn ratio Ap / An in the semiconductor light emitting device 110d is 2.3.

半導体発光素子110dにおいては、半導体発光素子110aにおいて、p側端障壁層31p1の厚さを4.0nmとしたものである。
このように、半導体発光素子110dにおいては、p側端障壁層厚tbpは、n側端障壁層厚tbnよりも薄い。
半導体発光素子110dにおけるn側端平均In組成比Anは、0.030であり、p側端平均In組成比Apは、0.064となる。従って、半導体発光素子110dにおけるIn平均組成比pn比Ap/Anは、2.1となる。
In the semiconductor light emitting device 110d, the thickness of the p-side end barrier layer 31p1 in the semiconductor light emitting device 110a is 4.0 nm.
Thus, in the semiconductor light emitting device 110d, the p-side end barrier layer thickness t bp is thinner than the n-side end barrier layer thickness t bn.
In the semiconductor light emitting device 110d, the n-side end average In composition ratio An is 0.030, and the p-side end average In composition ratio Ap is 0.064. Therefore, the In average composition ratio pn ratio Ap / An in the semiconductor light emitting device 110d is 2.1.

一方、第2比較例の半導体発光素子119aにおいては、発光部30の全ての障壁層31が同じ構成を有し、全ての井戸層32が同じ構成を有している。すなわち、井戸層32のIn組成比は0.15であり、井戸層32の厚さは2.5nmである。そして、障壁層31のIn組成比は0.01であり、障壁層31の厚さは5.0nmである。このように、第2比較例の半導体発光素子119aにおいては、In平均組成比pn比Ap/Anは、1である。   On the other hand, in the semiconductor light emitting device 119a of the second comparative example, all the barrier layers 31 of the light emitting unit 30 have the same configuration, and all the well layers 32 have the same configuration. That is, the In composition ratio of the well layer 32 is 0.15, and the thickness of the well layer 32 is 2.5 nm. The In composition ratio of the barrier layer 31 is 0.01, and the thickness of the barrier layer 31 is 5.0 nm. Thus, in the semiconductor light emitting device 119a of the second comparative example, the In average composition ratio pn ratio Ap / An is 1.

図4は、このような半導体発光素子110a〜110d及び第2比較例の半導体発光素子119aの特性を例示している。同図において、横軸は、各半導体発光素子に通電される電流Ifであり、縦軸は、発光効率Effである。   FIG. 4 illustrates the characteristics of the semiconductor light emitting devices 110a to 110d and the semiconductor light emitting device 119a of the second comparative example. In the figure, the horizontal axis represents the current If applied to each semiconductor light emitting element, and the vertical axis represents the light emission efficiency Eff.

図3に表したように、本実施形態に係る半導体発光素子110a〜110dのいずれも、第2比較例の半導体発光素子119aに比べて、発光効率Effが高い。   As illustrated in FIG. 3, any of the semiconductor light emitting devices 110 a to 110 d according to the present embodiment has higher luminous efficiency Eff than the semiconductor light emitting device 119 a of the second comparative example.

第2比較例の半導体発光素子119aにおいては、最も発光に寄与する、p型半導体層20に最も近接するp側端井戸層32p1に大きな歪みが印加され、このために、量子効率が低下すると考えられる。   In the semiconductor light emitting device 119a of the second comparative example, a large strain is applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 that contributes most to the light emission, and this is considered to reduce the quantum efficiency. It is done.

これに対し、p側端井戸層32p1におけるIn組成比wpがn側端井戸層32n1におけるIn組成比wnよりも高い半導体発光素子110a、及び、p側端井戸層厚twpがn側端井戸層厚twnよりも厚い半導体発光素子110bにおいては、p型半導体層20に最も近接するp側端井戸層32p1に印加される歪みが適正化され、また、n型半導体層10の側の井戸層32(例えばn側端井戸層32n1などを含む)における光吸収が抑制される。 In contrast, the semiconductor light emitting device 110a in which the In composition ratio wp in the p-side end well layer 32p1 is higher than the In composition ratio wn in the n-side end well layer 32n1, and the p-side end well layer thickness t wp is the n-side end well In the semiconductor light emitting device 110b thicker than the layer thickness t wn, the strain applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 is optimized, and the well on the n-type semiconductor layer 10 side is optimized. Light absorption in the layer 32 (for example, including the n-side end well layer 32n1) is suppressed.

