JP5627483B2 - Method for producing allylsilanes - Google Patents

Method for producing allylsilanes Download PDF

Info

Publication number
JP5627483B2
JP5627483B2 JP2011015146A JP2011015146A JP5627483B2 JP 5627483 B2 JP5627483 B2 JP 5627483B2 JP 2011015146 A JP2011015146 A JP 2011015146A JP 2011015146 A JP2011015146 A JP 2011015146A JP 5627483 B2 JP5627483 B2 JP 5627483B2
Authority
JP
Japan
Prior art keywords
group
unsubstituted
formula
mmol
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015146A
Other languages
Japanese (ja)
Other versions
JP2012153663A (en
Inventor
康嗣 大洞
康嗣 大洞
俊志 中井
俊志 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2011015146A priority Critical patent/JP5627483B2/en
Publication of JP2012153663A publication Critical patent/JP2012153663A/en
Application granted granted Critical
Publication of JP5627483B2 publication Critical patent/JP5627483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本願発明は、アルケンとジシランからのアリルシランの新規な製造方法に関する。具体的には、単純アルケンである1−アルケンをアリル化剤として用いて、該1−アルケンとジシランから、トリフルオロ酢酸パラジウム触媒の存在下、高い位置選択性でアリルシラン類を得る、新規な製造方法に関する。   The present invention relates to a novel method for producing allylsilane from alkene and disilane. Specifically, a novel production in which allylsilanes are obtained with high regioselectivity in the presence of a palladium trifluoroacetate catalyst from 1-alkene and disilane using 1-alkene, which is a simple alkene, as an allylating agent. Regarding the method.

近年医薬等を指向した高付加価値の精密化学品の合成に関するファインケミカルズに対する関心が益々高まっている。特に、安価かつ入手可能な化学産業資源(フィードストック)を原料として用いて、有機合成上有用なビルディングブロックを簡便に得る方法が求められている。   In recent years, interest in fine chemicals relating to the synthesis of high-value-added fine chemicals oriented to pharmaceuticals and the like has been increasing. In particular, there is a demand for a method for easily obtaining a building block useful for organic synthesis using cheap and available chemical industrial resources (feedstock) as a raw material.

アリルシラン類は、様々な化学変換が可能な官能基であるアリル基とシリル基とを有する分子であり、そのため天然物化合物の合成をはじめとした有機合成反応に利用されている。例えば、ルイス酸の存在のもと、アリルシラン類を、ケトン、アセタール等の種々の求電子剤と反応させることにより、位置選択的な炭素−炭素結合生成反応が生起する細見−櫻井反応が知られている(非特許文献1を参照)。従って、アリルシラン類は、炭素骨格上にアリル部位を導入する有機合成上有用なビルディングブロックである。   Allylsilanes are molecules having an allyl group and a silyl group, which are functional groups capable of various chemical transformations, and are therefore used in organic synthesis reactions including the synthesis of natural product compounds. For example, the Hosomi-Sakurai reaction is known in which regioselective carbon-carbon bond formation reaction occurs by reacting allylsilanes with various electrophiles such as ketones and acetals in the presence of Lewis acids. (See Non-Patent Document 1). Accordingly, allylsilanes are useful building blocks in organic synthesis that introduce an allyl moiety on the carbon skeleton.

これまでに、種々のアリルシランの製造方法が報告されている。しかしながら、従来の製法では、例えばハロゲン化アリルをマグネシウムまたはリチウムなどの化学両論量の金属試薬と反応させ、続いて得られる有機金属アリル化合物をハロシランと反応させてアリルシラン類を製造する方法であり、そのため多量の金属塩が副生するという問題点があった(非特許文献2および特許文献1を参照)。また、別製法として、シリル供給源として天然物の石油などに含まれるジシランを用いた製造法も報告されているが、アリル供給源がアリル酢酸エステルに代表されるエステル基やハロゲンなどの電子吸引性で反応性の高い脱離基を有するアリル化合物に制限されており(非特許文献3を参照)、別途それらアリル化合物を調製する必要があった。よって、アリル供給源として単純アルケンを用いたアリルシラン類の製法が求められていた。

Figure 0005627483
So far, various methods for producing allylsilane have been reported. However, in the conventional production method, for example, allyl halide is reacted with a stoichiometric amount of a metal reagent such as magnesium or lithium, and then the resulting organometallic allyl compound is reacted with halosilane to produce allylsilanes. Therefore, there is a problem that a large amount of metal salt is by-produced (see Non-Patent Document 2 and Patent Document 1). In addition, as another production method, a production method using disilane contained in natural petroleum as a silyl source has been reported, but the allyl source is an electron withdrawing ester group represented by allyl acetate ester or halogen. And allyl compounds having a leaving group that is highly reactive and highly reactive (see Non-Patent Document 3), it was necessary to prepare these allyl compounds separately. Therefore, there has been a demand for a method for producing allylsilanes using simple alkene as an allyl supply source.
Figure 0005627483

さらに、パラジウム触媒を用いたこれまでの反応では、ゼロ価のパラジウム種(Pd(0))と活性な二価のパラジウム種(Pd(II))との間のリサイクルに必要な酸化剤として、ヘテロポリ酸などの固体酸を要していた(非特許文献4を参照)。   Furthermore, in the previous reactions using a palladium catalyst, as an oxidant necessary for recycling between a zero-valent palladium species (Pd (0)) and an active divalent palladium species (Pd (II)), A solid acid such as a heteropoly acid was required (see Non-Patent Document 4).

A. Hosomi, H. Sakurai, Tetrahedron Lett., 1976, 1295A. Hosomi, H. Sakurai, Tetrahedron Lett., 1976, 1295 Kirk and Othmer, Encyclopedia of Chemical technology, Vol. 10, 721-734 (1966)Kirk and Othmer, Encyclopedia of Chemical technology, Vol. 10, 721-734 (1966) Y. Tsuji et al, J. Org. Chem., 61, 5779-5787 (1996)Y. Tsuji et al, J. Org. Chem., 61, 5779-5787 (1996) Y. Ishii et al, J. Am. Chem. Soc., 2003, 125, 1476Y. Ishii et al, J. Am. Chem. Soc., 2003, 125, 1476

特開平10−007684号JP-A-10-007684

本願発明は、従来反応性が低いと考えられていた単純アルケンである1−アルケンとジシランから、アリルシラン類を製造する方法を提供することにある。   The present invention is to provide a method for producing allylsilanes from 1-alkene and disilane, which are simple alkenes that are conventionally considered to have low reactivity.

本願発明者が鋭意研究した結果、トリフルオロ酢酸パラジウム(Pd(OC(=O)CF)を触媒として使用することにより、単純アルケンである1−アルケンを用いて、酸素雰囲気下でジシランと反応させることにより、高い位置選択性で酸化的アリル位シリル化されたアリルシラン類が得られることを見出した。すなわち、本願発明は以下の通りである。 As a result of intensive studies by the present inventors, by using palladium trifluoroacetate (Pd (OC (═O) CF 3 ) 2 as a catalyst, 1-alkene, which is a simple alkene, is used in an oxygen atmosphere and disilane. It has been found that allylsilanes that are oxidatively allylically silylated with high regioselectivity can be obtained by the reaction, that is, the present invention is as follows.

[1] 式(I):

Figure 0005627483
(式中、
は、無置換または置換のアルキル基、無置換または置換のシクロアルキル基、無置換または置換の飽和へテロシクロアルキル基、無置換または置換のアルケニル基、無置換または置換のアリール基、および無置換または置換のヘテロアリール基からなる群から選ばれ;そして、
nは、1〜15の整数である)
で表される1−アルケン、および
式(II):
Figure 0005627483
(式中、
は、無置換のアルキル基または無置換のアリール基からなる群から選ばれる)
で表されるジシランを、トリフルオロ酢酸パラジウム(Pd(OC(=O)CF))触媒の存在下、酸素雰囲気下で反応させることによる、
式(III):
Figure 0005627483
(式中、R、Rおよびnは前掲のとおりである)
で表されるアリルシラン類の製造方法。 [1] Formula (I):
Figure 0005627483
(Where
R 1 is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, and Selected from the group consisting of unsubstituted or substituted heteroaryl groups; and
n is an integer of 1 to 15)
A 1-alkene represented by formula (II):
Figure 0005627483
(Where
R 2 is selected from the group consisting of an unsubstituted alkyl group or an unsubstituted aryl group)
By reacting a disilane represented by the following formula in the presence of a palladium trifluoroacetate (Pd (OC (═O) CF 3 ) 2 ) catalyst in an oxygen atmosphere:
Formula (III):
Figure 0005627483
(Wherein R 1 , R 2 and n are as described above)
The manufacturing method of allylsilane represented by these.

[2] Rがn−ヘプチルであって、nが1である、[1]記載の製造方法。 [2] The production method according to [1], wherein R 1 is n-heptyl and n is 1.

