JP5627121B2 - Cement mortar permanent formwork - Google Patents
Cement mortar permanent formwork Download PDFInfo
- Publication number
- JP5627121B2 JP5627121B2 JP2011245196A JP2011245196A JP5627121B2 JP 5627121 B2 JP5627121 B2 JP 5627121B2 JP 2011245196 A JP2011245196 A JP 2011245196A JP 2011245196 A JP2011245196 A JP 2011245196A JP 5627121 B2 JP5627121 B2 JP 5627121B2
- Authority
- JP
- Japan
- Prior art keywords
- cement mortar
- cement
- explosion
- mortar
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、セメントモルタルの永久型枠に関するものである。 The present invention relates to a permanent form of cement mortar .
従来のセメントモルタルは、急激に加熱され熱応力を受けることにより爆裂するという問題点がある。本発明者らの検討によれば、セメントモルタルに対し実際にISO834の耐火試験を行い、急激な熱応力をセメントモルタルに与えたところ、表面温度が700℃前後に達した時点で爆裂が生じた。この爆裂は、セメントモルタル中に存在する水分が急激に加熱されることにより膨張し、その水蒸気が逃げ道を失い、内部からセメントモルタルを破壊するために生じると考えられる。 The conventional cement mortar has a problem that it explodes when heated suddenly and subjected to thermal stress. According to the study by the present inventors, when a fire resistance test of ISO834 was actually performed on cement mortar and a sudden thermal stress was applied to the cement mortar, explosion occurred when the surface temperature reached around 700 ° C. . This explosion is thought to occur because the moisture present in the cement mortar expands due to rapid heating, and the water vapor loses its escape route and destroys the cement mortar from the inside.
図2は、前記の水蒸気爆裂のメカニズムを説明するためのセメントモルタルの断面図である。図2(a)に示したように、セメントモルタルは、マトリックスとしてのセメント1と、このセメント1中に分散した細骨材2から主に構成されているが、通常、所定量の水分3も含んでいる。ところが、セメントモルタルは急激に加熱され熱応力を受けることにより、図2(b)に示したようにセメントモルタル内部の水分3が加熱され水蒸気となり、逃げ道のない水蒸気圧力4がセメントモルタルの内部からの爆裂をもたらす。
FIG. 2 is a cross-sectional view of the cement mortar for explaining the mechanism of the steam explosion. As shown in FIG. 2 (a), the cement mortar is mainly composed of
したがって本発明の目的は、急激な熱応力によるセメントモルタルの爆裂を防止することのできる耐爆裂性セメントモルタルを用いたセメントモルタルの永久型枠を提供することにある。 Accordingly, an object of the present invention is to provide a permanent form of cement mortar using an explosion-resistant cement mortar capable of preventing the explosion of the cement mortar due to rapid thermal stress.
請求項1に記載の発明は、セメントと水とを、水セメント比が40〜75%となるように混合した後、セルロース繊維を投入し、前記セルロース繊維を均一に分散させた後、そこに細骨材を混合して得られた耐爆裂性セメントモルタルからなる、セメントモルタルの永久型枠である。
請求項2に記載の発明は、セルロース繊維が、0.1〜3.0質量%含まれる請求項1に記載のセメントモルタルの永久型枠である。
In the invention according to
The invention according to
本発明によれば、急激な熱応力によるセメントモルタルの爆裂を防止することのできる耐爆裂性セメントモルタルを用いたセメントモルタルの永久型枠が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the permanent form of the cement mortar using the explosion-resistant cement mortar which can prevent the explosion of the cement mortar by rapid thermal stress is provided.
本発明によれば、セメントモルタル中にセルロース繊維を配合しているため、セメントモルタル内部をポーラスな状態または、加熱によりセルロース繊維が炭化してスペースを生じ、膨張した水蒸気の逃げ道を作って爆裂を防止することができる。 According to the present invention, since the cellulose fibers are blended in the cement mortar, the inside of the cement mortar is in a porous state, or the cellulose fibers are carbonized by heating to create a space, creating an escape route for the expanded water vapor and causing the explosion. Can be prevented.
