JP5626602B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5626602B2
JP5626602B2 JP2012147862A JP2012147862A JP5626602B2 JP 5626602 B2 JP5626602 B2 JP 5626602B2 JP 2012147862 A JP2012147862 A JP 2012147862A JP 2012147862 A JP2012147862 A JP 2012147862A JP 5626602 B2 JP5626602 B2 JP 5626602B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
separator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012147862A
Other languages
Japanese (ja)
Other versions
JP2014011070A (en
Inventor
裕喜 永井
裕喜 永井
匠 玉木
匠 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012147862A priority Critical patent/JP5626602B2/en
Priority to EP13758971.9A priority patent/EP2867937B1/en
Priority to US14/410,650 priority patent/US9627711B2/en
Priority to CN201380033636.XA priority patent/CN104380499B/en
Priority to PCT/IB2013/001405 priority patent/WO2014001899A1/en
Publication of JP2014011070A publication Critical patent/JP2014011070A/en
Application granted granted Critical
Publication of JP5626602B2 publication Critical patent/JP5626602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は非水電解質二次電池に関する。詳しくは車両搭載用電源に適用可能なリチウム二次電池その他の非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. Specifically, the present invention relates to a lithium secondary battery and other non-aqueous electrolyte secondary batteries that can be applied to a vehicle-mounted power source.

リチウム二次電池等の非水電解質二次電池は、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車、ハイブリッド自動車等の車両の駆動用高出力電源として、その重要性がますます高まっている。そのような非水電解質二次電池において、所定の中空構造を有する正極活物質を用いたものは、低SOC(充電状態;State of charge)で高出力を発揮できることから、低SOCでの出力が求められる用途(例えばハイブリット自動車やプラグインハイブリッド自動車、電気自動車等の車両用電源としての用途)に好適である。   Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are preferably used as so-called portable power sources such as personal computers and portable terminals and vehicle power sources. In particular, a lithium ion secondary battery that is lightweight and has a high energy density is increasingly important as a high-output power source for driving vehicles such as electric vehicles and hybrid vehicles. Among such nonaqueous electrolyte secondary batteries, those using a positive electrode active material having a predetermined hollow structure can exhibit a high output at a low SOC (state of charge), so that an output at a low SOC is achieved. It is suitable for required applications (for example, as a power source for vehicles such as hybrid cars, plug-in hybrid cars, and electric cars).

また、この種の二次電池は、典型的には、正極と負極とをセパレータを介して積層させてなる電極体を非水電解質とともにケースに収容して構築されている。上記セパレータは、正極と負極との間を電気的に絶縁する役割と、非水電解質を保持する役割とを有する。そしてさらに、セパレータは、電池が発熱して一定の温度域(典型的にはセパレータを構成する材料の軟化点または融点)に達した際に軟化し、電荷担体の伝導パスを遮断(シャットダウン)する機能をも備えている。このようなセパレータのなかには、該セパレータの熱収縮による短絡を抑制すること等を目的として、アルミナ等のフィラーを含む耐熱層が設けられているものがある。一般に、電池内部で短絡が生じる等して電池が発熱した場合、負極表面の短絡点付近は他の部分より高温となる。そのため、上記の耐熱層は、負極に対向するように配置されている。この種の耐熱層を開示した従来技術に係る文献として特許文献1が挙げられる。   Also, this type of secondary battery is typically constructed by housing an electrode body in which a positive electrode and a negative electrode are stacked via a separator together with a nonaqueous electrolyte. The separator has a role of electrically insulating the positive electrode and the negative electrode and a role of holding a non-aqueous electrolyte. Further, the separator softens when the battery generates heat and reaches a certain temperature range (typically, the softening point or melting point of the material constituting the separator), and shuts down the conduction path of the charge carrier. It also has a function. Some of such separators are provided with a heat-resistant layer containing a filler such as alumina for the purpose of suppressing a short circuit due to thermal contraction of the separator. In general, when a battery generates heat due to a short circuit inside the battery, the vicinity of the short circuit point on the surface of the negative electrode becomes higher than other parts. Therefore, the above heat-resistant layer is disposed so as to face the negative electrode. Patent document 1 is mentioned as a literature concerning the prior art which disclosed this kind of heat-resistant layer.

特開2011−253684号公報JP2011-253684A

本発明者らは、中空構造の正極活物質を用いた二次電池における熱安定性について検討していたところ、中空構造の正極活物質に特有の現象を発見した。すなわち、過充電等を原因として電池が発熱して電池内が所定以上の温度になると、セパレータは軟化、溶融することとなるが、この溶融したセパレータの一部(以下、溶融物ともいう。)は、正極内に浸入し得る。この浸入の程度が、中空構造の正極活物質を含む正極の場合、予想以上に大きいことが判明したのである。この現象のため、正極活物質として中空構造のものを用いた場合、中実構造のものと比べて、セパレータの形状(セパレータの厚さや密度を含む)保持性が低下し、セパレータの変形(典型的には破膜)が生じやすくなる。これが、中空構造の正極活物質を用いた二次電池において漏れ電流が大きくなる一因になり得ることを知得した。そして、これらの発見に基づき、本発明を完成するに至った。   The present inventors have examined thermal stability in a secondary battery using a positive electrode active material having a hollow structure, and have found a phenomenon peculiar to the positive electrode active material having a hollow structure. That is, when the battery generates heat due to overcharge or the like and the temperature inside the battery reaches a predetermined temperature or more, the separator softens and melts, but a part of the melted separator (hereinafter also referred to as melt). Can penetrate into the positive electrode. It has been found that the degree of penetration is larger than expected in the case of a positive electrode including a positive electrode active material having a hollow structure. Due to this phenomenon, when a positive electrode active material having a hollow structure is used, the shape of the separator (including the thickness and density of the separator) is reduced and the deformation of the separator (typically In particular, a film breakage is likely to occur. It has been found that this can contribute to an increase in leakage current in a secondary battery using a positive electrode active material having a hollow structure. And based on these discoveries, it came to complete this invention.

すなわち、本発明は、上記中空構造の正極活物質を用いた非水電解質二次電池の改良に関するものであり、その目的は、熱安定性が向上した非水電解質二次電池を提供することである。   That is, the present invention relates to an improvement in a non-aqueous electrolyte secondary battery using the hollow cathode active material, and an object thereof is to provide a non-aqueous electrolyte secondary battery with improved thermal stability. is there.

上記目的を達成するため、本発明により、正極と、負極と、該正極および該負極の間に配置されたセパレータとを備える非水電解質二次電池が提供される。この二次電池の前記正極は、殻部とその内部に形成された中空部とを有する中空構造の正極活物質を含む。また、前記正極と前記セパレータとの間には耐熱性遮断層が配置されている。   In order to achieve the above object, the present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The positive electrode of the secondary battery includes a positive electrode active material having a hollow structure having a shell portion and a hollow portion formed therein. In addition, a heat resistant barrier layer is disposed between the positive electrode and the separator.

かかる構成によると、正極とセパレータとの間に耐熱性遮断層が配置されているので、セパレータの溶融物は、上記耐熱性遮断層に遮断されて正極に浸入しない。これにより、セパレータの形状保持性の低下は抑えられ、該形状保持性の低下に起因する漏れ電流が小さくなる結果、熱安定性が向上する。この説明から明らかなように、上記セパレータの形状保持性の低下は、中空構造の正極活物質を用いる正極に特有の現象であり、従来から知られているセパレータの熱収縮とは本質的に異なる。また、上記耐熱性遮断層によるセパレータの形状保持性の低下抑制は、従来公知のセパレータの熱収縮抑制とは作用が異なる。   According to such a configuration, since the heat-resistant barrier layer is disposed between the positive electrode and the separator, the separator melt is blocked by the heat-resistant barrier layer and does not enter the positive electrode. Thereby, the fall of the shape retainability of a separator is suppressed, and as a result of the leakage current resulting from the fall of this shape retainability becoming small, thermal stability improves. As is clear from this explanation, the decrease in the shape retention of the separator is a phenomenon peculiar to a positive electrode using a positive electrode active material having a hollow structure, which is essentially different from the conventionally known thermal contraction of a separator. . Further, the suppression of the decrease in the shape retention of the separator by the heat-resistant barrier layer is different from the conventionally known thermal contraction suppression of the separator.

ここに開示される非水電解質二次電池の好適な一態様では、前記正極活物質の粒子空孔率は15%以上である。セパレータの溶融物が上記正極活物質の空孔部分に浸入すること、またその浸入量がセパレータの形状保持性を低下させ得る程度の量であることが今回明らかになった。したがって、上記の構成に対して、上記耐熱性遮断層による作用(すなわち、電池温度の上昇によりセパレータが溶融し、その一部が正極に浸入することを遮断する作用)は効果的に発揮されて、熱安定性が顕著に向上する。   In a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, the positive electrode active material has a particle porosity of 15% or more. It has now been clarified that the separator melt penetrates into the pores of the positive electrode active material, and the amount of penetration is such that the shape retention of the separator can be reduced. Therefore, the action by the heat-resistant barrier layer (that is, the action of blocking the separator from being melted by the rise of the battery temperature and partially entering the positive electrode) is effectively exerted against the above configuration. The thermal stability is remarkably improved.

ここに開示される非水電解質二次電池の好適な一態様では、前記正極活物質の殻部の厚さは2μm以下である。かかる構成の正極活物質は、粒子の中空領域の体積(すなわち粒子空孔率)が大きい傾向があるため、上記耐熱性遮断層による作用が効果的に発揮されて、熱安定性が顕著に向上する。   In a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, the thickness of the shell portion of the positive electrode active material is 2 μm or less. Since the positive electrode active material having such a structure tends to have a large volume (that is, particle porosity) in the hollow region of the particles, the effect of the heat-resistant barrier layer is effectively exhibited, and the thermal stability is remarkably improved. To do.

ここに開示される非水電解質二次電池の好適な一態様では、前記耐熱性遮断層の厚さは2μm以上である。かかる厚さを有する耐熱性遮断層は、セパレータの溶融物が正極に浸入することを充分に遮断し得る。   In a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, the heat-resistant barrier layer has a thickness of 2 μm or more. The heat-resistant barrier layer having such a thickness can sufficiently block the separator melt from entering the positive electrode.

ここに開示される非水電解質二次電池の好適な一態様では、前記セパレータはポリオレフィン系樹脂から構成されている。また、前記耐熱性遮断層はフィラーを主成分として含み、該フィラーは、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシアおよびマグネシアからなる群から選ばれる少なくとも1種であることが好ましい。   In a preferred aspect of the nonaqueous electrolyte secondary battery disclosed herein, the separator is made of a polyolefin resin. The heat-resistant barrier layer contains a filler as a main component, and the filler is preferably at least one selected from the group consisting of alumina, boehmite, silica, titania, zirconia, calcia, and magnesia.

ここに開示される非水電解質二次電池は、上記中空構造の正極活物質を使用するので、低SOC域においても良好な出力特性を示すものであり得る。また、正極とセパレータとの間に耐熱性遮断層が配置されているので、熱安定性にも優れる。したがって、この特徴を活かして、ハイブリット自動車(HV)やプラグインハイブリッド自動車(PHV)、電気自動車(EV)等のような車両の駆動電源として好適に利用され得る。本発明によると、ここに開示されるいずれかの非水電解質二次電池(複数の電池が接続された組電池の形態であり得る。)を搭載した車両が提供される。   Since the nonaqueous electrolyte secondary battery disclosed herein uses the positive electrode active material having the hollow structure, it can exhibit good output characteristics even in a low SOC range. Moreover, since the heat resistant barrier layer is disposed between the positive electrode and the separator, the thermal stability is also excellent. Therefore, taking advantage of this feature, it can be suitably used as a drive power source for vehicles such as hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and electric vehicles (EV). According to the present invention, there is provided a vehicle equipped with any of the nonaqueous electrolyte secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).

一実施形態に係るリチウム二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the lithium secondary battery which concerns on one Embodiment. 図1のII−II線における断面図である。It is sectional drawing in the II-II line of FIG. 一実施形態に係る電極体を捲回して作製する状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which winds and produces the electrode body which concerns on one Embodiment. 図3の正負極間の一構成例の断面の一部を拡大して示す図である。It is a figure which expands and shows a part of cross section of the structural example between the positive / negative electrodes of FIG. 一実施形態に係る中空構造を有する正極活物質を模式的に示す断面図である。It is sectional drawing which shows typically the positive electrode active material which has the hollow structure which concerns on one Embodiment. 過充電時におけるリチウム二次電池の電流と電池内温度との関係を説明する図である。It is a figure explaining the relationship between the electric current of a lithium secondary battery at the time of overcharge, and the temperature in a battery. 一実施形態に係るリチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view showing typically a vehicle (automobile) provided with a lithium secondary battery concerning one embodiment.

以下、図面を参照しながら本発明による実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解液の構成および製法、電池(ケース)の形状等、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。   Embodiments according to the present invention will be described below with reference to the drawings. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, a configuration and a manufacturing method of an electrode body including a positive electrode and a negative electrode, a configuration and a manufacturing method of a separator and an electrolytic solution) The general shape and the like related to the construction of the battery, such as the shape of the battery (case), can be understood as the design items of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, in the following drawings, members / parts having the same action are described with the same reference numerals, and overlapping descriptions may be omitted or simplified.

ここに開示される非水電解質二次電池に係る好適な実施形態として、リチウム二次電池を例にして説明するが、本発明の適用対象をかかる電池に限定することを意図したものではない。例えば、リチウムイオン(Liイオン)以外の金属イオン(例えばナトリウムイオン)を電荷担体とする非水電解質二次電池に本発明を適用することも可能である。また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウム二次電池等の蓄電池(すなわち化学電池)のほか、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。また、本明細書において「リチウム二次電池」とは、電解質イオンとしてLiイオンを利用し、正負極間におけるLiイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般にリチウムイオン二次電池と称される電池は、本明細書におけるリチウム二次電池に包含される典型例である。   As a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, a lithium secondary battery will be described as an example. However, the application target of the present invention is not intended to be limited to such a battery. For example, the present invention can also be applied to a non-aqueous electrolyte secondary battery that uses a metal ion (for example, sodium ion) other than lithium ion (Li ion) as a charge carrier. In the present specification, “secondary battery” generally refers to a battery that can be repeatedly charged and discharged. In addition to a storage battery (ie, a chemical battery) such as a lithium secondary battery, a capacitor (ie, a physical battery) such as an electric double layer capacitor. ). Further, in this specification, the “lithium secondary battery” refers to a secondary battery that uses Li ions as electrolyte ions and is charged / discharged by the movement of charges accompanying Li ions between the positive and negative electrodes. A battery generally called a lithium ion secondary battery is a typical example included in the lithium secondary battery in this specification.

≪リチウム二次電池≫
図1および図2に示すように、リチウム二次電池100は、箱状で角型の電池ケース10と、電池ケース10内に収容される捲回電極体20とを備える。電池ケース10は上面に開口部12を有している。この開口部12は、捲回電極体20を開口部12から電池ケース10内に収容した後、蓋体14によって封止される。電池ケース10内にはまた、非水電解質(非水電解液)25が収容されている。蓋体14には、外部接続用の外部正極端子38と外部負極端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部正極端子38の一部は電池ケース10内部で内部正極端子37に接続されており、外部負極端子48の一部は電池ケース10内部で内部負極端子47に接続されている。
≪Lithium secondary battery≫
As shown in FIGS. 1 and 2, the lithium secondary battery 100 includes a box-shaped rectangular battery case 10 and a wound electrode body 20 accommodated in the battery case 10. The battery case 10 has an opening 12 on the upper surface. The opening 12 is sealed by the lid 14 after the wound electrode body 20 is accommodated in the battery case 10 from the opening 12. The battery case 10 also contains a nonaqueous electrolyte (nonaqueous electrolyte solution) 25. The lid body 14 is provided with an external positive terminal 38 and an external negative terminal 48 for external connection, and a part of the terminals 38 and 48 protrudes to the surface side of the lid body 14. A part of the external positive terminal 38 is connected to the internal positive terminal 37 inside the battery case 10, and a part of the external negative terminal 48 is connected to the internal negative terminal 47 inside the battery case 10.

図3に示すように、捲回電極体20は、長尺シート状の正極(正極シート)30と、長尺シート状の負極(負極シート)40とを備える。正極シート30は、長尺状の正極集電体32とその少なくとも一方の表面(典型的には両面)に形成された正極合材層34とを備える。負極シート40は、長尺状の負極集電体42とその少なくとも一方の表面(典型的には両面)に形成された負極合材層44とを備える。捲回電極体20はまた、長尺シート状の2枚のセパレータ(セパレータシート)50A,50Bを備える。正極シート30および負極シート40は、2枚のセパレータシート50A,50Bを介して積層されており、正極シート30、セパレータシート50A、負極シート40、セパレータシート50Bの順に積層されている。該積層体は、長尺方向に捲回されることによって捲回体とされ、さらにこの捲回体を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。なお、電極体は捲回電極体に限定されない。電池の形状や使用目的に応じて適切な形状、構成を適宜採用することができる。   As shown in FIG. 3, the wound electrode body 20 includes a long sheet-like positive electrode (positive electrode sheet) 30 and a long sheet-like negative electrode (negative electrode sheet) 40. The positive electrode sheet 30 includes a long positive electrode current collector 32 and a positive electrode mixture layer 34 formed on at least one surface (typically both surfaces) thereof. The negative electrode sheet 40 includes a long negative electrode current collector 42 and a negative electrode mixture layer 44 formed on at least one surface (typically both surfaces) thereof. The wound electrode body 20 also includes two long sheet-like separators (separator sheets) 50A and 50B. The positive electrode sheet 30 and the negative electrode sheet 40 are laminated via two separator sheets 50A and 50B, and the positive electrode sheet 30, the separator sheet 50A, the negative electrode sheet 40, and the separator sheet 50B are laminated in this order. The laminated body is formed into a wound body by being wound in the longitudinal direction, and is further formed into a flat shape by crushing the rolled body from the side surface direction and causing it to be ablated. The electrode body is not limited to a wound electrode body. An appropriate shape and configuration can be appropriately employed depending on the shape of the battery and the purpose of use.

捲回電極体20の捲回方向に直交する幅方向の中心部には、正極集電体32の表面に形成された正極合材層34と、負極集電体42の表面に形成された負極合材層44とが重なり合って密に積層された部分が形成されている。また、正極シート30の幅方向の一方の端部には、正極合材層34が形成されずに正極集電体32が露出した部分(正極合材層非形成部36)が設けられている。この正極合材層非形成部36は、セパレータシート50A,50Bおよび負極シート40からはみ出た状態となっている。すなわち、捲回電極体20の幅方向の一端には、正極集電体32の正極合材層非形成部36が重なり合った正極集電体積層部35が形成されている。また、捲回電極体20の幅方向の他端にも、上記一端の正極シート30の場合と同様に、負極集電体42の負極合材層非形成部46が重なり合った負極集電体積層部45が形成されている。なお、セパレータシート50A,50Bは、正極合材層34および負極合材層44の積層部分の幅より大きく、捲回電極体20の幅より小さい幅を有する。これを正極合材層34および負極合材層44の積層部分に挟むように配することで、正極合材層34および負極合材層44が互いに接触して内部短絡が生じることを防いでいる。   The positive electrode mixture layer 34 formed on the surface of the positive electrode current collector 32 and the negative electrode formed on the surface of the negative electrode current collector 42 are disposed at the center in the width direction perpendicular to the winding direction of the wound electrode body 20. A portion in which the composite material layer 44 overlaps and is densely stacked is formed. Further, at one end in the width direction of the positive electrode sheet 30, a portion where the positive electrode current collector layer 34 is not formed and the positive electrode current collector 32 is exposed (positive electrode mixture layer non-forming portion 36) is provided. . The positive electrode mixture layer non-forming portion 36 is in a state of protruding from the separator sheets 50 </ b> A and 50 </ b> B and the negative electrode sheet 40. That is, the positive electrode current collector laminated portion 35 in which the positive electrode mixture layer non-forming portion 36 of the positive electrode current collector 32 overlaps is formed at one end in the width direction of the wound electrode body 20. Further, similarly to the case of the positive electrode sheet 30 at one end, the negative electrode current collector stack in which the negative electrode mixture layer non-forming portion 46 of the negative electrode current collector 42 is overlapped with the other end in the width direction of the wound electrode body 20. A portion 45 is formed. The separator sheets 50 </ b> A and 50 </ b> B have a width that is larger than the width of the laminated portion of the positive electrode mixture layer 34 and the negative electrode mixture layer 44 and smaller than the width of the wound electrode body 20. By arranging this so as to be sandwiched between the laminated portions of the positive electrode mixture layer 34 and the negative electrode mixture layer 44, the positive electrode mixture layer 34 and the negative electrode mixture layer 44 are prevented from coming into contact with each other to cause an internal short circuit. .

セパレータシート50Aは、多孔質の樹脂層から構成されており、図4に示すように、セパレータシート50Aの正極シート30側表面には耐熱性遮断層51が形成されている。耐熱性遮断層51はセパレータシート50Aの表面全体に、すなわちセパレータシート50Aの長手方向(捲回方向)および幅方向の全体に亘って形成されている。なお、正極合材層34が中空構造を有する正極活物質110を含むことを図4に模式的に示す。   The separator sheet 50A is composed of a porous resin layer, and as shown in FIG. 4, a heat-resistant blocking layer 51 is formed on the surface of the separator sheet 50A on the positive electrode sheet 30 side. The heat-resistant blocking layer 51 is formed over the entire surface of the separator sheet 50A, that is, over the entire length direction (winding direction) and width direction of the separator sheet 50A. FIG. 4 schematically shows that the positive electrode mixture layer 34 includes the positive electrode active material 110 having a hollow structure.

上記の構成によって、セパレータシート50Aの形状保持性の低下が抑えられ、該形状保持性の低下に起因する漏れ電流が小さくなる結果、熱安定性が向上する。このメカニズムについて説明する。過充電等により電池が発熱して所定以上の温度になると、セパレータシート50Aは溶融する。このとき、中空構造を有する正極活物質110を含む正極シート30(典型的には正極合材層34)とセパレータシート50Aとが対向(典型的には隣接)していると、上記セパレータシート50Aの溶融物が正極合材層34内に浸入し、中空構造の正極活物質110の粒子内部(中空部)にまで拡散することが明らかになった。そのため、中空構造の正極活物質110を含む正極合材層34に対する上記溶融物の正極への浸入の程度は、中実構造の正極活物質を含む正極合材層に対する場合と比べて大きくなり、セパレータシート50Aの形状保持性は低下する。典型的にはセパレータシート50Aの厚さが薄くなり、密度の低い部分が生じる。このような形状保持性の低下は、セパレータシート50Aの変形(典型的には破膜)を招き、これによって漏れ電流が大きくなる傾向があるものと考えられる。しかし、上記の構成によると、正極シート30とセパレータシート50Aとの間に耐熱性遮断層51が配置されているので、セパレータシート50Aの溶融物は、この耐熱性遮断層51に遮断されて正極に浸入しない。これにより、セパレータの形状保持性の低下は抑えられ、該形状保持性の低下に起因する漏れ電流が小さくなる結果、熱安定性が向上する。なお、上記の構成は、セパレータと負極とが対向する構成であり得るが、電池の発熱等により溶融したセパレータは負極(典型的には負極合材層)内には浸入しないことが確認されている。   With the above configuration, a decrease in the shape retaining property of the separator sheet 50A is suppressed, and a leakage current resulting from the decrease in the shape retaining property is reduced. As a result, the thermal stability is improved. This mechanism will be described. When the battery generates heat due to overcharging or the like and reaches a predetermined temperature or higher, the separator sheet 50A melts. At this time, if the positive electrode sheet 30 (typically, the positive electrode mixture layer 34) including the positive electrode active material 110 having a hollow structure and the separator sheet 50A are opposed (typically adjacent), the separator sheet 50A described above. It was revealed that the molten material entered the positive electrode mixture layer 34 and diffused to the inside (hollow part) of the particles of the positive electrode active material 110 having a hollow structure. Therefore, the degree of penetration of the melt into the positive electrode mixture layer 34 including the positive electrode active material layer 110 including the hollow structure positive electrode active material 110 is larger than that of the positive electrode mixture layer including the solid structure positive electrode active material, The shape retainability of the separator sheet 50A decreases. Typically, the thickness of the separator sheet 50A is reduced, and a low density portion is generated. Such a decrease in shape retainability is considered to cause a deformation (typically a membrane breakage) of the separator sheet 50A, which tends to increase the leakage current. However, according to the above configuration, since the heat-resistant blocking layer 51 is disposed between the positive electrode sheet 30 and the separator sheet 50A, the melt of the separator sheet 50A is blocked by the heat-resistant blocking layer 51, and the positive electrode Does not penetrate. Thereby, the fall of the shape retainability of a separator is suppressed, and as a result of the leakage current resulting from the fall of this shape retainability becoming small, thermal stability improves. The above configuration may be a configuration in which the separator and the negative electrode face each other, but it has been confirmed that the separator melted due to the heat generated by the battery does not enter the negative electrode (typically, the negative electrode mixture layer). Yes.