[3] Rがメチルである、[1]または[2]記載の製造方法。 [3] The production method of [1] or [2], wherein R 2 is methyl.

[4] 式(III)−Aの化合物と式(III)−Bの化合物の生成比率が、約90:10以上である、[1]乃至[3]のいずれか1項記載の製造方法。 [4] The production method according to any one of [1] to [3], wherein the production ratio of the compound of formula (III) -A and the compound of formula (III) -B is about 90:10 or more.

[5] 触媒量のさらなる酸化剤の存在下で行う、[1]乃至[4]のいずれか1項記載の製造方法。 [5] The production method according to any one of [1] to [4], which is carried out in the presence of a catalytic amount of an additional oxidizing agent.

[6] 前記さらなる酸化剤がモリブドバナドリン酸塩である、[5]記載の製造方法。 [6] The production method according to [5], wherein the further oxidizing agent is molybdovanadophosphate.

[7] さらに、触媒量の、ケトン、ホスフィンおよびスルホキシドからなる群から選ばれる配位子性化合物の存在下で行う、[1]乃至[6]のいずれか1項記載の製造方法。 [7] The production method according to any one of [1] to [6], further performed in the presence of a catalytic amount of a ligand compound selected from the group consisting of ketone, phosphine and sulfoxide.

[8] 前記配位子性化合物が、アセチルアセトンおよびジベンジリデンアセトンからなる群から選ばれる化合物である、[7]記載の製造方法。 [8] The production method according to [7], wherein the ligand compound is a compound selected from the group consisting of acetylacetone and dibenzylideneacetone.

[9] 式(I)で表される1−アルケンの配合量が、式(II)で表されるジシランの配合量基準で5〜100モル%当量である、[1]乃至[8]のいずれか1項記載の製造方法。 [9] The amount of 1-alkene represented by formula (I) is 5 to 100 mol% equivalent based on the amount of disilane represented by formula (II). The manufacturing method of any one of Claims.

本願発明は、さらに下記の態様の発明を提供するものである。   The present invention further provides the following aspects of the invention.

[10] トリフルオロ酢酸パラジウム触媒の使用量が、ジシランの配合量基準で約0.1〜0.5モル%当量である、[1]乃至[9]のいずれか1項記載の製造方法。 [10] The production method according to any one of [1] to [9], wherein the amount of the palladium trifluoroacetate catalyst used is about 0.1 to 0.5 mol% equivalent based on the amount of disilane.

[11] 反応を、室温から使用する反応溶媒の沸点で行う、[1]乃至[10]のいずれか1項記載の製造方法。 [11] The production method according to any one of [1] to [10], wherein the reaction is performed from room temperature to the boiling point of the reaction solvent used.

本願発明により、従来、反応性が低いため反応基質として用いることが困難であった単純アルケンを用いて有機合成上有用なアリルシラン類を高い位置選択性で製造することができる。   According to the present invention, allylsilanes useful for organic synthesis can be produced with high regioselectivity using simple alkenes that have been difficult to use as a reaction substrate because of their low reactivity.

以下に、本願発明をさらに詳細に説明する。
(定義)
以下に、本明細書および特許請求の範囲中で使用する用語の定義を示す。特に断らなければ、本明細書中の基または用語について示す最初の定義を、個別にまたは別の基の一部として本明細書中の基または用語に適用する。
Below, this invention is demonstrated in detail.
(Definition)
The definitions of terms used in the present specification and claims are shown below. Unless otherwise indicated, the first definition given for a group or term herein applies to the group or term herein individually or as part of another group.

用語「1−アルケン」とは、式(I):

Figure 0005627483
で表される化合物であって、末端の1位に二重結合を有し且つR基で置換された炭化水素基を意味する。
ここで、Rは、以下に定義する、無置換または置換のアルキル基、無置換または置換のシクロアルキル基、無置換または置換の飽和へテロシクロアルキル基、無置換または置換のアルケニル基、無置換または置換のアリール基、および無置換または置換のヘテロアリール基からなる群から選ばれる基である。好ましくは、無置換アルキル基または無置換アルケン基が挙げられる。
また、nは、メチレン炭素部分の数を表すものであって、1〜15の整数を意味し、例えば1〜12の整数、2〜12の整数、1〜10の整数、3〜10の整数が挙げられる。 The term “1-alkene” refers to the formula (I):
Figure 0005627483
A hydrocarbon group having a double bond at the terminal 1-position and substituted with an R 1 group.
Here, R 1 is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or substituted alkenyl group, It is a group selected from the group consisting of a substituted or substituted aryl group and an unsubstituted or substituted heteroaryl group. Preferably, an unsubstituted alkyl group or an unsubstituted alkene group is used.
N represents the number of methylene carbon moieties and means an integer of 1 to 15, for example, an integer of 1 to 12, an integer of 2 to 12, an integer of 1 to 10, an integer of 3 to 10 Is mentioned.

1−アルケンの具体的な例としては、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−ヘキセン、5−メチル−1−ヘキセン、4−メチル−1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、4−メトキシ−1−ブテン;4−シクロプロピル−1−ブテン、5−シクロプロピル−1−ペンテン、4−シクロブチル−1−ブテン、4−シクロペンチル−1−ブテン、5−シクロペンチル−1−ペンテン、8−シクロペンチル−1−オクテン、4−シクロヘキシル−1−ブテン、5−シクロヘキシル−1−ペンテン、8−シクロペンチル−1−オクテン、4−シクロヘプチル−1−ブテン、4−(4−メトキシシクロヘキシル)−1−ブテン;3−ピロリジニル−1−プロペン、4−ピラゾリジニル−1−ブテン、5−イミダゾリジニル−1−ブテン、8−モルホリニル−1−デセン、10−ピロリジニル−1−ドデセン、3−キヌクリジニル−1−プロペン、4−(4−エトキシピロリジニル)−1−ブテン;1,4−ペンタジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、1,9−デカジエン、1,10−ウンデカジエン、1,11−ドデカジエン;3−フェニル−1−プロペン、4−フェニル−1−ブテン、5−フェニル−1−ブテン、8−フェニル−1−デセン、10−フェニル−1−ドデセン、3−(1−ナフチル)−1−プロペン、3−(2−ナフチル)−1−プロペン、10−(1−ナフチル)−1−ドデセン、4−(4−メトキシフェニル)−1−ブテン(4−アリルアニソール);3−ピリジル−1−プロペン、4−ピリジル−1−ブテン、10−ピリジル−1−ドデセン、3−ピロリル−1−プロペン、4−ピリジル−1−ブテン、4−ピラジニル−1−ブテン、8−ピリミジニル−1−オクテン、4−(4−メトキシピリジル)−1−ブテンなどを挙げられるが、これらに限定されない。1−デセン、1−オクテン、1−ヘキセン、1−ヘプテン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1,9−デカジエンなどが好ましい。   Specific examples of 1-alkene include 1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 5-methyl-1-hexene, 4 -Methyl-1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 4-methoxy -1-butene; 4-cyclopropyl-1-butene, 5-cyclopropyl-1-pentene, 4-cyclobutyl-1-butene, 4-cyclopentyl-1-butene, 5-cyclopentyl-1-pentene, 8-cyclopentyl -1-octene, 4-cyclohexyl-1-butene, 5-cyclohexyl-1-pentene, 8-cyclopentyl-1-octene, 4-cyclo Heptyl-1-butene, 4- (4-methoxycyclohexyl) -1-butene; 3-pyrrolidinyl-1-propene, 4-pyrazolidinyl-1-butene, 5-imidazolidinyl-1-butene, 8-morpholinyl-1-decene 10-pyrrolidinyl-1-dodecene, 3-quinuclidinyl-1-propene, 4- (4-ethoxypyrrolidinyl) -1-butene; 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,9-decadiene, 1,10-undecadiene, 1,11-dodecadiene; 3-phenyl-1-propene, 4-phenyl-1-butene, 5-phenyl-1-butene, 8-phenyl-1-decene, 10-phenyl-1-dodecene, 3- (1-naphthyl) -1-propene, 3- (2-naphthyl) -1-propene, 10- (1-naphthyl) ) -1-dodecene, 4- (4-methoxyphenyl) -1-butene (4-allyl anisole); 3-pyridyl-1-propene, 4-pyridyl-1-butene, 10-pyridyl-1-dodecene, 3 -Pyrrolyl-1-propene, 4-pyridyl-1-butene, 4-pyrazinyl-1-butene, 8-pyrimidinyl-1-octene, 4- (4-methoxypyridyl) -1-butene, and the like. It is not limited to. 1-decene, 1-octene, 1-hexene, 1-heptene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1,9-decadiene and the like are preferable.