図1は、本発明のセメントモルタルの爆裂防止のメカニズムを説明するための断面図である。図1(a)に示したように、本発明のセメントモルタルは、従来のセメントモルタルと同様にマトリックスとしてのセメント1と、このセメント1中に分散した細骨材2から主に構成されているが、セルロース繊維5を含むことが最大の特徴となっている。本発明のセメントモルタルは、急激に加熱され熱応力を受けた場合でも、図1(b)に示したように、セメントモルタル内部の水分3から生じた水蒸気圧力が、例えば炭化したセルロース繊維5’により形成された逃げ道により矢印6方向に分散し、セメントモルタルの内部からの爆裂を防止することができる。
FIG. 1 is a cross-sectional view for explaining a mechanism for preventing explosion of the cement mortar of the present invention. As shown in FIG. 1 (a), the cement mortar of the present invention is mainly composed of a
本発明の用いられるセルロース繊維は、いわゆる木質系繊維であって、その種類およびサイズはとくに制限されないが、例えば地球環境上の観点から故紙やリサイクル紙をチップ化または繊維化したものであるのが好ましい。なお、セルロース繊維は、市販されているものを利用することもでき、例えば十條木材社製商品名NPファイバーが好適なものとして挙げられる。
セルロース繊維は、セメントモルタル中に0.1〜3.0質量%含まれるのが好ましい。
The cellulose fiber used in the present invention is a so-called wood-based fiber, and its type and size are not particularly limited. For example, waste paper or recycled paper is made into chips or fibers from the viewpoint of the global environment. preferable. In addition, what is marketed can also utilize a cellulose fiber, for example, the Tokachi Wood company brand name NP fiber is mentioned as a suitable thing.
Cellulose fibers are preferably contained in the cement mortar in an amount of 0.1 to 3.0% by mass.
本発明で用いるセメントは、とくに制限されず用途により自由に選択でき、例えば普通ポルトランドセメント、早強セメント、ビーライトセメント、高炉セメント、三成分セメント、混合セメント、アルミナセメント等を使用できる。水セメント比は、通常40〜75%、好ましくは50〜65%がよい。 The cement used in the present invention is not particularly limited and can be freely selected depending on the application. For example, ordinary portland cement, early strength cement, belite cement, blast furnace cement, ternary cement, mixed cement, alumina cement and the like can be used. The water-cement ratio is usually 40 to 75%, preferably 50 to 65%.
本発明に用いられる細骨材は、とくに制限されるものではないが、例えば、砕石、砕砂、陸砂利、陸砂、川砂利、川砂、山砂を単独または混合したもの等が挙げられる。また、細骨材のサイズおよび配合量もセメントモルタルの用途等によって適宜選定することができる。
例えば、細骨材は単位量として1000〜1800kg/m3が好ましい。
The fine aggregate used in the present invention is not particularly limited, and examples thereof include crushed stone, crushed sand, land gravel, land sand, river gravel, river sand, and mountain sand alone or mixed. Further, the size and blending amount of the fine aggregate can be appropriately selected depending on the use of the cement mortar.
For example, the fine aggregate is preferably 1000 to 1800 kg / m 3 as a unit amount.
本発明の耐爆裂性セメントモルタルには、必要に応じてシリカヒューム、高炉スラグ微粉末、フライアッシュ、ガラス粉末、貝灰等の産業廃棄物のような添加材、また増粘剤、減水剤、有機ポリマー等のような各種添加剤を配合することができ、その配合率も、従来のそれと違わず、適宜決定できる。 In the explosion-resistant cement mortar of the present invention, if necessary, additives such as silica fume, blast furnace slag fine powder, fly ash, glass powder, shell ash and other industrial wastes, thickeners, water reducing agents, Various additives such as organic polymers can be blended, and the blending ratio can be appropriately determined without different from the conventional one.