また、p側端障壁層31p1おけるIn組成比bpがn側端障壁層31n1におけるIn組成比bnよりも高い半導体発光素子110c、及び、p側端障壁層厚tbpがn側端障壁層厚tbnよりも薄い半導体発光素子110dにおいては、p型半導体層20に最も近接するp側端井戸層32p1に印加される歪みが適正化され、また、p側端井戸層32p1から、2番目にp型半導体層20に近い井戸層32p2(p側端井戸層32p1に対してn型半導体層10の側において隣接する井戸層32)への正孔の注入効率が向上する。 Further, the semiconductor light emitting device 110c in which the In composition ratio bp in the p-side end barrier layer 31p1 is higher than the In composition ratio bn in the n-side end barrier layer 31n1, and the p-side end barrier layer thickness tbp is the n-side end barrier layer thickness. In the semiconductor light emitting device 110d that is thinner than t bn, the strain applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 is optimized, and is second from the p-side end well layer 32p1. The efficiency of hole injection into the well layer 32p2 close to the p-type semiconductor layer 20 (the well layer 32 adjacent to the p-side end well layer 32p1 on the n-type semiconductor layer 10 side) is improved.

なお、p側端井戸層32p1におけるIn組成比wpをn側端井戸層32n1におけるIn組成比wnよりも高く設定し、かつ、p側端井戸層厚twpをn側端井戸層厚twnよりも厚く設定した場合には、p型半導体層20に最も近接するp側端井戸層32p1に印加される歪みが適正化される。 Incidentally, the In composition ratio wp of the p-side end well layer 32p1 is set higher than the In composition ratio wn of the n-side end well layer 32N1, and, the p-side end well layer thickness t wp the n-side end well layer thickness t wn When the thickness is set to be thicker, the strain applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 is optimized.

このとき、目的とする発光波長との兼ね合いで、例えば青色LED(発光ピーク波長が例えば445nm〜455nm)の場合には、p側端井戸層32p1のIn組成比wpは、0.10以上0.20以下で、p側端井戸層厚twpは、1.0nm以上5.0nm以下とされることが望ましい。このとき、In組成比wpが相対的に高い場合は、p側端井戸層厚twpは相対的に薄く設定される。例えば、p側端井戸層32p1のIn組成比wpは0.15で、p側端井戸層厚twpは2.5nm程度に設定される。 At this time, the In composition ratio wp of the p-side end well layer 32p1 is 0.10 or more and 0.00 in the case of a blue LED (emission peak wavelength is, for example, 445 nm to 455 nm) in consideration of the target emission wavelength. It is preferable that the p-side end well layer thickness t wp is not less than 20 and not more than 1.0 nm and not more than 5.0 nm. At this time, when the In composition ratio wp is relatively high, the p-side end well layer thickness twp is set to be relatively thin. For example, the In composition ratio wp of the p-side end well layer 32p1 is set to 0.15, and the p-side end well layer thickness twp is set to about 2.5 nm.

また、p側端井戸層32p1におけるIn組成比wpをn側端井戸層32n1におけるIn組成比wnよりも高く設定し、かつ、p側端障壁層31p1おけるIn組成比bpをn側端障壁層31n1におけるIn組成比bnよりも高く設定した場合には、p型半導体層20に最も近接するp側端井戸層32p1に印加される歪みが適正化され、また、p側端井戸層32p1から、2番目にp型半導体層20に近い井戸層32p2への正孔の注入効率が向上する。さらに、n型半導体層10の側の井戸層32における光吸収を抑制することができる。   Further, the In composition ratio wp in the p-side end well layer 32p1 is set to be higher than the In composition ratio wn in the n-side end well layer 32n1, and the In composition ratio bp in the p-side end barrier layer 31p1 is set to the n-side end barrier layer. When the In composition ratio bn is set higher than 31n1, the strain applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 is optimized, and from the p-side end well layer 32p1, Second, the efficiency of hole injection into the well layer 32p2 closest to the p-type semiconductor layer 20 is improved. Furthermore, light absorption in the well layer 32 on the n-type semiconductor layer 10 side can be suppressed.