用語「ジシラン」とは、式(II):

Figure 0005627483
で表される化合物であって、HSiSiHで示されるシリコエタン上の全ての水素原子がR基で置換された化合物を意味する。
ここで、Rは、以下に定義する無置換アルキル基または無置換アリール基からなる群から選ばれる。好ましくは、無置換アルキル基である。 The term “disilane” refers to the formula (II):
Figure 0005627483
In which all the hydrogen atoms on the silicoethane represented by H 3 SiSiH 3 are substituted with R 2 groups.
Here, R 2 is selected from the group consisting of an unsubstituted alkyl group or an unsubstituted aryl group defined below. An unsubstituted alkyl group is preferable.

ジシランの具体的な例としては、ヘキサメチルジシラン、ヘキサエチルジシラン、ヘキサイソプロピルジシラン、ヘキサt−ブチルジシラン、ヘキサフェニルジシランを挙げられ、ヘキサメチルジシランが好ましい。   Specific examples of disilane include hexamethyldisilane, hexaethyldisilane, hexaisopropyldisilane, hexa-t-butyldisilane, and hexaphenyldisilane, with hexamethyldisilane being preferred.

用語「アリルシラン類」とは、式(III):

Figure 0005627483
で表される化合物を意味する。式中、R、R、nの定義は前掲の通りである。
ここで、式(III)の化合物は、α−付加物としての式(III)−Aで表される化合物及びγ−付加物としての式(III)−Bで表される化合物を含む。 The term “allylsilanes” refers to the formula (III):
Figure 0005627483
The compound represented by these is meant. In the formula, the definitions of R 1 , R 2 and n are as described above.
Here, the compound of the formula (III) includes a compound represented by the formula (III) -A as an α-adduct and a compound represented by the formula (III) -B as a γ-adduct.

式(III)−Aで表される化合物が優先的に生成する。式(III)−Aの化合物と式(III)−Bの化合物の生成比率は、例えば約90:10以上であって、約95:5以上が好ましい。   A compound represented by the formula (III) -A is preferentially produced. The production ratio of the compound of formula (III) -A and the compound of formula (III) -B is, for example, about 90:10 or more, preferably about 95: 5 or more.

用語「無置換または置換のアルキル基」とは、炭素数が1〜16個である、直鎖または分枝鎖の炭化水素基を意味する。例えば、炭素数が1〜16個、1〜13個、1〜12個、1〜8個、1〜7個、1〜6個のアルキル基を挙げられる。具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基などが挙げられるが、これらに限定されない。   The term “unsubstituted or substituted alkyl group” means a linear or branched hydrocarbon group having 1 to 16 carbon atoms. For example, a C1-C16, 1-13, 1-12, 1-8, 1-7, 1-6 alkyl group is mentioned. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, n-hexyl group, and n-heptyl group. N-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group and the like. However, it is not limited to these.

用語「無置換または置換のシクロアルキル基」とは、炭素数が3〜8個である、環状炭化水素基を意味する。炭素数が5〜8個、5〜7個、5〜6個のシクロアルキル基を挙げられる。具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基が挙げられるが、これらに限定されない。炭素数が1〜3個の炭素架橋、縮合環(これは、シクロアルキル、飽和へテロシクロ、アリール、ヘテロアリールから選ばれる)、またはスピロ環様式で結合した多環式基(例えば、二環式基)、をも本定義に含む。   The term “unsubstituted or substituted cycloalkyl group” means a cyclic hydrocarbon group having 3 to 8 carbon atoms. Examples include cycloalkyl groups having 5 to 8 carbon atoms, 5 to 7 carbon atoms, and 5 to 6 carbon atoms. Specific examples include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. C1-C3 carbon bridges, fused rings (which are selected from cycloalkyl, saturated heterocyclo, aryl, heteroaryl), or polycyclic groups attached in a spirocyclic manner (eg, bicyclic Group) is also included in this definition.

用語「無置換または置換の飽和へテロシクロアルキル基」とは、少なくとも1つの環内に、窒素原子、酸素原子、または硫黄原子から選ばれる少なくとも1つのヘテロ原子を有する、飽和の環式基を意味する。炭素数が1〜3個の炭素架橋、縮合環(これは、シクロアルキル、飽和へテロシクロ、アリール、ヘテロアリールから選ばれる)またはスピロ環様式、で結合した多環式基(例えば、二環式基)をも本定義に含む。具体例としては、ピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジニル基、ピペラジニル基、モルホリニル基等の単環式ヘテロシクロ基;キヌクリジニル基、2−クロマニル基、2−インドリニル基等の二環式ヘテロシクロ;1−アザ[4.5]スピロデカン等のスピロ環などが挙げられるが、これらに限定されない。   The term “unsubstituted or substituted saturated heterocycloalkyl group” means a saturated cyclic group having at least one heteroatom selected from a nitrogen atom, an oxygen atom, or a sulfur atom in at least one ring. means. A polycyclic group (eg, bicyclic) bonded in a carbon bridge of 1 to 3 carbon atoms, fused ring (which is selected from cycloalkyl, saturated heterocyclo, aryl, heteroaryl) or spiro ring mode Group) is also included in this definition. Specific examples include monocyclic heterocyclo groups such as pyrrolidinyl group, imidazolidinyl group, pyrazolidinyl group, piperidinyl group, piperazinyl group and morpholinyl group; bicyclic heterocyclo groups such as quinuclidinyl group, 2-chromanyl group and 2-indolinyl group; 1 -Spiro rings such as aza [4.5] spirodecane, but are not limited to these.

用語「無置換または置換のアルケニル基」とは、1個の二重結合を有する炭素数が2〜16個である、直鎖または分枝鎖の炭化水素基を意味する。例えば、炭素数が1〜16個、1〜13個、1〜12個、1〜8個、1〜7個、1〜6個のアルケニル基を挙げられる。末端位に二重結合を有する1−アルケニルが好ましい。具体例としては、エテニル、1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、2−メチル−1−ブテニル、3−メチル−1−ブテニル、1−ペンテニル、1−ヘキセニル、1−ヘプテニル、1−オクテニル、1−ノネニル、1−デセニル、1−ウンデセニル、1−ドデセニル、1−トリデセニル、1−テトラデセニル、1−ペンタデセニル、1−ヘキサデセニルなどが挙げられるが、これらに限定されない。   The term “unsubstituted or substituted alkenyl group” means a linear or branched hydrocarbon group having 2 to 16 carbon atoms having one double bond. Examples thereof include alkenyl groups having 1 to 16, 1 to 13, 1 to 12, 1 to 8, 1 to 7, and 1 to 6 carbon atoms. 1-alkenyl having a double bond at the terminal position is preferred. Specific examples include ethenyl, 1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl. , 1-octenyl, 1-nonenyl, 1-decenyl, 1-undecenyl, 1-dodecenyl, 1-tridecenyl, 1-tetradecenyl, 1-pentadecenyl, 1-hexadecenyl and the like.

用語「無置換または置換のアリール基」とは、芳香族性炭素環式を意味する。縮合環様式で結合した多環式基(例えば、二環式基)をも本定義に含む。具体例としては、フェニル基、1−ナフチル基、2−ナフチル基等の単環式アリール基;フェナントリジニル基、6−クロマニル基、5−イソインドリル基等の二環式アリール基等が挙げられるが、これらに限定されない。   The term “unsubstituted or substituted aryl group” means an aromatic carbocyclic group. Also included in this definition are polycyclic groups (eg, bicyclic groups) linked in a fused ring fashion. Specific examples include monocyclic aryl groups such as phenyl group, 1-naphthyl group and 2-naphthyl group; bicyclic aryl groups such as phenanthridinyl group, 6-chromanyl group and 5-isoindolyl group. However, it is not limited to these.

用語「無置換または置換のヘテロアリール基」とは、適宜1〜5個の置換基を有する、少なくとも1つの環内に、窒素原子、酸素原子、または硫黄原子から選ばれる少なくとも1つのヘテロ原子を有する、芳香族性の環式基を意味する。縮合環様式で結合した多環式基(例えば、二環式基)をも本定義に含む。具体例としては、ピロリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソキサゾリル基、チアゾリル基、チアジアゾリル基、イソチアゾリル基、ピリジル基、フリル基、チエニル基、オキサジアゾリル基、2−オキサアゼピニル基、アゼピニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、トリアゾリル基などの単環式へテロアリール基;および、ベンゾチアゾリル基、ベンゾキサゾリル基、ベンゾチエニル基、ベンゾフリル基、キノリニル基、キノリニル−N−オキシド基、イソキノリニル基、ベンゾイミダゾリル基、ベンゾピラニル基、インドリジニル基、シンノリニル基、キノキサリニル基、インダゾリル基、ピロロピリジル基、フロピリジニル基(例えば、フロ[2,3−c]ピリジニル基、フロ[3,1−b]ピリジニル基、またはフロ[2,3−b]ピリジニル基)、ベンジイソチアゾリル基、ベンゾイソキサゾリル基、ベンゾジアジニル基、ベンゾチオピラニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ナフチリジニル基、フタラジニル基、プリニル基、ピリドピリジル基、キナゾリニル基、チエノフリル基、チエノピリジル基、チエノチエニル基などの二環式ヘテロアリール基等の二環式アリール基等が挙げられるが、これらに限定されない。   The term “unsubstituted or substituted heteroaryl group” refers to at least one heteroatom selected from a nitrogen atom, an oxygen atom, or a sulfur atom in at least one ring, optionally having 1 to 5 substituents. Means an aromatic cyclic group. Also included in this definition are polycyclic groups (eg, bicyclic groups) linked in a fused ring fashion. Specific examples include pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, pyridyl, furyl, thienyl, oxadiazolyl, 2-oxaazepinyl, azepinyl, pyrazinyl A monocyclic heteroaryl group such as a group, pyrimidinyl group, pyridazinyl group, triazinyl group, triazolyl group; and benzothiazolyl group, benzoxazolyl group, benzothienyl group, benzofuryl group, quinolinyl group, quinolinyl-N-oxide group, isoquinolinyl group, Benzoimidazolyl group, benzopyranyl group, indolizinyl group, cinnolinyl group, quinoxalinyl group, indazolyl group, pyrrolopyridyl group, furopyridinyl group (for example, furo [2,3-c] pyridinyl group, furo [ 3,1-b] pyridinyl group or furo [2,3-b] pyridinyl group), benzisothiazolyl group, benzisoxazolyl group, benzodiazinyl group, benzothiopyranyl group, benzotriazolyl group, Bicyclic aryl groups such as bicyclic heteroaryl groups such as benzopyrazolyl group, naphthyridinyl group, phthalazinyl group, purinyl group, pyridopyridyl group, quinazolinyl group, thienofuryl group, thienopyridyl group, thienothienyl group, etc. are mentioned. It is not limited.

用語「アルコキシ基」とは、上記直鎖もしくは分枝鎖のアルキル基が酸素原子に連結した基を意味する。具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられるが、これらに限定されない。   The term “alkoxy group” means a group in which the linear or branched alkyl group is linked to an oxygen atom. Specific examples include, but are not limited to, methoxy group, ethoxy group, propoxy group, butoxy group and the like.

前記用語「置換(の)アルキル基」、「置換(の)シクロアルキル基」、「置換(の)飽和へテロシクロアルキル基」、「置換(の)アルケニル基」、「置換(の)アリール基」および「置換(の)ヘテロアリール基」における置換基とは、有機化学分野において電子供与性基として知られる基が挙げられる。例えばアミノ基(これは、アルキル基、アリール基、またはヘテロアリール基でモノ−、ジ−、トリ−置換されたアミノ基を含む)、ヒドロキシ基、アルキル基、およびアルコキシ基からなる群から選ばれる1個以上の基が挙げられるが、これらに限定されない。アルキル基、アルコキシ基が好ましい。具体例としては、前記アルキル基(例えば、炭素数が1〜6個のアルキル基(例えば、メチル基、エチル基))、前記アルコキシ基(例えば、メトキシ基、エトキシ基)などを挙げられる。   The terms “substituted (of) alkyl group”, “substituted (of) cycloalkyl group”, “substituted (of) saturated heterocycloalkyl group”, “substituted (of) alkenyl group”, “substituted (of) aryl group” Examples of the substituent in the “substituted heteroaryl group” include groups known as electron donating groups in the field of organic chemistry. For example, an amino group (which includes an amino group mono-, di-, or tri-substituted with an alkyl group, an aryl group, or a heteroaryl group), a hydroxy group, an alkyl group, and an alkoxy group. One or more groups may be mentioned, but are not limited to these. An alkyl group and an alkoxy group are preferred. Specific examples include the alkyl group (for example, an alkyl group having 1 to 6 carbon atoms (for example, a methyl group and an ethyl group)), the alkoxy group (for example, a methoxy group and an ethoxy group), and the like.

「置換(の)アルキル基」の具体例としては例えば、1−メトキシエチル、1−エトキシ−n−ブチル、1−ジメチルアミノエチルなどが挙げられる。「置換(の)シクロアルキル基」の具体例としては例えば、4−メチル−1−シクロヘキシル、4−メトキシ−1−シクロヘキシルなどが挙げられる。「置換(の)飽和へテロシクロアルキル基」の具体例としては例えば、4−メチル−1−ピペリジル、2−エチル−4−ピペリジル、4−メトキシ−1−ピペリジル、2−メトキシ−4−ピペリジル、4−ジメチルアミノ−1−ピペリジルなどが挙げられる。「置換(の)アルケニル基」の具体例としては例えば、1−メチル−1−ブテニル、3−メチル−1−ブテニル、1−メトキシ−1−ブテニル、3−メトキシ−1−ブテニル、1−ジメチルアミノ−1−ブテニルなどが挙げられる。「置換(の)アリール基」の具体例としては例えば、2−,3−,4−トリル、3,4−キシリル、メシチル、2−,3−,4−メトキシフェニル、3−メチル−4−メトキシフェニルなどが挙げられる。「置換(の)ヘテロアリール基」の具体例としては例えば、4−メチル−1−ピリジル、4−メチル−2−ピリジル、4−メトキシ−2−ピリジル、4−エトキシ−2−ピリジル、4−ジメチルアミノ−2−ピリジルなどが挙げられる。   Specific examples of the “substituted alkyl group” include 1-methoxyethyl, 1-ethoxy-n-butyl, 1-dimethylaminoethyl and the like. Specific examples of the “substituted cycloalkyl group” include 4-methyl-1-cyclohexyl, 4-methoxy-1-cyclohexyl and the like. Specific examples of the “substituted (saturated) heterocycloalkyl group” include, for example, 4-methyl-1-piperidyl, 2-ethyl-4-piperidyl, 4-methoxy-1-piperidyl, 2-methoxy-4-piperidyl , 4-dimethylamino-1-piperidyl and the like. Specific examples of the “substituted alkenyl group” include, for example, 1-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methoxy-1-butenyl, 3-methoxy-1-butenyl, 1-dimethyl. Amino-1-butenyl and the like can be mentioned. Specific examples of the “substituted aryl group” include, for example, 2-, 3-, 4-tolyl, 3,4-xylyl, mesityl, 2-, 3-, 4-methoxyphenyl, 3-methyl-4- And methoxyphenyl. Specific examples of the “substituted heteroaryl group” include, for example, 4-methyl-1-pyridyl, 4-methyl-2-pyridyl, 4-methoxy-2-pyridyl, 4-ethoxy-2-pyridyl, 4- And dimethylamino-2-pyridyl.

用語「トリフルオロ酢酸パラジウム」とは、化学式:Pd(OCOCF)で示される二価のパラジウム(Pd(II))の化合物を意味する。当該化合物は、本願発明の製法において触媒として作用する。 The term “palladium trifluoroacetate” means a compound of divalent palladium (Pd (II)) represented by the chemical formula: Pd (OCOCF 3 ) 2 . The compound acts as a catalyst in the production method of the present invention.

本願の製法は、酸素雰囲気下で行う。ここで、酸素は、上記のトリフルオロ酢酸パラジウム触媒由来のゼロ価のパラジウム(Pd(0))種を活性種である二価のパラジウム種に戻す(再酸化する)ために作用する。「酸素雰囲気下」とは、常圧(1atm)または加圧条件下(約2〜50atm、約5〜10atm)であることを意味する。   The production method of the present application is performed in an oxygen atmosphere. Here, the oxygen acts to return (reoxidize) the zero-valent palladium (Pd (0)) species derived from the palladium trifluoroacetate catalyst to the active divalent palladium species. “Under an oxygen atmosphere” means normal pressure (1 atm) or pressurized conditions (about 2 to 50 atm, about 5 to 10 atm).

「さらなる酸化剤」とは、他の物質を酸化するための物質をいい、具体的には、上記のトリフルオロ酢酸パラジウム触媒由来のゼロ価のパラジウム(Pd(0))種を活性種である二価のパラジウム種に戻す(再酸化する)ための、酸素以外の物質を意味する。具体例としては、塩化銅、酸化銀、ヘテロポリ酸などが挙げられるが、これらに限定されない。ヘテロポリ酸が好ましい。ここで、ヘテロポリ酸とは、モリブドバナドリン酸(HPMoVと略す(H3+xPMo12−x40・nHO(xは0〜4の整数であり、nは10〜30の整数である)))またはその塩(例えば、NPMoVと略す((NH)PMo40・nHO(nは10〜30の整数である)))を意味し、具体例としては、NPMoV、HPMoV、HPMoV、HPMoVなどを含む。 “Further oxidizing agent” refers to a substance for oxidizing other substances. Specifically, the zero-valent palladium (Pd (0)) species derived from the palladium trifluoroacetate catalyst is an active species. It means a substance other than oxygen for returning (reoxidizing) to a divalent palladium species. Specific examples include, but are not limited to, copper chloride, silver oxide, heteropolyacid and the like. Heteropoly acids are preferred. Here, the heteropoly acid, is an integer of molybdenum de banner abbreviated as polyhedrin acid (HPMoV (H 3 + x PMo 12-x V x O 40 · nH 2 O (x is 0 to 4, n is 10 to 30 integer Or a salt thereof (for example, abbreviated as NPMoV ((NH 4 ) 6 H 3 PMo 6 V 6 O 40 · nH 2 O (n is an integer of 10 to 30))) Examples include NPMoV, HPMoV 1 , HPMoV 2 , HPMoV 3 and the like.