本発明の耐爆裂性セメントモルタルは、水にセルロース繊維を投入し、両者を均一に分散させた後、そこにセメントおよび細骨材を投入し混合することにより製造することができる。これとは別に、セメントと水とを混合した後、セルロース繊維を投入し、前記セルロース繊維を均一に分散させた後、そこに細骨材を混合することによっても製造することができる。前記のような製造方法によれば、セルロース繊維を均一にセメントモルタル中に分散することができ、耐爆裂性を一層高めることができ好ましい。 The explosion-resistant cement mortar of the present invention can be produced by introducing cellulose fibers into water, uniformly dispersing both, and then adding and mixing cement and fine aggregate therein. Apart from this, it can also be produced by mixing cement and water, adding cellulose fibers, uniformly dispersing the cellulose fibers, and then mixing fine aggregates therein. According to the production method as described above, the cellulose fibers can be uniformly dispersed in the cement mortar, and the explosion resistance can be further enhanced, which is preferable.
各種材料の混合は、従来のセメントモルタルの製造と同様に行うことができ、例えばセメント、水、セルロース繊維、細骨材、および必要に応じて各種添加材(剤)を、前記の製造方法に基づいて、例えばモルタルミキサー、ハンドミキサー、傾胴ミキサー、二軸ミキサー、パン型ミキサー、オムニミキサー等を用いて行うことができる。このようにして得られた耐爆裂性セメントモルタルは、各種用途に採用することができるが、例えばセメントボードや、セメントモルタルの永久型枠として用いることができる。 The mixing of various materials can be performed in the same manner as in the production of conventional cement mortar. For example, cement, water, cellulose fiber, fine aggregate, and various additives (agents) as necessary are added to the above production method. Based on this, for example, a mortar mixer, a hand mixer, a tilting cylinder mixer, a biaxial mixer, a pan mixer, an omni mixer, or the like can be used. The explosion-resistant cement mortar thus obtained can be used for various applications, and can be used as, for example, a cement board or a permanent form of cement mortar.
なお養生も、従来のそれと同様の手段を採用でき、例えば自然養生、蒸気養生を行うことができる。養生によってひび割れ等の悪影響が発現することはない。 For curing, the same means as the conventional one can be adopted, for example, natural curing and steam curing can be performed. Curing does not cause adverse effects such as cracking.
以下、本発明を実施例(参考例)によって説明する。
(参考例1)
下記表1および表2に示す配合に従って、本発明の耐爆裂性セメントモルタルを製造した。すなわち、調合No.2〜7の耐爆裂性セメントモルタルは、水にセルロース繊維を投入し、両者を均一に分散させた後、そこにセメントおよび細骨材を投入し混合して製造したものである。
なお、混合にはモルタルミキサーを使用した。
Hereinafter, the present invention will be described with reference to examples (reference examples) .
( Reference Example 1)
The explosion-resistant cement mortar of the present invention was manufactured according to the formulation shown in Table 1 and Table 2 below. That is, the formulation No. The explosion-
A mortar mixer was used for mixing.
なお、調合No.2〜No.7の耐爆裂性コンクリートに対し、ISO834に準ずる耐火試験を行った結果、爆裂は認められなかった。 The formulation No. 2-No. As a result of conducting a fire resistance test in accordance with ISO834 on the explosion resistant concrete of No. 7, no explosion was observed.