なお、耐熱性遮断層は、正極とセパレータとの間に配置されていればよく、セパレータ上に形成されたものに限定されない。例えば、正極の少なくとも一方の表面に耐熱性遮断層を形成してもよい。また、耐熱性遮断層はセパレータの両面に形成してもよい。さらに、正負極間には上記耐熱性遮断層以外の耐熱層(耐熱性遮断層とは組成が異なる層)が配置されていてもよい。また、セパレータは単層構造のものに限定されず、2層以上の多層構造からなるものであってもよい。その典型例としては、ポリプロピレン/ポリエチレン/ポリプロピレンからなる三層構造フィルムが挙げられる。セパレータシート50Bの構成もセパレータシート50Aと基本的に同じであるため、説明は繰り返さない。なお、電解液に代えて、例えば該電解液にポリマーが添加された固体状(ゲル状)電解質を使用する場合には、電解質自体がセパレータとして機能し得るため、セパレータが不要になることがあり得る。   Note that the heat-resistant barrier layer only needs to be disposed between the positive electrode and the separator, and is not limited to those formed on the separator. For example, a heat resistant barrier layer may be formed on at least one surface of the positive electrode. Moreover, you may form a heat-resistant interruption | blocking layer on both surfaces of a separator. Furthermore, a heat-resistant layer other than the heat-resistant barrier layer (a layer having a composition different from that of the heat-resistant barrier layer) may be disposed between the positive and negative electrodes. The separator is not limited to a single-layer structure, and may have a multilayer structure of two or more layers. A typical example is a three-layer film made of polypropylene / polyethylene / polypropylene. Since the configuration of separator sheet 50B is basically the same as that of separator sheet 50A, description thereof will not be repeated. In addition, when using, for example, a solid (gel) electrolyte in which a polymer is added to the electrolytic solution instead of the electrolytic solution, the electrolyte itself can function as a separator, and thus a separator may be unnecessary. obtain.

≪正極≫
リチウム二次電池その他の非水電解質二次電池を構成する構成要素に特に制限はなく、後述する以外の事項については、従来の二次電池の構成要素と同様の構成を採用することができる。例えば、正極集電体には、導電性の良好な金属からなる導電性部材が好ましく用いられる。そのような導電性部材としては、例えばアルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体の形状は、電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。正極集電体の厚さも特に限定されず、5〜30μm程度とすることができる。
≪Positive electrode≫
There is no restriction | limiting in particular in the component which comprises a lithium secondary battery other nonaqueous electrolyte secondary battery, About the matter other than mentioning later, the structure similar to the component of the conventional secondary battery is employable. For example, a conductive member made of a highly conductive metal is preferably used for the positive electrode current collector. As such a conductive member, for example, aluminum or an alloy containing aluminum as a main component can be used. The shape of the positive electrode current collector can be different depending on the shape of the battery and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. The thickness of the positive electrode current collector is not particularly limited, and can be about 5 to 30 μm.

<正極活物質>
(基本組成)
正極合材層には正極活物質が含まれる。該正極活物質は、層状の結晶構造(典型的には、六方晶系に属する層状岩塩型構造)を有するリチウム遷移金属酸化物を含む。上記リチウム遷移金属酸化物は、金属元素Mを含む。このMは、Ni,CoおよびMnのうちの少なくとも1種である。上記正極活物質におけるNi,CoおよびMnの合計含有量(すなわち、Mの含有量)は、該正極活物質に含まれるリチウム以外の全金属元素Mallの総量をモル百分率で100モル%としたとき、そのうち例えば85モル%以上(好ましくは90モル%以上、典型的には95モル%以上)であり得る。上記Mが少なくともNiを含む組成の正極活物質が好ましい。例えば、正極活物質に含まれるリチウム以外の金属元素の総量を100モル%として、Niを10モル%以上(より好ましくは20モル%以上)含有する正極活物質が好ましい。このような組成を有する正極活物質は、後述する製造方法を適用して中空構造の正極活物質粒子を製造するのに適している。
<Positive electrode active material>
(Basic composition)
The positive electrode mixture layer contains a positive electrode active material. The positive electrode active material includes a lithium transition metal oxide having a layered crystal structure (typically a layered rock salt structure belonging to a hexagonal system). The lithium transition metal oxide containing a metal element M T. The M T is at least one of Ni, Co and Mn. The total content of Ni, Co and Mn in the positive electrode active material (i.e., the content of M T) is 100 mol% the total amount of all metal elements M all other than lithium contained in the positive electrode active material in mole percentage Then, for example, it may be 85 mol% or more (preferably 90 mol% or more, typically 95 mol% or more). The positive electrode active material having the composition described above M T contains at least Ni is preferable. For example, a positive electrode active material containing Ni in an amount of 10 mol% or more (more preferably 20 mol% or more) is preferable, where the total amount of metal elements other than lithium contained in the positive electrode active material is 100 mol%. The positive electrode active material having such a composition is suitable for producing positive electrode active material particles having a hollow structure by applying a production method described later.

上記リチウム遷移金属酸化物の一好適例として、上記MがNi,CoおよびMnの全てを含むリチウム遷移金属酸化物(以下「LNCM酸化物」と表記することもある。)が挙げられる。例えば、原子数基準で、Ni,CoおよびMnの合計量(すなわちMの量(mMT))を1として、Ni,CoおよびMnの量がいずれも0を超えて0.7以下(例えば、0.1を超えて0.6以下、典型的には0.3を超えて0.5以下)であるLNCM酸化物を好ましく採用し得る。該三元系のリチウム遷移金属酸化物(LNCM酸化物)は、Mに対してLiを過剰に含む組成のもの(すなわち、1.00<(mLi/mMT)を満たすLNCM酸化物)を合成しやすいので好ましい。これは、上記LNCM酸化物は、上述した積層構造における遷移金属層に過剰量のLiを取り込みやすい性質を有するためと考えられる。ここで(mLi/mMT)は、Mのモル数(mMT)に対するLiのモル数(mLi)の比(モル比)である。好ましい一態様では、Mの量(原子数基準)を1として、Niの量とMnの量が概ね同程度(例えば、Niの量とMnの量との差が0.1以下)である。例えば、Ni,CoおよびMnの量が概ね同程度である組成を好ましく採用し得る。上記組成のLNCM酸化物は、正極活物質として優れた熱安定性を示すので好ましい。 As a preferred example of the lithium transition metal oxide, the M T is Ni, lithium transition metal oxide containing all of Co and Mn (sometimes to hereinafter referred to as "LNCM oxide".) And the like. For example, the atomic basis, Ni, the total amount of Co and Mn (i.e. the amount of M T (m MT)) as 1, Ni, 0.7 more than the amount of Co and Mn is more than 0 none (e.g. LNCM oxide that is more than 0.1 and less than or equal to 0.6, typically more than 0.3 and less than or equal to 0.5 can be preferably employed. The ternary lithium transition metal oxide (LNCM oxide) is of a composition containing excess Li against M T (i.e., LNCM oxide satisfying 1.00 <(m Li / m MT )) Is preferable because it is easy to synthesize. This is presumably because the LNCM oxide has a property of easily taking an excessive amount of Li into the transition metal layer in the above-described laminated structure. Here (m Li / m MT) is the ratio of the number of moles of M T (m MT) number of moles of Li with respect to (m Li) (molar ratio). In one preferred embodiment, the amount of M T (atomic number basis) as 1, is in an amount that generally comparable amount and Mn of Ni (e.g., the difference between the amount and the amount of Mn and Ni is 0.1 or less) . For example, a composition in which the amounts of Ni, Co, and Mn are approximately the same can be preferably used. The LNCM oxide having the above composition is preferable because it exhibits excellent thermal stability as a positive electrode active material.

ここに開示される技術における正極活物質は、M(すなわち、Ni,CoおよびMnの少なくとも1種)の他に、付加的な構成元素(添加元素)として他の1種または2種以上の元素を含有し得る。上記付加的な元素としては、周期表の1族(ナトリウム等のアルカリ金属)、2族(マグネシウム、カルシウム等のアルカリ土類金属)、4族(チタン、ジルコニウム等の遷移金属)、6族(クロム、タングステン等の遷移金属)、8族(鉄等の遷移金属)、13族(半金属元素であるホウ素、もしくはアルミニウムのような金属)および17族(フッ素のようなハロゲン)に属するいずれかの元素を含むことができる。典型例として、W,Cr,Mo,Zr,Mg,Ca,Na,Fe,Zn,Si,Sn,Al,BおよびFが例示される。これら付加的な構成元素の合計含有量は、Mの20モル%以下とすることが適当であり、10モル%以下の割合とすることが好ましい。好ましい一態様に係る正極活物質は、上記添加元素として、W,CrおよびMoから選択される少なくとも1種の金属元素Mを含む。特に、Mとして少なくともWを含む組成の正極活物質が好ましい。Wを含有させることにより、該正極活物質を用いた電池の反応抵抗を低減させる効果が発揮され得る。このこともまた、当該電池の出力向上に寄与し得る。 In addition to M T (that is, at least one of Ni, Co, and Mn), the positive electrode active material in the technology disclosed herein includes one or more other elements as additional constituent elements (additive elements). It can contain elements. Examples of the additional element include Group 1 (alkali metals such as sodium), Group 2 (alkaline earth metals such as magnesium and calcium), Group 4 (transition metals such as titanium and zirconium), Group 6 ( Any of those belonging to group 8 (transition metals such as chromium and tungsten), group 8 (transition metals such as iron), group 13 (metals such as boron or a metalloid element) and group 17 (halogens such as fluorine) Can be included. Typical examples include W, Cr, Mo, Zr, Mg, Ca, Na, Fe, Zn, Si, Sn, Al, B, and F. The total content of these additional constituent element is suitable to be less than 20 mole% of M T, preferably in the ratio of 10 mol% or less. Positive electrode active material according to the preferred embodiment comprises as the additional element, W, at least one metallic element M A is selected from Cr and Mo. In particular, the positive electrode active material composition including at least W as M A is preferred. By containing W, the effect of reducing the reaction resistance of the battery using the positive electrode active material can be exhibited. This can also contribute to improving the output of the battery.

正極活物質におけるM(例えばW)の含有量mは、該正極活物質に含まれるMの合計モル数mMTをモル百分率で100モル%として、例えば0.001〜5モル%とすることができ、通常は0.01〜3モル%とすることが適当であり、0.05〜1モル%(より好ましくは0.1〜1モル%、例えば0.2〜1モル%)とすることが好ましい。また、正極活物質におけるM(例えばW)の含有量mは、正極活物質に含まれるLi以外の全ての金属元素Mallの合計モル数mMallをモル百分率で100モル%として、0.001〜5モル%とすることができ、通常は0.01〜3モル%とすることが適当であり、0.05〜1モル%(より好ましくは0.1〜1モル%、例えば0.2〜1モル%)とすることが好ましい。mまたはmMallが小さすぎると、正極活物質の長径方向の一次粒子サイズの成長抑制効果や、正極活物質のXRD解析から算出される(003)面/(104)面の半値幅比および(104)面/(003)面積分幅比(SF値:Stacking Factor値)の最適化効果が得られず、電池の出力向上が得られない傾向にある。mまたはmMallが大きすぎると、Mを含まない正極活物質に比べて、該正極活物質を用いた電池の反応抵抗が却って増大し得る。 Content m A of M A (e.g. W) in the cathode active material, the total mole number m MT of M T contained in the positive electrode active material as 100 mol% in mole percentage, for example, a 0.001 mole% In general, it is appropriate to adjust to 0.01 to 3 mol%, and 0.05 to 1 mol% (more preferably 0.1 to 1 mol%, for example 0.2 to 1 mol%). It is preferable that Further, the content of m A of M A (e.g. W) in the positive electrode active material, the total number of moles m Mall of all metal elements M all other than Li contained in the positive electrode active material as 100 mol% in mole percentage, 0 0.001 to 5 mol%, usually 0.01 to 3 mol% is appropriate, 0.05 to 1 mol% (more preferably 0.1 to 1 mol%, for example 0 .2 to 1 mol%). If m A or m Mall is too small, the growth and the effect of suppressing the major axis direction of the primary particle size of the positive electrode active material is calculated from the XRD analysis of the positive electrode active material (003) plane / (104) half width ratio of surface and The effect of optimizing the (104) plane / (003) area width ratio (SF value: Stacking Factor value) cannot be obtained, and the battery output tends not to be improved. If m A or m Mall is too large, compared to the positive active material containing no M A, the reaction resistance of the battery using the positive electrode active material may increase rather.

好ましい一態様において、上記正極活物質は、下記一般式(I)で表される組成(平均組成)を有し得る。
Li1+xNiCoMn(1−y−z)AαBβ2 (I)
上記式(I)において、xは、0≦x≦0.2を満たす実数であり得る。yは、0.1<y<0.6を満たす実数であり得る。zは、0.1<z<0.6を満たす実数であり得る。Mは、W,CrおよびMoから選択される少なくとも1種の金属元素であり、αは0<α≦0.01(典型的には0.0005≦α≦0.01、例えば0.001≦α≦0.01)を満たす実数である。Mは、Zr,Mg,Ca,Na,Fe,Zn,Si,Sn,Al,BおよびFからなる群から選択される1種または2種以上の元素であり、βは0≦β≦0.01を満たす実数であり得る。βが実質的に0(すなわち、Mを実質的に含有しない酸化物)であってもよい。
なお、本明細書中において層状構造のリチウム遷移金属酸化物を示す化学式では、便宜上、O(酸素)の組成比を2として示しているが、この数値は厳密に解釈されるべきではなく、多少の組成の変動(典型的には1.95以上2.05以下の範囲に包含される)を許容し得るものである。
In a preferred embodiment, the positive electrode active material may have a composition (average composition) represented by the following general formula (I).
Li 1 + x Ni y Co z Mn (1-yz) M M O 2 (I)
In the above formula (I), x may be a real number that satisfies 0 ≦ x ≦ 0.2. y may be a real number that satisfies 0.1 <y <0.6. z may be a real number that satisfies 0.1 <z <0.6. M A is at least one metal element selected from W, Cr, and Mo, and α is 0 <α ≦ 0.01 (typically 0.0005 ≦ α ≦ 0.01, for example, 0.001. ≦ α ≦ 0.01). M B is, Zr, Mg, Ca, Na , Fe, Zn, Si, Sn, Al, is one or more elements selected from the group consisting of B and F, beta is 0 ≦ β ≦ 0 .01 can be a real number. β is substantially zero (i.e., substantially free oxide M B) may be.
Note that in this specification, in the chemical formulas representing the lithium transition metal oxide having a layered structure, the composition ratio of O (oxygen) is shown as 2 for convenience, but this numerical value should not be strictly interpreted, Variation in the composition (typically included in the range of 1.95 to 2.05).

(中空構造)
ここに開示される技術における正極活物質は、典型的には、殻部とその内部に形成された中空部(空洞部)とを有する中空構造の粒子形態をなす。粒子状の正極活物質(正極活物質粒子)の粒子形状は、典型的には、概ね球形、やや歪んだ球形等であり得る。好ましい一態様において、上記殻部は、上記中空部と粒子外部とを連通させる貫通孔を有する。以下、殻部に上記貫通孔を有する中空構造を「孔空き中空構造」ということがある。なお、このような中空構造(特記しない限り、孔空き中空構造を包含する意味である。)の粒子と対比されるものとして、一般的な多孔質構造の粒子が挙げられる。ここで多孔質構造とは、実体のある部分と空隙部分とが粒子全体にわたって混在している構造(スポンジ状構造)を指す。多孔質構造を有する正極活物質粒子の代表例として、いわゆる噴霧焼成法(スプレードライ製法と称されることもある。)により得られた正極活物質粒子が挙げられる。ここに開示される中空構造の正極活物質粒子は、実体のある部分が殻部に偏っており、上記中空部に明確にまとまった空間が形成されているという点、および、中空部のまとまった空間は二次粒子を構成する一次粒子同士の間(近接し焼結しあい隣りあう一次粒子の間)に存在する隙間より大きいものであるという点で、上記多孔質構造の正極活物質粒子とは、構造上、明らかに区別されるものである。
(Hollow structure)
The positive electrode active material in the technology disclosed herein typically has a hollow particle form having a shell and a hollow (cavity) formed therein. The particle shape of the particulate positive electrode active material (positive electrode active material particle) may typically be approximately spherical, slightly distorted spherical, or the like. In a preferred embodiment, the shell portion has a through hole that allows the hollow portion and the outside of the particle to communicate with each other. Hereinafter, the hollow structure having the through hole in the shell portion is sometimes referred to as “perforated hollow structure”. In addition, as a thing contrasted with the particle | grains of such a hollow structure (it is the meaning which includes a void | hole hollow structure unless it mentions specially), the particle | grains of a general porous structure are mentioned. Here, the porous structure refers to a structure (sponge-like structure) in which a substantial part and a void part are mixed over the entire particle. As a typical example of the positive electrode active material particles having a porous structure, positive electrode active material particles obtained by a so-called spray firing method (sometimes referred to as a spray dry production method) can be given. The positive electrode active material particles having a hollow structure disclosed here are such that the substantial part is biased toward the shell part, and a space is clearly formed in the hollow part, and the hollow part is collected. The positive electrode active material particle having the porous structure is that the space is larger than the gap existing between the primary particles constituting the secondary particles (between adjacent primary particles that are sintered and adjacent to each other). The structure is clearly distinguished.

好ましい一態様に係る正極活物質は、上記リチウム遷移金属酸化物の一次粒子が集まった二次粒子の形態をなす。ここで「一次粒子」とは、外見上の幾何学的形態から判断して単位粒子(ultimate particle)と考えられる粒子を指す。ここに開示される正極活物質において、上記一次粒子は、典型的にはリチウム遷移金属酸化物の結晶子の集合物である。正極活物質の形状観察は、SEM(Scanning Electron Microscope)画像により行うことができる。   The positive electrode active material according to a preferred embodiment is in the form of secondary particles in which primary particles of the lithium transition metal oxide are collected. Here, the “primary particle” refers to a particle that is considered to be a unit particle (ultimate particle) based on an apparent geometric form. In the positive electrode active material disclosed herein, the primary particles are typically a collection of crystallites of a lithium transition metal oxide. The shape of the positive electrode active material can be observed with a SEM (Scanning Electron Microscope) image.

上述の正極活物質粒子の代表的な構造を図5に模式的に示す。この正極活物質粒子110は、殻部115と中空部116とを有する中空構造の粒子である。殻部115は、一次粒子112が球殻状に集合した形態を有する。好ましい一態様では、殻部115は、その断面SEM画像において、一次粒子112が環状(数珠状)に連なった形態を有する。殻部115の全体に亘って一次粒子112が単独(単層)で連なった形態であってもよく、一次粒子112が2つ以上積み重なって(多層で)連なった部分を有する形態であってもよい。上記連なった部分における一次粒子112の積層数は、凡そ5個以下(例えば2〜5個)であることが好ましく、凡そ3個以下(例えば2〜3個)であることがより好ましい。好ましい一態様に係る正極活物質粒子110は、殻部115の全体に亘って、一次粒子112が実質的に単層で連なった形態に構成されている。   A typical structure of the positive electrode active material particles described above is schematically shown in FIG. The positive electrode active material particle 110 is a hollow structure particle having a shell portion 115 and a hollow portion 116. The shell portion 115 has a form in which the primary particles 112 are gathered in a spherical shell shape. In a preferred embodiment, the shell 115 has a form in which the primary particles 112 are arranged in a ring shape (beaded) in the cross-sectional SEM image. The primary particles 112 may be in a single (single layer) continuous form over the entire shell 115, or two or more primary particles 112 may be stacked (in multiple layers) to have a continuous part. Good. The number of stacked primary particles 112 in the continuous portion is preferably about 5 or less (for example, 2 to 5), and more preferably about 3 or less (for example, 2 to 3). The positive electrode active material particles 110 according to a preferred embodiment are configured such that the primary particles 112 are substantially continuous in a single layer over the entire shell 115.

上記の構成を有する正極活物質粒子(二次粒子)110は、内部に空洞のない緻密構造の正極活物質粒子に比べて、一次粒子112の凝集が少ない。そのため、該粒子内の粒界が少なく(ひいてはLiイオンの拡散距離がより短く)、粒子内部へのLiイオンの拡散が速い。このような粒界の少ない正極活物質粒子110によると、該粒子110を有するリチウム二次電池の出力特性を効果的に向上させることができる。例えば、正極活物質内部へのイオン拡散が律速となる低SOC域(例えば、SOCが30%以下のとき)においても良好な出力を示すリチウム二次電池が構築され得る。   The positive electrode active material particles (secondary particles) 110 having the above-described configuration have less aggregation of the primary particles 112 than the positive electrode active material particles having a dense structure without a cavity inside. For this reason, there are few grain boundaries in the particles (as a result, the diffusion distance of Li ions is shorter), and the diffusion of Li ions into the particles is fast. According to such positive electrode active material particles 110 with few grain boundaries, the output characteristics of the lithium secondary battery having the particles 110 can be effectively improved. For example, a lithium secondary battery that exhibits good output even in a low SOC region (for example, when the SOC is 30% or less) where ion diffusion into the positive electrode active material is rate-limiting can be constructed.

(貫通孔)
正極活物質粒子110は、殻部115を貫通して中空部116と外部(粒子110の外部)とを空間的に連続させる貫通孔118を有することが好ましい。貫通孔118を有することにより、中空部116と外部とで電解液が行き来しやすくなり、中空部116内の電解液が適当に入れ替わる。このため、中空部116内で電解液が不足する液枯れが生じにくく、中空部116に面する一次粒子112がより活発に充放電に活用され得る。この構成によると、一次粒子112に電解液を効率よく接触させ得るので、リチウム二次電池の出力特性(特に低SOC域における出力特性)をさらに向上させることができる。
(Through hole)
The positive electrode active material particle 110 preferably has a through hole 118 that passes through the shell portion 115 and spatially continues the hollow portion 116 and the outside (outside of the particle 110). By having the through-hole 118, the electrolytic solution easily goes back and forth between the hollow portion 116 and the outside, and the electrolytic solution in the hollow portion 116 is appropriately replaced. For this reason, withering of the electrolyte is insufficient in the hollow portion 116, and the primary particles 112 facing the hollow portion 116 can be more actively used for charging and discharging. According to this configuration, the electrolytic solution can be efficiently contacted with the primary particles 112, so that the output characteristics (especially the output characteristics in the low SOC region) of the lithium secondary battery can be further improved.

正極活物質粒子110の有する貫通孔118の数は、該活物質粒子110の一粒子当たりの平均として、凡そ1〜10個程度(例えば1〜5個)であることが好ましい。上記平均貫通孔数が多すぎると、中空形状を維持しにくくなることがある。ここに開示される好ましい平均貫通孔数の正極活物質粒子110によると、正極活物質粒子110の強度を確保しつつ、孔空き中空構造を有することによる電池性能向上効果(例えば、出力を向上させる効果)を、良好に、かつ安定して発揮することができる。   The number of through-holes 118 included in the positive electrode active material particles 110 is preferably about 1 to 10 (for example, 1 to 5) as an average per particle of the active material particles 110. If the average number of through holes is too large, it may be difficult to maintain the hollow shape. According to the positive electrode active material particles 110 having a preferable average number of through-holes disclosed herein, the battery performance improvement effect (for example, the output is improved) by having a holed hollow structure while ensuring the strength of the positive electrode active material particles 110. Effect) can be exhibited satisfactorily and stably.

貫通孔118の開口幅hは、複数の正極活物質粒子の平均値として、概ね0.01μm以上であるとよい。ここで、貫通孔118の開口幅hとは、該貫通孔118が正極活物質粒子110の外部から中空部116に至る経路で最も狭い部分における差渡し長さを指す。貫通孔118の開口幅が平均0.01μm以上であると、電解液の流通路として貫通孔118をより有効に機能させ得る。これにより、リチウム二次電池の電池性能を向上させる効果をより適切に発揮することができる。
なお、一つの正極活物質粒子110が複数の貫通孔118を有する場合、それら複数の貫通孔118のうち最も大きい開口幅を有する貫通孔の開口幅を、当該活物質粒子110の開口幅として採用するとよい。貫通孔118の開口幅hは平均2.0μm以下、より好ましくは平均1.0μm以下、さらに好ましくは平均0.5μm以下であってもよい。
The opening width h of the through hole 118 is preferably about 0.01 μm or more as an average value of the plurality of positive electrode active material particles. Here, the opening width h of the through hole 118 refers to a passing length in the narrowest part of the path from the outside of the positive electrode active material particle 110 to the hollow part 116. When the opening width of the through holes 118 is 0.01 μm or more on average, the through holes 118 can function more effectively as a flow path for the electrolytic solution. Thereby, the effect which improves the battery performance of a lithium secondary battery can be exhibited more appropriately.
When one positive electrode active material particle 110 has a plurality of through holes 118, the opening width of the through hole having the largest opening width among the plurality of through holes 118 is adopted as the opening width of the active material particles 110. Good. The opening width h of the through holes 118 may be an average of 2.0 μm or less, more preferably an average of 1.0 μm or less, and even more preferably an average of 0.5 μm or less.

なお、上記平均貫通孔数、平均開口サイズ等の特性値は、例えば、正極活物質粒子の断面をSEMで観察することにより把握することができる。例えば、正極活物質粒子または該活物質粒子を含む材料を適当な樹脂(好ましくは熱硬化性樹脂)で固めたサンプルを、適当な断面で切断し、その切断面を少しづつ削りながらSEM観察を行うとよい。あるいは、通常は上記サンプル中において正極活物質粒子の向き(姿勢)は概ねランダムであると仮定できることから、単一の断面または2〜10箇所程度の比較的少数の断面におけるSEM観察結果を統計的に処理することによっても上記特性値を算出し得る。   The characteristic values such as the average number of through holes and the average opening size can be grasped by, for example, observing the cross section of the positive electrode active material particles with an SEM. For example, a sample obtained by solidifying positive electrode active material particles or a material containing the active material particles with an appropriate resin (preferably a thermosetting resin) is cut in an appropriate cross section, and SEM observation is performed while cutting the cut surface little by little. It is good to do. Or, since the orientation (posture) of the positive electrode active material particles can be generally assumed to be almost random in the above sample, the SEM observation results on a single cross section or a relatively small number of cross sections of about 2 to 10 locations are statistical. The above characteristic value can also be calculated by processing the above.

好ましい一態様では、図5に模式的に示すように、殻部115は、貫通孔118以外の部分では緻密に(典型的には、少なくとも一般的な非水電解液を通過させない程度に緻密に)焼結している。この構造の正極活物質粒子110によると、該粒子110の外部と中空部116との間で電解液が流通し得る箇所が、貫通孔118のある箇所に制限される。これにより、例えば捲回電極体を備えた電池の正極に用いられる正極活物質粒子において、特に有利な効果が発揮され得る。すなわち、捲回電極体を備える電池において、該電池の充放電を繰り返すと、充放電に伴う正極活物質の膨張収縮によって電極体(特に正極合材層)から電解液が絞り出され、これにより電極体の一部で電解液が不足して電池性能(例えば出力性能)が低下することがあり得る。上記構成の正極活物質粒子110によると、貫通孔118以外の部分では中空部116内の電解液の流出が阻止されるので、正極合材層における電解液の不足(液枯れ)を効果的に防止または軽減することができる。また、正極活物質粒子110は、形状維持性が高い(崩れにくいこと;例えば平均硬度が高いこと、圧縮強度が高いこと等に反映され得る。)ものとなり得るので、良好な電池性能をより安定して発揮することができる。   In a preferred embodiment, as schematically shown in FIG. 5, the shell portion 115 is dense in a portion other than the through-hole 118 (typically dense enough not to pass at least a general non-aqueous electrolyte). ) Sintered. According to the positive electrode active material particles 110 having this structure, the locations where the electrolytic solution can flow between the outside of the particles 110 and the hollow portions 116 are limited to the locations where the through holes 118 are provided. Thereby, for example, particularly advantageous effects can be exhibited in the positive electrode active material particles used for the positive electrode of a battery including a wound electrode body. That is, in a battery including a wound electrode body, when charging and discharging of the battery is repeated, the electrolyte is squeezed out from the electrode body (particularly, the positive electrode mixture layer) due to expansion and contraction of the positive electrode active material that accompanies charging and discharging. Battery performance (for example, output performance) may be deteriorated due to insufficient electrolyte in a part of the electrode body. According to the positive electrode active material particles 110 having the above-described configuration, the electrolyte solution in the hollow portion 116 is prevented from flowing out at portions other than the through-holes 118, so that the shortage of electrolyte solution (liquid withering) in the positive electrode mixture layer is effectively prevented. Can be prevented or reduced. Moreover, since the positive electrode active material particles 110 can have a high shape-maintaining property (being difficult to collapse; for example, it can be reflected in a high average hardness, a high compressive strength, etc.), good battery performance is more stable. Can be demonstrated.

(粒子空孔率)
ここに開示される技術における正極活物質は、粒子空孔率が5%以上の中空構造(典型的には、孔空き中空構造)を有する。粒子空孔率が10%以上である正極活物質が好ましく、より好ましくは15%以上である。粒子空孔率が小さすぎると、中空構造であることの利点が充分に発揮されにくくなる場合があり得る。粒子空孔率は20%以上(典型的には23%以上、好ましくは30%以上)であってもよい。粒子空孔率の上限は特に限定されないが、正極活物質粒子の耐久性(例えば、電池の製造時や使用時に加わり得る圧縮応力等に耐えて中空形状を維持する性能)や製造容易性等の点から、通常は95%以下(典型的には90%以下、例えば80%以下)とすることが適当である。上記粒子空孔率の調節は、例えば、後述する正極活物質の製造方法において、粒子成長工程を継続する時間、粒子成長工程における遷移金属水酸化物の析出速度(例えば、アンモニア濃度)等を通じて行うことができる。
(Particle porosity)
The positive electrode active material in the technology disclosed herein has a hollow structure (typically a holed hollow structure) having a particle porosity of 5% or more. A positive electrode active material having a particle porosity of 10% or more is preferable, and more preferably 15% or more. If the particle porosity is too small, the advantage of having a hollow structure may not be sufficiently exerted. The particle porosity may be 20% or more (typically 23% or more, preferably 30% or more). The upper limit of the particle porosity is not particularly limited, but the durability of the positive electrode active material particles (for example, the ability to withstand compressive stress that can be applied during battery production or use and maintain a hollow shape), ease of production, etc. In view of this, it is usually appropriate to use 95% or less (typically 90% or less, for example 80% or less). The adjustment of the particle porosity is performed, for example, in the method for producing a positive electrode active material to be described later, through the time during which the particle growth process is continued, the precipitation rate of transition metal hydroxide (for example, ammonia concentration) in the particle growth process, and the like. be able to.

ここで、「粒子空孔率」とは、正極活物質をランダムな位置で切断した断面の平均において、該活物質の見かけの断面積のうち中空部が占める割合をいう。この割合は、例えば、正極活物質粒子または該活物質粒子を含む材料の適当な断面におけるSEM画像を通じて把握することができる。上記の断面SEM画像は、例えば、正極活物質粒子または該活物質粒子を含む材料を適当な樹脂(好ましくは熱硬化性樹脂)で固めたサンプルを切断し、その断面をSEM観察することにより得ることができる。該断面SEM画像では、色調あるいは濃淡の違いによって、正極活物質粒子の殻部と、中空部と、貫通孔とを区別することができる。上記サンプルの任意の断面SEM画像に表示された複数の正極活物質粒子について、それらの正極活物質粒子の中空部が占める面積Cと、それらの正極活物質粒子が見かけの上で占める断面積Cとの比(C/C)を得る。ここで、正極活物質粒子が見かけの上で占める断面積Cとは、正極活物質粒子の殻部、中空部および貫通孔が占める断面積を指す。比(C/C)によって、正極活物質粒子の見かけの体積のうち中空部が占める割合(すなわち粒子空孔率)が概ね求められる。 Here, the “particle porosity” refers to the ratio of the hollow portion in the apparent cross-sectional area of the active material in the average of the cross sections obtained by cutting the positive electrode active material at random positions. This ratio can be grasped, for example, through an SEM image in an appropriate cross section of the positive electrode active material particles or the material containing the active material particles. The cross-sectional SEM image is obtained, for example, by cutting a sample obtained by solidifying positive electrode active material particles or a material containing the active material particles with an appropriate resin (preferably a thermosetting resin), and observing the cross-section by SEM. be able to. In the cross-sectional SEM image, the shell part, the hollow part, and the through hole of the positive electrode active material particle can be distinguished by the difference in color tone or light and shade. For a plurality of positive electrode active material particles displayed in an arbitrary cross-sectional SEM image of the sample, the area CV occupied by the hollow portion of the positive electrode active material particles, and the cross-sectional area apparently occupied by the positive electrode active material particles obtaining a ratio of C T (C V / C T ). Here, the cross-sectional area C T occupied on the positive electrode active material particles apparently refers shell of the positive electrode active material particle, the cross-sectional area occupied by the hollow portion and the through-hole. By the ratio (C V / C T ), the ratio of the hollow portion to the apparent volume of the positive electrode active material particles (that is, the particle porosity) is generally determined.

好ましくは、上記サンプルの任意の複数の断面SEM画像について、上記比(C/C)の値を算術平均する。このようにして比(C/C)を求める断面SEM画像の数が多くなるほど、また比(C/C)を算出する基礎とする正極活物質粒子の数が多くなるほど、上記比(C/C)の算術平均値は収束する。通常は、少なくとも10個(例えば20個以上)の正極活物質粒子に基づいて粒子空孔率を求めることが好ましい。また、少なくともサンプルの任意の3箇所(例えば5箇所以上)の断面におけるSEM画像に基づいて粒子空孔率を求めることが好ましい。 Preferably, the value of the ratio (C V / C T ) is arithmetically averaged for an arbitrary plurality of cross-sectional SEM images of the sample. In this way, the ratio (C V / C T) as the number of cross-sectional SEM image increases seeking, also the ratio (C V / C T) as the number of the positive electrode active material particles is often the basis for calculating the above ratios The arithmetic average value of (C V / C T ) converges. Usually, it is preferable to determine the particle porosity based on at least 10 (for example, 20 or more) positive electrode active material particles. Moreover, it is preferable to obtain | require particle | grain porosity based on the SEM image in the cross section of the arbitrary 3 places (for example, 5 places or more) of a sample at least.

(殻部の厚さ)
中空構造の正極活物質(正極活物質粒子)において、殻部(一次粒子が球殻状に集合した部分)の厚さは、好ましくは3.0μm以下であり、より好ましくは2.5μm以下(例えば2.2μm以下)、さらに好ましくは2.0μm以下(例えば1.5μm以下)である。殻部の厚さが小さいほど、充電時には殻部の内部(厚さの中央部)からもLiイオンが放出されやすく、放電時にはLiイオンが殻部の内部まで吸収されやすくなる。したがって、所定の条件において単位質量の正極活物質粒子が吸蔵および放出し得るLiイオンの量を多くできるとともに、正極活物質粒子がLiイオンを吸蔵したり放出したりする際の抵抗を軽減し得る。上記の正極活物質粒子を用いてなるリチウム二次電池は、低SOC域における出力に優れたものとなり得る。換言すれば、低SOC域の出力には正極活物質のLi固体内拡散性が律速であり、Li固体内拡散性にはLi拡散距離が影響するため、このLi拡散距離に影響する正極活物質粒子の殻部厚さが小さいことで、低SOC域の出力特性が優れたものとなり得る。
(Thickness of shell)
In the positive electrode active material having a hollow structure (positive electrode active material particles), the thickness of the shell portion (portion where primary particles are gathered in a spherical shell shape) is preferably 3.0 μm or less, more preferably 2.5 μm or less ( For example, it is 2.2 μm or less), more preferably 2.0 μm or less (for example, 1.5 μm or less). The smaller the thickness of the shell portion, the easier it is to release Li ions from the inside of the shell portion (the central portion of the thickness) during charging, and the more easily the Li ions are absorbed to the inside of the shell portion during discharging. Accordingly, the amount of Li ions that can be occluded and released by the unit mass of the positive electrode active material particles under a predetermined condition can be increased, and the resistance when the positive electrode active material particles occlude and release Li ions can be reduced. . A lithium secondary battery using the above positive electrode active material particles can be excellent in output in a low SOC region. In other words, the Li solid diffusion property of the positive electrode active material is rate-determining for the output in the low SOC region, and the Li diffusion distance affects the Li solid diffusion property. Therefore, the positive electrode active material that affects this Li diffusion distance. Since the shell thickness of the particles is small, the output characteristics in the low SOC region can be excellent.

殻部の厚さの下限値は特に限定されないが、通常は、概ね0.1μm以上であることが好ましい。殻部の厚さを0.1μm以上とすることにより、電池の製造時または使用時に加わり得る応力や、充放電に伴う正極活物質の膨張収縮等に対して、より高い耐久性を保持することができる。これによりリチウム二次電池の性能が安定し得る。内部抵抗低減効果と耐久性とを両立させる観点からは、殻部の厚さは凡そ0.1μm〜2.2μmであることが好ましく、0.2μm〜2.0μmであることがより好ましく、0.5μm〜1.5μmであることが特に好ましい。   Although the lower limit of the thickness of the shell is not particularly limited, it is generally preferable that the thickness is approximately 0.1 μm or more. Maintaining higher durability against stress that can be applied during battery manufacture or use, and expansion and contraction of the positive electrode active material associated with charge and discharge, by making the thickness of the shell portion 0.1 μm or more Can do. Thereby, the performance of the lithium secondary battery can be stabilized. From the viewpoint of achieving both an internal resistance reduction effect and durability, the thickness of the shell is preferably about 0.1 μm to 2.2 μm, more preferably 0.2 μm to 2.0 μm, and 0 It is particularly preferable that the thickness is 5 μm to 1.5 μm.

ここで、殻部115の厚さとは(図5参照)、正極活物質または該活物質粒子を含む材料の断面SEM画像において、殻部115の内側面115a(ただし、貫通孔118に相当する部分は内側面115aに含めない。)の任意の位置kから殻部115の外側面115bへの最短距離T(k)の平均値を指す。より具体的には、殻部115の内側面115aの複数の位置について上記最短距離T(k)を求め、それらの算術平均値を算出するとよい。この場合、上記最短距離T(k)を求めるポイントの数を多くするほど、殻部115の厚さTが平均値に収束し、殻部115の厚さを適切に評価することができる。通常は、少なくとも10個(例えば20個以上)の正極活物質粒子110に基づいて殻部115の厚さを求めることが好ましい。また、少なくともサンプルの(例えば正極活物質の任意の1個の)任意の3箇所(例えば5箇所以上)の断面におけるSEM画像に基づいて殻部115の厚さを求めることが好ましい。   Here, the thickness of the shell portion 115 (see FIG. 5) refers to the inner side surface 115a of the shell portion 115 (however, the portion corresponding to the through hole 118) in the cross-sectional SEM image of the positive electrode active material or the material containing the active material particles. Is not included in the inner side surface 115a.) The average value of the shortest distance T (k) from any position k to the outer side surface 115b of the shell 115. More specifically, the shortest distance T (k) may be obtained for a plurality of positions on the inner surface 115a of the shell 115, and the arithmetic average value thereof may be calculated. In this case, as the number of points for obtaining the shortest distance T (k) is increased, the thickness T of the shell portion 115 converges to an average value, and the thickness of the shell portion 115 can be appropriately evaluated. Usually, it is preferable to determine the thickness of the shell 115 based on at least 10 (for example, 20 or more) positive electrode active material particles 110. In addition, it is preferable to obtain the thickness of the shell 115 based on SEM images at least at three (eg, five or more) cross sections of the sample (eg, any one of the positive electrode active materials).

(二次粒子)
正極活物質粒子の平均粒径(二次粒径)は、例えば、凡そ2μm〜25μmであることが好ましい。かかる構成の正極活物質によると、良好な電池性能をより安定して発揮することができる。上記平均粒径が小さすぎると、中空部の容積が小さいため、電池性能を向上させる効果が低下傾向になり得る。上記平均粒径は凡そ3μm以上であることがより好ましい。また、正極活物質の生産性や、HV特有の薄膜である正極合剤層の生産性の観点からは、上記平均粒径は凡そ25μm以下であることが好ましく、凡そ15μm以下(例えば凡そ10μm以下)であることがより好ましい。好ましい一態様では、正極活物質の平均粒径は凡そ3μm〜10μm(例えば3μm〜8μm)である。
(Secondary particles)
The average particle size (secondary particle size) of the positive electrode active material particles is preferably about 2 μm to 25 μm, for example. According to the positive electrode active material having such a configuration, good battery performance can be more stably exhibited. If the average particle size is too small, the volume of the hollow portion is small, and the effect of improving battery performance may tend to decrease. The average particle size is more preferably about 3 μm or more. From the viewpoint of the productivity of the positive electrode active material and the productivity of the positive electrode mixture layer that is a thin film peculiar to HV, the average particle size is preferably about 25 μm or less, and about 15 μm or less (for example, about 10 μm or less). ) Is more preferable. In a preferred embodiment, the average particle diameter of the positive electrode active material is about 3 μm to 10 μm (for example, 3 μm to 8 μm).

上記正極活物質粒子の平均粒径は、当該分野で公知の方法、例えばレーザ回折散乱法に基づく測定による体積基準のメジアン径(D50:50%体積平均粒径)として求めることができる。また、上記平均粒径の調節は、例えば、後述する正極活物質の製造方法において、核生成段階でのpH、粒子成長工程を継続する時間、粒子成長工程での遷移金属水酸化物の析出速度等を通じて行うことができる。遷移金属水酸化物の析出速度は、例えば、後述する正極活物質の製造方法における式1または式2に関係する1または2以上の化学種の濃度、pH、反応系の温度等を通じて調節することができる。あるいは、一般的な篩い分けにより粒子を選別して平均粒径を調節してもよい。このような平均粒径調節手法は、単独で、あるいは適宜組み合わせて実施することができる。 The average particle diameter of the positive electrode active material particles can be determined as a volume-based median diameter (D 50 : 50% volume average particle diameter) measured by a method known in the art, for example, a laser diffraction scattering method. In addition, for example, in the method for producing a positive electrode active material described later, the average particle size is adjusted by adjusting the pH at the nucleation stage, the time for continuing the particle growth process, and the deposition rate of the transition metal hydroxide at the particle growth process. Etc. can be performed. The deposition rate of the transition metal hydroxide is adjusted through, for example, the concentration, pH, reaction system temperature, etc. of one or more chemical species related to Formula 1 or Formula 2 in the method for producing a positive electrode active material described below. Can do. Alternatively, the average particle diameter may be adjusted by selecting particles by general sieving. Such an average particle diameter adjusting method can be carried out alone or in appropriate combination.

(一次粒子)
図5を参照して、正極活物質粒子110を構成する一次粒子112は、その長径L1が例えば凡そ0.1μm〜1.0μmであり得る。本発明者らの知見によれば、一次粒子112の長径L1は、(003)面の法線方向(c軸)に直交する方向における結晶サイズに概ね相関し得る。L1が小さすぎると、電池の容量維持性が低下傾向となることがあり得る。そのような観点から、L1は0.2μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.4μm以上であることがさらに好ましい。一方、L1が大きすぎると、結晶の表面から内部(L1の中央部)までの距離(Liイオンの拡散距離)が長くなるため、結晶内部へのイオン拡散が遅くなり、出力特性(特に、低SOC域における出力特性)が低くなりがちである。そのような観点から、L1は0.8μm以下(例えば0.75μm以下)であることが好ましい。好ましい一態様では、一次粒子の長径L1は0.2μm〜0.8μm(例えば0.3μm〜0.75μm)である。
(Primary particles)
Referring to FIG. 5, primary particles 112 constituting positive electrode active material particles 110 may have a major axis L1 of, for example, approximately 0.1 μm to 1.0 μm. According to the knowledge of the present inventors, the major axis L1 of the primary particle 112 can be generally correlated with the crystal size in the direction orthogonal to the normal direction (c-axis) of the (003) plane. If L1 is too small, the capacity maintenance of the battery may tend to decrease. From such a viewpoint, L1 is preferably 0.2 μm or more, more preferably 0.3 μm or more, and further preferably 0.4 μm or more. On the other hand, if L1 is too large, the distance (Li ion diffusion distance) from the surface of the crystal to the inside (the center portion of L1) becomes long, so that the ion diffusion into the crystal becomes slow, and the output characteristics (particularly low The output characteristics in the SOC region tend to be low. From such a viewpoint, L1 is preferably 0.8 μm or less (for example, 0.75 μm or less). In a preferred embodiment, the major particle L1 of the primary particles is 0.2 μm to 0.8 μm (for example, 0.3 μm to 0.75 μm).

一次粒子112の長径L1は、例えば、正極活物質粒子(二次粒子)110の粒子表面のSEM画像に基づいて測定することができる。リチウム二次電池の正極合材層に含まれる正極活物質粒子について上記一次粒子の長径L1(一次粒子の粒子径P)を測定する場合には、該合材層を割った断面に現れている正極活物質粒子について、その表面のSEM観察を行うとよい。例えば、上記SEM画像において、長径L1を特定するのに適当な一次粒子112を特定する。すなわち、正極活物質粒子(二次粒子)110の粒子表面のSEM画像には複数の一次粒子112が写っているので、これらの一次粒子112を、上記SEM画像における表示面積が大きい順に複数個抽出する。これにより、当該粒子表面のSEM画像において、概ね最も長い長径L1に沿った外形が写った一次粒子112を抽出することができる。そして、当該抽出された一次粒子112において最も長い長軸の長さを長径L1とするとよい。なお、本明細書において、長径L1は正極活物質の一次粒子の粒子径Pを意味するものでもあり得る。 The major axis L1 of the primary particle 112 can be measured based on, for example, an SEM image of the particle surface of the positive electrode active material particle (secondary particle) 110. When measuring the long diameter L1 of the primary particles (particle diameter P 1 of the primary particles) of the positive electrode active material particles contained in the positive electrode mixture layer of the lithium secondary battery, it appears in a cross section obtained by dividing the mixture layer. SEM observation of the surface of the positive electrode active material particles may be performed. For example, in the SEM image, primary particles 112 suitable for specifying the major axis L1 are specified. That is, since a plurality of primary particles 112 are shown in the SEM image of the particle surface of the positive electrode active material particles (secondary particles) 110, a plurality of these primary particles 112 are extracted in descending order of the display area in the SEM image. To do. Thereby, in the SEM image of the particle surface, it is possible to extract the primary particles 112 in which the outer shape along the longest major axis L1 is reflected. And it is good to make the length of the longest long axis in the extracted primary particle 112 into the major axis L1. In this specification, major axis L1 can also mean particle diameter P 1 of the primary particles of the positive electrode active material.

(結晶性)
ここに開示される正極活物質では、遷移金属層の積層様式に任意性がある。つまり、積層方向で相互作用が全く働かない場合には遷移金属層がランダムに積層されるのに対し、積層方向に相互作用が出現する場合には積層様式に規則性をもつ層構造を取り得ると推察される。このとき、積層方向の不規則性、規則性の程度は、Cu管球を用いてX線回折測定を行ったときの回折角2θ=17〜20°に位置する(003)面の回折ピークと、同2θ=43〜46°に位置する(104)面の回折ピークの形状を比較することにより描き出すことが可能であると考えられる。すなわち、(003)面の回折ピークの形状に対する(104)面の回折ピークの形状をSF値を用いて数値化した場合、つまり、(104)面/(003)面積分幅比を数値化した場合、積層方向の規則性が高い場合にSF値が高くなる傾向を有し、このSF値が1.0≦SF≦2.6を満たすときに、積層方向の規則性がより最適になると考えられ得る。上記SF値と積層方向の規則性が高く相互作用が大きい試料の場合、Liイオンの固体内拡散が速くなり低SOC域の出力特性が向上するとともに、Liイオンを引き抜いた酸化状態でも層構造が安定化されるため、充放電耐久性に優れた正極材料になると考えられる。SF値が1.0を下回る場合には積層方向の相互作用が不十分であり、SF値が2.6を上回る場合には積層方向の相互作用が強くなりすぎ、固体内Liイオン輸送が阻害されてしまうと考えられる。このSF値は、1.3以上であることがより好ましく、1.5以上であることがさらに好ましい、また、SF値は2.4以下(例えば2.2以下)であることがさらに好ましい。
(crystalline)
In the positive electrode active material disclosed here, the transition metal layer is laminated in any manner. In other words, transition metal layers are randomly stacked when no interaction acts in the stacking direction, but can have a layer structure with regularity in the stacking mode when interactions appear in the stacking direction. It is guessed. At this time, the irregularity in the stacking direction and the degree of regularity are the diffraction peak of the (003) plane located at a diffraction angle 2θ = 17 to 20 ° when X-ray diffraction measurement is performed using a Cu tube. It is considered possible to draw by comparing the diffraction peak shapes of the (104) plane located at 2θ = 43 to 46 °. That is, when the shape of the diffraction peak of the (104) plane relative to the shape of the diffraction peak of the (003) plane is quantified using the SF value, that is, the ratio of (104) plane / (003) area width is quantified. In this case, when the regularity in the stacking direction is high, the SF value tends to increase, and when the SF value satisfies 1.0 ≦ SF ≦ 2.6, the regularity in the stacking direction is considered to be more optimal. Can be. In the case of a sample having a high regularity in the SF value and stacking direction and a large interaction, the diffusion of Li ions in the solid is accelerated, the output characteristics in the low SOC region are improved, and the layer structure is formed even in an oxidized state in which Li ions are extracted. Since it is stabilized, it is considered that the positive electrode material is excellent in charge / discharge durability. When the SF value is lower than 1.0, the interaction in the stacking direction is insufficient, and when the SF value is higher than 2.6, the interaction in the stacking direction becomes too strong, and Li ion transport in the solid is inhibited. It is thought that it will be done. The SF value is more preferably 1.3 or more, further preferably 1.5 or more, and the SF value is further preferably 2.4 or less (for example, 2.2 or less).

結晶性SF値の測定方法は特に限定されないが、試料の粉末X線回折測定により行うことができる。測定は放射線としてCuKα線(波長0.154051nm)を使用したX線回折装置(リガク社製RINT2200)を用いて行うことが可能である。X線の単色化にはグラファイトの単結晶モノクロメーターを用い、印加電圧を40kV、電流30mAに設定して測定を行うことが可能である。また、測定は3°/minの走査速度で、2θ=10°〜100°の角度範囲で測定を行うことが望ましい。Cu管球を用いてX線回折測定を行ったときの回折角2θ=17〜20°に位置する回折ピークAと、同じく2θ=43〜46°に位置する回折ピークBの積分強度比R(=I/I)、およびピーク強度比R(=H/H)からSF値(=R/R)を算出することができる。 The method for measuring the crystalline SF value is not particularly limited, but can be performed by powder X-ray diffraction measurement of a sample. The measurement can be performed using an X-ray diffractometer (RINT2200 manufactured by Rigaku Corporation) using CuKα rays (wavelength 0.154051 nm) as radiation. X-ray monochromation can be performed by using a graphite single crystal monochromator and setting the applied voltage to 40 kV and a current of 30 mA. Further, it is desirable that the measurement is performed at a scanning speed of 3 ° / min and in an angle range of 2θ = 10 ° to 100 °. Integral intensity ratio R I between diffraction peak A located at diffraction angle 2θ = 17 to 20 ° and diffraction peak B located at 2θ = 43 to 46 ° when X-ray diffraction measurement is performed using a Cu tube. The SF value (= R H / R I ) can be calculated from (= I A / I B ) and the peak intensity ratio R H (= H A / H B ).

(比表面積)
ここに開示される正極活物質のBET比表面積は、凡そ0.3m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、0.8m/g以上であることがさらに好ましい。また、正極活物質粒子110のBET比表面積は、例えば、凡そ3.0m/g以下(例えば2.0m/g以下)とすることができ、1.7m/g以下であってもよく、さらに1.5m/g以下であってもよい。好ましい一態様に係る正極活物質は、BET比表面積が概ね0.5〜2.0m/gの範囲にある。
(Specific surface area)
The BET specific surface area of the positive electrode active material disclosed herein is preferably about 0.3 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.8 m 2 / g or more. More preferably it is. Further, the BET specific surface area of the positive electrode active material particles 110 can be, for example, approximately 3.0 m 2 / g or less (for example, 2.0 m 2 / g or less), and can be 1.7 m 2 / g or less. It may be 1.5 m 2 / g or less. The positive electrode active material according to a preferred embodiment has a BET specific surface area of approximately 0.5 to 2.0 m 2 / g.

(正極活物質の硬度)
ここに開示される技術の好ましい一態様によると、平均硬度が概ね0.5MPa以上(典型的には1.0MPa以上、例えば2.0〜10MPa)である正極活物質粒子が製造され得る。ここで「平均硬度」とは、直径50μmの平面ダイヤモンド圧子を使用して、負荷速度0.5mN/秒〜3mN/秒の条件で行われるダイナミック微小硬度測定により得られる値をいう。上記ダイナミック微小硬度測定には、例えば、株式会社島津製作所製の微小硬度計、型式「MCT−W500」を用いることができる。より多くの正極活物質粒子について上記硬度測定を行うほど、それらの正極活物質の硬度の算術平均値は収束する。上記平均硬度としては、少なくとも3個(好ましくは5個以上)の正極活物質粒子に基づく算術平均値を採用することが好ましい。核生成段階と粒子成長段階とを包含する後述の正極活物質の製造方法は、上記の平均硬度を有する正極活物質の製造方法として好適である。この方法により得られた孔空き中空構造の正極活物質粒子は、例えば噴霧焼成製法(スプレードライ製法とも称される。)等により得られた一般的な多孔質構造の正極活物質粒子に比べて、より硬く(平均硬度が高く)、形態安定性に優れたものとなり得る。このように、中空構造であってかつ平均硬度の高い(換言すれば、形状維持性の高い)正極活物質粒子は、より高い性能を安定して発揮する電池を与えるものであり得る。
(Positive electrode active material hardness)
According to a preferred embodiment of the technology disclosed herein, positive electrode active material particles having an average hardness of approximately 0.5 MPa or more (typically 1.0 MPa or more, for example, 2.0 to 10 MPa) can be produced. Here, the “average hardness” refers to a value obtained by dynamic microhardness measurement performed using a flat diamond indenter with a diameter of 50 μm and under a load speed of 0.5 mN / sec to 3 mN / sec. For the dynamic microhardness measurement, for example, a microhardness meter manufactured by Shimadzu Corporation, model “MCT-W500” can be used. The more the positive electrode active material particles are subjected to the above hardness measurement, the more the arithmetic average value of the hardness of those positive electrode active materials converges. As the average hardness, it is preferable to employ an arithmetic average value based on at least three (preferably five or more) positive electrode active material particles. A method for producing a positive electrode active material described later including a nucleation step and a particle growth step is suitable as a method for producing a positive electrode active material having the above average hardness. The positive electrode active material particles having a perforated hollow structure obtained by this method are compared with the positive electrode active material particles having a general porous structure obtained by, for example, a spray firing method (also referred to as a spray dry method). It can be harder (higher average hardness) and excellent in form stability. As described above, the positive electrode active material particles having a hollow structure and high average hardness (in other words, high shape maintaining property) can provide a battery that stably exhibits higher performance.

<正極活物質の製造方法>
正極活物質の製造方法は、例えば、原料水酸化物生成工程と、混合工程と、焼成工程とを含む。原料水酸化物生成工程は、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を水性溶液から析出させる工程である。ここで、水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも1種を含む。上記原料水酸化物生成工程は、水性溶液から遷移金属水酸化物を析出させる核生成段階と、核生成段階よりも水性溶液のpHを減少させた状態で遷移金属水酸化物を成長させる粒子成長段階とを含むことが好ましい。混合工程は、遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する工程である。焼成工程は、混合物を焼成して正極活物質を得る工程である。さらに、好適には、焼成後に焼成物を解砕し、篩分けを行なうとよい。
<Method for producing positive electrode active material>
The manufacturing method of a positive electrode active material includes a raw material hydroxide production | generation process, a mixing process, and a baking process, for example. The raw material hydroxide generation step is a step of supplying ammonium ions to the aqueous solution of the transition metal compound to precipitate the transition metal hydroxide particles from the aqueous solution. Here, the aqueous solution contains at least one transition metal element constituting the lithium transition metal oxide. The raw material hydroxide generation step includes a nucleation stage in which a transition metal hydroxide is precipitated from an aqueous solution, and particle growth in which the transition metal hydroxide is grown in a state in which the pH of the aqueous solution is lower than that in the nucleation stage. Preferably including a step. The mixing step is a step of preparing an unfired mixture by mixing the transition metal hydroxide and the lithium compound. A baking process is a process of baking a mixture and obtaining a positive electrode active material. More preferably, the fired product is crushed and sieved after firing.

以下、正極活物質の製造方法をより具体的に例示する。ここに開示される正極活物質(典型的には孔空き中空正極活物質粒子)は、例えば、該活物質を構成するリチウム遷移金属酸化物に含まれる遷移金属元素の少なくとも1種(好ましくは、該酸化物に含まれるリチウム以外の金属元素の全部)を含む水性溶液から、該遷移金属の水酸化物を適切な条件で析出させ、その遷移金属水酸化物とリチウム化合物とを混合して焼成する方法により製造され得る。   Hereinafter, the method for producing the positive electrode active material will be illustrated more specifically. The positive electrode active material (typically porous hollow positive electrode active material particles) disclosed herein is, for example, at least one transition metal element contained in a lithium transition metal oxide constituting the active material (preferably, The transition metal hydroxide is precipitated under an appropriate condition from an aqueous solution containing all of the metal elements other than lithium contained in the oxide, and the transition metal hydroxide and the lithium compound are mixed and fired. It can be manufactured by the method to do.

また、上記正極活物質の製造方法の一実施態様につき、層状構造のLiNiCoMn酸化物からなる孔空き中空正極活物質粒子を製造する場合を例として詳しく説明するが、この製造方法の適用対象を上記の組成の正極活物質(典型的には孔空き中空正極活物質粒子)に限定する意図ではない。特に言及されない限りにおいて、正極活物質は、ここに開示される製造方法に限定されない。   The embodiment of the method for producing a positive electrode active material will be described in detail by taking as an example the case of producing perforated hollow positive electrode active material particles made of a layered LiNiCoMn oxide. It is not intended to be limited to a positive electrode active material having a composition of (typically porous hollow positive electrode active material particles). Unless otherwise specified, the positive electrode active material is not limited to the manufacturing method disclosed herein.

(原料水酸化物生成工程)
ここに開示される正極活物質の製造方法は、遷移金属化合物の水性溶液にアンモニウムイオン(NH )を供給して、該水性溶液から遷移金属水酸化物の粒子を析出させる工程(原料水酸化物生成工程)を含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。この混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール等)が好適である。上記遷移金属化合物の水性溶液(以下、「遷移金属溶液」ともいう。)は、製造目的たる正極活物質粒子を構成するリチウム遷移金属酸化物の組成に応じて、該リチウム遷移金属酸化物を構成する遷移金属元素M(ここではNi,CoおよびMn)の少なくとも1種(好ましくは全部)を含む。例えば、水性溶媒中にNiイオン,CoイオンおよびMnイオンを供給し得る1種または2種以上の化合物を含む遷移金属溶液を使用する。これらの金属イオン源となる化合物としては、該金属の硫酸塩、硝酸塩、塩化物等を適宜採用することができる。例えば、水性溶媒(好ましくは水)に硫酸ニッケル、硫酸コバルトおよび硫酸マンガンが溶解した組成の遷移金属溶液を好ましく使用し得る。
(Raw material hydroxide production process)
The method for producing a positive electrode active material disclosed herein includes a step of supplying ammonium ions (NH 4 + ) to an aqueous solution of a transition metal compound and precipitating transition metal hydroxide particles from the aqueous solution (raw material water). Oxide generation step). The solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component. As the solvent other than water constituting the mixed solvent, an organic solvent (such as a lower alcohol) that can be uniformly mixed with water is preferable. The aqueous solution of the transition metal compound (hereinafter also referred to as “transition metal solution”) constitutes the lithium transition metal oxide according to the composition of the lithium transition metal oxide constituting the positive electrode active material particles as the production object. (in this case Ni, Co and Mn) is a transition metal element M T contains at least one kind of (preferably all). For example, a transition metal solution containing one or more compounds capable of supplying Ni ions, Co ions, and Mn ions in an aqueous solvent is used. As the metal ion source compound, sulfates, nitrates, chlorides, and the like of the metals can be appropriately employed. For example, a transition metal solution having a composition in which nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in an aqueous solvent (preferably water) can be preferably used.

上記NH は、例えば、NH を含む水性溶液(典型的には水溶液)の形態で上記遷移金属溶液に供給されてもよく、該遷移金属溶液にアンモニアガスを直接吹き込むことにより供給されてもよく、これらの供給方法を併用してもよい。NH を含む水性溶液は、例えば、NH 源となり得る化合物(水酸化アンモニウム、硝酸アンモニウム、アンモニアガス等)を水性溶媒に溶解させることにより調製することができる。本実施態様では、水酸化アンモニウム水溶液(すなわちアンモニア水)の形態でNH を供給する。 The NH 4 + may be supplied to the transition metal solution in the form of an aqueous solution (typically an aqueous solution) containing NH 4 + , for example, and supplied by directly blowing ammonia gas into the transition metal solution. These supply methods may be used in combination. An aqueous solution containing NH 4 + can be prepared, for example, by dissolving a compound (ammonium hydroxide, ammonium nitrate, ammonia gas, or the like) that can be an NH 4 + source in an aqueous solvent. In this embodiment, NH 4 + is supplied in the form of an aqueous ammonium hydroxide solution (ie, aqueous ammonia).

(核生成段階)
上記原料水酸化物生成工程は、pH12以上(典型的にはpH12以上14以下、例えばpH12.2以上13以下)かつNH 濃度25g/L以下(典型的には3〜25g/L)の条件下で上記遷移金属溶液から遷移金属水酸化物を析出させる段階(核生成段階)を含み得る。上記pHおよびNH 濃度は、上記アンモニア水とアルカリ剤(液性をアルカリ性に傾ける作用のある化合物)との使用量を適切にバランスさせることによって調整することができる。アルカリ剤としては、例えば水酸化ナトリウム、水酸化カリウム等を、典型的には水溶液の形態で用いることができる。本実施態様では水酸化ナトリウム水溶液を使用する。なお、本明細書中において、pHの値は、液温25℃を基準とするpH値をいうものとする。
(Nucleation stage)
The raw material hydroxide generation step has a pH of 12 or more (typically pH 12 or more and 14 or less, such as pH 12.2 or more and 13 or less) and an NH 4 + concentration of 25 g / L or less (typically 3 to 25 g / L). A step (nucleation step) of depositing a transition metal hydroxide from the transition metal solution under conditions may be included. The pH and NH 4 + concentration can be adjusted by appropriately balancing the usage amounts of the ammonia water and the alkali agent (a compound having an action of tilting the liquid property to alkalinity). As the alkaline agent, for example, sodium hydroxide, potassium hydroxide and the like can be typically used in the form of an aqueous solution. In this embodiment, an aqueous sodium hydroxide solution is used. In addition, in this specification, the value of pH shall mean pH value on the basis of liquid temperature of 25 degreeC.

(粒子成長段階)
上記原料水酸化物生成工程は、さらに、上記核生成段階で析出した遷移金属水酸化物の核(典型的には粒子状)を、pH12未満(典型的にはpH10以上12未満、好ましくはpH10以上11.8以下、例えばpH11以上11.8以下)かつNH 濃度1g/L以上、好ましくは3g/L以上(典型的には3〜25g/L)で成長させる段階(粒子成長段階)を含み得る。通常は、核生成段階のpHに対して、粒子成長段階のpHを0.1以上(典型的には0.3以上、好ましくは0.5以上、例えば0.5〜1.5程度)低くすることが適当である。
(Particle growth stage)
In the raw material hydroxide generation step, the transition metal hydroxide nuclei (typically particulate) precipitated in the nucleation stage are further reduced to a pH of less than 12 (typically pH 10 or more and less than 12, preferably pH 10). 11.8 or less (for example, pH 11 or more and 11.8 or less) and NH 4 + concentration 1 g / L or more, preferably 3 g / L or more (typically 3 to 25 g / L) (growth stage) Can be included. Usually, the pH of the particle growth stage is 0.1 or more (typically 0.3 or more, preferably 0.5 or more, for example, about 0.5 to 1.5) lower than the pH of the nucleation stage. It is appropriate to do.

上記pHおよびNH 濃度は、核生成段階と同様にして調整することができる。この粒子成長段階は、上記pHおよびNH 濃度を満たすように行われることにより、好ましくは上記pHにおいてNH 濃度を20g/L以下(例えば1〜20g/L、典型的には3〜20g/L)、より好ましくは15g/L以下(例えば1〜15g/L、典型的には3〜10g/L)の範囲とすることにより、遷移金属水酸化物(ここでは、Ni,CoおよびMnを含む複合水酸化物)の析出速度が速くなり、ここに開示される正極活物質(典型的には孔空き中空正極活物質粒子)の形成に適した原料水酸化物粒子(換言すれば、孔空き中空構造の焼成物を形成しやすい原料水酸化物粒子)が生成し得る。 The pH and NH 4 + concentration can be adjusted in the same manner as in the nucleation stage. This particle growth stage is performed so as to satisfy the pH and NH 4 + concentration, and preferably at the pH, the NH 4 + concentration is 20 g / L or less (eg, 1 to 20 g / L, typically 3 to 3). 20 g / L), more preferably 15 g / L or less (for example, 1 to 15 g / L, typically 3 to 10 g / L), so that transition metal hydroxides (here, Ni, Co and The precipitation rate of the composite hydroxide containing Mn is increased, and the raw material hydroxide particles (in other words, suitable for the formation of the positive electrode active material (typically the perforated hollow positive electrode active material particles) disclosed herein) , Raw material hydroxide particles that can easily form a fired product having a holed hollow structure.

上記NH 濃度は、7g/L以下(例えば1〜7g/L、より好ましくは3〜7g/L)としてもよい。粒子成長段階におけるNH 濃度は、例えば、核生成段階におけるNH 濃度と概ね同程度としてもよく、核生成段階におけるNH 濃度よりも低くしてもよい。なお、遷移金属水酸化物の析出速度は、例えば、反応液に供給される遷移金属溶液に含まれる遷移金属イオンの合計モル数に対して、反応液の液相中に含まれる遷移金属イオンの合計モル数(合計イオン濃度)の推移を調べることにより把握され得る。 The NH 4 + concentration may be 7 g / L or less (for example, 1 to 7 g / L, more preferably 3 to 7 g / L). NH 4 + concentration in the particle growth step, for example, may be a substantially the same level as NH 4 + concentration in the nucleation stage, may be lower than the NH 4 + concentration in the nucleation stage. In addition, the precipitation rate of the transition metal hydroxide is, for example, the transition metal ions contained in the liquid phase of the reaction liquid with respect to the total number of moles of transition metal ions contained in the transition metal solution supplied to the reaction liquid. It can be grasped by examining the transition of the total number of moles (total ion concentration).

核生成段階および粒子成長段階のそれぞれにおいて、反応液の温度は、凡そ30℃〜60℃の範囲のほぼ一定温度(例えば、所定の温度±1℃)になるように制御することが好ましい。核生成段階と粒子成長段階の反応液の温度は同程度にしてもよい。また、反応液および反応槽内の雰囲気は、核生成段階および粒子成長段階を通じて非酸化性雰囲気に維持することが好ましい。また、反応液に含まれるNiイオン,CoイオンおよびMnイオンの合計モル数(合計イオン濃度)は、核生成段階および粒子成長段階を通じて、例えば凡そ0.5〜2.5モル/Lとすることができ、凡そ1.0〜2.2モル/Lとすることが好ましい。上記合計イオン濃度が維持されるように、遷移金属水酸化物の析出速度に合わせて遷移金属溶液を補充(典型的には連続供給)するとよい。反応液に含まれるNiイオン,CoイオンおよびMnイオンの量は、目的物たる正極活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるNi,Co,Mnのモル比)に対応する量比とすることが好ましい。   In each of the nucleation stage and the particle growth stage, the temperature of the reaction solution is preferably controlled so as to be a substantially constant temperature (for example, a predetermined temperature ± 1 ° C.) in a range of about 30 ° C. to 60 ° C. The temperature of the reaction liquid in the nucleation stage and the particle growth stage may be the same. Moreover, it is preferable to maintain the reaction liquid and the atmosphere in the reaction tank in a non-oxidizing atmosphere through the nucleation stage and the particle growth stage. Further, the total number of moles (total ion concentration) of Ni ions, Co ions and Mn ions contained in the reaction solution is set to, for example, about 0.5 to 2.5 mol / L through the nucleation stage and the particle growth stage. It is preferably about 1.0 to 2.2 mol / L. The transition metal solution may be replenished (typically continuously supplied) in accordance with the deposition rate of the transition metal hydroxide so that the total ion concentration is maintained. The amount of Ni ions, Co ions, and Mn ions contained in the reaction solution depends on the composition of the positive electrode active material particles that are the target (that is, the molar ratio of Ni, Co, and Mn in the LiNiCoMn oxide constituting the active material particles). A corresponding quantitative ratio is preferred.

(混合工程)
本実施態様では、上述の方法により生成した遷移金属水酸化物粒子(ここでは、Ni,CoおよびMnを含む複合水酸化物粒子)を反応液から分離し、洗浄して乾燥させる。そして、この遷移金属水酸化物粒子とリチウム化合物とを所望の量比で混合して未焼成の混合物を調製する(混合工程)。この混合工程では、典型的には、目的物たる正極活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるLi,Ni,Co,Mnのモル比)に対応する量比で、Li化合物と遷移金属水酸化物粒子とを混合する。上記リチウム化合物としては、加熱により溶解し、酸化物となり得るLi化合物、例えば炭酸リチウム,水酸化リチウム等を好ましく用いることができる。
(Mixing process)
In this embodiment, the transition metal hydroxide particles (here, composite hydroxide particles containing Ni, Co and Mn) produced by the above-described method are separated from the reaction solution, washed and dried. Then, the transition metal hydroxide particles and the lithium compound are mixed at a desired quantitative ratio to prepare an unfired mixture (mixing step). In this mixing step, typically, the quantity ratio corresponding to the composition of the positive electrode active material particles as the target object (that is, the molar ratio of Li, Ni, Co, and Mn in the LiNiCoMn oxide constituting the active material particles). , Li compound and transition metal hydroxide particles are mixed. As the lithium compound, Li compounds that can be dissolved by heating and become oxides, such as lithium carbonate and lithium hydroxide, can be preferably used.

(焼成工程)
そして、上記混合物を焼成して正極活物質粒子を得る(焼成工程)。この焼成工程は、典型的には酸化性雰囲気中(例えば大気中(空気雰囲気))で行われる。この焼成工程における焼成温度は、例えば700℃〜1100℃とすることができる。最高焼成温度が800℃以上(好ましくは800℃〜1100℃、例えば800℃〜1050℃)となるように行われることが好ましい。この範囲の最高焼成温度によると、リチウム遷移金属酸化物(好ましくはNi含有Li酸化物、ここではLiNiCoMn酸化物)の一次粒子の焼結反応を適切に進行させることができる。
(Baking process)
And the said mixture is baked and positive electrode active material particle is obtained (baking process). This firing step is typically performed in an oxidizing atmosphere (for example, in the air (air atmosphere)). The firing temperature in this firing step can be set to 700 ° C. to 1100 ° C., for example. It is preferable that the maximum baking temperature be 800 ° C or higher (preferably 800 ° C to 1100 ° C, for example, 800 ° C to 1050 ° C). According to the maximum firing temperature within this range, the sintering reaction of the primary particles of the lithium transition metal oxide (preferably Ni-containing Li oxide, here LiNiCoMn oxide) can proceed appropriately.

好ましい一態様では、上記混合物を700℃以上900℃以下の温度T1(すなわち700℃≦T1≦900℃、例えば700℃≦T1≦800℃、典型的には700℃≦T1<800℃)で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下の温度T2(すなわち800℃≦T2≦1100℃、例えば800℃≦T2≦1050℃)で焼成する第二焼成段階とを含み得る。このことによって、孔空き中空構造の正極活物質粒子をより効率よく形成することができる。T1およびT2は、T1<T2となるように設定することが好ましい。   In a preferred embodiment, the mixture is calcined at a temperature T1 of 700 ° C. to 900 ° C. (that is, 700 ° C. ≦ T1 ≦ 900 ° C., for example, 700 ° C. ≦ T1 ≦ 800 ° C., typically 700 ° C. ≦ T1 <800 ° C.). A second firing step, and a result obtained through the first firing step is fired at a temperature T2 of 800 ° C. to 1100 ° C. (that is, 800 ° C. ≦ T2 ≦ 1100 ° C., for example, 800 ° C. ≦ T2 ≦ 1050 ° C.) Firing step. This makes it possible to more efficiently form positive electrode active material particles having a perforated hollow structure. T1 and T2 are preferably set so that T1 <T2.

第一焼成段階と第二焼成段階とは、連続させてもよく(例えば、上記混合物を第一焼成温度T1に保持した後、引き続き第二焼成温度T2まで昇温して該温度T2に保持してもよく)、あるいは、第一焼成温度T1に保持した後、いったん冷却(例えば、常温まで冷却)し、必要に応じて解砕と篩い分けを行ってから第二焼成段階に供してもよい。    The first baking stage and the second baking stage may be continued (for example, after the mixture is held at the first baking temperature T1, the temperature is subsequently raised to the second baking temperature T2 and held at the temperature T2. Alternatively, after being held at the first firing temperature T1, it may be cooled once (for example, cooled to room temperature) and, if necessary, crushed and sieved before being subjected to the second firing stage. .

なお、ここに開示される技術において、上記第一焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し、かつ融点以下の温度域であって第二焼成段階よりも低い温度T1で焼成する段階として把握することができる。また、上記第二焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し、かつ融点以下の温度域であって第一焼成段階よりも高い温度T2で焼成する段階として把握することができる。T1とT2との間には50℃以上(典型的には100℃以上、例えば150℃以上)の温度差を設けることが好ましい。   In the technology disclosed herein, the first firing stage is a temperature range in which the sintering reaction of the target lithium transition metal oxide proceeds and is lower than the melting point and lower than the second firing stage. This can be understood as the stage of firing at T1. In addition, the second firing stage is grasped as a stage in which the sintering reaction of the target lithium transition metal oxide proceeds and the firing is performed at a temperature T2 that is lower than the melting point and higher than the first firing stage. be able to. It is preferable to provide a temperature difference of 50 ° C. or higher (typically 100 ° C. or higher, for example, 150 ° C. or higher) between T1 and T2.

また、正極活物質の見かけの断面積のうちに占める中空部の割合が15%以上(より好ましくは20%以上、さらに好ましくは23%以上)であり、かつ、正極活物質の殻部の厚さが3.0μm以下(より好ましくは2.2μm以下)と薄い正極活物質をより安定して得るには、例えば、遷移金属溶液から遷移金属水酸化物を析出させる段階(核生成段階)のpHあるいはNH 濃度、および、核生成段階で析出した遷移金属水酸化物の核を成長させる段階(粒子成長段階)のpHあるいはNH 濃度を適切に調整するとよい。 Further, the ratio of the hollow portion in the apparent cross-sectional area of the positive electrode active material is 15% or more (more preferably 20% or more, and further preferably 23% or more), and the thickness of the shell portion of the positive electrode active material In order to more stably obtain a thin positive electrode active material having a thickness of 3.0 μm or less (more preferably 2.2 μm or less), for example, in the step of depositing transition metal hydroxide from a transition metal solution (nucleation step) pH or NH 4 + concentration, and may the pH or NH 4 + concentration in the step of growing the nuclei of the transition metal hydroxide is precipitated at the nucleation stage (particle growth stage) appropriately adjusted.

ここに開示される技術を実施するにあたり、上記のように粒子成長段階におけるアンモニア濃度を低く抑えることによって中空構造(好ましくは孔空き中空構造)の正極活物質の形成に適した前駆体水酸化物が得られる理由を明らかにする必要はないが、例えば以下のことが考えられる。すなわち、上記混合溶液(反応液)中では、例えば以下の平衡反応が生じている。下記式1,2におけるMは遷移金属(例えばNi)である。 In carrying out the technology disclosed herein, a precursor hydroxide suitable for forming a positive electrode active material having a hollow structure (preferably a porous structure having pores) by suppressing the ammonia concentration in the particle growth stage as described above. Although it is not necessary to clarify the reason why is obtained, for example, the following can be considered. That is, for example, the following equilibrium reaction occurs in the mixed solution (reaction solution). M 1 in the following formulas 1 and 2 is a transition metal (for example, Ni).

Figure 0005626602
Figure 0005626602

ここで、反応液中のアンモニア濃度を低くすると、式1の平衡が左に移動してM 2+の濃度が上がるため、式2の平衡が右に移動し、M(OH)の生成が促進される。換言すれば、M(OH)が析出しやすくなる。このようにM(OH)が析出しやすい状況では、M(OH)の析出は、主に、既に析出している遷移金属水酸化物(上記核生成段階で生じた核、または粒子成長段階の途上にある遷移金属水酸化物粒子)の外表面近傍において起こり、上記析出物の内部において析出するM(OH)は少なくなる。その結果、外表面部の密度に比べて内部の密度が低い構造の前駆体水酸化物粒子(中空構造の正極活物質粒子の形成に適した遷移金属水酸化物粒子であって、該活物質粒子の前駆体粒子としても把握され得る。)が形成されるものと推察される。 Here, when the ammonia concentration in the reaction solution is lowered, the equilibrium of Formula 1 shifts to the left and the concentration of M 1 2+ increases, so the balance of Formula 2 shifts to the right and M 1 (OH) 2 is generated. Is promoted. In other words, M 1 (OH) 2 is likely to precipitate. In such a situation where M 1 (OH) 2 is likely to precipitate, M 1 (OH) 2 is mainly precipitated because of the transition metal hydroxide already precipitated (nuclei generated in the nucleation stage, or M 1 (OH) 2 that occurs in the vicinity of the outer surface of the transition metal hydroxide particles in the course of the grain growth stage and precipitates inside the precipitate is reduced. As a result, precursor hydroxide particles having a structure in which the internal density is lower than the density of the outer surface portion (transition metal hydroxide particles suitable for forming positive active material particles having a hollow structure, It can be assumed that the precursor particles of the particles are formed.

このような構造の前駆体水酸化物粒子は、リチウム化合物と混合して焼成する際に、該粒子のうち密度が小さい内部が、密度が高く機械強度が強い外表面近傍部に取り込まれるように焼結するものであり得る。このため、図5に示すように、正極活物質粒子110の殻部115が形成されるとともに、大きな中空部116が形成される。さらに、焼結時に結晶が成長する際に、殻部115の一部に該殻部115を貫通した貫通孔118が形成される。これにより、殻部115と、中空部116と、貫通孔118とを有する正極活物質粒子110が形成されるものと考えられる。一方、粒子成長段階におけるアンモニア濃度が高すぎると、M(OH)の析出速度が小さくなるため、外表面近傍における析出量と内部における析出量との差が小さくなり、上記構造の前駆体水酸化物粒子が形成されにくくなるものと推察される。 When the precursor hydroxide particles having such a structure are mixed with a lithium compound and fired, the inside of the particles having a low density is taken into the vicinity of the outer surface where the density is high and the mechanical strength is high. It can be sintered. For this reason, as shown in FIG. 5, the shell 115 of the positive electrode active material particle 110 is formed, and the large hollow portion 116 is formed. Furthermore, when a crystal grows during sintering, a through hole 118 penetrating the shell 115 is formed in a part of the shell 115. Thereby, it is considered that the positive electrode active material particles 110 having the shell portion 115, the hollow portion 116, and the through hole 118 are formed. On the other hand, if the ammonia concentration in the particle growth stage is too high, the precipitation rate of M 1 (OH) 2 becomes small, so the difference between the precipitation amount in the vicinity of the outer surface and the precipitation amount in the interior becomes small, and the precursor of the above structure It is presumed that hydroxide particles are hardly formed.

また、正極活物質が、M(すなわち、Ni,CoおよびMnの少なくとも1種)の他に、付加的な構成元素(添加元素)として他の1種または2種以上の元素M,M(例えばW,Cr,Mo,Zr,Mg,Ca,Na,Fe,Zn,Si,Sn,Al,B,F)を含有する場合には、Mを含む前駆体水酸化物と、MおよびMの少なくとも一方を含む化合物と、リチウム化合物との混合物を焼成することにより(乾式混合法)調製することができる。あるいは、MならびにMおよびMの少なくとも一方を含む組成の前駆体水酸化物とリチウム化合物との混合物を焼成することにより調製してもよい。ここに開示される技術においては、MならびにMおよびMの少なくとも一方とを含む前駆体水酸化物とリチウム化合物との混合物を焼成する方法を好ましく採用し得る。上記Mと、MおよびMの少なくとも一方とを含む前駆体水酸化物は、例えば、これらを含む反応液から該前駆体水酸化物を生成させる方法(湿式法(共沈法))により好ましく調製することができる。この態様によると、該正極活物質中のM,Mの分布において、局所的な凝集が防止された正極活物質を得ることができる。例えば、上記乾式混合法により得られた正極活物質に比べて、正極活物質全体または該活物質の一次粒子の表面において、より均一にM,M元素を存在させた正極活物質を得ることができる。M,Mの量は、目的物たる正極活物質粒子の組成(すなわち、該活物質粒子に含まれるM,Mのモル比)に概ね対応する量比とすればよい。 In addition to M T (that is, at least one of Ni, Co, and Mn), the positive electrode active material is one or more other elements M A and M as additional constituent elements (addition elements). B (e.g. W, Cr, Mo, Zr, Mg, Ca, Na, Fe, Zn, Si, Sn, Al, B, F) in the case of containing includes a precursor hydroxide containing M T, M a compound containing at least one of a and M B, by firing a mixture of a lithium compound (dry mixing method) can be prepared. Alternatively, it may be prepared by firing a mixture of a precursor hydroxide and the lithium compound having a composition comprising at least one of M T and M A and M B. In the technique disclosed here, a method of calcining a mixture of a precursor hydroxide containing M T and at least one of M A and M B and a lithium compound can be preferably employed. And the M T, the precursor hydroxides and at least one of M A and M B are, for example, a method of producing the precursor hydroxide from the reaction solution containing these (wet method (a coprecipitation method)) Can be preferably prepared. According to this embodiment, M A in positive electrode active material, the distribution of M B, it is possible to obtain a positive electrode active material localized agglomeration is prevented. For example, in comparison with the positive electrode active material obtained by the above dry mixing method, the surface of the primary particles of the entire positive electrode active material or the active materials, the more uniformly M A, the positive electrode active material was present M B element be able to. The amount of M A, M B may be the target compound serving composition of the positive electrode active material particles (i.e., M A contained in the active material particles, the molar ratio of M B) generally corresponds to the amount ratio.

なお、正極は、正極活物質として、ここに開示される中空構造の正極活物質のほかに、従来公知の他の正極活物質(例えば中実構造の正極活物質)を含んでもよい。ただし、本発明の効果は、上記中空構造の正極活物質を用いることによって生じる課題を解決するものであるので、上記従来公知の他の正極活物質の割合は、正極活物質全体の50質量%以下(例えば30質量%以下、典型的には10質量%以下)とすることが望ましい。正極活物質は、実質的に、上記中空構造の正極活物質からなるものであり得る。   In addition to the hollow structure positive electrode active material disclosed here, the positive electrode may include other conventionally known positive electrode active materials (for example, a solid structure positive electrode active material) as the positive electrode active material. However, since the effect of the present invention is to solve the problem caused by using the positive electrode active material having the hollow structure, the proportion of the other conventionally known positive electrode active material is 50% by mass of the entire positive electrode active material. It is desirable to set the following (for example, 30% by mass or less, typically 10% by mass or less). The positive electrode active material can be substantially made of the positive electrode active material having the hollow structure.

<添加材>
正極合材層には、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材が含有され得る。導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えばアセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。また、炭素繊維、金属繊維等の導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体等の有機導電性材料等を、1種を単独でまたは2種以上の混合物として含ませることができる。
<Additives>
In addition to the positive electrode active material, the positive electrode mixture layer may contain additives such as a conductive material and a binder (binder) as necessary. As the conductive material, a conductive powder material such as carbon powder or carbon fiber is preferably used. As the carbon powder, various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable. In addition, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives may be included singly or as a mixture of two or more. it can.

結着材としては各種のポリマー材料が挙げられる。例えば、水系の組成物(正極活物質粒子の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて正極合材層を形成する場合には、結着材として水に溶解または分散する(水溶性または水分散性の)ポリマー材料を好ましく採用し得る。水溶性または水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類;が例示される。   Examples of the binder include various polymer materials. For example, when the positive electrode mixture layer is formed using an aqueous composition (a composition using water or a mixed solvent containing water as a main component as a dispersion medium for the positive electrode active material particles), water is used as the binder. Polymer materials that are soluble or dispersible in water (water-soluble or water-dispersible) can be preferably employed. Examples of water-soluble or water-dispersible polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC); fluorocarbon resins such as polyvinyl alcohol (PVA); polytetrafluoroethylene (PTFE); vinyl acetate polymers; styrene butadiene rubber Rubbers such as (SBR) and acrylic acid-modified SBR resin (SBR latex);

あるいは、溶剤系の組成物(正極活物質粒子の分散媒が主として有機溶媒である組成物)を用いて正極合材層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のハロゲン化ビニル樹脂;ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド;等のポリマー材料を用いることができる。このような結着材は、1種を単独でまたは2種以上を組み合わせて用いてもよい。なお、上記で例示したポリマー材料は、結着材として用いられる他に正極合材層形成用組成物の増粘材その他の添加材として使用されることもあり得る。   Alternatively, when the positive electrode mixture layer is formed using a solvent-based composition (a composition in which the dispersion medium of the positive electrode active material particles is mainly an organic solvent), polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC) Polymer materials such as vinyl halide resins such as); polyalkylene oxides such as polyethylene oxide (PEO); and the like can be used. Such a binder may be used alone or in combination of two or more. In addition, the polymer material illustrated above may be used as a thickener and other additives in the composition for forming a positive electrode mixture layer, in addition to being used as a binder.

<配合割合>
正極合材層に占める正極活物質の割合は凡そ50質量%を超え、凡そ70質量%〜97質量%(例えば75質量%〜95質量%)であることが好ましい。また、正極合材層に占めるこれら添加材の割合は特に限定されないが、導電材の割合は凡そ2質量%〜20質量%(例えば3質量%〜18質量%)とすることが好ましく、結着材の割合は凡そ1質量%〜10質量%(例えば2質量%〜7質量%)とすることが好ましい。
<Combination ratio>
The proportion of the positive electrode active material in the positive electrode mixture layer is more than about 50% by mass, and preferably about 70% to 97% by mass (for example, 75% to 95% by mass). Further, the ratio of these additives in the positive electrode mixture layer is not particularly limited, but the ratio of the conductive material is preferably about 2% by mass to 20% by mass (for example, 3% by mass to 18% by mass). The ratio of the material is preferably about 1% by mass to 10% by mass (for example, 2% by mass to 7% by mass).

<正極の作製方法>
上述したような正極の作製方法は特に限定されず、従来の方法を適宜採用することができる。例えば以下の方法によって作製することができる。まず、正極活物質、必要に応じて導電材、結着材等を適当な溶媒(水系溶媒、非水系溶媒またはこれらの混合溶媒)で混合してペースト状またはスラリー状の正極合材層形成用組成物を調製する。混合操作は、例えば適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記組成物を調製するために用いられる溶媒としては、水系溶媒および非水系溶媒のいずれも使用可能である。水系溶媒は全体として水性を示すものであればよく、水または水を主体とする混合溶媒を好ましく用いることができる。非水系溶媒の好適例としては、N−メチル−2−ピロリドン(NMP)、メチルエチルケトン、トルエン等が例示される。
<Method for producing positive electrode>
A method for manufacturing the positive electrode as described above is not particularly limited, and a conventional method can be appropriately employed. For example, it can be produced by the following method. First, a positive electrode active material, if necessary, a conductive material, a binder, etc. are mixed with an appropriate solvent (aqueous solvent, non-aqueous solvent or a mixed solvent thereof) to form a paste-like or slurry-like positive electrode mixture layer A composition is prepared. The mixing operation can be performed using, for example, a suitable kneader (planetary mixer, homodisper, clear mix, fill mix, etc.). As a solvent used for preparing the composition, both an aqueous solvent and a non-aqueous solvent can be used. The aqueous solvent is not particularly limited as long as it is water-based as a whole, and water or a mixed solvent mainly composed of water can be preferably used. Preferable examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.

こうして調製した上記組成物を正極集電体に塗付し、乾燥により溶媒を揮発させた後、圧縮(プレス)する。正極集電体に上記組成物を塗付する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗付装置を使用することにより、正極集電体に該組成物を好適に塗付することができる。また、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線および電子線を、単独でまたは組み合わせて用いることにより良好に乾燥し得る。さらに、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。厚さを調整するにあたり、膜厚測定器で該厚さを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。このようにして正極合材層が正極集電体上に形成された正極が得られる。   The composition prepared in this manner is applied to a positive electrode current collector, the solvent is volatilized by drying, and then compressed (pressed). As a method for applying the composition to the positive electrode current collector, a technique similar to a conventionally known method can be appropriately employed. For example, the composition can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater. Moreover, when drying a solvent, it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far infrared rays, and an electron beam individually or in combination. Furthermore, as a compression method, a conventionally known compression method such as a roll press method or a flat plate press method can be employed. In adjusting the thickness, the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress the film a plurality of times until a desired thickness is obtained. In this way, a positive electrode in which the positive electrode mixture layer is formed on the positive electrode current collector is obtained.

正極集電体上への正極合材層の単位面積当たりの目付量(正極合材層形成用組成物の固形分換算の塗付量)は特に限定されるものではないが、充分な導電経路(伝導パス)を確保する観点から、正極集電体の片面当たり3mg/cm以上(例えば5mg/cm以上、典型的には6mg/cm以上)であり、45mg/cm以下(例えば28mg/cm以下、典型的には15mg/cm以下)とすることが好ましい。正極合材層の密度も特に限定されないが、1.0g/cm〜3.8g/cm(例えば1.5g/cm〜3.0g/cm、典型的には1.8g/cm〜2.4g/cm)とすることが好ましい。 The basis weight per unit area of the positive electrode mixture layer on the positive electrode current collector (the coating amount in terms of solid content of the composition for forming the positive electrode mixture layer) is not particularly limited, but a sufficient conductive path From the viewpoint of securing a (conduction path), it is 3 mg / cm 2 or more (for example, 5 mg / cm 2 or more, typically 6 mg / cm 2 or more) per side of the positive electrode current collector, and 45 mg / cm 2 or less (for example, 28 mg / cm 2 or less, typically 15 mg / cm 2 or less). The density of the positive electrode mixture layer is not particularly limited, but is 1.0 g / cm 3 to 3.8 g / cm 3 (for example, 1.5 g / cm 3 to 3.0 g / cm 3 , typically 1.8 g / cm 3). 3 to 2.4 g / cm 3 ).

≪負極≫
負極(典型的には負極シート)を構成する負極集電体としては、従来のリチウム二次電池と同様に、導電性の良好な金属からなる導電性部材が好ましく用いられる。そのような導電性部材としては、例えば銅または銅を主成分とする合金を用いることができる。負極集電体の形状は、電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。負極集電体の厚さも特に限定されず、5μm〜30μm程度とすることができる。
≪Negative electrode≫
As the negative electrode current collector constituting the negative electrode (typically, the negative electrode sheet), a conductive member made of a metal having good conductivity is preferably used as in the case of a conventional lithium secondary battery. As such a conductive member, for example, copper or an alloy containing copper as a main component can be used. The shape of the negative electrode current collector can be different depending on the shape of the battery and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. The thickness of the negative electrode current collector is not particularly limited, and can be about 5 μm to 30 μm.

<負極合材層>
負極合材層には、電荷担体となるLiイオンを吸蔵および放出可能な負極活物質が含まれる。負極活物質の組成や形状に特に制限はなく、従来からリチウム二次電池に用いられる物質の1種または2種以上を使用することができる。そのような負極活物質としては、例えばリチウム二次電池で一般的に用いられる炭素材料が挙げられる。上記炭素材料の代表例としては、グラファイトカーボン(黒鉛)、アモルファスカーボン等が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。なかでも天然黒鉛を主成分とする炭素材料の使用が好ましい。上記天然黒鉛は鱗片状の黒鉛を球形化したものであり得る。また、黒鉛の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。その他、負極活物質として、チタン酸リチウム等の酸化物、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。負極合材層に占める負極活物質の割合は凡そ50質量%を超え、凡そ90質量%〜99質量%(例えば95質量%〜99質量%、典型的には97質量%〜99質量%)であることが好ましい。
<Negative electrode mixture layer>
The negative electrode mixture layer includes a negative electrode active material that can occlude and release Li ions serving as charge carriers. There is no restriction | limiting in particular in a composition and a shape of a negative electrode active material, The 1 type (s) or 2 or more types of the material conventionally used for a lithium secondary battery can be used. Examples of such a negative electrode active material include carbon materials that are generally used in lithium secondary batteries. Representative examples of the carbon material include graphite carbon (graphite) and amorphous carbon. A particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Of these, the use of a carbon material mainly composed of natural graphite is preferred. The natural graphite may be a spheroidized graphite. Alternatively, a carbonaceous powder having a graphite surface coated with amorphous carbon may be used. In addition, as the negative electrode active material, it is also possible to use oxides such as lithium titanate, simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination. The proportion of the negative electrode active material in the negative electrode mixture layer is more than about 50% by mass, and about 90% to 99% by mass (for example, 95% to 99% by mass, typically 97% to 99% by mass). Preferably there is.

負極合材層は、負極活物質の他に、一般的なリチウム二次電池の負極合材層に配合され得る1種または2種以上の結着材や増粘材その他の添加材を必要に応じて含有することができる。結着材としては各種のポリマー材料が挙げられる。例えば、水系の組成物または溶剤系の組成物に対して、正極合材層に含有され得るものを好ましく用いることができる。そのような結着材は、結着材として用いられる他に負極合材層形成用組成物の増粘材その他の添加材として使用されることもあり得る。負極合材層に占めるこれら添加材の割合は特に限定されないが、凡そ0.8質量%〜10質量%(例えば凡そ1質量%〜5質量%、典型的には1質量%〜3質量%)であることが好ましい。   In addition to the negative electrode active material, the negative electrode mixture layer requires one or more binders, thickeners, and other additives that can be blended in the negative electrode mixture layer of a typical lithium secondary battery. It can be contained accordingly. Examples of the binder include various polymer materials. For example, what can be contained in the positive electrode mixture layer can be preferably used for an aqueous composition or a solvent-based composition. Such a binder may be used as a thickener and other additives in the composition for forming a negative electrode mixture layer, in addition to being used as a binder. The ratio of these additives in the negative electrode mixture layer is not particularly limited, but is approximately 0.8% by mass to 10% by mass (for example, approximately 1% by mass to 5% by mass, typically 1% by mass to 3% by mass). It is preferable that

負極の作製方法は特に限定されず、従来の方法を採用することができる。例えば以下の方法によって作製することができる。まず、負極活物質を結着材等とともに上記適当な溶媒(水系溶媒、有機溶媒またはこれらの混合溶媒)で混合して、ペースト状またはスラリー状の負極合材層形成用組成物を調製する。こうして調製した上記組成物を負極集電体に塗付し、乾燥により溶媒を揮発させた後、圧縮(プレス)する。このように該組成物を用いて負極集電体上に負極合材層を形成することができ、該負極合材層を備える負極を得ることができる。なお、混合、塗付、乾燥および圧縮方法は、上述の正極の作製と同様の手段を採用することができる。   The method for producing the negative electrode is not particularly limited, and a conventional method can be employed. For example, it can be produced by the following method. First, a negative electrode active material is mixed with a binder or the like in the appropriate solvent (aqueous solvent, organic solvent, or mixed solvent thereof) to prepare a paste or slurry-like composition for forming a negative electrode mixture layer. The composition prepared in this manner is applied to the negative electrode current collector, the solvent is volatilized by drying, and then compressed (pressed). Thus, a negative electrode mixture layer can be formed on a negative electrode current collector using the composition, and a negative electrode provided with the negative electrode mixture layer can be obtained. Note that the mixing, coating, drying, and compression methods can employ the same means as in the above-described production of the positive electrode.

負極集電体上への負極合材層の単位面積当たりの目付量(負極合材層形成用組成物の固形分換算の塗付量)は特に限定されるものではないが、充分な導電経路(伝導パス)を確保する観点から、負極集電体の片面当たり2mg/cm以上(例えば3mg/cm以上、典型的には4mg/cm以上)であり、40mg/cm以下(例えば22mg/cm以下、典型的には10mg/cm以下)とすることが好ましい。負極合材層の密度も特に限定されないが、0.5g/cm〜3.0g/cm(例えば0.7g/cm〜2.0g/cm、典型的には0.8g/cm〜1.4g/cm)とすることが好ましい。 The basis weight per unit area of the negative electrode composite material layer on the negative electrode current collector (the coating amount in terms of solid content of the composition for forming the negative electrode composite material layer) is not particularly limited, but sufficient conductive paths From the viewpoint of securing a (conduction path), it is 2 mg / cm 2 or more (for example, 3 mg / cm 2 or more, typically 4 mg / cm 2 or more) per side of the negative electrode current collector, and 40 mg / cm 2 or less (for example, 22 mg / cm 2 or less, typically 10 mg / cm 2 or less). The density of the negative electrode mixture layer is not particularly limited, but is 0.5 g / cm 3 to 3.0 g / cm 3 (for example, 0.7 g / cm 3 to 2.0 g / cm 3 , typically 0.8 g / cm 3). 3 to 1.4 g / cm 3 ).

≪正極と負極との容量比≫
特に限定するものではないが、正極の初期充電容量(C)に対する負極の初期充電容量(C)の比(C/C)は、通常、例えば1.1〜2.1とすることが適当であり、1.2〜2.0とすることが好ましい。C/Cが小さすぎると、電池の使用条件によっては(例えば、急速充電時等に)、金属リチウムが析出しやすくなる等の不都合が生じ得る。C/Cが大きすぎると、電池のエネルギー密度が低下しやすくなることがある。
≪Capacitance ratio between positive electrode and negative electrode≫
Although not particularly limited, the ratio (C N / C P ) of the initial charge capacity (C N ) of the negative electrode to the initial charge capacity (C P ) of the positive electrode is usually 1.1 to 2.1, for example. It is suitable and it is preferable to set it as 1.2-2.0. If C N / C P is too small, inconveniences such as easy deposition of metallic lithium may occur depending on the use conditions of the battery (for example, during rapid charging). When C N / C P is too large, the energy density of the battery may be easily lowered.

≪セパレータ≫
正極と負極とを隔てるように配置されるセパレータ(セパレータシート)は、正極合材層と負極合材層とを絶縁するとともに、電解質の移動を許容する部材であればよい。上記セパレータとしては、従来のリチウム二次電池においてセパレータとして用いられるシートと同様のものを用いることができる。例えば、ポリオレフィン(ポリエチレン(PE)、ポリプロピレン(PP)等)、ポリエステル、ポリアミド等の熱可塑性樹脂を主体に構成されたシートを好ましく用いることができる。一好適例として、1種または2種以上のポリオレフィン系樹脂を主体に構成された単層または多層構造のシート(ポリオレフィン系シート)が挙げられる。例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。上記PEは、一般に高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)と称されるいずれのポリエチレンであってもよく、これらの混合物であってもよい。また、上記セパレータは、必要に応じて、各種可塑剤、酸化防止剤等の添加剤を含有することもできる。
≪Separator≫
The separator (separator sheet) disposed so as to separate the positive electrode and the negative electrode may be a member that insulates the positive electrode mixture layer and the negative electrode mixture layer and allows the electrolyte to move. As said separator, the thing similar to the sheet | seat used as a separator in the conventional lithium secondary battery can be used. For example, a sheet mainly composed of a thermoplastic resin such as polyolefin (polyethylene (PE), polypropylene (PP), etc.), polyester, polyamide or the like can be preferably used. As a preferred example, a sheet having a single-layer structure or a multilayer structure (polyolefin-based sheet) mainly composed of one or more kinds of polyolefin-based resins can be given. For example, a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used. The PE may be any polyethylene generally referred to as high-density polyethylene (HDPE), low-density polyethylene (LDPE), or linear (linear) low-density polyethylene (LLDPE), or a mixture thereof. May be. Moreover, the said separator can also contain additives, such as various plasticizers and antioxidant, as needed.

ここに開示される技術におけるセパレータとしては、シャットダウン温度が80℃〜140℃(例えば110℃〜140℃、典型的には、120℃〜135℃)程度に設定された熱可塑性樹脂(例えば、ポリオレフィン樹脂)製多孔質シートを好ましく採用することができる。上記シャットダウン温度は、電池の耐熱温度(典型的には約200℃以上)よりも充分に低いため、適切なタイミングでシャットダウン機能を発揮することができる。また、シャットダウン温度またはそれ以上の温度においてセパレータの熱収縮や孔空きが生じても、正負極間(典型的には正極とセパレータ間)には耐熱性遮断層が設けられているので、正負極間の絶縁を適切に維持することができる。   As a separator in the technique disclosed herein, a thermoplastic resin (for example, polyolefin) whose shutdown temperature is set to about 80 ° C. to 140 ° C. (for example, 110 ° C. to 140 ° C., typically 120 ° C. to 135 ° C.). Resin) porous sheet can be preferably employed. Since the shutdown temperature is sufficiently lower than the heat resistant temperature of the battery (typically about 200 ° C. or higher), the shutdown function can be exhibited at an appropriate timing. In addition, even if the separator is thermally contracted or perforated at a shutdown temperature or higher, a heat-resistant barrier layer is provided between the positive and negative electrodes (typically, between the positive electrode and the separator). The insulation between them can be maintained appropriately.

単層構造または多層構造のセパレータを構成する樹脂層としては、例えば一軸延伸または二軸延伸された多孔性樹脂フィルムを好適に用いることができる。なかでも、長手方向に一軸延伸された多孔性樹脂フィルムは、適度な強度を備えつつ幅方向の熱収縮が少ないため特に好ましい。一軸延伸された多孔性樹脂フィルムを有するセパレータを用いると、長尺シート状の正極および負極とともに捲回された態様において、長手方向の熱収縮も抑制され得る。したがって、長手方向に一軸延伸された多孔性樹脂フィルムは、上記捲回電極体を構成するセパレータの一要素として特に好適である。   As the resin layer constituting the separator having a single layer structure or a multilayer structure, for example, a uniaxially stretched or biaxially stretched porous resin film can be suitably used. Among these, a porous resin film uniaxially stretched in the longitudinal direction is particularly preferable because it has an appropriate strength and has little heat shrinkage in the width direction. When a separator having a uniaxially stretched porous resin film is used, thermal contraction in the longitudinal direction can be suppressed in a mode in which the separator is wound together with a long sheet-like positive electrode and negative electrode. Therefore, the porous resin film uniaxially stretched in the longitudinal direction is particularly suitable as one element of the separator constituting the wound electrode body.

セパレータの空孔率(多孔度)は、概ね20〜60%程度であることが好ましく、例えば30〜50%程度であることがより好ましい。セパレータの空孔率が大きすぎると、強度が不足したり、熱収縮が著しくなったりすることがあり得る。一方、上記空孔率が小さすぎると、セパレータに保持可能な電解液量が少なくなり、イオン伝導性が低下して、ハイレート充放電特性が低下傾向となることがあり得る。なお、セパレータの空孔率(多孔度)は以下の方法により算出することができる。単位面積(表面積)のセパレータが占める見かけの体積をV1[cm]とし、上記単位面積のセパレータの質量をW[g]とする。この質量Wと上記セパレータを構成する樹脂材料の真密度ρ[g/cm]との比、すなわちW/ρをV0とする。なお、V0は質量Wの樹脂材料の緻密体が占める体積である。セパレータの空孔率(多孔度)は、[(V1−V0)/V1]×100から算出することができる。セパレータの空孔率(多孔度)は樹脂層の材質、延伸強度等により調整し得る。 The porosity (porosity) of the separator is preferably about 20 to 60%, and more preferably about 30 to 50%, for example. If the porosity of the separator is too large, the strength may be insufficient or the heat shrinkage may be significant. On the other hand, when the porosity is too small, the amount of the electrolyte solution that can be held in the separator is reduced, the ionic conductivity is lowered, and the high-rate charge / discharge characteristics may be lowered. The porosity (porosity) of the separator can be calculated by the following method. The apparent volume occupied by the separator of the unit area (surface area) is V1 [cm 3 ], and the mass of the unit area separator is W [g]. The ratio between the mass W and the true density ρ [g / cm 3 ] of the resin material constituting the separator, that is, W / ρ is V0. Note that V0 is a volume occupied by a dense body of resin material having a mass W. The porosity (porosity) of the separator can be calculated from [(V1−V0) / V1] × 100. The porosity (porosity) of the separator can be adjusted by the material of the resin layer, the stretching strength, and the like.

セパレータの平均空孔径が小さすぎると、イオン伝導性が低下して、ハイレート充放電特性が低下傾向となることがあり得る。上記平均空孔径が大きすぎると、後述する耐熱性遮断層をセパレータ上に形成する場合に、耐熱性遮断層を構成するフィラーがセパレータの空孔に入り込みすぎて、イオン伝導性やハイレート充放電特性が低下傾向となることがあり得る。セパレータの平均空孔径は透気度と相関があり、この透気度を規定することによって平均空孔径を擬似的に規定することができる。ここで「透気度」とは、透気抵抗度(ガーレー)を指し、JIS P8117に規定された方法で測定することができる。上記透気度(ガーレー数)が100〜1000秒/100mL(例えば200〜600秒/100mL)程度を満たすセパレータを好ましく採用し得る。   If the average pore size of the separator is too small, the ionic conductivity may decrease, and the high rate charge / discharge characteristics may tend to decrease. If the average pore diameter is too large, when a heat-resistant barrier layer described later is formed on the separator, the filler constituting the heat-resistant barrier layer will enter the pores of the separator too much, resulting in ion conductivity and high-rate charge / discharge characteristics. May tend to decrease. The average pore diameter of the separator has a correlation with the air permeability, and by defining this air permeability, the average pore diameter can be defined in a pseudo manner. Here, “air permeability” refers to air resistance (Gurley) and can be measured by the method defined in JIS P8117. A separator that satisfies the above air permeability (Gurley number) of about 100 to 1000 seconds / 100 mL (for example, 200 to 600 seconds / 100 mL) can be preferably used.

セパレータの厚さは特に限定されるものではないが、5μm〜40μm(例えば10μm〜30μm、典型的には15μm〜25μm)程度が好ましい。セパレータの厚さが上記の範囲内であることにより、セパレータのイオン伝導性がより良好となり、また、破膜がより生じにくくなる。なお、セパレータの厚さは、SEMにより撮影した画像を解析することによって求めることができる。   The thickness of the separator is not particularly limited, but is preferably about 5 μm to 40 μm (for example, 10 μm to 30 μm, typically 15 μm to 25 μm). When the thickness of the separator is within the above range, the ion conductivity of the separator becomes better, and film breakage is less likely to occur. Note that the thickness of the separator can be obtained by analyzing an image taken by an SEM.

≪耐熱性遮断層≫
正極とセパレータの間に配置される耐熱性遮断層は、電池が発熱して高温(例えば150℃以上、典型的には300℃以上の温度)状態になっても、例えば軟化、溶融せず形状を保持し得る性質(若干の変形は許容され得る)を有するものであり得る。なお、セパレータ上に耐熱性遮断層を形成する場合には、耐熱性遮断層はセパレータより軟化点または融点の高いものでもあり得る。
≪Heat-resistant barrier layer≫
The heat-resistant barrier layer disposed between the positive electrode and the separator does not soften or melt even when the battery generates heat and reaches a high temperature (eg, 150 ° C. or higher, typically 300 ° C. or higher). It is possible to maintain the property (slight deformation is acceptable). In addition, when forming a heat-resistant interruption | blocking layer on a separator, a heat-resistant interruption | blocking layer may also have a higher softening point or melting | fusing point than a separator.

(フィラー)
上記耐熱性遮断層の主成分となり得るフィラーは、有機フィラー、無機フィラーのいずれであってもよいが、耐熱性や分散性、安定性を考慮すると、無機フィラーを用いることが好ましい。無機フィラーとしては、特に限定されないが、例えばアルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシア、マグネシア、酸化鉄等の無機酸化物、窒化アルミニウム等の無機窒化物、炭酸マグネシウム等の炭酸塩、硫酸バリウム等の硫酸塩、塩化マグネシウム等の塩化物、フッ化バリウム等のフッ化物、シリコン等の共有結合性結晶、タルク、クレー、マイカ、ベントナイト、モンモリロナイト、ゼオライト、アパタイト、カオリン、ムライト、セリサイト等の鉱物系材料あるいはこれらの人造物等であってもよい。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、電気化学的安定性が高く、耐熱性および機械的強度にも優れるという理由から、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシア、マグネシアが好ましく、ベーマイト、アルミナが特に好ましい。
(Filler)
The filler that can be the main component of the heat-resistant barrier layer may be either an organic filler or an inorganic filler, but it is preferable to use an inorganic filler in consideration of heat resistance, dispersibility, and stability. The inorganic filler is not particularly limited. For example, inorganic oxides such as alumina, boehmite, silica, titania, zirconia, calcia, magnesia, and iron oxide, inorganic nitrides such as aluminum nitride, carbonates such as magnesium carbonate, and barium sulfate. Such as sulfate, magnesium chloride, fluoride such as barium fluoride, covalent crystals such as silicon, talc, clay, mica, bentonite, montmorillonite, zeolite, apatite, kaolin, mullite, sericite, etc. It may be a mineral-based material or an artificial product thereof. These can be used alone or in combination of two or more. Among these, alumina, boehmite, silica, titania, zirconia, calcia, and magnesia are preferable, and boehmite and alumina are particularly preferable because of high electrochemical stability and excellent heat resistance and mechanical strength.

フィラーの形態は特に限定されず、例えば粒子状、繊維状、板状(フレーク状)等であり得る。フィラーの平均粒径は特に限定されないが、分散性等を考慮して0.1μm〜15μm(例えば0.1μm〜5μm、典型的には0.2μm〜1.5μm)とするのが適当である。フィラーの平均粒径は、上記D50を採用することができる。 The form of the filler is not particularly limited, and may be, for example, a particle shape, a fiber shape, a plate shape (flake shape), or the like. The average particle diameter of the filler is not particularly limited, but is suitably 0.1 μm to 15 μm (for example, 0.1 μm to 5 μm, typically 0.2 μm to 1.5 μm) in consideration of dispersibility and the like. . The average particle size of the filler may be employed the D 50.

(添加材)
耐熱性遮断層はまた、結着材等の添加材を含有することが好ましい。耐熱性遮断層形成用組成物が水系の溶媒(結着材の分散媒として水または水を主成分とする混合溶媒を用いた溶液)の場合には、結着材は水系の溶媒に分散または溶解するポリマーを用いることができる。水系溶媒に分散または溶解するポリマーとしては、例えばアクリル系樹脂が挙げられる。アクリル系樹脂としては、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、2‐ヒドロキシエチルアクリレート、2‐ヒドロキシエチルメタクリレート、メチルメタクリレート、2−エチルヘキシルアクリレート、ブチルアクリレート等のモノマーを1種類で重合した単独重合体が好ましく用いられる。あるいは、上記モノマーの2種以上を重合した共重合体であってもよい。さらに、上記単独重合体および共重合体の2種類以上を混合したものであってもよい。上述したアクリル系樹脂のほかに、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類;ポリエチレン(PE)等のポリオレフィン系樹脂;カルボキシメチルセルロース(CMC)、メチルセルロース(MC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル重合体;ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド;等を用いることができる。これらポリマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、アクリル系樹脂、SBR、ポリオレフィン系樹脂、CMCが好ましい。これらの水系結着材は、大気中の水分と反応・硬化しないので、耐熱性遮断層の伸展性を容易に(例えば製造時に水分管理を行うことなく)調整し得る点で好ましい。
(Additives)
The heat-resistant barrier layer preferably also contains an additive such as a binder. When the composition for forming a heat-resistant barrier layer is an aqueous solvent (a solution using water or a mixed solvent containing water as a main component as a dispersion medium for the binder), the binder is dispersed in an aqueous solvent or Soluble polymers can be used. Examples of the polymer that is dispersed or dissolved in the aqueous solvent include acrylic resins. Acrylic resins include acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate and butyl acrylate. Coalescence is preferably used. Or the copolymer which superposed | polymerized 2 or more types of the said monomer may be sufficient. Further, a mixture of two or more of the above homopolymers and copolymers may be used. In addition to the acrylic resin described above, styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), rubber such as gum arabic; polyolefin resin such as polyethylene (PE); carboxymethylcellulose (CMC), Cellulose polymers such as methyl cellulose (MC); polyvinyl alcohol (PVA); fluorine resins such as polytetrafluoroethylene (PTFE); vinyl acetate polymers; polyalkylene oxides such as polyethylene oxide (PEO); it can. These polymers can be used alone or in combination of two or more. Of these, acrylic resins, SBR, polyolefin resins, and CMC are preferable. These water-based binders are preferable in that they do not react or harden with moisture in the atmosphere, and thus the extensibility of the heat-resistant barrier layer can be easily adjusted (for example, without performing moisture management during production).

また、耐熱性遮断層形成用組成物が溶剤系の溶媒(結着材の分散媒が主として有機溶媒である溶液)の場合には、結着材は溶剤系の溶媒に分散または溶解するポリマーを用いることができる。溶剤系溶媒に分散または溶解するポリマーとしては、例えばポリフッ化ビニリデン(PVDF)等のハロゲン化ビニル樹脂が挙げられる。ポリフッ化ビニリデンとしては、フッ化ビニリデンの単独重合体が好ましく用いられる。さらに、ポリフッ化ビニリデンは、フッ化ビニリデンと共重合可能なビニル系単量体との共重合体であってもよい。フッ化ビニリデンと共重合可能なビニル系単量体としては、ヘキサフルオロプロピレン、テトラフルオロエチレン、三塩化フッ化エチレン等が例示される。あるいは、溶剤系溶媒に分散または溶解するポリマーとして、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル、ポリメタクリル酸メチル等も好ましく用いられる。これらは1種を単独でまたは2種以上を組み合わせて用いてもよい。これらの溶剤系結着材は、耐熱性遮断層の伸展性を好適に向上し得る点で好ましい。ただし、溶剤系結着材は大気中の水分と反応して硬化し得るので、製造時に水分管理を行う必要がある。   In the case where the heat-resistant barrier layer forming composition is a solvent-based solvent (a solution in which the binder dispersion medium is mainly an organic solvent), the binder is a polymer dispersed or dissolved in the solvent-based solvent. Can be used. Examples of the polymer that is dispersed or dissolved in the solvent-based solvent include vinyl halide resins such as polyvinylidene fluoride (PVDF). As the polyvinylidene fluoride, a homopolymer of vinylidene fluoride is preferably used. Furthermore, the polyvinylidene fluoride may be a copolymer of a vinyl monomer copolymerizable with vinylidene fluoride. Examples of vinyl monomers copolymerizable with vinylidene fluoride include hexafluoropropylene, tetrafluoroethylene, and ethylene trichloride fluoride. Alternatively, polytetrafluoroethylene (PTFE), polyacrylonitrile, polymethyl methacrylate, or the like is preferably used as a polymer that is dispersed or dissolved in a solvent-based solvent. These may be used alone or in combination of two or more. These solvent-based binders are preferable in that the extensibility of the heat-resistant barrier layer can be suitably improved. However, since the solvent-based binder can be cured by reacting with moisture in the atmosphere, it is necessary to perform moisture management during production.

結着材の形態は特に制限されず、粒子状(粉末状)のものをそのまま用いてもよく、溶液状あるいはエマルション状に調製したものを用いてもよい。2種以上の結着材を、それぞれ異なる形態で用いてもよい。粒子状の結着材を用いる場合、その平均粒径(上述の平均粒径D50)は、例えば0.09μm〜0.15μm程度である。なお、上記結着材は、結着材としての機能の他に、耐熱性遮断層形成用組成物の増粘材その他の添加材としての機能を発揮する目的で使用されることもあり得る。 The form of the binder is not particularly limited, and a particulate (powdered) form may be used as it is, or a solution or emulsion prepared may be used. Two or more binders may be used in different forms. When the particulate binder is used, the average particle diameter (the above-mentioned average particle diameter D 50 ) is, for example, about 0.09 μm to 0.15 μm. In addition to the function as a binder, the said binder may be used in order to exhibit the function as a thickener and other additives of the composition for heat resistant barrier layer formation.

(配合割合)
耐熱性遮断層全体に占めるフィラー(典型的には無機フィラー)の割合は特に限定されないが、凡そ90質量%以上(例えば92質量%〜99.5質量%、典型的には95質量%〜99質量%)であることが好ましい。また、耐熱性遮断層が結着材、増粘材等の添加材を含有する場合、耐熱性遮断層に占める添加材の割合は凡そ10質量%以下(例えば0.5質量%〜8質量%、典型的には1質量%〜5質量%)とすることが好ましい。フィラー、必要であれば結着材やその他の添加材の割合が上記の範囲内であることにより、耐熱性遮断層の投錨性や耐熱性遮断層自体の強度(保形性)が向上する。また、耐熱性遮断層の多孔性を良好な範囲に調整しやすくなり、イオン伝導性がより向上する傾向がある。さらに、耐熱性遮断層をセパレータ上に形成する場合には、セパレータの強度や伸び率を好適な範囲に調整しやすい。
(Mixing ratio)
The proportion of the filler (typically inorganic filler) in the entire heat-resistant barrier layer is not particularly limited, but is approximately 90% by mass or more (for example, 92% to 99.5% by mass, typically 95% to 99% by mass). % By mass). Further, when the heat-resistant barrier layer contains additives such as a binder and a thickener, the proportion of the additive in the heat-resistant barrier layer is approximately 10% by mass or less (for example, 0.5% by mass to 8% by mass). , Typically 1% by mass to 5% by mass). When the proportion of the filler, if necessary, the binder and other additives is within the above range, the anchoring property of the heat-resistant barrier layer and the strength (shape retention) of the heat-resistant barrier layer itself are improved. Moreover, it becomes easy to adjust the porosity of the heat-resistant barrier layer to a favorable range, and the ion conductivity tends to be further improved. Furthermore, when the heat-resistant barrier layer is formed on the separator, it is easy to adjust the strength and elongation of the separator to a suitable range.

(耐熱性遮断層の特性)
耐熱性遮断層の空孔率(多孔度)は特に限定されないが、非水電解質の保持性やイオン伝導性向上の観点から40%以上(例えば45%以上、典型的には50%以上)であることが好ましい。また空孔率(多孔度)は、熱収縮を抑制する観点、ヒビや剥落等の不具合が生じない程度の強度を得る観点から75%以下(例えば70%以下、典型的には65%以下)であることが好ましい。耐熱性遮断層の空孔率(多孔度)は、セパレータの空孔率(多孔度)の算出と同様の方法により算出することができる。その場合において、耐熱性遮断層の質量Wは例えば以下のようにして測定することができる。すなわち、耐熱性遮断層を形成したセパレータまたは正極を所定の面積に切り抜いて試料とし、その質量を測定する。次に、その試料の質量から、上記所定面積のセパレータまたは正極の質量を減ずることにより、上記所定面積の耐熱性遮断層の質量を算出する。このようにして算出した耐熱性遮断層の質量を単位面積当たりに換算することにより、耐熱性遮断層の質量W[g]を算出することができる。耐熱性遮断層の空孔率(多孔度)は、構成成分やその配合比率、塗付方法、乾燥方法等により調整し得る。
(Characteristics of heat-resistant barrier layer)
The porosity (porosity) of the heat-resistant barrier layer is not particularly limited, but it is 40% or more (for example, 45% or more, typically 50% or more) from the viewpoint of improving the nonaqueous electrolyte retention and ion conductivity. Preferably there is. In addition, the porosity (porosity) is 75% or less (for example, 70% or less, typically 65% or less) from the viewpoint of suppressing heat shrinkage and obtaining a strength that does not cause defects such as cracks and peeling. It is preferable that The porosity (porosity) of the heat-resistant barrier layer can be calculated by the same method as the calculation of the separator porosity (porosity). In that case, the mass W of the heat-resistant barrier layer can be measured, for example, as follows. That is, a separator or positive electrode on which a heat-resistant blocking layer is formed is cut out to a predetermined area to obtain a sample, and its mass is measured. Next, the mass of the heat-resistant barrier layer having the predetermined area is calculated by subtracting the mass of the separator or positive electrode having the predetermined area from the mass of the sample. The mass W [g] of the heat-resistant barrier layer can be calculated by converting the mass of the heat-resistant barrier layer thus calculated per unit area. The porosity (porosity) of the heat-resistant barrier layer can be adjusted by the constituent components, the blending ratio thereof, the coating method, the drying method and the like.

耐熱性遮断層の厚さは特に限定されないが、凡そ1μm〜12μm(例えば2μm〜10μm、典型的には3μm〜8μm)であることがより好ましい。耐熱性遮断層の厚さが上記の範囲内であることにより、短絡防止効果や非水電解質の保持性が向上する。また、上記厚さが2μm以上であることにより、セパレータが溶融したときにその溶融物が正極に浸入することを好適に遮断することができる。さらに、セパレータ上に耐熱性遮断層を設ける場合には、セパレータの強度や伸び率を好適な範囲に調整しやすい。耐熱性遮断層の厚さは、SEMにより撮影した画像を解析することにより求めることができる。   The thickness of the heat-resistant barrier layer is not particularly limited, but is more preferably about 1 μm to 12 μm (for example, 2 μm to 10 μm, typically 3 μm to 8 μm). When the thickness of the heat-resistant barrier layer is within the above range, the short-circuit prevention effect and the non-aqueous electrolyte retention are improved. Moreover, when the said thickness is 2 micrometers or more, when a separator fuse | melts, it can interrupt | block suitably that the molten material permeates into a positive electrode. Furthermore, when a heat-resistant barrier layer is provided on the separator, it is easy to adjust the strength and elongation of the separator within a suitable range. The thickness of the heat-resistant barrier layer can be obtained by analyzing an image photographed by SEM.

(耐熱性遮断層の形成方法)
ここに開示される耐熱性遮断層の形成方法は特に限定されず、例えば以下の方法によって形成することができる。まず、上述したフィラー、必要であれば結着材やその他の添加材を適当な溶媒中に混合、分散させ、ペースト状(またはスラリー状)の耐熱性遮断層形成用組成物を調製する。混合、分散操作は、ディスパーミル、クレアミックス、フィルミックス、ボールミル、ホモディスパー、超音波分散機等の適当な混練機を用いて行うことができる。得られたペースト状(またはスラリー状)の耐熱性遮断層形成用組成物におけるフィラー、必要であれば結着材やその他の添加材の配合割合は、固形分換算において、上述した耐熱性遮断層に占める各成分の割合と同じとすることができる。
(Method for forming heat-resistant barrier layer)
The method for forming the heat-resistant barrier layer disclosed herein is not particularly limited, and for example, it can be formed by the following method. First, the above-described filler, if necessary, a binder and other additives are mixed and dispersed in an appropriate solvent to prepare a paste-like (or slurry-like) heat-resistant barrier layer forming composition. Mixing and dispersing operations can be performed using an appropriate kneader such as a disper mill, a clear mix, a fill mix, a ball mill, a homodisper, or an ultrasonic disperser. The blending ratio of the obtained paste-like (or slurry-like) composition for forming a heat-resistant barrier layer, if necessary, the binder and other additives is the above-mentioned heat-resistant barrier layer in terms of solid content. It can be made the same as the ratio of each component occupying.

耐熱性遮断層形成用組成物に用いられる溶媒としては、水または水を主体とする混合溶媒が挙げられる。混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(エタノール等の低級アルコール、低級ケトン等)の1種または2種以上を適宜選択して用いることができる。あるいは、N‐メチル−2−ピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド等の有機系溶媒の1種を単独でまたは2種以上を組み合わせて用いてもよい。耐熱性遮断層形成用組成物における溶媒の含有率は特に限定されないが、組成物全体の30質量%〜90質量%(例えば40質量%〜60質量%)であり得る。   Examples of the solvent used in the composition for forming a heat-resistant barrier layer include water or a mixed solvent mainly composed of water. As the solvent other than water constituting the mixed solvent, one or more organic solvents (lower alcohol such as ethanol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used. Alternatively, one organic solvent such as N-methyl-2-pyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, ixahexanone, toluene, dimethylformamide, dimethylacetamide, or a combination of two or more. It may be used. Although the content rate of the solvent in the composition for heat resistant blocking layer formation is not specifically limited, It may be 30 mass%-90 mass% (for example, 40 mass%-60 mass%) of the whole composition.

次いで、得られたペースト状(またはスラリー状)の耐熱性遮断層形成用組成物を、セパレータシートおよび正極シートの少なくとも一方の表面に適当量塗付し、さらに乾燥することによって、耐熱性遮断層を形成することができる。耐熱性遮断層形成用組成物を、セパレータシートおよび正極シートの少なくとも一方の表面に塗付する操作は、従来の一般的な塗付手段を特に限定することなく使用することができる。例えば、適当な塗付装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター、ディップコート等)を使用して、上記セパレータシートおよび正極シートの少なくとも一方の表面(各シートの二面のうちの少なくとも一方の面)に所定量の上記耐熱性遮断層形成用組成物を均一な厚さに塗付する。その後、適当な乾燥手段で塗付物を乾燥することによって、耐熱性遮断層形成用組成物中の溶媒を除去する。上記の乾燥は、例えば、セパレータシート上に耐熱性遮断層を形成する場合、セパレータシートを構成する材料の融点よりも低い温度、例えば110℃以下(典型的には30〜80℃)で行われ得る。あるいは低温減圧下に保持して乾燥させてもよい。耐熱性遮断層形成用組成物から溶媒を除去することによって、フィラーを主成分として含む耐熱性遮断層が形成され得る。このようにして、正極とセパレータとの間に耐熱性遮断層が配置された電極体を得ることができる。   Next, an appropriate amount of the obtained paste-like (or slurry-like) heat-resistant barrier layer-forming composition is applied to at least one surface of the separator sheet and the positive electrode sheet, and further dried, whereby a heat-resistant barrier layer is formed. Can be formed. The operation of applying the heat-resistant barrier layer forming composition to at least one surface of the separator sheet and the positive electrode sheet can be used without any particular limitation on conventional general application means. For example, by using a suitable coating apparatus (gravure coater, slit coater, die coater, comma coater, dip coat, etc.) A predetermined amount of the composition for forming a heat-resistant barrier layer is applied to one surface) to a uniform thickness. Then, the solvent in the composition for forming a heat resistant barrier layer is removed by drying the coated product by a suitable drying means. For example, when the heat-resistant barrier layer is formed on the separator sheet, the above drying is performed at a temperature lower than the melting point of the material constituting the separator sheet, for example, 110 ° C. or less (typically 30 to 80 ° C.). obtain. Or you may hold | maintain under low temperature pressure reduction, and may make it dry. By removing the solvent from the heat-resistant barrier layer forming composition, a heat-resistant barrier layer containing a filler as a main component can be formed. In this way, an electrode body in which a heat-resistant barrier layer is disposed between the positive electrode and the separator can be obtained.

≪非水電解質≫
リチウム二次電池に注入される非水電解質を構成する非水溶媒と支持塩は、従来からリチウム二次電池に用いられるものを特に限定なく使用することができる。そのような非水電解質は、典型的には適当な非水溶媒に支持塩を含有させた組成を有する電解液である。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトンが挙げられ、これらは1種を単独でまたは2種以上を混合して用いることができる。なかでも、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の混合溶媒が好ましい。
≪Nonaqueous electrolyte≫
As the non-aqueous solvent and the supporting salt constituting the non-aqueous electrolyte injected into the lithium secondary battery, those conventionally used for lithium secondary batteries can be used without any particular limitation. Such a non-aqueous electrolyte is typically an electrolytic solution having a composition in which a supporting salt is contained in a suitable non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2- Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, γ-butyrolactone These may be used alone or in combination of two or more. Of these, a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) is preferable.

また、上記支持塩としては、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、支持塩の濃度は特に限定されないが、凡そ0.1mol/L〜5mol/L(例えば0.5mol/L〜3mol/L、典型的には0.8mol/L〜1.5mol/L)の濃度とすることができる。 Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. One or more of lithium compounds (lithium salts) such as LiI can be used. The concentration of the supporting salt is not particularly limited, but is approximately 0.1 mol / L to 5 mol / L (for example, 0.5 mol / L to 3 mol / L, typically 0.8 mol / L to 1.5 mol / L). Concentration.

非水電解質は、本発明の目的を大きく損なわない限度で、必要に応じて任意の添加剤を含んでもよい。上記添加剤は、例えば、電池の出力性能の向上、保存性の向上(保存中における容量低下の抑制等)、サイクル特性の向上、初期充放電効率の向上等の1または2以上の目的で使用され得る。好ましい添加剤の例として、フルオロリン酸塩(好ましくはジフルオロリン酸塩。例えば、LiPOで表されるジフルオロリン酸リチウム)、リチウムビスオキサレートボレート(LiBOB)等が挙げられる。非水電解質における各添加剤の濃度は、通常、0.20mol/L以下(典型的には0.005〜0.20mol/L)とすることが適当であり、例えば0.10mol/L以下(典型的には0.01〜0.10mol/L)とすることができる。好ましい一態様として、LiPOおよびLiBOBの両方を、それぞれ0.01〜0.05mol/L(例えば、それぞれ0.025mol/L)の濃度で含む非水電解液が挙げられる。 The non-aqueous electrolyte may contain an optional additive as necessary as long as the object of the present invention is not significantly impaired. The additive is used for one or more purposes such as, for example, improving battery output performance, improving storage stability (suppressing capacity reduction during storage, etc.), improving cycle characteristics, improving initial charge / discharge efficiency, etc. Can be done. Examples of preferable additives include fluorophosphate (preferably difluorophosphate, for example, lithium difluorophosphate represented by LiPO 2 F 2 ), lithium bisoxalate borate (LiBOB), and the like. The concentration of each additive in the non-aqueous electrolyte is usually 0.20 mol / L or less (typically 0.005 to 0.20 mol / L), for example, 0.10 mol / L or less ( Typically, it can be 0.01 to 0.10 mol / L). As a preferable embodiment, a nonaqueous electrolytic solution containing both LiPO 2 F 2 and LiBOB at a concentration of 0.01 to 0.05 mol / L (for example, 0.025 mol / L, respectively) can be given.

このような構成を有するリチウム二次電池は、上述のように、低SOCにおける出力特性が優れるのみならず、熱安定性にも優れるので、各種用途向けの二次電池として利用可能である。例えば、図7に示すように、リチウム二次電池100は、自動車等の車両1に搭載され、車両1を駆動するモータ等の駆動源用の電源として好適に利用することができる。したがって、本発明は、上記リチウム二次電池(典型的には複数直列接続してなる組電池)100を電源として備える車両(典型的には自動車、特にハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)、燃料電池自動車のような電動機を備える自動車)1を提供することができる。   As described above, the lithium secondary battery having such a configuration is not only excellent in output characteristics at low SOC, but also excellent in thermal stability, and thus can be used as a secondary battery for various applications. For example, as shown in FIG. 7, the lithium secondary battery 100 is mounted on a vehicle 1 such as an automobile and can be suitably used as a power source for a drive source such as a motor that drives the vehicle 1. Therefore, the present invention provides a vehicle (typically an automobile, particularly a hybrid automobile (HV), a plug-in hybrid automobile (including a battery pack typically formed by connecting a plurality of series-connected batteries) 100 as a power source. PHV), an electric vehicle (EV), a vehicle equipped with an electric motor such as a fuel cell vehicle) 1 can be provided.

次に、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。   Next, some examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.

<例1>
[中空構造を有する正極活物質Aの作製]
硫酸ニッケル(NiSO)、硫酸コバルト(CoSO)、硫酸マンガン(MnSO)および硫酸ジルコニウム(ZrSO)を水に溶解させて、Ni:Co:Mnのモル比が約0.34:0.33:0.33であり、全遷移金属元素に対するZrのモル比が0.002であり、かつNi,CoおよびMnの合計濃度が1.8mol/Lである水溶液aqを調製した。また、パラタングステン酸アンモニウム(5(NHO・12WO)を水に溶解させて、W濃度が0.1mol/Lの水溶液aq(W水溶液)を調製した。攪拌装置および窒素導入管を備えた反応槽に、その容量の半分程度の水を入れ、攪拌しながら40℃に加熱した。窒素気流下、反応槽内の空間を酸素濃度2.0%の非酸化性雰囲気に維持しつつ、25%(質量基準)水酸化ナトリウム水溶液と25%(質量基準)アンモニア水とをそれぞれ適量加えて、液温25℃を基準とするpHが12.0であり、液相のアンモニア濃度が20g/Lであるアルカリ性水溶液(NH・NaOH水溶液)を調製した。上記反応槽中のアルカリ性水溶液に、上記でそれぞれ調製した水溶液aqと、水溶液aqと、25%水酸化ナトリウム水溶液と、25%アンモニア水とを、一定速度で供給することにより、反応液をpH12.0以上(具体的にはpH12.0〜14.0)、かつアンモニア濃度20g/Lに維持しつつ、該反応液から水酸化物を晶析させた(核生成段階)。
<Example 1>
[Preparation of positive electrode active material A having a hollow structure]
Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), manganese sulfate (MnSO 4 ) and zirconium sulfate (ZrSO 4 ) are dissolved in water, and the molar ratio of Ni: Co: Mn is about 0.34: 0. An aqueous solution aq A having a ratio of 33: 0.33, a molar ratio of Zr to all transition metal elements of 0.002, and a total concentration of Ni, Co and Mn of 1.8 mol / L was prepared. Further, ammonium paratungstate (5 (NH 4 ) 2 O · 12WO 3 ) was dissolved in water to prepare an aqueous solution aq B (W aqueous solution) having a W concentration of 0.1 mol / L. About half the volume of water was placed in a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and heated to 40 ° C. with stirring. Appropriate amounts of 25% (mass basis) sodium hydroxide aqueous solution and 25% (mass basis) ammonia water were added respectively while maintaining the space in the reaction vessel in a non-oxidizing atmosphere with an oxygen concentration of 2.0% under a nitrogen stream. Then, an alkaline aqueous solution (NH 3 · NaOH aqueous solution) having a pH of 12.0 based on a liquid temperature of 25 ° C. and an ammonia concentration in the liquid phase of 20 g / L was prepared. By supplying the aqueous solution aq A , the aqueous solution aq B , the aqueous solution aq B , the 25% aqueous sodium hydroxide solution, and the 25% aqueous ammonia prepared at the above rate to the alkaline aqueous solution in the reaction vessel, respectively, Hydroxides were crystallized from the reaction solution while maintaining the pH at 12.0 or higher (specifically, pH 12.0 to 14.0) and an ammonia concentration of 20 g / L (nucleation stage).

次いで、上記反応槽への各液の供給速度を調節して反応液のpH12.0未満(具体的には、pH10.5〜11.9に調整し、液相のアンモニア濃度を1〜20g/Lの範囲の所定濃度に制御しつつ、上記で生成した核の粒子成長反応を行った(粒子成長段階)。生成物を反応槽から取り出し、水洗し、乾燥させて、(Ni+Co+Mn):Zr:Wのモル比が1000.2::0.5である複合水酸化物(前駆体水酸化物)を得た。この前駆体水酸化物に、大気雰囲気中、150℃で12時間の熱処理を施した。その後、LiCO(リチウム源)と上記前駆体水酸化物とを、Li:(Ni+Co+Mn)のモル比(すなわちmLi:m)が1.14:1となるように混合した(混合工程)。この未焼成混合物を、大気雰囲気中、950℃で7時間焼成した。このとき、950℃まで達する昇温速度は5℃/分とした。その後、焼成物を冷却し、解砕し、篩分けを行った。このようにして、Li1.14Ni0.34Co0.33Mn0.33Zr0.0020.005で表される平均組成を有する正極活物質Aを得た。この正極活物質A(二次粒子)は、SEM画像観察により中空構造を有することが確認された。該二次粒子の平均粒径(D50)は5.4μmであり、一次粒子の粒子径(長径L1)は0.7μmであった。また、二次粒子外殻(殻部)の厚さは1.2μmであり、粒子空孔率は23.7%であった。また、正極活物質AのBET比表面積は0.5〜1.9m/gの範囲内に調整されている。 Subsequently, the supply rate of each liquid to the reaction tank is adjusted to adjust the reaction liquid to a pH of less than 12.0 (specifically, to a pH of 10.5 to 11.9, and a liquid phase ammonia concentration of 1 to 20 g / The particle growth reaction of the nuclei generated above was performed while controlling the concentration to a predetermined concentration in the range of L. (Particle growth stage) The product was removed from the reaction vessel, washed with water, and dried to obtain (Ni + Co + Mn): Zr: A composite hydroxide (precursor hydroxide) having a molar ratio of W of 1000.2 :: 0.5 was obtained, and this precursor hydroxide was subjected to heat treatment at 150 ° C. for 12 hours in an air atmosphere. Thereafter, Li 2 CO 3 (lithium source) and the precursor hydroxide were mixed so that the molar ratio of Li: (Ni + Co + Mn) (ie, m Li : m T ) was 1.14: 1. (Mixing step) This unfired mixture was removed from the atmosphere. Baked for 7 hours at 950 ° C. At this time, the rate of temperature increase reaching 950 ° C. was 5 ° C./minute, and then the fired product was cooled, crushed and sieved. A positive electrode active material A having an average composition represented by Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 Zr 0.002 W 0.005 O 2 was obtained. The particles were confirmed to have a hollow structure by SEM image observation, the average particle diameter (D 50 ) of the secondary particles was 5.4 μm, and the particle diameter (major axis L1) of the primary particles was 0.7 μm. The thickness of the secondary particle outer shell (shell) was 1.2 μm, the particle porosity was 23.7%, and the positive electrode active material A had a BET specific surface area of 0. It is adjusted within the range of 0.5 to 1.9 m 2 / g.

[正極シートの作製]
上記で得た正極活物質Aと、導電材としてアセチレンブラック(AB)と、結着材としてポリフッ化ビニリデン(PVDF)とを、これらの材料の質量比が90:8:2となるようにN−メチル−2−ピロリドン(NMP)で混合して、スラリー状の正極合材層形成用組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(正極集電体:厚さ15μm)の両面に、片面当たりの目付量が11.2mg/cm(固形分基準)となるように均一に塗付し、乾燥後、圧縮することによって、正極集電体の両面に正極合材層が形成されたシート状の正極(正極シート)を作製した。正極合材層の密度は1.8〜2.4g/cmの範囲内に調整されている。
[Preparation of positive electrode sheet]
The positive electrode active material A obtained above, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, N so that the mass ratio of these materials is 90: 8: 2. -Methyl-2-pyrrolidone (NMP) was mixed to prepare a slurry-like composition for forming a positive electrode mixture layer. This composition is uniformly applied to both sides of a long sheet-like aluminum foil (positive electrode current collector: thickness 15 μm) so that the basis weight per side is 11.2 mg / cm 2 (solid content basis). By attaching, drying and compressing, a sheet-like positive electrode (positive electrode sheet) in which a positive electrode mixture layer was formed on both surfaces of the positive electrode current collector was produced. The density of the positive electrode mixture layer is adjusted within the range of 1.8 to 2.4 g / cm 3 .

[負極活物質の作製]
天然黒鉛粉末とピッチとを質量比が96:4となるように混合および含浸させ、不活性雰囲気において800〜1300℃で10時間焼成することにより、グラファイト粒子の表面にアモルファスカーボンがコートされた構造のカーボン粒子を得た。このカーボン粒子を篩にかけて平均粒径(D50)5〜40μm、BET比表面積が3.0〜6.0m/gの負極活物質を得た。
[Production of negative electrode active material]
A structure in which amorphous carbon is coated on the surface of graphite particles by mixing and impregnating natural graphite powder and pitch with a mass ratio of 96: 4 and firing in an inert atmosphere at 800 to 1300 ° C. for 10 hours. Carbon particles were obtained. The carbon particles were sieved to obtain a negative electrode active material having an average particle diameter (D 50 ) of 5 to 40 μm and a BET specific surface area of 3.0 to 6.0 m 2 / g.

[負極シートの作製]
上記負極活物質と、結着材としてスチレン−ブタジエン共重合体(SBR)と、増粘材としてカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98.6:0.7:0.7となるようにイオン交換水で混合して、スラリー状の負極合材層形成用組成物を調製した。この組成物を、長尺シート状の銅箔(厚さ10μm)の両面に、片面当たりの目付量が7.3mg/cm(固形分基準)となるように均一に塗付し、乾燥後、圧縮することによって、負極集電体の両面に負極合材層が形成されたシート状の負極(負極シート)を作製した。負極合材層の密度は0.9〜1.3g/cmの範囲内に調整されている。
[Preparation of negative electrode sheet]
The negative electrode active material, styrene-butadiene copolymer (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, the mass ratio of these materials is 98.6: 0.7: 0. A slurry-like composition for forming a negative electrode mixture layer was prepared by mixing with ion-exchanged water so as to be 7. This composition was uniformly applied to both sides of a long sheet-like copper foil (thickness 10 μm) so that the basis weight per side was 7.3 mg / cm 2 (solid content basis), and after drying By compressing, a sheet-like negative electrode (negative electrode sheet) in which a negative electrode mixture layer was formed on both surfaces of the negative electrode current collector was produced. The density of the negative electrode mixture layer is adjusted within the range of 0.9 to 1.3 g / cm 3 .

[耐熱性遮断層付きセパレータシートの作製]
セパレータシートとして、ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)からなる三層構造の長尺状セパレータシート(厚さ:20μm)を用意した。各層の厚さはPPの各層が7μm、PE層が6μmであった。このセパレータシートの片面に耐熱性遮断層を形成した。すなわち、無機フィラーとしてアルミナ(住友化学(株)製の「AKP−3000」、平均粒径0.48μm)と、結着材としてアクリル系バインダと、増粘材としてCMCとを、これらの質量比が96.7:2.6:0.7となるようにイオン交換水で混合することによってスラリー状の耐熱性遮断層形成用組成物を調製した。混合は、エム・テクニック(株)製の超音波分散機「クレアミックス」を用いて、予備分散を15000rpmで5分行い、本分散を20000rpmで15分行った。得られた耐熱性遮断層形成用組成物を、セパレータシートの片面全体を覆うようにグラビア塗工方法により塗付し、温度70℃で乾燥させて耐熱性遮断層を形成した。グラビア塗工では、セパレータシートのライン速度を3m/min、グラビアロール速度を3.8m/min、速比(グラビア速度/ライン速度)を1.27とした。このようにして厚さ5.0μmの耐熱性遮断層が片面に形成された耐熱性遮断層付きセパレータシートを作製した。
[Preparation of separator sheet with heat-resistant barrier layer]
As a separator sheet, a long separator sheet (thickness: 20 μm) having a three-layer structure composed of polypropylene (PP) / polyethylene (PE) / polypropylene (PP) was prepared. The thickness of each layer was 7 μm for each PP layer and 6 μm for the PE layer. A heat-resistant barrier layer was formed on one side of this separator sheet. That is, alumina (“AKP-3000” manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.48 μm) as an inorganic filler, an acrylic binder as a binder, and CMC as a thickener, and a mass ratio thereof. Was mixed with ion-exchanged water so as to be 96.7: 2.6: 0.7 to prepare a slurry-like composition for forming a heat-resistant barrier layer. Mixing was performed using an ultrasonic disperser “CLEAMIX” manufactured by M Technique Co., Ltd. for 5 minutes at 15000 rpm and for 15 minutes at 20000 rpm. The obtained composition for forming a heat-resistant barrier layer was applied by a gravure coating method so as to cover the entire surface of the separator sheet, and dried at a temperature of 70 ° C. to form a heat-resistant barrier layer. In the gravure coating, the line speed of the separator sheet was 3 m / min, the gravure roll speed was 3.8 m / min, and the speed ratio (gravure speed / line speed) was 1.27. In this manner, a separator sheet with a heat-resistant barrier layer having a heat-resistant barrier layer having a thickness of 5.0 μm formed on one side was produced.

[リチウム二次電池の構築]
作製した正極シートと負極シートとを、上記2枚の耐熱性遮断層付きセパレータシートを介して積層して捲回し、その捲回体を側面方向から押圧して拉げさせることにより扁平形状の捲回電極体を作製した。セパレータシートは、耐熱性遮断層が正極シートと対向するように配置した。作製した捲回電極体の正負の電極集電体の端部にそれぞれ電極端子を接合し、非水電解液とともにアルミ製の角型電池ケースに収容した後、電池ケースを密封した。非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを約1モル/Lの濃度で含有させたものを使用した。なお、任意にジフルオロリン酸塩(LiPO)とリチウムビスオキサレートボレート(LiBOB)を、それぞれ単体または混合体として凡そ0.05mol/Lの割合にて溶解させた電解液を使用することもできる。このようにして電池容量3.8Ahの試験用リチウム二次電池を組み立てた。この二次電池では、上述の初期容量比(C/C)が1.5〜1.9に調整されている。
[Construction of lithium secondary battery]
The produced positive electrode sheet and negative electrode sheet are laminated and wound through the two separator sheets with a heat-resistant barrier layer, and the rolled body is pressed and ablated from the side direction to form a flat-shaped bag. A rotating electrode body was produced. The separator sheet was disposed so that the heat-resistant blocking layer was opposed to the positive electrode sheet. The electrode terminals were joined to the ends of the positive and negative electrode current collectors of the produced wound electrode body, and housed in an aluminum prismatic battery case together with the non-aqueous electrolyte, and then the battery case was sealed. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 3: 4, and LiPF 6 as a supporting salt is about 1 The one contained at a concentration of mol / L was used. In addition, an electrolytic solution in which difluorophosphate (LiPO 2 F 2 ) and lithium bisoxalate borate (LiBOB) are arbitrarily dissolved as a single substance or a mixture at a rate of about 0.05 mol / L is used. You can also. Thus, a test lithium secondary battery having a battery capacity of 3.8 Ah was assembled. In this secondary battery, the above-described initial capacity ratio (C N / C P ) is adjusted to 1.5 to 1.9.

<例2>
セパレータシートの両面に耐熱性遮断層(片面当たりの厚さ:5.0μm)を形成した他は例1と同様にして、耐熱性遮断層付きセパレータシートを作製し、例2に係る試験用リチウム二次電池を構築した。
<Example 2>
A separator sheet with a heat-resistant barrier layer was prepared in the same manner as in Example 1 except that a heat-resistant barrier layer (thickness per side: 5.0 μm) was formed on both sides of the separator sheet. A secondary battery was constructed.

<例3>
セパレータシートを、耐熱性遮断層が負極シートと対向するように配置した他は例1と同様にして、例3に係る試験用リチウム二次電池を構築した。
<Example 3>
A test lithium secondary battery according to Example 3 was constructed in the same manner as in Example 1 except that the separator sheet was disposed so that the heat-resistant blocking layer was opposed to the negative electrode sheet.

<例4>
[中実構造を有する正極活物質Bの作製]
オーバーフローパイプを備え槽内温度40℃に設定された反応槽内に、イオン交換水を入れ、攪拌しつつ窒素ガスを流通させて反応槽内を酸素ガス(O)濃度2.0%の非酸化性雰囲気に調整した。次いで、25%水酸化ナトリウム水溶液と25%アンモニア水とを、液温25℃を基準として測定するpHが12.0となり、かつ液中NH 濃度が15g/Lとなるように加えた。硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、Ni:Co:Mnのモル比が0.34:0.33:0.33となり、かつこれら金属元素の合計モル濃度が1.8モル/Lとなるように水に溶解させて、混合水溶液を調整した。この混合水溶液と25%NaOH水溶液と25%アンモニア水とを、析出するNiCoMn複合水酸化物粒子の平均的な滞留時間が10時間となる一定速度で上記反応槽内に供給し、かつ反応液をpH12.0、NH 濃度15g/Lになるように制御して連続的に晶析をさせ、反応槽内が定常状態になった後に、上記オーバーフローパイプよりNiCoMn複合水酸化物(生成物)を連続的に採取し、水洗して乾燥させた。このようにして、Ni0.34Co0.33Mn0.33(OH)2+α(ここで、式中のαは0≦α≦0.5である。)で表わされる組成の複合水酸化物粒子を得た。
<Example 4>
[Preparation of positive electrode active material B having a solid structure]
In a reaction tank equipped with an overflow pipe and set to a temperature of 40 ° C., ion-exchanged water is placed, and nitrogen gas is circulated while stirring to pass through the reaction tank with an oxygen gas (O 2 ) concentration of 2.0%. Adjusted to oxidizing atmosphere. Next, a 25% aqueous sodium hydroxide solution and 25% aqueous ammonia were added so that the pH measured based on the liquid temperature of 25 ° C. was 12.0 and the NH 4 + concentration in the liquid was 15 g / L. In nickel sulfate, cobalt sulfate and manganese sulfate, the molar ratio of Ni: Co: Mn is 0.34: 0.33: 0.33, and the total molar concentration of these metal elements is 1.8 mol / L. Was dissolved in water to prepare a mixed aqueous solution. This mixed aqueous solution, 25% NaOH aqueous solution, and 25% aqueous ammonia are supplied into the reaction vessel at a constant rate so that the average residence time of the precipitated NiCoMn composite hydroxide particles is 10 hours. After controlling the pH to be 12.0 and the NH 4 + concentration to be 15 g / L and continuously crystallizing the reaction vessel to become a steady state, NiCoMn composite hydroxide (product) from the overflow pipe Were collected continuously, washed with water and dried. Thus, a composite hydroxide having a composition represented by Ni 0.34 Co 0.33 Mn 0.33 (OH) 2 + α (where α is 0 ≦ α ≦ 0.5). Particles were obtained.

上記複合水酸化物粒子に対し、大気雰囲気中、150℃で12時間の熱処理を施した。次いで、リチウム源としてのLiCOと上記複合水酸化物粒子とを、Li:(Ni+Co+Mn)のモル比(すなわちmLi:m)が1.14:1となるように混合した。この混合物を760℃で4時間焼成し、次いで950℃で10時間焼成した。その後、焼成物を解砕し、篩分けを行った。このようにして、Li1.14Ni0.34Co0.33Mn0.33で表される平均組成を有する正極活物質Bを得た。この正極活物質Bは、SEM画像観察により緻密(中実)構造を有することが確認された。該二次粒子の平均粒径が5.5μmであり、一次粒子の粒子径が0.9μmであり、二次粒子外殻の厚さは4.8μmであった。また、正極活物質BのBET比表面積は0.5〜1.9m/gの範囲内に調整されている。 The composite hydroxide particles were heat-treated at 150 ° C. for 12 hours in an air atmosphere. Next, Li 2 CO 3 as a lithium source and the composite hydroxide particles were mixed so that the molar ratio of Li: (Ni + Co + Mn) (that is, m Li : m T ) was 1.14: 1. This mixture was calcined at 760 ° C. for 4 hours and then at 950 ° C. for 10 hours. Thereafter, the fired product was crushed and sieved. In this way, a positive electrode active material B having an average composition represented by Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 2 was obtained. This positive electrode active material B was confirmed to have a dense (solid) structure by SEM image observation. The average particle diameter of the secondary particles was 5.5 μm, the particle diameter of the primary particles was 0.9 μm, and the thickness of the secondary particle outer shell was 4.8 μm. Further, the BET specific surface area of the positive electrode active material B is adjusted within a range of 0.5 to 1.9 m 2 / g.

[リチウム二次電池の構築]
正極活物質Aに代えて上記で作製した正極活物質Bを用いた他は例3と同様にして例4に係る試験用リチウム二次電池を構築した。
[Construction of lithium secondary battery]
A test lithium secondary battery according to Example 4 was constructed in the same manner as Example 3 except that the positive electrode active material B prepared above was used instead of the positive electrode active material A.

[熱安定性の評価]
上記で構築した各リチウム二次電池に対して、下記の条件で熱安定性の評価を行った。すなわち、適切な初期コンディショニング処理を施した後、連続本充電試験を行うことで強制的に電池をシャットダウンさせ、その後の漏れ電流の大きさを評価した。具体的には、初期コンディショニング処理として、室温(25℃)にて、1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを、2〜3回繰り返した。
[Evaluation of thermal stability]
Each lithium secondary battery constructed as described above was evaluated for thermal stability under the following conditions. That is, after performing an appropriate initial conditioning process, the battery was forcibly shut down by performing a continuous main charge test, and the magnitude of the leakage current thereafter was evaluated. Specifically, as an initial conditioning process, a constant current charge is performed at room temperature (25 ° C.) at a charge rate of 1/10 C for 3 hours, and then a constant current constant voltage up to 4.1 V at a charge rate of 1/3 C. The operation of charging at 3 and the operation of discharging at a constant current up to 3.0 V at a discharge rate of 1/3 C were repeated 2-3 times.

連続本充電試験としては、−10℃において、SOC30%の状態となるまで低電流放電を行い、次いで、SOC30%の状態から電流40Aで最高到達電圧が40Vとなるまで定電流充電を行った。この連続本充電試験において、電池がシャットダウンした後の10分間の電流値(漏れ電流値)を測定した。10分間のうちの最大電流値を「漏れ電流値」として表1に示す。ここで、上記連続本充電試験におけるリチウム二次電池の電流と電池内の温度との関係を図6に示す。図6は、シャットダウン後の電流(漏れ電流)を抑制することにより、電池内の温度が低下することを示している(図中、矢印で示す方向)。この関係から、漏れ電流値が2A以下であれば、シャットダウン後の電池の発熱が抑えられ、熱安定性に優れると評価できる。   As a continuous main charge test, low current discharge was performed at −10 ° C. until the state of SOC was 30%, and then constant current charge was performed from the state of SOC of 30% until the maximum voltage reached 40 V at a current of 40A. In this continuous main charging test, a current value (leakage current value) for 10 minutes after the battery was shut down was measured. The maximum current value in 10 minutes is shown in Table 1 as “leakage current value”. Here, the relationship between the current of the lithium secondary battery and the temperature in the battery in the continuous main charge test is shown in FIG. FIG. 6 shows that the temperature in the battery is lowered by suppressing the current (leakage current) after the shutdown (in the direction indicated by the arrow in the figure). From this relationship, it can be evaluated that if the leakage current value is 2 A or less, the heat generation of the battery after shutdown is suppressed and the thermal stability is excellent.

Figure 0005626602
Figure 0005626602

表1に示されるように、中空構造の正極活物質を用い、かつ耐熱性遮断層を正極とセパレータとの間に配置した例1および2に係る二次電池は、熱安定性試験における漏れ電流値が2A以下であった。一方、中空構造を有する正極活物質を用い、かつ耐熱性遮断層を負極とセパレータとの間に配置した例3に係る二次電池は、熱安定性試験における漏れ電流値が2Aを超えた。中実構造の正極活物質を用いた例4では、耐熱性遮断層を負極とセパレータとの間に配置しているにもかかわらず、漏れ電流値は2A以下であった。これらの結果から、上記漏れ電流の上昇が、中空構造を有する正極活物質を用いた場合に特有の現象であることがわかる。また、中空構造を有する正極活物質を用いる二次電池において、耐熱性遮断層を正極とセパレータとの間に配置することにより、シャットダウン後の電池の発熱が抑えられ、熱安定性に優れることがわかる。これは、正極とセパレータとの間に耐熱性遮断層が配置されているので、セパレータの溶融物が該耐熱性遮断層に遮断されて正極に浸入せず、セパレータの形状保持性の低下が抑制されたためと考えられる。   As shown in Table 1, the secondary batteries according to Examples 1 and 2 in which a positive electrode active material having a hollow structure is used and a heat-resistant barrier layer is disposed between the positive electrode and the separator are leak currents in a thermal stability test. The value was 2A or less. On the other hand, in the secondary battery according to Example 3 in which the positive electrode active material having a hollow structure was used and the heat-resistant barrier layer was disposed between the negative electrode and the separator, the leakage current value in the thermal stability test exceeded 2A. In Example 4 using the positive electrode active material having a solid structure, the leakage current value was 2 A or less even though the heat-resistant barrier layer was disposed between the negative electrode and the separator. From these results, it can be seen that the increase in the leakage current is a phenomenon peculiar when a positive electrode active material having a hollow structure is used. In addition, in a secondary battery using a positive electrode active material having a hollow structure, by disposing a heat-resistant barrier layer between the positive electrode and the separator, heat generation of the battery after shutdown can be suppressed, and heat stability can be excellent. Recognize. This is because a heat-resistant barrier layer is arranged between the positive electrode and the separator, so that the melt of the separator is blocked by the heat-resistant barrier layer and does not enter the positive electrode, and the decrease in the shape retention of the separator is suppressed. It is thought that it was because it was done.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれ得る。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The invention disclosed herein may include various modifications and alterations of the specific examples described above.

1 自動車(車両)
10 電池ケース
12 開口部
14 蓋体
20 捲回電極体
25 非水電解質(非水電解液)
30 正極(正極シート)
32 正極集電体
34 正極合材層
35 正極集電体積層部
36 正極合材層非形成部
37 内部正極端子
38 外部正極端子
40 負極(負極シート)
42 負極集電体
44 負極合材層
45 負極集電体積層部
46 負極合材層非形成部
47 内部負極端子
48 外部負極端子
50A,50B セパレータ(セパレータシート)
51 耐熱性遮断層
100 リチウム二次電池
110 正極活物質粒子(正極活物質)
112 一次粒子
115 殻部
115a 殻部の内側面
115b 殻部の外側面
116 中空部
118 貫通孔
1 Automobile (vehicle)
DESCRIPTION OF SYMBOLS 10 Battery case 12 Opening part 14 Cover body 20 Winding electrode body 25 Non-aqueous electrolyte (non-aqueous electrolyte)
30 Positive electrode (positive electrode sheet)
32 Positive Current Collector 34 Positive Electrode Mixing Layer 35 Positive Current Collector Laminating Section 36 Positive Electrode Mixing Layer Non-Forming Section 37 Internal Positive Terminal 38 External Positive Terminal 40 Negative Electrode (Negative Sheet)
42 Negative electrode current collector 44 Negative electrode composite material layer 45 Negative electrode current collector layered portion 46 Negative electrode composite material layer non-formed portion 47 Internal negative electrode terminal 48 External negative electrode terminal 50A, 50B Separator (separator sheet)
51 Heat-resistant barrier layer 100 Lithium secondary battery 110 Positive electrode active material particles (positive electrode active material)
112 Primary particle 115 Shell portion 115a Shell inner surface 115b Shell outer surface 116 Hollow portion 118 Through hole

Claims (7)

正極と、負極と、該正極および該負極の間に配置されたセパレータとを備える非水電解質二次電池であって、
前記正極は、殻部とその内部に形成された中空部とを有する中空構造の正極活物質を含み、前記正極と前記セパレータとの間には耐熱性遮断層が配置されており、
前記正極活物質の粒子空孔率は5%以上であり、
前記正極活物質の殻部の厚さは3.0μm以下である、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode,
The positive electrode includes a positive electrode active material having a hollow structure having a shell part and a hollow part formed therein, and a heat-resistant blocking layer is disposed between the positive electrode and the separator ,
The positive electrode active material has a particle porosity of 5% or more,
The non-aqueous electrolyte secondary battery , wherein the thickness of the shell of the positive electrode active material is 3.0 μm or less .
前記正極活物質の粒子空孔率は15%以上である、請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a particle porosity of the positive electrode active material is 15% or more. 前記正極活物質の殻部の厚さは2μm以下である、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the thickness of the shell of the positive electrode active material is 2 μm or less. 前記耐熱性遮断層の厚さは2μm以上である、請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the heat-resistant barrier layer has a thickness of 2 µm or more. 前記セパレータはポリオレフィン系樹脂から構成されている、請求項1〜4のいずれかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the separator is made of a polyolefin-based resin. 前記耐熱性遮断層はフィラーを主成分として含み、該フィラーは、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシアおよびマグネシアからなる群から選ばれる少なくとも1種である、請求項1〜5のいずれかに記載の非水電解質二次電池。   The heat-resistant barrier layer contains a filler as a main component, and the filler is at least one selected from the group consisting of alumina, boehmite, silica, titania, zirconia, calcia, and magnesia. The non-aqueous electrolyte secondary battery described in 1. 請求項1〜6のいずれかに記載の非水電解質二次電池を搭載した車両。   A vehicle equipped with the nonaqueous electrolyte secondary battery according to claim 1.
JP2012147862A 2012-06-29 2012-06-29 Nonaqueous electrolyte secondary battery Active JP5626602B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012147862A JP5626602B2 (en) 2012-06-29 2012-06-29 Nonaqueous electrolyte secondary battery
EP13758971.9A EP2867937B1 (en) 2012-06-29 2013-07-01 Non-aqueous electrolyte secondary battery
US14/410,650 US9627711B2 (en) 2012-06-29 2013-07-01 Non-aqueous electrolyte secondary battery
CN201380033636.XA CN104380499B (en) 2012-06-29 2013-07-01 Rechargeable nonaqueous electrolytic battery
PCT/IB2013/001405 WO2014001899A1 (en) 2012-06-29 2013-07-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147862A JP5626602B2 (en) 2012-06-29 2012-06-29 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014011070A JP2014011070A (en) 2014-01-20
JP5626602B2 true JP5626602B2 (en) 2014-11-19

Family

ID=49117884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147862A Active JP5626602B2 (en) 2012-06-29 2012-06-29 Nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
US (1) US9627711B2 (en)
EP (1) EP2867937B1 (en)
JP (1) JP5626602B2 (en)
CN (1) CN104380499B (en)
WO (1) WO2014001899A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098403B2 (en) * 2013-07-03 2017-03-22 株式会社豊田自動織機 Lithium ion secondary battery
JP6346448B2 (en) * 2014-01-29 2018-06-20 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6410127B2 (en) * 2014-03-11 2018-10-24 住友電気工業株式会社 Electrolyte circulating battery, heat exchanger, and piping
JP6152825B2 (en) 2014-04-18 2017-06-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6413347B2 (en) * 2014-05-26 2018-10-31 株式会社Gsユアサ Electricity storage element
JP6398326B2 (en) * 2014-05-27 2018-10-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP6384729B2 (en) 2014-10-17 2018-09-05 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2016068682A1 (en) * 2014-10-31 2016-05-06 주식회사 엘지화학 Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
CN104300117A (en) * 2014-11-10 2015-01-21 厦门首能科技有限公司 Cathode composition for lithium ion battery and preparation method thereof
JP6213506B2 (en) * 2015-03-18 2017-10-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6347227B2 (en) * 2015-04-28 2018-06-27 住友金属鉱山株式会社 Manganese nickel titanium composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6383326B2 (en) * 2015-06-05 2018-08-29 プライムアースEvエナジー株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery
JP6269597B2 (en) * 2015-06-29 2018-01-31 トヨタ自動車株式会社 Positive electrode active material layer, all solid lithium battery, and method for producing positive electrode active material layer
WO2018028772A1 (en) * 2016-08-10 2018-02-15 Politecnico Di Milano Active material and electric power generator containing it
WO2018056280A1 (en) * 2016-09-21 2018-03-29 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte electricity storage elements, and nonaqueous electrolyte electricity storage element
JP6804551B2 (en) * 2016-11-08 2020-12-23 本田技研工業株式会社 Electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries equipped with these electrodes
US11489233B2 (en) 2016-12-02 2022-11-01 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
JP6883263B2 (en) 2017-09-11 2021-06-09 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6880453B2 (en) 2017-09-11 2021-06-02 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6495997B1 (en) 2017-11-20 2019-04-03 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7100798B2 (en) 2018-01-09 2022-07-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
EP3591748A1 (en) 2018-07-06 2020-01-08 SK Innovation Co., Ltd. Lithium secondary battery
JP7172301B2 (en) * 2018-08-31 2022-11-16 住友金属鉱山株式会社 Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
KR102558390B1 (en) * 2020-10-26 2023-07-24 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
WO2023189725A1 (en) * 2022-03-30 2023-10-05 株式会社村田製作所 Secondary battery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581474B2 (en) * 1995-03-17 2004-10-27 キヤノン株式会社 Secondary battery using lithium
JP2000340226A (en) * 1999-05-26 2000-12-08 Kawasaki Steel Corp Lithium manganese composite oxide particle and manufacture thereof
JP2005044722A (en) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP2005285385A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Separator and nonaqueous electrolyte battery using the separator
JP4686998B2 (en) * 2004-03-30 2011-05-25 パナソニック株式会社 Method for evaluating positive electrode active material
US7638230B2 (en) * 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
CN101199079B (en) * 2005-06-15 2010-12-29 松下电器产业株式会社 Lithium secondary battery
JP5098192B2 (en) * 2005-06-29 2012-12-12 パナソニック株式会社 COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2008282558A (en) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd Lithium secondary cell
JP4748136B2 (en) * 2007-10-03 2011-08-17 ソニー株式会社 Separator with heat-resistant insulating layer and non-aqueous electrolyte secondary battery
JP5374851B2 (en) * 2007-10-15 2013-12-25 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011253684A (en) 2010-06-01 2011-12-15 Toyota Motor Corp Battery manufacturing method
WO2012049779A1 (en) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Secondary battery
CA2817494C (en) * 2010-11-12 2016-01-12 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP5741899B2 (en) * 2010-11-18 2015-07-01 トヨタ自動車株式会社 Secondary battery
JP4894969B1 (en) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2014001899A1 (en) 2014-01-03
EP2867937A1 (en) 2015-05-06
CN104380499B (en) 2017-06-06
JP2014011070A (en) 2014-01-20
EP2867937B1 (en) 2019-02-20
US20150188183A1 (en) 2015-07-02
US9627711B2 (en) 2017-04-18
CN104380499A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5626602B2 (en) Nonaqueous electrolyte secondary battery
JP5664930B2 (en) Nonaqueous electrolyte secondary battery
JP5858279B2 (en) Lithium ion secondary battery
JP5175826B2 (en) Active material particles and use thereof
JP6011888B2 (en) Non-aqueous electrolyte secondary battery
JP5854285B2 (en) Secondary battery
WO2012063370A1 (en) Secondary battery
JP5682796B2 (en) Lithium secondary battery
KR20130043117A (en) Lithium ion secondary cell
US20190157664A1 (en) Non-Aqueous Electrolyte Secondary Battery
US20230207821A1 (en) Secondary battery electrode mixture, secondary battery electrode mixture sheet and production method thereof, and secondary battery
JP5773225B2 (en) Secondary battery
JP5831772B2 (en) Lithium secondary battery
JP5709010B2 (en) Non-aqueous electrolyte secondary battery
JP2013218898A (en) Nonaqueous electrolyte secondary battery
JP5800196B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20210008278A (en) Anode Active Material, Method for preparing the same, Anode Comprising the same, and Lithium Secondary Battery Comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R151 Written notification of patent or utility model registration

Ref document number: 5626602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151