また、p側端井戸層32p1におけるIn組成比wpをn側端井戸層32n1におけるIn組成比wnよりも高く設定し、かつ、p側端障壁層厚tbpをn側端障壁層厚tbnよりも薄く設定した場合にも、p型半導体層20に最も近接するp側端井戸層32p1に印加される歪みが適正化され、また、p側端井戸層32p1から、2番目にp型半導体層20に近い井戸層32p2への正孔の注入効率が向上する。さらに、n型半導体層10の側の井戸層32における光吸収を抑制することができる。 Furthermore, the In composition ratio wp of the p-side end well layer 32p1 is set higher than the In composition ratio wn of the n-side end well layer 32N1, and, the p-side end barrier layer thickness t bp the n-side end barrier layer thickness t bn Even when set to be thinner, the strain applied to the p-side end well layer 32p1 closest to the p-type semiconductor layer 20 is optimized, and the p-type semiconductor is second from the p-side end well layer 32p1. The efficiency of hole injection into the well layer 32p2 close to the layer 20 is improved. Furthermore, light absorption in the well layer 32 on the n-type semiconductor layer 10 side can be suppressed.

発光部30が、N個(Nは2以上の整数)の井戸層32を有し、N個の障壁層31を有するとする。ここで、n型半導体層10からみて、i番目(iは2以上、N以下の整数)の井戸層32を、「井戸層32」と表記することにする。そして、n型半導体層10からみて、i番目の障壁層31を、「障壁層31」と表記することにする。そして、障壁層31は、井戸層32に対してn型半導体層の側において、井戸層32に隣接するものとする。なお、最もp型半導体層20に近い井戸層32(すなわちp側端井戸層32p1)と、p型半導体層20と、の間に、p側端対向障壁層31p0を設けることができ、p側端対向障壁層31pは、障壁層31N+1に相当する。 It is assumed that the light emitting unit 30 has N (N is an integer of 2 or more) well layers 32 and N barrier layers 31. Here, the i-th well layer 32 (i is an integer of 2 or more and N or less) as viewed from the n-type semiconductor layer 10 is referred to as “well layer 32 i ”. In view of the n-type semiconductor layer 10, the i-th barrier layer 31 is expressed as “barrier layer 31 i ”. Then, the barrier layer 31 i is at the side of the n-type semiconductor layer with respect to the well layer 32 i, it is assumed that adjacent to the well layer 32 i. A p-side end opposing barrier layer 31p0 can be provided between the well layer 32 N closest to the p-type semiconductor layer 20 (that is, the p-side end well layer 32p1) and the p-type semiconductor layer 20, and p The side end opposing barrier layer 31p corresponds to the barrier layer 31N + 1 .

この表記を用いると、井戸層32は、InwnGa1−wnNを含み、n側端井戸層厚twnを有し、障壁層31は、InbnGa1−bnNを含み、n側端障壁層厚tbnを有し、井戸層32は、InwpGa1−wpNを含み、p側端井戸層厚twpを有し、障壁層32は、InbpGa1−bpNを含み、p側端障壁層厚tbpを有する。そして、既に説明したように、これらの値を用いて、Ap/Anは、1よりも大きく、5以下とされる。 Using this notation, the well layer 32 1 comprises a In wn Ga 1-wn N, has an n-side end well layer thickness t wn, the barrier layer 31 1 comprises a In bn Ga 1-bn N, The n-side end barrier layer thickness t bn has a well layer 32 N containing In wp Ga 1-wp N, has a p-side end well layer thickness t wp , and the barrier layer 32 N has In bp Ga 1 -Bp N is included, and the p-side end barrier layer thickness t bp is included. And as already demonstrated, Ap / An is set to 5 or less larger than 1 using these values.

本実施形態において、iが2以上、(N−1)以下に対応する井戸層32及び障壁層31の構成は任意である。例えば、n型半導体層10からみて、j番目(jは2以上、(N−1)以下の整数)の井戸層32は、InwjGa1−wjNを含み、井戸層厚twjを有し、j番目の障壁層31は、InbjGa1−bjNを含み、障壁層厚twbjを有するとする。このとき、平均In組成比Aを(wj×twj+bj×tbj)/(twj+tbj)とすると、平均In組成比Aは、任意である。平均In組成比Aは、例えば、n側端平均In組成比An以上で、p側端平均In組成比Ap以下の値に設定することが望ましい。 In the present embodiment, the configurations of the well layer 32 and the barrier layer 31 corresponding to i being 2 or more and (N−1) or less are arbitrary. For example, when viewed from the n-type semiconductor layer 10, the j-th well layer 32 j (j is an integer not less than 2 and not more than (N−1)) includes In wj Ga 1-wj N, and the well layer thickness t wj is The jth barrier layer 31 j includes In bj Ga 1-bj N and has a barrier layer thickness t wbj . At this time, if the average In composition ratio A j is (wj × t wj + bj × t bj ) / (t wj + t bj ), the average In composition ratio A j is arbitrary. The average In composition ratio A j is, for example, in the n-side end average In composition ratio An above, it is desirable to set the following values p-side end average In composition ratio Ap.

特に、上記のjが(N−3)以下の場合においては、平均In組成比Aをn側端平均In組成比An(低いIn組成比)と実質的に同じにすることで、n型半導体層10の側における平均In組成比を低くし、光の吸収を抑制でき、望ましい。 Particularly, in the case the above j is (N-3) below, by the average In composition ratio A j substantially the same as the n-side end average In composition ratio An (low In composition ratio), n-type This is desirable because the average In composition ratio on the semiconductor layer 10 side can be lowered and light absorption can be suppressed.

なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むものや、導電型などを制御するために添加される各種のドーパントのいずれかをさらに含むものも、「窒化物半導体」に含まれるものとする。 In this specification, “nitride semiconductor” means B x In y Al z Ga 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) Semiconductors having all compositions in which the composition ratios x, y, and z are changed within the respective ranges are included. Furthermore, in the above chemical formula, those further including a group V element other than N (nitrogen) and those further including any of various dopants added for controlling the conductivity type are also referred to as “nitride semiconductors”. Shall be included.

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれるn型半導体層、p型半導体層、発光部、井戸層、障壁層、電極、基板、バッファ層各要素の具体的な構成の、形状、サイズ、材質、配置関係などに関して当業者が各種の変更を加えたものであっても、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, the shape, size, material, and arrangement relationship of the specific configuration of each element of the n-type semiconductor layer, p-type semiconductor layer, light-emitting portion, well layer, barrier layer, electrode, substrate, and buffer layer included in the semiconductor light-emitting device Even if the person skilled in the art has made various changes with respect to the above, etc., as long as the person skilled in the art can implement the present invention in the same manner by selecting appropriately from the well-known range and obtain the same effect, Included in the range.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.

その他、本発明の実施の形態として上述した半導体発光素子を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子も、本発明の要旨を包含する限り、本発明の範囲に属する。   In addition, all semiconductor light-emitting elements that can be implemented by those skilled in the art based on the semiconductor light-emitting elements described above as embodiments of the present invention are included in the scope of the present invention as long as they include the gist of the present invention. Belonging to.

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。   In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .

5…基板、 6…バッファ層、 10…n型半導体層、 11…n型GaN層、 12…n型ガイド層、 20…p型半導体層、 21a…第1p型ガイド層、 21b…第2p型ガイド層、 21c…第3p型ガイド層、 22…p型GaNコンタクト層、 30…発光部、 31…障壁層、 31n1…n側端障壁層、 31p0…p側端対向障壁層、 31p1…p側端障壁層、 32、32p2…井戸層、 32n1…n側端井戸層、 32p1…p側端井戸層、 71…n側電極、 81…p側電極、 82…p側パッド電極、 110、110a、110b、110c、110d、111、119、119a…半導体発光素子、 If…電流、 ELI…発光強度、 Eff…発光効率、 tbn…層厚(n側端障壁層厚)、 tbp…層厚(p側端障壁層厚)、 twn…層厚(n側端井戸層厚)、 twp…層厚(p側端井戸層厚) DESCRIPTION OF SYMBOLS 5 ... Substrate 6 ... Buffer layer 10 ... n-type semiconductor layer 11 ... n-type GaN layer 12 ... n-type guide layer 20 ... p-type semiconductor layer 21a ... 1st p-type guide layer 21b ... 2nd p-type Guide layer, 21c ... third p-type guide layer, 22 ... p-type GaN contact layer, 30 ... light emitting portion, 31 ... barrier layer, 31n1 ... n-side end barrier layer, 31p0 ... p-side end opposing barrier layer, 31p1 ... p-side End barrier layer, 32, 32p2 ... well layer, 32n1 ... n-side end well layer, 32p1 ... p-side end well layer, 71 ... n-side electrode, 81 ... p-side electrode, 82 ... p-side pad electrode, 110, 110a, 110b, 110c, 110d, 111, 119, 119a ... semiconductor light emitting device, If ... current, ELI ... emission intensity, Eff ... emission efficiency, tbn ... layer thickness (n-side end barrier layer thickness), tbp ... layer thickness ( p-side end barrier layer thickness), t wn ... layer thickness (n-side end well layer thickness), t wp ... layer thickness (p-side end well layer thickness)

Claims (4)

窒化物半導体を含むn型半導体層と、
窒化物半導体を含むp型半導体層と、
前記n型半導体層と前記p型半導体層との間に設けられ、
交互に積層された、複数の障壁層と、複数の井戸層と、
を有する発光部と、
を備え、
前記n型半導体層は、n型層と、前記n型層と前記発光部との間に設けられたInを含む窒化物半導体層とを含み、
前記複数の井戸層のうちで前記n型半導体層に最も近いn側端井戸層は、InwnGa1−wnNを含み、層厚twn(ナノメートル)を有し、
前記複数の障壁層のうちで前記n型半導体層に最も近いn側端障壁層は、InbnGa1−bnNを含み、層厚tbn(ナノメートル)を有し、
前記複数の井戸層のうちで前記p型半導体層に最も近いp側端井戸層は、InwpGa1−wpNを含み、前記層厚twnよりも厚い層厚twp(ナノメートル)を有し、
前記p側端井戸層よりも前記n型半導体層の側において、前記複数の障壁層のうちで前記p型半導体層に最も近いp側端障壁層は、InbpGa1−bpNを含み、層厚tbp(ナノメートル)を有し、
前記wn及び前記wpは、前記bn及び前記bpよりも大きく、
n側端平均In組成比を(wn×twn+bn×tbn)/(twn+tbn)とし、
p側端平均In組成比を(wp×twp+bp×tbp)/(twp+tbp)としたとき、
前記p側端平均In組成比は、前記n側端平均In組成比の1.9倍以上、前記n側端平均In組成比の2.1倍以下であることを特徴とする半導体発光素子。
An n-type semiconductor layer including a nitride semiconductor;
A p-type semiconductor layer including a nitride semiconductor;
Provided between the n-type semiconductor layer and the p-type semiconductor layer;
A plurality of barrier layers and a plurality of well layers stacked alternately,
A light emitting unit having
With
The n-type semiconductor layer includes an n-type layer, and a nitride semiconductor layer containing In provided between the n-type layer and the light emitting unit,
The n-side end well layer closest to the n-type semiconductor layer among the plurality of well layers includes In wn Ga 1-wn N and has a layer thickness t wn (nanometers).
The n-side end barrier layer closest to the n-type semiconductor layer among the plurality of barrier layers includes In bn Ga 1-bn N, and has a layer thickness t bn (nanometer),
Nearest p-side end well layer on the p-type semiconductor layer among the plurality of well layers comprises In wp Ga 1-wp N, the layer thickness t wn thicker than the layer thickness t wp a (nm) Have
The p-side end barrier layer closest to the p-type semiconductor layer among the plurality of barrier layers includes In bp Ga 1-bp N on the side of the n-type semiconductor layer relative to the p-side end well layer, Having a layer thickness t bp (nanometers),
The wn and the wp are larger than the bn and the bp,
The n-side end average In composition ratio is (wn × t wn + bn × t bn ) / (t wn + t bn ),
When the p-side end average In composition ratio is (wp × t wp + bp × t bp ) / (t wp + t bp ),
The p-side end average In composition ratio is not less than 1.9 times the n-side end average In composition ratio and not more than 2.1 times the n-side end average In composition ratio.
前記n側端平均In組成比の2.0倍以下であることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting element is 2.0 times or less of the n-side end average In composition ratio. 前記p側端井戸層におけるIn組成比wpは、前記n側端井戸層におけるIn組成比wnよりも高いことを特徴とする請求項1または2に記載の半導体発光素子。   3. The semiconductor light emitting device according to claim 1, wherein an In composition ratio wp in the p-side end well layer is higher than an In composition ratio wn in the n-side end well layer. 前記p側端障壁におけるIn組成比bpは、前記n側端障壁層におけるIn組成比bnよりも高いこと特徴とする請求項1〜3のいずれか1つに記載の半導体発光素子。   4. The semiconductor light emitting element according to claim 1, wherein an In composition ratio bp in the p-side end barrier is higher than an In composition ratio bn in the n-side end barrier layer.
JP2013248569A 2013-11-29 2013-11-29 Semiconductor light emitting device Active JP5629814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248569A JP5629814B2 (en) 2013-11-29 2013-11-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248569A JP5629814B2 (en) 2013-11-29 2013-11-29 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012012637A Division JP5460754B2 (en) 2012-01-25 2012-01-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2014039075A JP2014039075A (en) 2014-02-27
JP5629814B2 true JP5629814B2 (en) 2014-11-26