1 セメント
2 細骨材
3 水分
4 水蒸気圧力
5 セルロース繊維
5’ 炭化したセルロース繊維
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011245196A JP5627121B2 (en) | 2011-11-09 | 2011-11-09 | Cement mortar permanent formwork |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011245196A JP5627121B2 (en) | 2011-11-09 | 2011-11-09 | Cement mortar permanent formwork |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001134825A Division JP4878086B2 (en) | 2001-05-02 | 2001-05-02 | Method for producing explosion-proof cement mortar |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012025663A JP2012025663A (en) | 2012-02-09 |
JP5627121B2 true JP5627121B2 (en) | 2014-11-19 |
Family
ID=45779041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011245196A Expired - Lifetime JP5627121B2 (en) | 2011-11-09 | 2011-11-09 | Cement mortar permanent formwork |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5627121B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104909650B (en) * | 2015-05-25 | 2016-10-19 | 贵州鑫源道建材科技有限公司 | Exempt to tear portland cement insulation nano-form open |
JP6715270B2 (en) * | 2018-02-02 | 2020-07-01 | 大王製紙株式会社 | Cement composition and cured product thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108354A (en) * | 1983-11-11 | 1985-06-13 | 三菱マテリアル株式会社 | Autoclave-cured asbestos cement extrusion molded body |
JPH0493437A (en) * | 1990-08-09 | 1992-03-26 | Tosutemu Sera Kk | Material for driven form |
JPH08133861A (en) * | 1994-11-07 | 1996-05-28 | Sanso:Kk | Production of lightweight concrete |
JP3566385B2 (en) * | 1995-03-30 | 2004-09-15 | 太平洋セメント株式会社 | Method for producing hydraulic material and cured body |
JPH08333152A (en) * | 1995-06-01 | 1996-12-17 | Sumitomo Seika Chem Co Ltd | Cement composition and auxiliary for its extrusion molding |
JPH10167792A (en) * | 1996-12-10 | 1998-06-23 | Nippon Electric Glass Co Ltd | Fiber-reinforced cement composition and production of cement cured product |
-
2011
- 2011-11-09 JP JP2011245196A patent/JP5627121B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2012025663A (en) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zabihi et al. | Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete | |
Uysal et al. | Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures | |
Liu et al. | Applications of Steel Slag Powder and Steel Slag Aggregate in Ultra‐High Performance Concrete | |
Chen et al. | Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures | |
Saxena et al. | Fire resistant properties of alumino silicate geopolymer cement mortars | |
He et al. | Experimental research on high temperature resistance of modified lightweight concrete after exposure to elevated temperatures | |
Bayraktar et al. | Basalt fiber reinforced foam concrete with marble waste and calcium aluminate cement | |
Dabbaghi et al. | Residual mechanical properties of concrete containing lightweight expanded clay aggregate (LECA) after exposure to elevated temperatures | |
Karahan | Residual compressive strength of fire‐damaged mortar after post‐fire‐air‐curing | |
KR101227379B1 (en) | Eco-friendly refractory material composition with highly improved refractory and adiabatic | |
Thomas et al. | Mechanical properties of cold bonded quarry dust aggregate concrete subjected to elevated temperature | |
Talaei et al. | Mechanical properties of fiber-reinforced concrete containing waste porcelain aggregates under elevated temperatures | |
Hwang et al. | Characteristics of polyester polymer concrete using spherical aggregates from industrial by‐products | |
JP5627121B2 (en) | Cement mortar permanent formwork | |
JP2016160161A (en) | Hydraulic composition and heat resistant structure | |
JP4878086B2 (en) | Method for producing explosion-proof cement mortar | |
GS et al. | Experimental investigation on self-compacting self-curing concrete incorporated with the light weight aggregates | |
Abdulwahid et al. | The utilization of walnut shells as a partial replacement of sand in mortar mixes | |
JP2018020944A (en) | Manufacturing method of refractory concrete | |
Abdullah et al. | Thermal Properties and Drying Shrinkage Performance of Palm Kernel Shell Ash and Rice Husk Ash-Based Geopolymer Concrete | |
Ozcelikci et al. | An investigation into durability aspects of geopolymer concretes based fully on construction and demolition waste | |
Gnanasoundarya et al. | Experimental study on ternary blended concrete under elevated temperature | |
JP6803775B2 (en) | Hydraulic composition and heat resistant structure | |
JP6927751B2 (en) | Safe and its manufacturing method | |
JP7146362B2 (en) | Method for producing hydraulic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111109 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5627121 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |