JP5626431B2 - Method for manufacturing shock absorbing steering shaft - Google Patents

Method for manufacturing shock absorbing steering shaft Download PDF

Info

Publication number
JP5626431B2
JP5626431B2 JP2013175765A JP2013175765A JP5626431B2 JP 5626431 B2 JP5626431 B2 JP 5626431B2 JP 2013175765 A JP2013175765 A JP 2013175765A JP 2013175765 A JP2013175765 A JP 2013175765A JP 5626431 B2 JP5626431 B2 JP 5626431B2
Authority
JP
Japan
Prior art keywords
shaft
diameter portion
tip
diameter
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013175765A
Other languages
Japanese (ja)
Other versions
JP2013241182A (en
Inventor
宏道 小森
宏道 小森
定方 清
清 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013175765A priority Critical patent/JP5626431B2/en
Publication of JP2013241182A publication Critical patent/JP2013241182A/en
Application granted granted Critical
Publication of JP5626431B2 publication Critical patent/JP5626431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Controls (AREA)

Description

この発明は、自動車のステアリング装置を構成する衝撃吸収式ステアリングシャフトの製造方法の改良に関する。具体的には、このステアリングシャフトを製造する際に、インナシャフトの先端縁とアウタシャフトの内周面との間にかじりが発生するのを防止して、前記ステアリングシャフトの製造コストの増大を抑えつつ、衝撃吸収性能を安定させられる製造方法を実現するものである。尚、本発明の対象となるステアリングシャフトには、ステアリングコラムの内側に支持されるものだけでなく、ステアリングコラムの前側に配置される中間シャフトも含む。 The present invention relates to an improvement in a manufacturing method of an impact absorption type steering shaft constituting an automobile steering device. Specifically, when manufacturing this steering shaft, the occurrence of galling between the inner edge of the inner shaft and the outer peripheral surface of the outer shaft is prevented, thereby suppressing an increase in the manufacturing cost of the steering shaft. On the other hand, a manufacturing method capable of stabilizing the shock absorbing performance is realized. Note that the steering shaft that is an object of the present invention includes not only a shaft supported on the inside of the steering column but also an intermediate shaft disposed on the front side of the steering column.

操舵輪(フォークリフト等の特殊車両を除き、通常は前輪)に舵角を付与する為のステアリング装置として、例えば図5に示す様な構造が、広く知られている。このステアリング装置は、車体1に支持された円筒状のステアリングコラム2の内径側にステアリングシャフト3を、回転可能に支持している。そして、このステアリングコラム2の後端開口よりも後方に突出した、前記ステアリングシャフト3の後端部分に、ステアリングホイール4を固定している。このステアリングホイール4を回転させると、この回転が、前記ステアリングシャフト3、自在継手5a、中間シャフト6、自在継手5bを介して、ステアリングギヤユニット7の入力軸8に伝達される。この入力軸8が回転すると、このステアリングギヤユニット7の両側に配置された1対のタイロッド9、9が押し引きされて左右1対の操舵輪に、前記ステアリングホイール4の操作量に応じた舵角を付与する。尚、図5に示した構造の場合、このステアリングホイール4の前後位置の調節を可能にすべく、前記ステアリングコラム2及び前記ステアリングシャフト3として、伸縮式のものを使用している。又、上述の様なステアリング装置に、電気モータ10を補助動力源として組み込んだ電動式パワーステアリング装置も、近年普及している。 For example, a structure as shown in FIG. 5 is widely known as a steering device for giving a steering angle to a steered wheel (usually a front wheel except for a special vehicle such as a forklift). In this steering device, a steering shaft 3 is rotatably supported on the inner diameter side of a cylindrical steering column 2 supported by a vehicle body 1. A steering wheel 4 is fixed to the rear end portion of the steering shaft 3 protruding rearward from the rear end opening of the steering column 2. When the steering wheel 4 is rotated, this rotation is transmitted to the input shaft 8 of the steering gear unit 7 via the steering shaft 3, the universal joint 5a, the intermediate shaft 6, and the universal joint 5b. When the input shaft 8 rotates, a pair of tie rods 9, 9 arranged on both sides of the steering gear unit 7 are pushed and pulled, and a steering wheel according to the operation amount of the steering wheel 4 is turned to a pair of left and right steering wheels. Give a corner. In the case of the structure shown in FIG. 5 , the steering column 2 and the steering shaft 3 are extendable so that the front and rear positions of the steering wheel 4 can be adjusted. In addition, in recent years, an electric power steering apparatus in which the electric motor 10 is incorporated as an auxiliary power source in the steering apparatus as described above has also become widespread.

前記ステアリングコラム2及び前記ステアリングシャフト3は、衝突事故の際に、衝撃エネルギを吸収しつつ、ステアリングホイール4を前方に変位させる構造としている。即ち、衝突事故の際には、自動車が他の自動車等にぶつかる一次衝突に続いて、運転者の身体がステアリングホイール4に衝突する二次衝突が発生する。この二次衝突の際に、運転者の身体に加わる衝撃を緩和して、運転者の保護を図る為に、前記ステアリングホイール4を支持したステアリングシャフト3を車体1に対して、二次衝突に伴う前方への衝撃荷重により前方に変位可能に支持する必要がある。この為に、前記ステアリングコラム2は、二次衝突の衝撃荷重により、アウタコラム11がこのステアリングコラム2の全長を、前記ステアリングシャフト3は、アウタシャフト12がこのステアリングシャフト3の全長を、それぞれ縮めながら前方に変位する事で、前記ステアリングホイール4に衝突した運転者の身体に大きな衝撃が加わる事を防止する。
上述の様な伸縮式のステアリングコラムを構成するアウタコラム及びインナコラム、並びに、ステアリングシャフトを構成するアウタシャフト及びインナシャフトの前後位置は、図示の構造とは逆であっても良い。上述の様な伸縮式のステアリングシャフトを製造する為の技術として、例えば特許文献1〜2に記載の技術がある。
The steering column 2 and the steering shaft 3 are configured to displace the steering wheel 4 while absorbing impact energy in the event of a collision. That is, in the event of a collision accident, a secondary collision in which the driver's body collides with the steering wheel 4 occurs following a primary collision in which the automobile collides with another automobile or the like. In order to alleviate the impact applied to the driver's body during the secondary collision and to protect the driver, the steering shaft 3 supporting the steering wheel 4 is subjected to the secondary collision with respect to the vehicle body 1. It is necessary to support it so that it can be displaced forward by a forward impact load. For this reason, the steering column 2 is contracted by the impact load of the secondary collision, the outer column 11 is shortened by the entire length of the steering column 2, and the steering shaft 3 is contracted by the outer shaft 12 by the total length of the steering shaft 3. However, a large impact is prevented from being applied to the driver's body colliding with the steering wheel 4 by being displaced forward.
The outer column and the inner column that constitute the telescopic steering column as described above, and the front and rear positions of the outer shaft and the inner shaft that constitute the steering shaft may be opposite to the illustrated structure. As a technique for manufacturing the telescopic steering shaft as described above, there are techniques described in Patent Documents 1 and 2, for example.

図6〜9は、このうちの特許文献1に記載されている、衝撃吸収式のステアリングシャフト及びその製造方法の従来例を示している。ステアリングシャフト3aは、アウタシャフト12aとインナシャフト13とを軸方向に相対変位可能に係合させ、二次衝突時に、軸方向に加わる衝撃荷重により全長が縮まる様に構成している。
前記アウタシャフト12aは、全体を円管状とし、一端部(図6〜7の左端部)に絞り加工を施す事で、この一端部に小径部14を形成している。この小径部14の内周面には、雌セレーション15を形成している。又、前記インナシャフト13も、全体を円管状とし、一端部(図6〜7の右端部)を押し拡げる事で、この一端部に大径部16を形成している。この大径部16の外周面には、前記雌セレーション15と係合する雄セレーション17を形成している。
6 to 9 show a conventional example of an impact absorbing steering shaft and a manufacturing method thereof described in Patent Document 1 among them. The steering shaft 3a is configured such that the outer shaft 12a and the inner shaft 13 are engaged with each other so as to be relatively displaceable in the axial direction, and the total length is shortened by an impact load applied in the axial direction at the time of a secondary collision.
The outer shaft 12a is formed into a tubular shape as a whole, and a small diameter portion 14 is formed at one end portion by drawing one end portion (left end portion in FIGS. 6 to 7 ). A female serration 15 is formed on the inner peripheral surface of the small diameter portion 14. Further, the inner shaft 13 is also formed in a circular tube shape as a whole, and a large-diameter portion 16 is formed at one end portion by expanding one end portion (the right end portion in FIGS. 6 to 7 ). A male serration 17 that engages with the female serration 15 is formed on the outer peripheral surface of the large diameter portion 16.

この様なアウタシャフト12aとインナシャフト13とを組み合わせて、図6に示す様なステアリングシャフト3aを製造する場合には、先ず、図7に示す様に、前記雌セレーション15と前記雄セレーション17とを、前記小径部14の先端部(図7の左端部)と前記大径部16の先端部(図7の右端部)とで互いに係合させる。
そして、前記両セレーション15、17同士を互いに係合させた状態のまま、前記小径部14の先端部の外周面を径方向内方に押圧する。即ち、この小径部14の先端部及び前記大径部16の先端部の周囲に1対の押圧片18、18を配置し、これら両押圧片18、18を互いに近づけ合う事で、前記小径部14の先端部の外周面を強く押圧する。これら両押圧片18、18の内側面でこの小径部14の先端部の外周面と当接する部分には、この外周面に当接する部分の断面形状が円弧状である、凹部19、19を形成している。
When the steering shaft 3a as shown in FIG. 6 is manufactured by combining the outer shaft 12a and the inner shaft 13 as described above, first, as shown in FIG. 7 , the female serration 15 and the male serration 17 Are engaged with each other at the distal end portion (left end portion in FIG. 7 ) of the small diameter portion 14 and the distal end portion (right end portion in FIG. 7 ) of the large diameter portion 16.
And the outer peripheral surface of the front-end | tip part of the said small diameter part 14 is pressed to radial direction inward with the said both serrations 15 and 17 being mutually engaged. That is, a pair of pressing pieces 18, 18 are arranged around the distal end portion of the small diameter portion 14 and the distal end portion of the large diameter portion 16, and the two small pressing portions 18, 18 are brought close to each other, whereby the small diameter portion 14 strongly presses the outer peripheral surface of the tip portion. On the inner side surfaces of these pressing pieces 18, 18 are formed recesses 19, 19 in which the cross-sectional shape of the portion contacting the outer peripheral surface is arcuate in the portion contacting the outer peripheral surface of the tip of the small diameter portion 14 doing.

図8に示す様に、これら両凹部19、19を前記小径部14の先端部の外周面に軽く当接させた状態で、前記両押圧片18、18の端面同士の間に、厚さがtの隙間20、20が形成される。この状態から、これら両押圧片18、18を、図示しない押圧装置により、互いに近づく方向に強く押圧する。そして、図9に示す様に、前記両隙間20、20の厚さが0となるまで、前記両押圧片18、18同士を互いに近づけ、前記小径部14の先端部の断面形状を、図9に示す様な楕円形に塑性変形させる。同時に、この小径部14の先端部に挿入された大径部16の先端部も、前記両セレーション15、17を介して押圧し、この大径部16の先端部の断面形状も、図9に示す様な楕円形に塑性変形させる。 As shown in FIG. 8 , in a state where both the concave portions 19 and 19 are lightly brought into contact with the outer peripheral surface of the distal end portion of the small diameter portion 14, the thickness is between the end surfaces of the both pressing pieces 18 and 18. T gaps 20 and 20 are formed. From this state, both the pressing pieces 18, 18 are strongly pressed in a direction approaching each other by a pressing device (not shown). Then, as shown in FIG. 9 , the pressing pieces 18, 18 are brought close to each other until the thickness of the gaps 20, 20 becomes 0, and the cross-sectional shape of the distal end portion of the small diameter portion 14 is shown in FIG. 9. It is plastically deformed into an oval shape as shown in. At the same time, the distal end portion of the large diameter portion 16 inserted into the distal end portion of the small diameter portion 14 is also pressed through the both serrations 15 and 17, and the sectional shape of the distal end portion of the large diameter portion 16 is also shown in FIG. Plastically deform into an elliptical shape as shown.

この様にして、前記小径部14の先端部及び前記大径部16の先端部を径方向内方に押圧し、これら両先端部の断面形状を楕円形に塑性変形させたならば、次いで、前記アウタシャフト12aと前記インナシャフト13とを互いに近づく方向に軸方向に相対変位させる。即ち、前記両押圧片18、18から前記アウタシャフト12aと前記インナシャフト13とを取り出した後、このアウタシャフト12aを図7の左方に、このインナシャフト13を同じく右方に、相手部材に対して相対変位させる。そして、図6に示す様に、前記小径部14の先端部を前記大径部16の基端部に圧入嵌合すると共に、この大径部16の先端部をこの小径部14の基端部に圧入嵌合させる。前記両押圧片18、18により塑性変形させられていない、この小径部14の中間部と前記大径部16の中間部とは互いに緩く係合させる。
尚、上述の様な衝撃吸収式ステアリングシャフトを構成するインナシャフト13は、アウタシャフト12aよりも外径が小さいので、強度を確保する為、S35C等硬度の高い炭素鋼により形成する事が多い。或いは、STKM12B等の炭素鋼鋼管により形成する事もできるが、この場合は強度を確保する為、径方向の厚さを厚くする。
In this way, if the distal end portion of the small diameter portion 14 and the distal end portion of the large diameter portion 16 are pressed radially inward, and the cross-sectional shape of both the distal end portions is plastically deformed into an elliptical shape, then, The outer shaft 12a and the inner shaft 13 are relatively displaced in the axial direction so as to approach each other. That is, after the outer shaft 12a and the inner shaft 13 are taken out from the pressing pieces 18, 18, the outer shaft 12a is moved to the left in FIG. The relative displacement is made. Then, as shown in FIG. 6 , the distal end portion of the small diameter portion 14 is press-fitted into the proximal end portion of the large diameter portion 16, and the distal end portion of the large diameter portion 16 is replaced with the proximal end portion of the small diameter portion 14. Press-fit into. The intermediate portion of the small diameter portion 14 and the intermediate portion of the large diameter portion 16 that are not plastically deformed by the two pressing pieces 18 and 18 are loosely engaged with each other.
Since the inner shaft 13 constituting the shock absorbing steering shaft as described above has a smaller outer diameter than the outer shaft 12a, it is often formed of carbon steel having a high hardness such as S35C in order to ensure strength. Alternatively, it can be formed of a carbon steel pipe such as STKM12B. In this case, the radial thickness is increased in order to ensure strength.

以上の説明は、後端部分にステアリングホイール4(図5参照)を固定するステアリングシャフト3に就いて行ったが、ステアリング装置の前側部分に配置される中間シャフト6も同様にして、軸方向に収縮可能に構成する場合がある。この様な収縮式(衝撃吸収式)の中間シャフト6は、自動車が他の自動車等にぶつかる一次衝突の際に、この一次衝突に伴う衝撃荷重よりその全長を縮める事で、前記ステアリングホイール4が運転者側に突き上げられるのを防止し、運転者の保護を図る。尚、前記中間シャフト6は、運転者の操作によって前記ステアリングホイール4から前記ステアリングシャフト3に付与されるトルクに加え、補助動力源である電動モータ10の出力トルクを伝達する。この為、上述の様な衝撃吸収式ステアリングシャフトを、前記中間シャフト6に適用する場合、前記アウタシャフト12aとインナシャフト13との係合部の保持力(嵌合強度)を大きくし、耐久性を高くする必要がある。この結果、前記大径部16の先端部外周縁(尖鋭な端縁)と、前記小径部14の内周面との当接圧が高くなり、上述の様な衝撃吸収式ステアリングシャフトの製造方法を実施する場合に於いて、前記アウタシャフト12aとインナシャフト13とを互いに近づく方向に軸方向に相対変位させる際に、前記大径部16の先端部外周縁でかじりが発生し易い。即ち、この相対変位の際、断面形状が楕円形であるこの大径部16の先端部外周縁の長径部分と、断面形状が円形である前記小径部14の内周面とが強く擦れ合って、この先端部外周縁がこの小径部14の内周面に食い込む(かじる)。この様にして発生したかじりを放置すると、衝突事故の際のエネルギ吸収性能が不安定になる可能性がある。そこでこのエネルギ吸収性能を安定させる為に、かじりにより生じた余肉部分(むしれ部分)を切削等により除去する手間が必要になる。又、かじりの程度によっては、完成後の衝撃吸収式ステアリングシャフトを、不良品として廃棄しなければならなくなり、加工の手間の増大や歩留りの悪化により、製造コストが上昇する為、改良が望まれる。特に、前記中間シャフト6の場合、前述した様に、保持力確保の為に嵌合部の当接圧を高くする為、改良する必要性が大きい。 Although the above description has been given with respect to the steering shaft 3 that fixes the steering wheel 4 (see FIG. 5 ) to the rear end portion, the intermediate shaft 6 disposed in the front side portion of the steering device is similarly axially arranged. It may be configured to be shrinkable. Such a contraction type (shock absorption type) intermediate shaft 6 reduces the total length of the steering wheel 4 from the impact load associated with the primary collision at the time of the primary collision when the automobile collides with another automobile or the like. The driver is prevented from being pushed up to protect the driver. The intermediate shaft 6 transmits the output torque of the electric motor 10 as an auxiliary power source in addition to the torque applied from the steering wheel 4 to the steering shaft 3 by the operation of the driver. For this reason, when the shock absorbing steering shaft as described above is applied to the intermediate shaft 6, the holding force (fitting strength) of the engaging portion between the outer shaft 12a and the inner shaft 13 is increased, and the durability is improved. Need to be high. As a result, the contact pressure between the outer peripheral edge (sharp edge) of the distal end portion of the large-diameter portion 16 and the inner peripheral surface of the small-diameter portion 14 increases, and the method for manufacturing the shock absorbing steering shaft as described above When the outer shaft 12a and the inner shaft 13 are relatively displaced in the axial direction in the direction approaching each other, galling is likely to occur at the outer peripheral edge of the distal end portion of the large diameter portion 16. That is, at the time of this relative displacement, the long diameter portion of the outer peripheral edge of the distal end portion of the large diameter portion 16 having an elliptical cross-sectional shape and the inner peripheral surface of the small diameter portion 14 having a circular cross sectional shape are strongly rubbed. The outer peripheral edge of the tip portion bites into the inner peripheral surface of the small diameter portion 14. If the galling generated in this way is left unattended, the energy absorption performance in the event of a collision may become unstable. Therefore, in order to stabilize the energy absorption performance, it is necessary to remove a surplus portion (peeling portion) generated by galling by cutting or the like. Also, depending on the degree of galling, the completed shock absorbing steering shaft must be discarded as a defective product, which increases manufacturing costs due to increased processing effort and yield, and improvements are desired. . In particular, in the case of the intermediate shaft 6, as described above, there is a great need for improvement in order to increase the contact pressure of the fitting portion in order to secure the holding force.

特許第3168841号公報Japanese Patent No. 3168841 特許第3716590号公報Japanese Patent No. 3716590

本発明は、上述の様な事情に鑑み、アウタシャフトとインナシャフトとを、二次衝突時に加わる衝撃荷重に伴い、これら両シャフト同士が軸方向に相対変位可能に結合して成る衝撃吸収式ステアリングシャフトを製造する際に、前記インナシャフトの先端部外周縁と前記アウタシャフトの内周面との間にかじりが発生するのを防止し、加工の手間の増大や不良品の発生を抑えつつ、エネルギ吸収性能の安定した衝撃吸収式ステアリングシャフトを得られる様にして、製造コストの上昇を抑える事ができる製造方法を実現すべく発明したものである。 In view of the circumstances as described above, the present invention is an impact-absorbing steering system in which an outer shaft and an inner shaft are coupled to each other so as to be capable of relative displacement in the axial direction in accordance with an impact load applied during a secondary collision. When manufacturing the shaft, it prevents the occurrence of galling between the outer peripheral edge of the tip of the inner shaft and the inner peripheral surface of the outer shaft, while suppressing the increase in processing and the occurrence of defective products, The invention was invented to realize a manufacturing method capable of suppressing an increase in manufacturing cost so as to obtain an impact absorbing steering shaft having stable energy absorbing performance.

本発明の衝撃吸収式ステアリングシャフトの製造方法は、アウタシャフトの先端部とインナシャフトの先端部とを係合させた状態で、このアウタシャフトの先端部の外周面を1対の押圧片によって径方向内方に(径方向反対位置を互いに近付く方向に)押圧し、このアウタシャフトの先端部及び前記インナシャフトの先端部を径方向に(押圧方向が短径でこれと直角方向が長径となる、断面楕円形に)塑性変形させる。次いで、前記両シャフト同士を互いに近づく方向に軸方向に相対変位させる。そして、前記アウタシャフトの先端部を前記インナシャフトの中間部に、このインナシャフトの先端部をこのアウタシャフトの中間部に、それぞれ圧入嵌合させる。このアウタシャフトの先端部と中間部との間部分と、前記インナシャフトの先端部と中間部との間部分とは、互いに緩く係合させる。
特に、本発明の衝撃吸収式ステアリングシャフトの製造方法に於いては、前記インナシャフトとして、円管状で、且つ、このインナシャフトの先端縁部分に絞り加工を施す事により、このインナシャフトの先端縁部分に、外径及び内径が先端縁に向かう程徐々に小さくなり、且つ、径方向に関する厚さ寸法が一定である絞り部を設けているものを使用する。そして、前記アウタシャフトの先端部及び前記インナシャフトの先端部を径方向に塑性変形させる際に、前記絞り部の基端部を前記両押圧片の軸方向中間部の径方向内方に位置させる。
In the manufacturing method of the shock absorbing steering shaft of the present invention, the outer peripheral surface of the outer shaft front end is engaged with a pair of pressing pieces while the outer shaft front end and the inner shaft front end are engaged. The inner shaft is pressed inward (in the direction in which the opposite positions in the radial direction approach each other), and the distal end portion of the outer shaft and the distal end portion of the inner shaft are in the radial direction (the pressing direction is the short diameter and the perpendicular direction is the long diameter). Plastic deformation). Next, the shafts are relatively displaced in the axial direction so as to approach each other. And the front-end | tip part of the said outer shaft is press-fitted and fitted to the intermediate part of the said inner shaft, and the front-end | tip part of this inner shaft is each press-fitted to the intermediate part of this outer shaft. A portion between the front end portion and the intermediate portion of the outer shaft and a portion between the front end portion and the intermediate portion of the inner shaft are loosely engaged with each other.
In particular, in the manufacturing method of the shock absorbing type steering shaft of the present invention, the inner shaft has a circular tubular shape, and the tip edge portion of the inner shaft is formed by drawing the tip edge portion of the inner shaft. A part provided with a throttle part that gradually decreases as the outer diameter and inner diameter approach the tip edge and has a constant thickness dimension in the radial direction is used. When the distal end portion of the outer shaft and the distal end portion of the inner shaft are plastically deformed in the radial direction, the proximal end portion of the throttle portion is positioned radially inward of the axial intermediate portion of the two pressing pieces. .

上述の様な本発明の衝撃吸収式ステアリングシャフトの製造方法を実施する場合に、例えば請求項に記載した発明の様に、前記アウタシャフトとして、一端部に少なくとも内径が小さい小径部を設けたものを、前記インナシャフトとして、一端部に少なくとも外径が大きい大径部を設け、この大径部の先端部のうち、少なくとも先端縁寄り部分の外径が先端縁に向かう程小さいものを、それぞれ使用する。そして、前記小径部の先端部と前記大径部の先端部とを係合させた状態で、この小径部の先端部の外周面を径方向内方に(径方向反対位置を互いに近付く方向に)押圧し、この小径部の先端部及び前記大径部の先端部を径方向に(押圧方向が短径でこれと直角方向が長径となる、断面楕円形に)塑性変形させる。次いで、前記両シャフト同士を互いに近づく方向に軸方向に相対変位させ、前記小径部の先端部を前記大径部の基端部に、この大径部の先端部をこの小径部の基端部に、それぞれ圧入嵌合させ、この小径部の中間部とこの大径部の中間部とを互いに緩く係合させる。 When the shock absorbing steering shaft manufacturing method of the present invention as described above is carried out, for example, as in the invention described in claim 2 , at least one small diameter portion having a small inner diameter is provided at one end portion as the outer shaft. As the inner shaft, at least one large-diameter portion having a large outer diameter is provided at one end portion, and at least the outer diameter of the portion close to the tip edge of the tip portion of the large-diameter portion is small toward the tip edge. Use each one. Then, with the tip portion of the small diameter portion and the tip portion of the large diameter portion engaged, the outer peripheral surface of the tip portion of the small diameter portion is directed radially inward (in the direction in which the opposite radial positions approach each other). ) Press and plastically deform the tip of the small-diameter portion and the tip of the large-diameter portion in the radial direction (in a cross-sectional ellipse in which the pressing direction is the short diameter and the direction perpendicular thereto is the long diameter). Next, the shafts are relatively displaced in the axial direction so as to approach each other, the distal end portion of the small diameter portion is the proximal end portion of the large diameter portion, and the distal end portion of the large diameter portion is the proximal end portion of the small diameter portion The intermediate portion of the small diameter portion and the intermediate portion of the large diameter portion are loosely engaged with each other.

上述の様に構成する、本発明の衝撃吸収式ステアリングシャフトの製造方法によれば、このステアリングシャフトを製造する際に、インナシャフトの先端縁とアウタシャフトの内周面との間にかじりが発生するのを防止し、加工の手間の増大や不良品の発生を抑えつつ、優れた衝撃エネルギ吸収性能を発揮できる衝撃吸収式ステアリングシャフトを組み立てて、前記ステアリングシャフトの製造コストの上昇を抑える事ができて、衝撃吸収式ステアリングシャフトを、工業的に能率良く製造する事ができる。この理由は、前記インナシャフトの先端縁部分に、外径が先端縁に向かう程小さくなる絞り部を設けている為、前記衝撃吸収式ステアリングシャフトを製造する際に、前記インナシャフトの先端縁と前記アウタシャフトの内周面との間でかじりが発生するのを防止できるからである。即ち、前記インナシャフトの先端縁部分(絞り部)は先端縁に向かう程外径が小さいので、このインナシャフトの先端部外周縁(尖鋭な端縁)と前記アウタシャフトの内周面とは当接しない(擦れ合わない)。前記インナシャフトの先端縁部分のうち、このアウタシャフトの内周面と当接する部分は、断面形状の曲率半径が大きい(或いはこのアウタシャフトの内周面に対する傾斜角が小さい)ので、前記インナシャフトの先端縁部分とこのアウタシャフトの内周面との当接圧を低くできる。この為、これら両シャフト同士を互いに近づく方向に軸方向に相対変位させる際に、前記インナシャフトの先端縁部分と前記アウタシャフトの内周面との間に作用する摩擦を小さく抑える事ができて、この先端縁部分がこの内周面に食い込む事を防止でき、前記かじりの発生を防止できる。特に、本発明の場合には、前記アウタシャフトの先端部及び前記インナシャフトの先端部を径方向に塑性変形させる際に、絞り部の基端部を前記両押圧片の軸方向中間部の径方向内方に位置させている。この為、前記インナシャフトの先端縁部分に設けた絞り部を径方向内方に押圧する力を適切に制御(中間寄り部分よりも大きくなる事を防止)できる。 According to the shock absorbing steering shaft manufacturing method of the present invention configured as described above, galling occurs between the tip edge of the inner shaft and the inner peripheral surface of the outer shaft when the steering shaft is manufactured. It is possible to assemble an impact-absorbing steering shaft that can exhibit excellent impact energy absorption performance while suppressing the increase in processing effort and the occurrence of defective products, and suppressing the increase in the manufacturing cost of the steering shaft Thus , the shock absorbing steering shaft can be manufactured industrially efficiently . This is because the inner shaft has a narrowed portion that decreases as the outer diameter of the inner shaft approaches the leading edge, so that when the shock absorbing steering shaft is manufactured, the inner edge of the inner shaft This is because it is possible to prevent galling between the inner peripheral surface of the outer shaft. In other words, since the outer diameter of the inner edge of the inner shaft (throttle portion) decreases toward the distal edge, the outer peripheral edge (sharp edge) of the inner shaft and the inner peripheral surface of the outer shaft are in contact with each other. Do not touch (do not rub). Of the tip edge portion of the inner shaft, the portion of the inner shaft that contacts the inner peripheral surface of the outer shaft has a large cross-sectional radius of curvature (or a small inclination angle with respect to the inner peripheral surface of the outer shaft). The abutting pressure between the tip edge portion and the inner peripheral surface of the outer shaft can be reduced. For this reason, when these two shafts are relatively displaced in the axial direction in the direction of approaching each other, the friction acting between the tip edge portion of the inner shaft and the inner peripheral surface of the outer shaft can be reduced. The tip edge portion can be prevented from biting into the inner peripheral surface, and the occurrence of the galling can be prevented. In particular, in the case of the present invention, when the distal end portion of the outer shaft and the distal end portion of the inner shaft are plastically deformed in the radial direction, the base end portion of the throttle portion is the diameter of the axial intermediate portion of the two pressing pieces. It is located inward. For this reason, it is possible to appropriately control the force that presses the throttle portion provided at the tip edge portion of the inner shaft inward in the radial direction (prevents becoming larger than the intermediate portion).

本発明に関する参考例の第1例を示す、ステアリングシャフトの断面図。Sectional drawing of a steering shaft which shows the 1st example of the reference example regarding this invention. 同じく、図7と同様の図。Similarly, the same figure as FIG. 本発明に関する参考例の第2例を示す、インナシャフトを取り出して示す断面図。Sectional drawing which takes out and shows the inner shaft which shows the 2nd example of the reference example regarding this invention. 本発明の実施の形態の1例を示す、図2と同様の図。 The figure similar to FIG. 2 which shows an example of embodiment of this invention . 従来から知られているステアリング装置の1例を、一部を切断した状態で示す側面図。The side view which shows one example of the steering device conventionally known in the state which cut | disconnected a part. 本発明の対象となる衝撃吸収式ステアリングシャフトの、従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure of the shock absorption type steering shaft used as the object of this invention. 従来構造の製造時に、インナシャフトの先端部とアウタシャフトの先端部とを係合させた状態を示す断面図。Sectional drawing which shows the state which engaged the front-end | tip part of the inner shaft, and the front-end | tip part of the outer shaft at the time of manufacture of a conventional structure. 図7のX−X断面図。XX sectional drawing of FIG. 1対の押圧片により、前記両先端部を径方向内方に塑性変形した状態で示す、図8と同様の図。FIG. 9 is a view similar to FIG. 8, showing a state where both the tip portions are plastically deformed radially inward by a pair of pressing pieces.

参考例の第1例]
図1〜2は、本発明に関する参考例の第1例を示している。尚、本参考例を含めて、本発明の衝撃吸収式ステアリングシャフトの製造方法の特徴は、インナシャフト13aの先端縁と、アウタシャフト12aの内周面との間でかじりが発生するのを防止し、加工の手間の増大や不良品の発生を抑えつつ、優れた衝撃エネルギ吸収性能を発揮できる衝撃吸収式ステアリングシャフトを組み立てて、製造コストの上昇を抑える事ができる製造方法を実現する点にある。その他の部分の構成及び作用は、前述の図6〜9に示した構造及びその製造方法を含め、従来から知られている衝撃吸収式ステアリングシャフト及びその製造方法と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本参考例の特徴部分を中心に説明する。
[First example of reference example ]
1 and 2 show a first example of a reference example related to the present invention . In addition, including the present reference example , the shock absorbing type steering shaft manufacturing method according to the present invention is characterized in that galling is prevented between the tip edge of the inner shaft 13a and the inner peripheral surface of the outer shaft 12a. In order to realize a manufacturing method that can suppress an increase in manufacturing cost by assembling an impact absorbing steering shaft that can exhibit excellent impact energy absorption performance while suppressing an increase in processing time and occurrence of defective products is there. Construction and operation of the other parts, including the structure and the manufacturing method thereof illustrated in Figures 6-9 described above, because it is similar to the shock absorbing type steering shaft, and a manufacturing method thereof is known in the art, relates to similar parts The illustration and description will be omitted or simplified, and the following description will focus on the features of this reference example .

本参考例の構造の場合、ステアリングシャフト3bを構成する、前記インナシャフト13aの後端部(図1〜2の右側)に、前端部(図1〜2の左側)よりも外径の大きい大径部16aを設けている。この様な大径部16aは、前記インナシャフト13aの前端部外周面に切削加工を施す事により形成する。若しくはこのインナシャフト13aが円管状であれば、前述した従来構造の場合と同様に、このインナシャフト13aの後端部を押し拡げる事により形成しても良い。或いは、前記インナシャフト13aを前記アウタシャフト12aの内径側に挿通可能であれば、前記大径部16aを設けず、前記インナシャフト13aの外径を軸方向全長に亙って同じとする事もできる。但し、この場合は、前記ステアリングシャフト3bの収縮荷重が過大になるのを防止すべく、前記インナシャフト13aの外周面に軸方向全長に亙って雄セレーション17を形成する。
又、前記アウタシャフト12aの前端部(図1〜2の左側)に、後端部(図1〜2の右側)よりも内径の小さい小径部14を設けている。この様な小径部14は、前述した従来構造の場合と同様に円管状である前記アウタシャフト12aの前端部に絞り加工を施す事により、若しくは後端部内周面に切削加工を施す事により形成する。或いは、前記インナシャフト13aを前記アウタシャフト12aの内径側に挿通可能であれば、前記小径部14を設けず、このアウタシャフト12aの内径を軸方向全長に亙って同じとする事もできる。但し、この場合は、前記ステアリングシャフト3bの収縮荷重が過大になるのを防止すべく、前記アウタシャフト12aの内周面に軸方向全長に亙って前記雄セレーション17と係合する、雌セレーション15を形成する。
図1〜2に示した本参考例の構造の場合、前記インナシャフト13aの前端部外周面に切削加工を施す事により後端部に大径部16aを、前記アウタシャフト12aの前端部に絞り加工を施す事により小径部14を、それぞれ設けている。
In the case of the structure of this reference example , the rear end portion (right side in FIGS. 1 and 2) constituting the steering shaft 3b has a larger outer diameter than the front end portion (left side in FIGS. 1 and 2). A diameter portion 16a is provided. Such a large diameter portion 16a is formed by cutting the outer peripheral surface of the front end portion of the inner shaft 13a. Alternatively, if the inner shaft 13a is circular, it may be formed by expanding the rear end portion of the inner shaft 13a as in the case of the conventional structure described above. Alternatively, if the inner shaft 13a can be inserted into the inner diameter side of the outer shaft 12a, the outer diameter of the inner shaft 13a may be the same over the entire axial length without providing the large diameter portion 16a. it can. However, in this case, male serrations 17 are formed on the outer peripheral surface of the inner shaft 13a over the entire length in the axial direction in order to prevent the shrinkage load of the steering shaft 3b from becoming excessive.
A small-diameter portion 14 having an inner diameter smaller than that of the rear end portion (right side in FIGS. 1 and 2) is provided at the front end portion (left side in FIGS. 1 and 2) of the outer shaft 12a. Such a small-diameter portion 14 is formed by drawing the front end portion of the outer shaft 12a which is tubular like the conventional structure described above, or by cutting the inner peripheral surface of the rear end portion. To do. Alternatively, if the inner shaft 13a can be inserted into the inner diameter side of the outer shaft 12a, the inner diameter of the outer shaft 12a can be made the same over the entire length in the axial direction without providing the small diameter portion 14. However, in this case, in order to prevent the shrinkage load of the steering shaft 3b from becoming excessive, a female serration that engages with the male serration 17 over the entire length in the axial direction on the inner peripheral surface of the outer shaft 12a. 15 is formed.
In the case of the structure of this reference example shown in FIGS. 1 and 2, by cutting the outer peripheral surface of the front end portion of the inner shaft 13a, the large-diameter portion 16a is drawn at the rear end portion, and the front end portion of the outer shaft 12a is narrowed down. Each of the small diameter portions 14 is provided by processing.

更に、前記大径部16aの先端部外周縁(図1〜2の右側)に、断面形状が部分円弧状(R状)の面取り部21を設ける事により、前記大径部16aの先端部の外径が、この大径部16aの先端縁(図1〜2の右側)に向かう程小さくなる(漸減する)様にしている。尚、本参考例の場合、前記インナシャフト13aの大径部16aの先端部(図1〜2の右端部)に凹孔22を設け、後述する様に、1対の押圧片18、18によって前記小径部14の先端部及び前記大径部16aの先端部を径方向に塑性変形する際に、必要とされる押圧力が過度に大きくならない様にしている。 Furthermore, by providing a chamfered portion 21 having a partial arc shape (R shape) in cross-section at the outer peripheral edge (right side in FIGS. 1 and 2) of the distal end portion of the large diameter portion 16a, the distal end portion of the large diameter portion 16a is provided. The outer diameter is made smaller (decrease gradually) toward the tip edge (right side in FIGS. 1 and 2) of the large-diameter portion 16a. In the case of this reference example , a concave hole 22 is provided at the tip end portion (the right end portion in FIGS. 1 and 2) of the large diameter portion 16a of the inner shaft 13a, and as will be described later, When the distal end portion of the small-diameter portion 14 and the distal end portion of the large-diameter portion 16a are plastically deformed in the radial direction, the required pressing force is not excessively increased.

上述の様に構成する本参考例の衝撃吸収式ステアリングシャフトを製造する為に、先ず、図2に示す様に、前記大径部16aの先端部を前記小径部14の先端部に係合させる。そして、この小径部14の先端部の外周面を前記両押圧片18、18により径方向内方に押圧し、前述した従来構造の1例を示す図→図の場合と同様に、前記ステアリングシャフト3bの中心軸に直交する仮想平面に関する断面形状が楕円形となる様に、前記小径部14の先端部と前記大径部16aの先端部とを径方向に塑性変形させる。この時、前記両押圧片18、18を押圧する押圧力を調整しても良い。即ち、これら両押圧片18、18の端面同士の間の隙間20、20(図参照)の厚さを、前記両先端部を塑性変形させた状態で正の値とし(隙間20、20を残し)、これら両先端部の変形量を調整する事もできる。又、前記両押圧片18、18の内側面で前記小径部14の先端部の外周面と当接する部分の形状は、前述した図8〜9に示す様な断面が円弧状の凹部19、19に限らず、前記小径部14の先端部の外周面の径方向反対位置を、互いに近付く方向に押圧できれば、平面や断面形状がV字形の面等とする事もできる。更に、断面円弧状とする場合でも、前記小径部14の先端部外周面の曲率半径との大小関係は、何れでも良い。又、前記面取り部21の基端部(大径側端部)は、前記両押圧片18、18により、アウタシャフト12aとインナシャフト13aとを押圧する際に、これら両押圧片18、18の軸方向中間部(これら両押圧片18、18の厚さ範囲内)の径方向内方に位置させている。前記両先端部同士の係合部を塑性変形したならば、次いで、前記アウタシャフト12aと前記インナシャフト13aとを軸方向に相対変位させて、前記小径部14の先端部を前記大径部16aの基端部に、この大径部16aの先端部にこの小径部14の基端部を、それぞれ圧入嵌合させる。又、これら小径部14の中間部と大径部16aの中間部とは、互いに緩く嵌合させる。 In order to manufacture the shock absorbing steering shaft of this reference example configured as described above, first, as shown in FIG. 2, the tip of the large diameter portion 16 a is engaged with the tip of the small diameter portion 14. . Then, the outer peripheral surface of the distal end portion of the small diameter portion 14 is pressed radially inward by the two pressing pieces 18 and 18, as in the case of FIG. 89 showing an example of the conventional structure described above, the The distal end portion of the small-diameter portion 14 and the distal end portion of the large-diameter portion 16a are plastically deformed in the radial direction so that a cross-sectional shape related to a virtual plane orthogonal to the central axis of the steering shaft 3b is an ellipse. At this time, the pressing force for pressing both the pressing pieces 18, 18 may be adjusted. That is, the thicknesses of the gaps 20 and 20 (see FIG. 8 ) between the end faces of both the pressing pieces 18 and 18 are set to positive values in the state where both the tip portions are plastically deformed (the gaps 20 and 20 are set to be the same). The amount of deformation of both the tip portions can be adjusted. Further, the shape of the outer peripheral surface abutting portion of the tip portion of the small diameter portion 14 at the inner surfaces of the both pressing pieces 18 and 18, such cross-section shown in FIG. 8-9 arcuate recesses 19 and 19 described above Not limited to this, as long as the radially opposite positions of the outer peripheral surface of the distal end portion of the small-diameter portion 14 can be pressed toward each other, the plane or the cross-sectional shape can be a V-shaped surface or the like. Furthermore, even when the cross-sectional arc shape is used, the magnitude relationship with the curvature radius of the outer peripheral surface of the tip end portion of the small diameter portion 14 may be any. The base end portion (large-diameter side end portion) of the chamfered portion 21 is formed by the pressing pieces 18 and 18 when the outer shaft 12a and the inner shaft 13a are pressed by the pressing pieces 18 and 18. It is located inward in the radial direction of the axially intermediate portion (within the thickness range of both the pressing pieces 18, 18). If the engaging portion between the two tip portions is plastically deformed, then the outer shaft 12a and the inner shaft 13a are relatively displaced in the axial direction, and the tip portion of the small diameter portion 14 is moved to the large diameter portion 16a. The base end portion of the small-diameter portion 14 is press-fitted into the base end portion of the large-diameter portion 16a. Further, the intermediate portion of the small diameter portion 14 and the intermediate portion of the large diameter portion 16a are loosely fitted to each other.

上述の様に構成する本参考例の衝撃吸収式ステアリングシャフト及びその製造方法によれば、前記ステアリングシャフト3bを製造する際に、前記インナシャフト13aの大径部16aの先端縁と前記アウタシャフト12aの小径部14の内周面との間にかじりが発生するのを防止し、前記ステアリングシャフト3bの製造コストの上昇を抑えつつ、優れた衝撃エネルギ吸収性能を発揮できる衝撃吸収式ステアリングシャフトを組み立てる事ができる。この理由は、前記大径部16aの先端部外周縁に断面形状が部分円弧状(R状)の面取り部21を設ける事で、この大径部16aの先端部のうち、先端縁部分の外径をこの大径部16aの先端縁に向かう程小さくしているからである。この様な構成を採用している為、前記ステアリングシャフト3bを製造する際に、前記アウタシャフト12aと前記インナシャフト13aとを互いに近づく方向に軸方向に相対変位させる際に、前記大径部16aの先端縁と前記小径部14の内周面とが強く擦れ合う事がない。即ち、この大径部16aの先端縁部分の外径が小さくなっている為、この大径部16aの先端部外周縁(尖鋭な端縁)と、前記小径部14の内周面とは当接しない。この大径部16aの先端縁部分のうち、この小径部14の内周面と当接する部分には、R状の面取り部21を設け、断面形状の曲率半径を大きくしているので、前記先端縁部分と前記小径部14の内周面との当接圧は低い。この為、前記両シャフト12a、13a同士を相対変位させる際に、前記大径部16aの先端縁部分と前記小径部14の内周面との間に作用する摩擦力を小さく抑える事ができて、この先端縁部分がこの内周面に食い込む事を防止でき、この内周面にかじりによる余肉部(むしれ)が発生するのを防止できる。 According to the shock absorbing steering shaft and the manufacturing method thereof of the present embodiment configured as described above, when manufacturing the steering shaft 3b, the leading edge of the large-diameter portion 16a of the inner shaft 13a and the outer shaft 12a Assembling an impact-absorbing steering shaft that prevents the occurrence of galling with the inner peripheral surface of the small-diameter portion 14 and suppresses an increase in the manufacturing cost of the steering shaft 3b and exhibits excellent impact energy absorption performance. I can do things. The reason for this is that by providing a chamfered portion 21 having a partial arc shape (R shape) in the outer peripheral edge of the distal end portion of the large-diameter portion 16a, out of the distal end edge portion of the distal end portion of the large-diameter portion 16a. This is because the diameter is made smaller toward the leading edge of the large diameter portion 16a. Since such a configuration is adopted, when the steering shaft 3b is manufactured, when the outer shaft 12a and the inner shaft 13a are relatively displaced in the axial direction in a direction approaching each other, the large-diameter portion 16a. The tip edge of the small diameter portion and the inner peripheral surface of the small diameter portion 14 do not rub against each other. That is, since the outer diameter of the tip edge portion of the large diameter portion 16a is small, the outer peripheral edge (sharp edge) of the large diameter portion 16a and the inner peripheral surface of the small diameter portion 14 are not matched. Do not touch. Of the leading edge portion of the large-diameter portion 16a, an R-shaped chamfered portion 21 is provided at a portion that contacts the inner peripheral surface of the small-diameter portion 14, and the curvature radius of the cross-sectional shape is increased. The contact pressure between the edge portion and the inner peripheral surface of the small diameter portion 14 is low. Therefore, when the shafts 12a and 13a are relatively displaced, the frictional force acting between the tip edge portion of the large-diameter portion 16a and the inner peripheral surface of the small-diameter portion 14 can be reduced. The leading edge portion can be prevented from biting into the inner peripheral surface, and the occurrence of a surplus portion due to galling on the inner peripheral surface can be prevented.