用語「配位性化合物」とは、遷移金属であるパラジウムと配位することが可能な化合物を意味し、ケトン、ホスフィン、およびスルホキシドからなる群から選ばれる化合物、またはそれらの混合物を意味する。ケトンが好ましい。具体例としては、アセチルアセトン、ジベンジリデンアセトン(DBA)、トリフェニルホスフィン、およびジメチルスルホキシド(DMSO)等を挙げられ、アセチルアセトン、ジベンジリデンアセトンが好ましい。   The term “coordinating compound” means a compound capable of coordinating with palladium as a transition metal, and means a compound selected from the group consisting of ketone, phosphine, and sulfoxide, or a mixture thereof. Ketones are preferred. Specific examples include acetylacetone, dibenzylideneacetone (DBA), triphenylphosphine, and dimethylsulfoxide (DMSO), and acetylacetone and dibenzylideneacetone are preferred.

本願発明の製造方法を以下に詳しく説明する。
(反応式1)

Figure 0005627483
(式中、R、R、およびnは前掲と同じものを意味する) The production method of the present invention will be described in detail below.
(Reaction Formula 1)
Figure 0005627483
(Wherein R 1 , R 2 , and n are the same as described above)

本願発明の製造方法は、上記の反応式1に従って、1−アルケン(I)およびジシラン(II)を、トリフルオロ酢酸パラジウム(Pd(O(C(=O)CF))触媒の存在下、酸素雰囲気下で反応させることにより、アリルシラン類((III)−Aおよび(III)−B)を製造することができる。 According to the production method of the present invention, 1-alkene (I) and disilane (II) are converted into palladium trifluoroacetate (Pd (O (C (═O) CF 3 ) 2 ) catalyst according to the above reaction formula 1. Allylsilanes ((III) -A and (III) -B) can be produced by reacting in an oxygen atmosphere.

反応基質である、1−アルケン(I)、およびジシラン(II)はいずれも市販されているか、または当該有機化学の分野において知られる方法、或いはこれらに準じた方法により製造することができる。   The reaction substrates 1-alkene (I) and disilane (II) are both commercially available, or can be produced by methods known in the field of organic chemistry, or methods analogous thereto.

トリフルオロ酢酸パラジウムは、市販されているか、または当該有機金属化学の分野において知られる方法、或いはこれらに準じた方法により製造することができる。   Palladium trifluoroacetate is commercially available, or can be produced by a method known in the field of the organometallic chemistry or a method analogous thereto.

1−アルケンの配合量は、ジシランの配合量基準で5〜100モル%当量で使用することができる。例えば、約10〜80モル%当量、約10〜50モル%当量、約20〜約50モル%当量、約20〜約40モル%当量を挙げられる。約40モル%当量が好ましい。   The compounding quantity of 1-alkene can be used by 5-100 mol% equivalent on the compounding quantity basis of disilane. For example, about 10 to 80 mol% equivalent, about 10 to 50 mol% equivalent, about 20 to about 50 mol% equivalent, about 20 to about 40 mol% equivalent can be mentioned. About 40 mol% equivalent is preferred.

トリフルオロ酢酸パラジウム触媒の使用量は、ジシランの配合量基準で約0.01〜0.5モル%当量であり、例えば約0.01〜0.2モル%当量、約0.05〜0.2モル%当量、約0.1〜0.2モル%当量が挙げられ、約0.1モル%当量が好ましい。   The amount of the palladium trifluoroacetate catalyst used is about 0.01 to 0.5 mol% equivalent, for example, about 0.01 to 0.2 mol% equivalent, about 0.05 to 0.00. 2 mol% equivalent, about 0.1-0.2 mol% equivalent is mentioned, and about 0.1 mol% equivalent is preferable.

該さらなる酸化剤の使用量は、ジシランの配合量基準で約0.005〜0.2モル%当量であり、例えば約0.01〜0.2モル%当量、約0.01〜0.1モル%当量、約0.02〜0.05モル%当量が挙げられ、約0.02モル%当量が好ましい。あるいは、当該使用量は、トリフルオロ酢酸パラジウム触媒の配合量基準で約0.05〜2.0モル%当量であり、例えば約0.1〜2.0モル%当量、約0.1〜1.0モル%当量、約0.2〜0.5モル%当量が挙げられ、約0.2モル%当量が好ましい。   The amount of the additional oxidizing agent used is about 0.005 to 0.2 mol% equivalent based on the amount of disilane added, such as about 0.01 to 0.2 mol% equivalent, about 0.01 to 0.1. A mol% equivalent, about 0.02-0.05 mol% equivalent is mentioned, About 0.02 mol% equivalent is preferable. Or the said usage-amount is about 0.05-2.0 mol% equivalent on the basis of the compounding quantity of a trifluoroacetate palladium catalyst, for example, about 0.1-2.0 mol% equivalent, about 0.1-1 0.0 mol% equivalent, about 0.2-0.5 mol% equivalent is mentioned, and about 0.2 mol% equivalent is preferable.

該配位性化合物の使用量は、ジシランの配合量基準で約0.01〜0.5モル%当量であり、例えば約0.01〜0.2モル%当量、約0.05〜0.2モル%当量、約0.1〜0.2モル%当量が挙げられ、約0.1モル%当量が好ましい。あるいは、当該使用量は、トリフルオロ酢酸パラジウム触媒の配合量基準で約0.5〜2.0モル%当量であり、例えば約1.0〜1.5モル%当量、約1.0〜1.2モル%当量が挙げられ、約1.0モル%当量が好ましい。   The amount of the coordination compound used is about 0.01 to 0.5 mol% equivalent based on the amount of disilane added, for example about 0.01 to 0.2 mol% equivalent, about 0.05 to about 0.00. 2 mol% equivalent, about 0.1-0.2 mol% equivalent is mentioned, and about 0.1 mol% equivalent is preferable. Alternatively, the amount used is about 0.5 to 2.0 mol% equivalent, for example, about 1.0 to 1.5 mol% equivalent, about 1.0 to 1 based on the blending amount of the palladium trifluoroacetate catalyst. .2 mol% equivalent is mentioned, and about 1.0 mol% equivalent is preferred.

本願発明の反応は有機溶媒中で行なうことが好ましい。反応有機溶媒は特に限定されず、飽和炭化水素(例えば、ペンタン、ヘキサン)、芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン)、ハロゲン化炭化水素(例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン)等が挙げられるが、それぞれ単独でまたは2種以上を混合して用いることができる。芳香族炭化水素が好ましく、例えば、トリフルオロベンゼン、トルエン、メシチレンを挙げられ、トリフルオロベンゼンが好ましい。   The reaction of the present invention is preferably carried out in an organic solvent. The reaction organic solvent is not particularly limited, and is a saturated hydrocarbon (for example, pentane, hexane), aromatic hydrocarbon (for example, benzene, toluene, xylene), halogenated hydrocarbon (for example, dichloromethane, chloroform, 1,2-dichloroethane). ), Etc., may be used alone or in admixture of two or more. Aromatic hydrocarbons are preferable, and examples thereof include trifluorobenzene, toluene, and mesitylene, and trifluorobenzene is preferable.

本願発明の反応は、室温(例えば、約20℃)から高温(例えば、100℃以上)で行なうことができ、通常室温から使用する反応溶媒の沸点であり、室温〜約40℃が好ましい。   The reaction of the present invention can be carried out from room temperature (for example, about 20 ° C.) to high temperature (for example, 100 ° C. or more), and is usually the boiling point of the reaction solvent used from room temperature, preferably room temperature to about 40 ° C.

本願発明の反応は、酸素雰囲気下で行い、常圧(1atm)または加圧容器(例えば、市販のステンレス加圧容器)中での加圧条件(約2〜50atm、約5〜10atm)下で行なうことができ、通常常圧で行なう。   The reaction of the present invention is carried out in an oxygen atmosphere, under normal pressure (1 atm) or under pressurized conditions (about 2 to 50 atm, about 5 to 10 atm) in a pressurized container (for example, a commercially available stainless steel pressurized container). Can be performed, usually at normal pressure.