Family

ID=50286902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248569A Active JP5629814B2 (en) 2013-11-29 2013-11-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5629814B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187773A (en) * 1997-09-08 1999-03-30 Toshiba Corp Light emitting element
JP2002270894A (en) * 2001-03-08 2002-09-20 Mitsubishi Cable Ind Ltd Semiconductor light-emitting element
US7323721B2 (en) * 2004-09-09 2008-01-29 Blue Photonics Inc. Monolithic multi-color, multi-quantum well semiconductor LED
JP2007110090A (en) * 2005-09-13 2007-04-26 Sony Corp Garium-nitride semiconductor light emitting element, light emitting device, image display device, planar light source device, and liquid crystal display device assembly
KR100649749B1 (en) * 2005-10-25 2006-11-27 삼성전기주식회사 Nitride semiconductor light emitting device
KR100850950B1 (en) * 2006-07-26 2008-08-08 엘지전자 주식회사 Nitride based light emitting diode
JP2009289983A (en) * 2008-05-29 2009-12-10 Sharp Corp Nitride semiconductor light-emitting diode

Also Published As

Publication number Publication date
JP2014039075A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP4892618B2 (en) Semiconductor light emitting device
US9590141B2 (en) Semiconductor light emitting device having a p-type semiconductor layer with a p-type impurity
JP5238865B2 (en) Semiconductor light emitting device
JP4960465B2 (en) Semiconductor light emitting device
US8963176B2 (en) Semiconductor light-emitting device and method for manufacturing same
JP5460754B2 (en) Semiconductor light emitting device
JP5337862B2 (en) Semiconductor light emitting device
JP5889981B2 (en) Semiconductor light emitting device
JP5629814B2 (en) Semiconductor light emitting device
JP5868650B2 (en) Semiconductor light emitting device
JP5554387B2 (en) Semiconductor light emitting device
JP6482388B2 (en) Nitride semiconductor light emitting device
JP5865827B2 (en) Semiconductor light emitting device
JP2012060170A (en) Semiconductor light-emitting element and method for manufacturing the same
JP5615334B2 (en) Semiconductor light emitting device
JP2013191617A (en) Semiconductor light-emitting element
JP5764184B2 (en) Semiconductor light emitting device
US20210320224A1 (en) Light-emitting device
JP2015053531A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R151 Written notification of patent or utility model registration

Ref document number: 5629814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250