尚、前記面取り部21の基端部(大径側端部)は、前記両シャフト12a、13a同士を塑性変形する際に、前記両押圧片18、18の軸方向中間部の径方向内方に位置させている為、前記大径部16aの先端縁部分で外径が小さくなっている部分を径方向内方に押圧する力を適切に制御(中間寄り部分よりも大きくなる事を防止)できる。この結果、前記大径部16aの先端縁と小径部14の内周面との擦れ合い部でかじりが生じる事を、より安定して防止できる。   The base end portion (large-diameter side end portion) of the chamfered portion 21 is radially inward of the intermediate portion in the axial direction of the pressing pieces 18 and 18 when the shafts 12a and 13a are plastically deformed. Therefore, the force of pressing the portion whose outer diameter is small at the tip edge portion of the large diameter portion 16a inward in the radial direction is appropriately controlled (preventing becoming larger than the intermediate portion) it can. As a result, it is possible to more stably prevent galling at the rubbing portion between the tip edge of the large diameter portion 16a and the inner peripheral surface of the small diameter portion 14.

参考例の第2例]
図3は、本発明に関する参考例の第2例を示している。本参考例の場合には、インナシャフト13bの大径部16bの先端縁部分(図3の右側)に、この大径部16bの先端縁に向かう程この先端縁部分の外径が小さくなる様に、母線形状が直線状の(部分円すい面状の)テーパ面部23を設けている。このテーパ面部23のテーパ角θは、このテーパ面部23とアウタシャフト12aの小径部14(図1〜2、6〜9参照)の内周面との当接圧を小さくする為、60度以下とする事が望ましい。前記テーパ角θを60度よりも大きくすると、前記テーパ面部23の基端部と前記大径部16bの中間寄り部分との連続部の角度が小さく(150度未満に)なり、この連続部で、前記小径部14の内周面との当接圧が高くなる可能性がある。この結果、この連続部とこの小径部14の内周面との擦れ合い部でかじりが発生するのを防止できなくなる可能性がある。
[Second example of reference example ]
FIG. 3 shows a second example of a reference example relating to the present invention . In the case of this reference example , the outer diameter of the tip edge portion becomes smaller toward the tip edge portion (right side in FIG. 3) of the large diameter portion 16b of the inner shaft 13b toward the tip edge of the large diameter portion 16b. In addition, a tapered surface portion 23 having a straight line shape (partial conical surface shape) is provided. The taper angle θ of the taper surface portion 23 is 60 degrees or less in order to reduce the contact pressure between the taper surface portion 23 and the inner peripheral surface of the small diameter portion 14 (see FIGS. 1-2 and 6-9 ) of the outer shaft 12a. It is desirable that When the taper angle θ is larger than 60 degrees, the angle of the continuous portion between the proximal end portion of the tapered surface portion 23 and the intermediate portion of the large diameter portion 16b becomes small (less than 150 degrees). The contact pressure with the inner peripheral surface of the small diameter portion 14 may increase. As a result, it may not be possible to prevent galling at the rubbing portion between the continuous portion and the inner peripheral surface of the small diameter portion 14.

更に、本参考例の場合には、前記テーパ面部23の基端部(大径側端部)である、前記連続部に、断面形状が部分円弧状(R状)である、面取り部21aを設けている。本参考例の場合には、この連続部の角度を大きく(150度以上に)した事と、この連続部に面取り部21aを設けた事とにより、この連続部と前記小径部14の内周面との当接部の面圧を、より低く抑え、この当接部でのかじりの発生を、より効果的に抑えられる様にしている。尚、前記面取り部21aの基端部(大径側端部)は、前記両シャフト12a、13b同士を塑性変形する際に、1対の押圧片18、18の軸方向中間部(これら両押圧片18、18の厚さ範囲内)の径方向内方に位置させる。
その他の部分の構成及び作用は、上述した参考例の第1例と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
Further, in the case of the present reference example , a chamfered portion 21 a having a partial arc shape (R shape) in cross section is formed on the continuous portion, which is the base end portion (large diameter side end portion) of the tapered surface portion 23. Provided. In the case of this reference example , the angle of the continuous part is increased (150 degrees or more) and the chamfered part 21a is provided in the continuous part, so that the continuous part and the inner circumference of the small diameter part 14 are provided. The surface pressure of the contact portion with the surface is suppressed to be lower, and the occurrence of galling at the contact portion can be suppressed more effectively. The base end portion (large-diameter side end portion) of the chamfered portion 21a is an intermediate portion in the axial direction of the pair of pressing pieces 18, 18 when the shafts 12a, 13b are plastically deformed. It is positioned radially inwardly within the thickness range of the pieces 18, 18.
Since the configuration and operation of the other parts are the same as those in the first example of the reference example described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.

[実施の形態の1例]
図4は、本発明の実施の形態の1例を示している。本例の場合には、インナシャフト13cを円管状とし、このインナシャフト13cの一端部(図4の右端部)に大径部16cを設けている。そして、この大径部16cの先端縁部分に絞り加工を施す事により、この大径部16cの先端縁部分の外径及び内径が先端縁(図4の右側)に向かう程徐々に小さくなる様に、絞り部24を設けている。この絞り部24の基端部(大径側端部)は、アウタシャフト12aと前記インナシャフト13cとを塑性変形する際に、1対の押圧片18、18の軸方向中間部(これら両押圧片18、18の厚さ範囲内)の径方向内方に位置させる。
その他の部分の構成及び作用は、前述した参考例の第1例と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
[Example of Embodiment]
FIG. 4 shows an example of an embodiment of the present invention. In the case of this example, the inner shaft 13c is formed in a circular tube shape, and a large-diameter portion 16c is provided at one end portion (the right end portion in FIG. 4) of the inner shaft 13c. Then, by drawing the tip edge portion of the large diameter portion 16c, the outer diameter and inner diameter of the tip edge portion of the large diameter portion 16c gradually decrease toward the tip edge (right side in FIG. 4). In addition, an aperture 24 is provided. When the outer shaft 12a and the inner shaft 13c are plastically deformed, the base end portion (large diameter side end portion) of the narrowed portion 24 is an axially intermediate portion of the pair of pressing pieces 18, 18 (both of these pressing portions). It is positioned radially inwardly within the thickness range of the pieces 18, 18.
Since the configuration and operation of the other parts are the same as those of the first example of the reference example described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.

1 車体
2 ステアリングコラム
3、3a〜3b ステアリングシャフト
4 ステアリングホイール
5a、5b 自在継手
6 中間シャフト
7 ステアリングギヤユニット
8 入力軸
9 タイロッド
10 電動モータ
11 アウタコラム
12、12a アウタシャフト
13、13a〜13c インナシャフト
14 小径部
15 雌セレーション
16、16a〜16c 大径部
17 雄セレーション
18 押圧片
19 凹部
20 隙間
21、21a 面取り部
22 凹孔
23 テーパ面部
24 絞り部
DESCRIPTION OF SYMBOLS 1 Car body 2 Steering column 3, 3a-3b Steering shaft 4 Steering wheel 5a, 5b Universal joint 6 Intermediate shaft 7 Steering gear unit 8 Input shaft 9 Tie rod 10 Electric motor 11 Outer column 12, 12a Outer shaft 13, 13a-13c Inner shaft 14 Small diameter portion 15 Female serration 16, 16a to 16c Large diameter portion 17 Male serration
18 pressing pieces 19 recessed portions 20 clearances 21 and 21a chamfered portions 22 recessed holes 23 tapered surface portions 24 throttle portions

Claims (2)

少なくとも先端縁から中間部に掛けての部分の内周面に雌セレーションを形成した管状のアウタシャフトと、少なくとも先端縁から中間部に掛けての部分の外周面にこの雌セレーションと係合する雄セレーションを形成したインナシャフトとを、前記アウタシャフトの先端部とこのインナシャフトの先端部とを係合させた状態で、このアウタシャフトの外周面を1対の押圧片によって径方向内方に押圧する事により、このアウタシャフトの先端部及び前記インナシャフトの先端部を径方向に塑性変形させた後、このアウタシャフトとこのインナシャフトとを互いに近づく方向に軸方向に相対変位させて、このアウタシャフトの先端部をこのインナシャフトの中間部に圧入嵌合すると共に、このインナシャフトの先端部を前記アウタシャフトの中間部に圧入嵌合させ、このアウタシャフトの先端部と中間部との間部分と、前記インナシャフトの先端部と中間部との間部分とを互いに緩く係合させる衝撃吸収式ステアリングシャフトの製造方法に於いて、前記インナシャフトとして、円管状で、且つ、このインナシャフトの先端縁部分に絞り加工を施す事により、このインナシャフトの先端縁部分に、外径及び内径が先端縁に向かう程徐々に小さくなり、且つ、径方向に関する厚さ寸法が一定である絞り部を設けているものを使用し、前記アウタシャフトの先端部及び前記インナシャフトの先端部を径方向に塑性変形させる際に、前記絞り部の基端部を前記両押圧片の軸方向中間部の径方向内方に位置させる事を特徴とする衝撃吸収式ステアリングシャフトの製造方法。 A tubular outer shaft in which female serrations are formed on the inner peripheral surface of at least a portion extending from the leading edge to the intermediate portion, and a male that engages with the female serrations on the outer peripheral surface of at least the portion extending from the leading edge to the intermediate portion. The outer shaft of the outer shaft is pressed radially inward by a pair of pressing pieces with the inner shaft having the serration engaged with the tip of the outer shaft and the tip of the inner shaft. As a result, the outer shaft and the inner shaft are plastically deformed in the radial direction, and then the outer shaft and the inner shaft are relatively displaced in the axial direction so as to approach each other. The front end of the shaft is press-fitted into the intermediate portion of the inner shaft, and the front end of the inner shaft is inserted into the outer shaft. Manufacture of an impact-absorbing steering shaft that is press-fitted into an intermediate portion, and loosely engages a portion between the tip portion and the intermediate portion of the outer shaft and a portion between the tip portion and the intermediate portion of the inner shaft. In the method, the inner shaft is tubular, and the tip end portion of the inner shaft is subjected to a drawing process so that the outer diameter and inner diameter of the inner shaft are directed toward the tip edge. When the diameter of the outer shaft and the inner shaft are plastically deformed in a radial direction by using a throttle portion that is gradually reduced in size and has a constant thickness in the radial direction. A method of manufacturing an impact-absorbing steering shaft, wherein a base end portion of the throttle portion is positioned radially inward of an axially intermediate portion between the pressing pieces. 前記アウタシャフトは、一端部に少なくとも内径を小さくした小径部を設け、この小径部の内周面に雌セレーションを形成しているものであり、前記インナシャフトは、一端部に少なくとも外径を大きくした大径部を設け、この大径部の外周面に前記雌セレーションと係合する雄セレーションを形成しており、この大径部の先端部のうち、先端縁寄り部分の外径が先端縁に向かう程小さくなっているものであり、前記小径部の先端部と前記大径部の先端部とを係合させた状態で、この小径部の外周面を径方向内方に押圧する事により、この小径部の先端部及び前記大径部の先端部を径方向に塑性変形させた後、前記アウタシャフトと前記インナシャフトとを互いに近づく方向に軸方向に相対変位させて、前記小径部の先端部を前記大径部の基端部に圧入嵌合すると共に、この大径部の先端部をこの小径部の基端部に圧入嵌合させ、これら小径部の中間部と大径部の中間部とを互いに緩く係合させる、請求項1に記載の衝撃吸収式ステアリングシャフトの製造方法。 The outer shaft is provided with a small-diameter portion having at least a small inner diameter at one end portion, and a female serration is formed on the inner peripheral surface of the small-diameter portion. The inner shaft has at least a large outer diameter at one end portion. And a male serration that engages with the female serration is formed on the outer peripheral surface of the large diameter portion, and the outer diameter of the distal end portion of the large diameter portion is the tip edge. By pressing the outer peripheral surface of the small diameter portion inward in the radial direction in a state where the tip portion of the small diameter portion and the tip portion of the large diameter portion are engaged. Then, after plastically deforming the distal end portion of the small diameter portion and the distal end portion of the large diameter portion in the radial direction, the outer shaft and the inner shaft are relatively displaced in the axial direction so as to approach each other, and the small diameter portion The tip part is the base of the large diameter part. While press-fitted into parts, the tip portion of the large-diameter portion is fitted pressed into the proximal end of the small diameter portion, thereby an intermediate portion of the intermediate portion and the large diameter portion of the small-diameter portion engaged loosely engaged with each other, The manufacturing method of the impact-absorbing type steering shaft according to claim 1 .
JP2013175765A 2013-08-27 2013-08-27 Method for manufacturing shock absorbing steering shaft Active JP5626431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175765A JP5626431B2 (en) 2013-08-27 2013-08-27 Method for manufacturing shock absorbing steering shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175765A JP5626431B2 (en) 2013-08-27 2013-08-27 Method for manufacturing shock absorbing steering shaft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011154011A Division JP2013018394A (en) 2011-07-12 2011-07-12 Impact absorbing steering shaft and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013241182A JP2013241182A (en) 2013-12-05
JP5626431B2 true JP5626431B2 (en) 2014-11-19

Family

ID=49842516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175765A Active JP5626431B2 (en) 2013-08-27 2013-08-27 Method for manufacturing shock absorbing steering shaft

Country Status (1)

Country Link
JP (1) JP5626431B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578295Y2 (en) * 1992-07-07 1998-08-06 日本精工株式会社 Shock absorbing steering shaft
JP3168841B2 (en) * 1994-09-22 2001-05-21 日本精工株式会社 Manufacturing method of shock absorbing steering shaft
JP3694372B2 (en) * 1996-10-02 2005-09-14 株式会社竹中工務店 Metal pipe joint device
JP3716590B2 (en) * 1997-12-03 2005-11-16 日本精工株式会社 Method for manufacturing shock absorbing steering shaft

Also Published As

Publication number Publication date
JP2013241182A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JPH0891230A (en) Manufacture of impact absorbing type steering shaft
JP6481797B2 (en) Telescopic shaft
EP2666700B1 (en) Steering device
JP5733360B2 (en) Method for manufacturing shock absorbing steering shaft
JP2009040302A (en) Energy absorption type shaft for steering device
EP3315381A1 (en) Outer column with bracket, steering column with bracket, and steering device
JP5545275B2 (en) Method for manufacturing shock absorbing steering shaft
JP2008087531A (en) Electrically-driven telescopic adjustment type steering device
JP5626431B2 (en) Method for manufacturing shock absorbing steering shaft
JP2008273359A (en) Energy absorption type shaft for steering system
JPH10147245A (en) Contractive load adjusting method for shock absorptive steering shaft
JP6340832B2 (en) Universal joint and steering apparatus including the universal joint
JP5440563B2 (en) Shock absorbing steering shaft
JP5673770B2 (en) Torque transmission device for steering device
JP5338834B2 (en) Steering lock device
JP5321655B2 (en) Torque transmission device for steering device
JP2013018394A (en) Impact absorbing steering shaft and manufacturing method thereof
JP2019082217A (en) Coupling structure and coupling method of shafts
JP2006264424A (en) Steering device
JP2009292308A (en) Steering column device
JP6547329B2 (en) Joint structure of universal joint yoke and shaft member and steering apparatus
JP7314951B2 (en) steering column and steering gear
JP7234686B2 (en) Outer shaft and manufacturing method thereof
JP5636828B2 (en) Universal joint and processing method thereof
JP7507539B2 (en) Intermediate shaft

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5626431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150