また、本願発明の反応時間は、使用する溶媒、反応温度などの反応条件に依存して変わり得るが、数時間〜数日間で完結し、通常6時間〜約24時間で完結し、約12時間〜24時間が好ましい。   The reaction time of the present invention can vary depending on the reaction conditions such as the solvent used and the reaction temperature, but it can be completed in several hours to several days, usually 6 hours to 24 hours, and about 12 hours. ~ 24 hours is preferred.

以下に実施例を挙げて本願発明を更に具体的に説明するが、本願発明はこれら実施例に限定されるものではない。化合物の確認は、各種分光学的分析の解析により行なった。具体的には、一次元プロトン、炭素13核磁気共鳴スペクトル(H NMR、13C NMR)およびDEPT(Distorsionless Enhancement by Polarization Transfer)、質量スペクトル(MS)(例えば、ガスクロマトグラフィー質量スペクトル(GC−MS))、赤外線吸収スペクトル(IR)の解析により行った。核磁気共鳴スペクトルには、テトラメチルシランを内部標準として用いた。また、生成物が公知化合物の場合は適宜文献名もあわせて記す。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. The compound was confirmed by analysis of various spectroscopic analyses. Specifically, one-dimensional proton, carbon-13 nuclear magnetic resonance spectrum ( 1 H NMR, 13 C NMR), DEPT (Distorsionless Enhancement by Polarization Transfer), mass spectrum (MS) (for example, gas chromatography mass spectrum (GC− MS)), and infrared absorption spectrum (IR) analysis. Tetramethylsilane was used as an internal standard for the nuclear magnetic resonance spectrum. In addition, when the product is a known compound, the name of the document is also described as appropriate.

実施例中に用いた以下の略号を説明する。
Meはメチル基を、SiMeはトリメチルシリル基を意味する。1−アルケン、ジシラン、トリフルオロ酢酸パラジウム、モリブドバナドリン酸またはその塩などの試薬は商業主から入手可能であり、あるいは通常の有機合成により製造可能である。
The following abbreviations used in the examples will be described.
Me represents a methyl group, and SiMe 3 represents a trimethylsilyl group. Reagents such as 1-alkene, disilane, palladium trifluoroacetate, molybdovanadolinic acid or a salt thereof can be obtained from a commercial owner, or can be produced by ordinary organic synthesis.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.05 mmol, 16.8mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-デセン(20 mmol, 2800mg)、ヘキサメチルジシラン(0.5 mmol, 73.2mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はH-NMR、C-NMR、dept、GC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率58%、選択比 α:γ=95:5)
GC-MS: 212(4%)[M]+,127(1),113(1),99(2),73(100),71(4),43(15)
参考文献:Y Tsuji, et al, Journal of Organic Chemistry, 1993, 58(14), 3607-8.
Figure 0005627483
Into the flask, a rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.05 mmol, 16.8 mg) was added, and trifluorotoluene (1 mL) was added as a solvent. 1-decene (20 mmol, 2800 mg) and hexamethyldisilane (0.5 mmol, 73.2 mg) were added, and the additive acetylacetone (0.1 mmol, 10 mg) was added, and the mixture was heated to 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clenched, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed using a silica gel column, and finally the solvent was removed using cougelol to obtain the product, which was identified by H-NMR, C-NMR, dept, and GC-MS. Quantification was performed by GC using an internal standard method.
Product yield: quantitative (GC yield 58%, selectivity α: γ = 95: 5)
GC-MS: 212 (4%) [M] +, 127 (1), 113 (1), 99 (2), 73 (100), 71 (4), 43 (15)
Reference: Y Tsuji, et al, Journal of Organic Chemistry, 1993, 58 (14), 3607-8.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.01 mmol, 33.2mg)、NPMoV(モリブドバナドリン酸)(0.02 mmol, 35.0mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-デセン(20 mmol, 2800mg)、ヘキサメチルジシラン(0.2 mmol, 29.2mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はH-NMR、C-NMR、dept、GC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率65%、選択比 α:γ=95:5)
GC-MS: 212(4%)[M]+,127(1),113(1),99(2),73(100),71(4),43(15)
参考文献:Y Tsuji, et al, Journal of Organic Chemistry, 1993, 58(14), 3607-8.
Figure 0005627483
In a flask, put a rotor, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.01 mmol, 33.2 mg), NPMoV (molybdovanadate) (0.02 mmol, 35.0 mg) and solvent Trifluorotoluene (1 mL) was added, followed by the substrate 1-decene (20 mmol, 2800 mg) and hexamethyldisilane (0.2 mmol, 29.2 mg), and finally the additive acetylacetone (0.1 mmol). mmol, added 10 mg), under 40 0 C, for 24 hours with stirring was carried out. after the reaction of the oxygen atmosphere was wrench in acetone. then, to extract only the organic layer, in evaporator The solvent and unreacted substrate were removed, and a by-product was removed with a silica gel column using n-hexane as a developing solvent, and finally the solvent was removed with cougelol to obtain a product. , C-NMR, dept, and GC-MS, and quantitative determination was performed by GC using an internal standard method.
Product yield: quantitative (GC yield 65%, selectivity α: γ = 95: 5)
GC-MS: 212 (4%) [M] +, 127 (1), 113 (1), 99 (2), 73 (100), 71 (4), 43 (15)
Reference: Y Tsuji, et al, Journal of Organic Chemistry, 1993, 58 (14), 3607-8.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-ヘキセン(20 mmol, 1.6g)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率43%、選択比 α:γ=95:5)
GC-MS: 156(8%)[M]+,113(2),73(100),43(4),29(1)
参考文献:D. A. Evans, et al, Organic Letters, 2006, 8(10), 2071-2073.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 1- hexene (20 mmol, 1.6 g), hexamethyldisilazane (1 mmol, 146 mg) was. Finally added acetylacetone (0.1 mmol, 10 mg) of the additive added to the original oxygen atmosphere 40 0 C, After completion of the reaction, acetone was added and the mixture was clarified, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with the silica gel column used, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. It was.
Product yield: quantitative (GC yield 43%, selectivity α: γ = 95: 5)
GC-MS: 156 (8%) [M] +, 113 (2), 73 (100), 43 (4), 29 (1)
References: DA Evans, et al, Organic Letters, 2006, 8 (10), 2071-2073.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-ヘプテン(20 mmol, 1.9mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率41%、選択比 α:γ=95:5)
GC-MS: 170(6.5%)[M]+,127(1),97(1),87(1),73(100),43(4)
参考文献:N. G. Bhat et al, Tetrahedron Letters, 2007, 48(24), 4267-4269.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. Of 1-heptene (20 mmol, 1.9 mg), hexamethyldisilane (1 mmol, 146 mg) was added, and finally the additive acetylacetone (0.1 mmol, 10 mg) was added to the mixture at 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clarified, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with the silica gel column used, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. It was.
Product yield: quantitative (GC yield 41%, selectivity α: γ = 95: 5)
GC-MS: 170 (6.5%) [M] +, 127 (1), 97 (1), 87 (1), 73 (100), 43 (4)
References: NG Bhat et al, Tetrahedron Letters, 2007, 48 (24), 4267-4269.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-オクテン(20 mmol, 2.2g)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率46%、選択比 α:γ=96:4)
GC-MS: 184(4.7%)[M]+,169(2),113(1),97(1),73(100),43(2),29(2)
参考文献:S. Okamoto, et al, Tetrahedron Letters, 1993, 34(15), 2509-12.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. Of 1-octene (20 mmol, 2.2 g) and hexamethyldisilane (1 mmol, 146 mg) were added, and finally the additive acetylacetone (0.1 mmol, 10 mg) was added to the mixture at 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clarified, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with the silica gel column used, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. It was.
Product yield: quantitative (GC yield 46%, selectivity α: γ = 96: 4)
GC-MS: 184 (4.7%) [M] +, 169 (2), 113 (1), 97 (1), 73 (100), 43 (2), 29 (2)
References: S. Okamoto, et al, Tetrahedron Letters, 1993, 34 (15), 2509-12.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-ドデセン(20 mmol, 3.2mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率44%、選択比 α:γ=94:6)
GC-MS: 240(3.5%)[M]+,224(1),127(1),73(100),43(2),29(1)
参考文献:K. Itami, et al, Journal of the American Chemical Society, 2003, 125(20), 6058-6059.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 1-dodecene (20 mmol, 3.2 mg), hexamethyldisilane (1 mmol, 146 mg) were added, and the additive acetylacetone (0.1 mmol, 10 mg) was added, followed by heating at 40 0 C, 24 After completion of the reaction, acetone was added and the mixture was clarified, and then only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with a silica gel column, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. .
Product yield: quantitative (GC yield 44%, selectivity α: γ = 94: 6)
GC-MS: 240 (3.5%) [M] +, 224 (1), 127 (1), 73 (100), 43 (2), 29 (1)
Reference: K. Itami, et al, Journal of the American Chemical Society, 2003, 125 (20), 6058-6059.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-テトラデセン(20 mmol, 3.5mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率43%、選択比 α:γ=95:5)
GC-MS: 268(3%)[M]+,253(2),127(1),99(1),73(100),57(1),43(3),29(1)
参考文献:T. K. Sarkar, et al, Tetrahedron, 46(6), 1990, 1885-98.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. Of 1-tetradecene (20 mmol, 3.5 mg) and hexamethyldisilane (1 mmol, 146 mg) were added, and finally, the additive acetylacetone (0.1 mmol, 10 mg) was added to the mixture at 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clarified, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with the silica gel column used, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. It was.
Product yield: quantitative (GC yield 43%, selectivity α: γ = 95: 5)
GC-MS: 268 (3%) [M] +, 253 (2), 127 (1), 99 (1), 73 (100), 57 (1), 43 (3), 29 (1)
Reference: TK Sarkar, et al, Tetrahedron, 46 (6), 1990, 1885-98.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-ヘキサデセン(20 mmol, 4.4mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率46%、選択比 α:γ=94:6)
GC-MS: 296(2%)[M]+,281(2),127(1),73(100),57(1),43(4),29(1)
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 1-hexadecene (20 mmol, 4.4 mg), hexamethyldisilane (1 mmol, 146 mg) were added, and finally the additive acetylacetone (0.1 mmol, 10 mg) was added, and the mixture was heated to 40 0 C, 24 under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clarified, and then only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with a silica gel column, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. .
Product yield: quantitative (GC yield 46%, selectivity α: γ = 94: 6)
GC-MS: 296 (2%) [M] +, 281 (2), 127 (1), 73 (100), 57 (1), 43 (4), 29 (1)

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1,9-デカジエン(20 mmol, 2.9mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率54%、選択比 α:γ=92:8)
GC-MS: 210(1%)[M]+,137(3),73(100),55(1),41(3),27(1)
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 1,9-decadiene (20 mmol, 2.9 mg), hexamethyldisilane (1 mmol, 146 mg) were added, and the additive acetylacetone (0.1 mmol, 10 mg) was added, and the mixture was heated to 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clenched, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed using a silica gel column, and finally the solvent was removed using cougelol to obtain the product, which was identified by GC-MS. went.
Product yield: quantitative (GC yield 54%, selectivity α: γ = 92: 8)
GC-MS: 210 (1%) [M] +, 137 (3), 73 (100), 55 (1), 41 (3), 27 (1)

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の1-ドデカジエン(20 mmol, 3.3mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率34.6%、選択比 α:γ=89:11)
GC-MS: 238(1%)[M]+,113(1),73(100),55(2),41(4),
参考文献:J.M. Concellon, et al, Synlett, 2007, (1), 75-78.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 1-dodecadiene (20 mmol, 3.3 mg), hexamethyldisilane (1 mmol, 146 mg) were added, and the additive acetylacetone (0.1 mmol, 10 mg) was added, followed by 40 0 C, 24 under oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clarified, and then only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with a silica gel column, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. .
Product yield: quantitative (GC yield 34.6%, selectivity α: γ = 89: 11)
GC-MS: 238 (1%) [M] +, 113 (1), 73 (100), 55 (2), 41 (4),
References: J.M. M. Concellon, et al, Synlett, 2007, (1), 75-78.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質のアリルベンゼン(20 mmol, 2.3mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率50.8%、選択比 α:γ=>99:-)
GC-MS: 190(12%)[M]+,117(2),73(100),
参考文献:N. Selander, et al., Angewandte Chemie, International Edition, 2010, 49(24), 4051-4053.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. Allylbenzene (20 mmol, 2.3 mg), hexamethyldisilane (1 mmol, 146 mg) were added, and finally the additive acetylacetone (0.1 mmol, 10 mg) was added, followed by heating at 40 0 C, 24 After completion of the reaction, acetone was added and the mixture was clarified, and then only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed with a silica gel column, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. .
Product yield: quantitative (GC yield 50.8%, selectivity α: γ => 99 :-)
GC-MS: 190 (12%) [M] +, 117 (2), 73 (100),
References: N. Selander, et al., Angewandte Chemie, International Edition, 2010, 49 (24), 4051-4053.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の4-フェニル-ブテン(20 mmol, 2.6mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率44.6%、選択比 α:γ=92:8)
GC-MS: 204(8%)[M]+,131(3),77(1),73(100),
参考文献:J. M. Concellon, et al., Synlett, 2007, (1) 75-78.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. of 4-phenyl -. butene (20 mmol, 2.6 mg), hexamethyl disilane (1 mmol, 146 mg) was added last, acetylacetone additives (0.1 mmol, 10 mg) was added to the original 40 0 oxygen atmosphere The mixture was stirred for 24 hours at C. After completion of the reaction, acetone was added and the mixture was clarified, and then only the organic layer was extracted, and the solvent and unreacted substrate were removed with an evaporator. By-products were removed with a silica gel column using hexane, and finally the solvent was removed with cougelol to obtain the product, which was identified by GC-MS. I went there.
Product yield: quantitative (GC yield 44.6%, selectivity α: γ = 92: 8)
GC-MS: 204 (8%) [M] +, 131 (3), 77 (1), 73 (100),
Reference: JM Concellon, et al., Synlett, 2007, (1) 75-78.

Figure 0005627483
フラスコ内に、回転子、トリフルオロ酢酸パラジウム触媒(Pd(OC(=O)CF3)2 (0.1mmol, 33.2mg)を入れ溶媒としてトリフルオロトルエン(1 mL)を加えた。続いて、基質の4-アリルアニソール(20 mmol, 2.5mg)、ヘキサメチルジシラン(1mmol, 146mg)を加えた。最後に、添加剤のアセチルアセトン(0.1 mmol, 10mg)を加えて、酸素雰囲気のもと400C、24時間攪拌を行った。反応終了後、アセトンを加えてクレンチを行った。その後、有機層のみを抽出し、エヴァポレーターで溶媒及び未反応の基質を除去し、展開溶媒としてn-ヘキサンを用いたシリカゲルカラムで副生成物を除去した。最後にクーゲロールで溶媒を除去し、生成物を得た。生成物はGC-MSで同定を行った。定量はGCを用い、内部基準法で行った。
生成物の収率:定量的(GC 収率42.2%、選択比 α:γ=>99:-)
GC-MS: 220(20%)[M]+,189(6),147(5),133(1),107(1),73(100),
参考文献:D. A. Evans,Organic Letters, 2006, 8(10), 2071-2073.
Figure 0005627483
A rotator, palladium trifluoroacetate catalyst (Pd (OC (= O) CF 3 ) 2 (0.1 mmol, 33.2 mg) was placed in the flask, and trifluorotoluene (1 mL) was added as a solvent. 4-arylanisole (20 mmol, 2.5 mg) and hexamethyldisilane (1 mmol, 146 mg) were added, and the additive acetylacetone (0.1 mmol, 10 mg) was added, followed by addition of 40 0 C under an oxygen atmosphere. After completion of the reaction, acetone was added and the mixture was clenched, after which only the organic layer was extracted, the solvent and unreacted substrate were removed with an evaporator, and n-hexane was used as a developing solvent. By-products were removed using a silica gel column, and finally the solvent was removed using cougelol to obtain the product, which was identified by GC-MS. went.
Product yield: quantitative (GC yield 42.2%, selectivity α: γ => 99 :-)
GC-MS: 220 (20%) [M] +, 189 (6), 147 (5), 133 (1), 107 (1), 73 (100),
References: DA Evans, Organic Letters, 2006, 8 (10), 2071-2073.

以下に、本願反応の種々の反応条件を変えた場合の結果を示す。
反応条件の検討結果を示す。

Figure 0005627483
表1
Figure 0005627483
Below, the result at the time of changing various reaction conditions of this application reaction is shown.
The examination result of reaction conditions is shown.
Figure 0005627483
Table 1
Figure 0005627483

同様に、Pd触媒および配位性化合物の条件を変えた場合の結果を示す。

Figure 0005627483
表2
Figure 0005627483
Similarly, the results when the conditions of the Pd catalyst and the coordination compound are changed are shown.
Figure 0005627483
Table 2
Figure 0005627483

本願発明により、安価かつ入手安価な化学産業資源(フィードストック)である単純アルケンである1−アルケンを原料として用いて、パラジウム触媒存在下、酸素雰囲気下、ジシランとから、アリルシラン類を高い位置選択性で製造することができる。本願発明の製造方法は、金属塩、ハロゲン等の副生成物の発生を伴なわず、また酸化剤として酸素を利用できることから、低環境負荷型反応として有用であり、工業的に利用価値が高い。   According to the present invention, 1-alkene, a simple alkene, which is a cheap and inexpensive chemical industry resource (feedstock), is used as a raw material, and allylsilanes are highly selected from disilane in the presence of a palladium catalyst in an oxygen atmosphere. It can be manufactured with sex. The production method of the present invention is useful as a low environmental load reaction because it does not involve the generation of by-products such as metal salts and halogens, and can use oxygen as an oxidizing agent, and has high industrial utility value. .

Claims (9)

式(I):
Figure 0005627483
(式中、
は、無置換または置換のアルキル基、無置換または置換のシクロアルキル基、無置換または置換の飽和へテロシクロアルキル基、無置換または置換のアルケニル基、無置換または置換のアリール基、および無置換または置換のヘテロアリール基からなる群から選ばれ;そして、
nは、1〜15の整数である)
で表される1−アルケン、および
式(II):
Figure 0005627483
(式中、
は、無置換のアルキル基または無置換のアリール基からなる群から選ばれる)
で表されるジシランを、トリフルオロ酢酸パラジウム(Pd(OC(=O)CF))触媒の存在下、酸素雰囲気下で反応させることによる、
式(III):
Figure 0005627483
(式中、R、Rおよびnは前掲のとおりである)
で表されるアリルシラン類の製造方法。
Formula (I):
Figure 0005627483
(Where
R 1 is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, and Selected from the group consisting of unsubstituted or substituted heteroaryl groups; and
n is an integer of 1 to 15)
A 1-alkene represented by formula (II):
Figure 0005627483
(Where
R 2 is selected from the group consisting of an unsubstituted alkyl group or an unsubstituted aryl group)
By reacting a disilane represented by the following formula in the presence of a palladium trifluoroacetate (Pd (OC (═O) CF 3 ) 2 ) catalyst in an oxygen atmosphere:
Formula (III):
Figure 0005627483
(Wherein R 1 , R 2 and n are as described above)
The manufacturing method of allylsilane represented by these.
がn−ヘプチルであって、nが1である、請求項1記載の製造方法。 The production method according to claim 1, wherein R 1 is n-heptyl and n is 1. がメチルである、請求項1または2記載の製造方法。 The production method according to claim 1 or 2, wherein R 2 is methyl. 式(III)−Aの化合物と式(III)−Bの化合物の生成比率が、90:10以上である、請求項1乃至3のいずれか1項記載の製造方法。 Production ratio of formula (III) -A compound of formula (III) -B compound, 9 0:10 is more, the production method according to any one of claims 1 to 3. 触媒量のさらなる酸化剤の存在下で行う、請求項1乃至4のいずれか1項記載の製造方法。   The process according to any one of claims 1 to 4, which is carried out in the presence of a catalytic amount of a further oxidizing agent. 前記さらなる酸化剤がモリブドバナドリン酸塩である、請求項5記載の製造方法。   The process according to claim 5, wherein the further oxidizing agent is molybdovanadophosphate. さらに、触媒量の、ケトン、ホスフィンおよびスルホキシドからなる群から選ばれる配位子性化合物の存在下で行う、請求項1乃至6のいずれか1項記載の製造方法。   Furthermore, the manufacturing method of any one of Claims 1 thru | or 6 performed in presence of the ligand amount compound chosen from the group which consists of a ketone, a phosphine, and a sulfoxide of catalytic amount. 前記配位子性化合物が、アセチルアセトンおよびジベンジリデンアセトンからなる群から選ばれる化合物である、請求項7記載の製造方法。   The production method according to claim 7, wherein the ligand compound is a compound selected from the group consisting of acetylacetone and dibenzylideneacetone. 式(I)で表される1−アルケンの配合量が、式(II)で表されるジシランの配合量基準で5〜100モル%当量である、請求項1乃至8のいずれか1項記載の製造方法。   The blending amount of 1-alkene represented by formula (I) is 5 to 100 mol% equivalent based on the blending amount of disilane represented by formula (II). Manufacturing method.
JP2011015146A 2011-01-27 2011-01-27 Method for producing allylsilanes Expired - Fee Related JP5627483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015146A JP5627483B2 (en) 2011-01-27 2011-01-27 Method for producing allylsilanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015146A JP5627483B2 (en) 2011-01-27 2011-01-27 Method for producing allylsilanes

Publications (2)

Publication Number Publication Date
JP2012153663A JP2012153663A (en) 2012-08-16
JP5627483B2 true JP5627483B2 (en) 2014-11-19

Family

ID=46835800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015146A Expired - Fee Related JP5627483B2 (en) 2011-01-27 2011-01-27 Method for producing allylsilanes

Country Status (1)

Country Link
JP (1) JP5627483B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635257B2 (en) * 2015-11-04 2020-01-22 国立研究開発法人産業技術総合研究所 Method for producing nitrogen-containing silicon-containing compound having both amino and silyl groups
JP7303502B2 (en) * 2019-02-18 2023-07-05 学校法人 関西大学 Method for producing allylsilane compound using palladium nanoparticle catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3104326A1 (en) * 1981-02-07 1982-08-19 Basf Ag, 6700 Ludwigshafen "METHOD FOR PRODUCING AROMATIC SILANES"
JPH0680677A (en) * 1992-09-04 1994-03-22 Mitsubishi Petrochem Co Ltd Production of bis@(3754/24)allylsilane) compound

Also Published As

Publication number Publication date
JP2012153663A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
Lesbani et al. Facile synthesis of hypersilylated aromatic compounds by palladium-mediated arylation reaction
Buonomo et al. Chemoselective reduction of phosphine oxides by 1, 3‐Diphenyl‐Disiloxane
Oh et al. Nucleophile-assisted Pt-catalyzed cyclization of enynones: an access to synthesis of highly substituted furans
Wakabayashi et al. Practical conversion of chlorosilanes into alkoxysilanes without generating HCl
Qiu et al. Direct synthesis of arylboronic pinacol esters from arylamines
Young et al. A general approach to medium ring alkynes by using metathesis of cobalt hexacarbonyl containing dienes
Żak et al. Highly effective synthesis of vinylfunctionalised cubic silsesquioxanes
Liu et al. Isolation and X-ray Structure of a Trimeric 1, 4-Dilithio-1, 3-butadiene and a Dimeric Me3Si-Substituted 1, 4-Dilithio-1, 3-butadiene
McAtee et al. Simplified Preparation of Trialkylvinylsilanes via the Silyl‐Heck Reaction Utilizing a Second Generation Catalyst
Koreeda et al. Ruthenium-catalyzed reductive deamination and tandem alkylation of aniline derivatives
Hanada et al. Hydrosilanes Are Not Always Reducing Agents for Carbonyl Compounds but Can Also Induce Dehydration: A Ruthenium‐Catalyzed Conversion of Primary Amides to Nitriles
Faller et al. Ruthenium catalyzed enyne cycloisomerizations and hydroxycyclizations with skeletal rearrangement
Żak et al. Efficient Functionalisation of Cubic Monovinylsilsesquioxanes via Cross‐Metathesis and Silylative Coupling with Olefins in the Presence of Ruthenium Complexes
Iwasaki et al. Synthesis of Multisubstituted Olefins through Regio‐and Stereoselective Addition of Interelement Compounds Having B–Si, B–B, and Cl–S Bonds to Alkynes, and Subsequent Cross‐Couplings
Naganawa et al. Nickel‐Catalyzed Selective Cross‐Coupling of Chlorosilanes with Organoaluminum Reagents
Danilkina et al. Ring-closing metathesis of Co2 (CO) 6–alkyne complexes for the synthesis of 11-membered dienediynes: overcoming thermodynamic barriers
Li et al. Haloamidation of alkynes and related reactions using zirconacycles and isocyanates
JP5627483B2 (en) Method for producing allylsilanes
Chang et al. The scope and limitations of intramolecular radical cyclizations of acylsilanes with alkyl, aryl, and vinyl radicals
Crandall et al. Cis reduction of acetylenes by organocopper reagents
He et al. Studies on highly regio-and stereoselective fluorohydroxylation reaction of 3-aryl-1, 2-allenyl phosphine oxides with Selectfluor
Kitamura et al. Synthesis of 1, 2-bis (trimethylsilyl) benzene derivatives from 1, 2-dichlorobenzenes using a hybrid metal Mg/CuCl in the presence of LiCl in 1, 3-dimethyl-2-imidazolidinone
Zemtsov et al. Nucleophilic trifluoromethylation of arylidene Meldrum’s acids
Kuduk et al. Asymmetric addition reactions of Grignard reagents to chiral 2-trifluoromethyl tert-butyl (Ellman) sulfinimine–ethanol adducts
Miyoshi et al. One-pot method for α-phenylation of ketones using isoxazolidine and triphenylaluminum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees