JP5626100B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5626100B2
JP5626100B2 JP2011098196A JP2011098196A JP5626100B2 JP 5626100 B2 JP5626100 B2 JP 5626100B2 JP 2011098196 A JP2011098196 A JP 2011098196A JP 2011098196 A JP2011098196 A JP 2011098196A JP 5626100 B2 JP5626100 B2 JP 5626100B2
Authority
JP
Japan
Prior art keywords
exhaust
supply valve
flow
exhaust pipe
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011098196A
Other languages
Japanese (ja)
Other versions
JP2012229649A (en
Inventor
英二 岩崎
英二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011098196A priority Critical patent/JP5626100B2/en
Publication of JP2012229649A publication Critical patent/JP2012229649A/en
Application granted granted Critical
Publication of JP5626100B2 publication Critical patent/JP5626100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気浄化装置として、排気通路に酸化触媒を配置するとともにその上流側に小型酸化触媒と、小型酸化触媒に燃料を添加する燃料供給弁とをさらに配置し、燃料供給弁からの燃料の供給量を制御することにより、小型酸化触媒の昇温機能及び改質機能を効果的に利用したものが知られている(例えば、特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2及び3が存在する。   As an exhaust emission control device for an internal combustion engine, an oxidation catalyst is arranged in the exhaust passage, and a small oxidation catalyst and a fuel supply valve for adding fuel to the small oxidation catalyst are further arranged upstream of the oxidation catalyst. A device that effectively uses the temperature raising function and the reforming function of a small oxidation catalyst by controlling the supply amount is known (see, for example, Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開2009−156168号公報JP 2009-156168 A 特開2004−197635号公報JP 2004-197635 A 特開2010−180863号公報JP 2010-180863 A

燃料供給弁先端が高温の排気にさらされると燃料供給弁の噴孔がデポジットによる目詰まりを生じるおそれがあるため、排気の主流から離れた位置に燃料供給弁を設置することで噴孔と排気との接触を抑制している。しかし、排気が流入しにくくなると、燃料供給弁の設置部にデポジットが堆積するおそれがある。   If the tip of the fuel supply valve is exposed to high-temperature exhaust, the nozzle hole of the fuel supply valve may be clogged with deposits. The contact with is suppressed. However, if it becomes difficult for the exhaust gas to flow in, deposits may accumulate on the installation portion of the fuel supply valve.

そこで、本発明は燃料供給弁の噴孔詰まりを防止するとともに燃料供給弁の設置部へのデポジットの堆積を抑制する内燃機関の排気浄化装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an internal combustion engine exhaust gas purification device that prevents clogging of a nozzle hole of a fuel supply valve and suppresses the accumulation of deposits on the installation portion of the fuel supply valve.

本発明の内燃機関の排気浄化装置は、内燃機関の排気通路内に配置された排気浄化触媒と、前記排気浄化触媒に対して排気の流れ方向上流側から前記排気浄化触媒に還元剤を供給する還元剤供給装置と、を備えた内燃機関の排気浄化装置において、前記排気通路を形成する排気管には、前記還元剤供給装置の供給弁が設置された、前記排気管の円筒形状の排気管面に対して後退した設置部が設けられ、前記設置部には、前記供給弁に対し前記排気管内を周方向に流れる排気の上流側で突出する第1突出部と、その下流側で前記供給弁から前記排気管面に向けて排気の流れに沿うように傾斜した第1傾斜部と、が設けられている(請求項1)。 An exhaust purification device for an internal combustion engine according to the present invention supplies an exhaust purification catalyst disposed in an exhaust passage of the internal combustion engine and a reducing agent to the exhaust purification catalyst from the upstream side in the exhaust flow direction with respect to the exhaust purification catalyst. An exhaust purification device for an internal combustion engine comprising a reducing agent supply device, wherein the exhaust pipe forming the exhaust passage is provided with a supply valve of the reducing agent supply device, and the exhaust pipe having a cylindrical shape of the exhaust pipe An installation portion that is retracted with respect to the surface is provided, and the installation portion has a first projection that projects upstream of exhaust flowing in the exhaust pipe in a circumferential direction with respect to the supply valve, and the supply at the downstream side thereof. And a first inclined portion inclined from the valve toward the exhaust pipe surface so as to follow the flow of exhaust gas (Claim 1).

本発明の排気浄化装置によれば、排気管の周方向に流れる排気は、第1突出部により供給弁に直接当たることなく第1傾斜部へと導かれる。第1傾斜部に当たった排気は、第1傾斜部の斜面に沿って案内され排気管の主流に合流する。排気管内の排気の流れが供給弁に直接当たらないので供給弁の噴孔詰まりを防止する。そして、排気の流れが第1傾斜部に当たって排気管の主流に合流するので第1傾斜部付近の淀み点の発生を防止し、デポジットの堆積を防止する。従って、供給弁の噴孔詰まりと設置部内のデポジットの堆積を防止できる。   According to the exhaust emission control device of the present invention, the exhaust gas flowing in the circumferential direction of the exhaust pipe is guided to the first inclined portion by the first projecting portion without directly hitting the supply valve. Exhaust gas hitting the first inclined portion is guided along the slope of the first inclined portion and merges with the main flow of the exhaust pipe. Since the exhaust flow in the exhaust pipe does not directly hit the supply valve, the nozzle hole of the supply valve is prevented from being clogged. Since the exhaust flow hits the first inclined portion and merges with the main flow of the exhaust pipe, the occurrence of stagnation points near the first inclined portion is prevented, and deposit accumulation is prevented. Therefore, it is possible to prevent clogging of the nozzle hole of the supply valve and accumulation of deposits in the installation portion.

本発明の排気浄化装置の一形態において、前記供給弁から供給される還元剤が前記第1傾斜部に当たるように前記供給弁が前記設置部に設置されていてもよい(請求項2)。この形態によれば、第1突起部により導かれた排気には供給弁により還元剤が噴霧され、還元剤を含む排気が第1傾斜部へ当たる。還元剤が第1傾斜部に堆積したデポジットを流すのでデポジットの堆積を防止できる。   In one form of the exhaust emission control device of the present invention, the supply valve may be installed in the installation part so that the reducing agent supplied from the supply valve hits the first inclined part (Claim 2). According to this aspect, the reducing agent is sprayed by the supply valve on the exhaust gas guided by the first protrusion, and the exhaust gas containing the reducing agent hits the first inclined portion. Since the deposit of the reducing agent deposited on the first inclined portion flows, the deposition of the deposit can be prevented.

本発明の排気浄化装置の一形態において、前記還元剤供給装置が、内燃機関の過給機に対して排気の流れ方向下流側に設けられていてもよい(請求項3)。この形態によれば、過給機によって生じる排気管の周方向の流れに対して供給弁の噴孔詰まり及び設置部内のデポジットの堆積を防止できる。   In one form of the exhaust emission control device of the present invention, the reducing agent supply device may be provided on the downstream side in the exhaust flow direction with respect to the supercharger of the internal combustion engine. According to this aspect, it is possible to prevent the clogging of the nozzle hole of the supply valve and the accumulation of deposits in the installation portion against the circumferential flow of the exhaust pipe generated by the supercharger.

本発明の排気浄化装置の一形態において、前記設置部には、前記供給弁に対し前記排気管内を軸線方向に流れる排気の上流側で突出する第2突出部と、その下流側で前記供給弁から前記排気管面に向けて排気の流れに沿うように傾斜した第2傾斜部と、が設けられていてもよい(請求項4)。この形態によれば、排気管の周方向の流れに加え、排気管の軸線方向に流れる排気による供給弁の噴孔詰まりと設置部内のデポジットの堆積とを防止できる。   In one form of the exhaust emission control device of the present invention, the installation portion includes a second projecting portion projecting on the upstream side of the exhaust gas flowing in the axial direction in the exhaust pipe with respect to the supply valve, and the supply valve on the downstream side thereof. And a second inclined portion inclined so as to follow the flow of the exhaust toward the exhaust pipe surface (Claim 4). According to this aspect, in addition to the flow in the circumferential direction of the exhaust pipe, it is possible to prevent the clogging of the nozzle hole of the supply valve and the accumulation of deposits in the installation portion due to the exhaust flowing in the axial direction of the exhaust pipe.

以上説明したように、本発明においては、排気管内の排気の流れが供給弁に直接当たらないので供給弁の噴孔詰まりを防止する。そして、排気の流れが第1傾斜部に当たって排気管の主流に合流するので第1傾斜部付近の淀み点の発生を防止し、デポジットの堆積を防止する。従って、供給弁の噴孔詰まりと設置部内のデポジットの堆積を防止できる。   As described above, in the present invention, the flow of exhaust gas in the exhaust pipe does not directly hit the supply valve, so that the nozzle hole of the supply valve is prevented from being clogged. Since the exhaust flow hits the first inclined portion and merges with the main flow of the exhaust pipe, the occurrence of stagnation points near the first inclined portion is prevented, and deposit accumulation is prevented. Therefore, it is possible to prevent clogging of the nozzle hole of the supply valve and accumulation of deposits in the installation portion.

本発明の1形態に係る内燃機関の排気浄化装置の概略図。1 is a schematic diagram of an exhaust gas purification apparatus for an internal combustion engine according to one embodiment of the present invention. 図1のII−II線に沿って切断した断面図。Sectional drawing cut | disconnected along the II-II line | wire of FIG. 排気浄化装置のシミュレーションモデルを示す図。The figure which shows the simulation model of an exhaust gas purification apparatus. 図3のIV−IV線に沿って切断した断面図における、排気の流れる方向のシミュレーション結果を示す図。The figure which shows the simulation result of the direction through which exhaust flows in the sectional drawing cut | disconnected along the IV-IV line | wire of FIG. 排気管の軸線方向に切断した断面図における、排気の流速のシミュレーション結果を示す図。The figure which shows the simulation result of the flow velocity of exhaust_gas | exhaustion in sectional drawing cut | disconnected in the axial direction of the exhaust pipe.

図1に本発明の一形態に係る内燃機関の排気浄化装置の概略図を示す。図1は排気の流れ方向Fに切断した断面図である。排気浄化装置1は、内燃機関の排気系の一部として構成され、図示しない内燃機関の過給機としてのターボチャージャーに対して排気の流れ方向F下流側の排気通路2に設けられる。排気浄化装置1は、排気通路2を構成する排気管3内に設置される排気浄化触媒4と、排気浄化触媒4に対して排気の流れ方向F上流側から排気浄化触媒4に還元剤を供給する還元剤供給装置5とを備えている。排気管3内には、円筒形状の排気管面3aに対して後退した設置部6が設けられ、還元剤供給装置5の供給弁5aが設置されている。排気の流れ方向Fは排気管3の軸線方向に沿っている。   FIG. 1 is a schematic view of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. FIG. 1 is a cross-sectional view taken along the exhaust flow direction F. FIG. The exhaust purification device 1 is configured as a part of an exhaust system of an internal combustion engine, and is provided in an exhaust passage 2 on the downstream side in the exhaust flow direction F with respect to a turbocharger as a supercharger of an internal combustion engine (not shown). The exhaust purification device 1 supplies an exhaust purification catalyst 4 installed in an exhaust pipe 3 constituting the exhaust passage 2 and a reducing agent to the exhaust purification catalyst 4 from the upstream side in the exhaust flow direction F with respect to the exhaust purification catalyst 4. And a reducing agent supply device 5. In the exhaust pipe 3, an installation portion 6 that is retracted with respect to the cylindrical exhaust pipe surface 3 a is provided, and a supply valve 5 a of the reducing agent supply device 5 is installed. The exhaust flow direction F is along the axial direction of the exhaust pipe 3.

排気浄化触媒4は、酸化触媒である。一例として金属薄肉平板と金属薄肉波形板との積層構造から構成される基体を有し、この基体の表面に例えばアルミナからなる触媒担体の層が形成され、その触媒担体上に白金Pt、ロジウムRd、パラジウムPdのような貴金属触媒が担持された触媒が用いられる。還元剤供給装置5は、排気浄化触媒4へ還元剤としての燃料が供給される。還元剤供給装置5の供給弁5aは、図示しない燃料タンク等から導かれた燃料の一部を排気浄化触媒4に向けて噴射する。排気浄化触媒4が活性化していれば排気浄化触媒4内で燃料が酸化することにより発生する酸化反応熱によって排気浄化触媒4が昇温する。   The exhaust purification catalyst 4 is an oxidation catalyst. As an example, a substrate having a laminated structure of a thin metal flat plate and a thin metal corrugated plate is formed, and a layer of a catalyst carrier made of alumina, for example, is formed on the surface of the substrate, and platinum Pt, rhodium Rd is formed on the catalyst carrier. A catalyst on which a noble metal catalyst such as palladium Pd is supported is used. The reducing agent supply device 5 supplies fuel as a reducing agent to the exhaust purification catalyst 4. The supply valve 5 a of the reducing agent supply device 5 injects part of the fuel guided from a fuel tank (not shown) toward the exhaust purification catalyst 4. If the exhaust purification catalyst 4 is activated, the temperature of the exhaust purification catalyst 4 is raised by the oxidation reaction heat generated when the fuel is oxidized in the exhaust purification catalyst 4.

設置部6は、排気管面3aに対して後退し凹んだ形状を有している。図2に図1のII−II線に沿って切断した断面図を示す。排気通路2内では、排気浄化装置1の流れ方向F上流側に設けられたターボチャージャーによる旋回流Cが排気管3内の周方向に生じる。設置部6において、供給弁5aに対しこの旋回流Cの流れ方向上流側には第1突起部7が設けられている。第1突起部7の頂点付近と排気管面3aとの間で旋回流Cの流れに沿った斜面7aが形成される。また、供給弁5aに対し旋回流Cの流れ方向下流側の設置部6には、供給弁5a設置付近から排気管面3aに向けて排気の流れに沿うように傾斜した第1傾斜部8が設けられている。第1傾斜部8は旋回流Cの流れに沿うようになだらかな斜面8aを有している。旋回流Cの流れ方向と斜面8aとにより形成される角度αが鋭角となるように第1傾斜部8が設けられている。   The installation portion 6 has a shape that is recessed with respect to the exhaust pipe surface 3a. FIG. 2 is a cross-sectional view taken along line II-II in FIG. In the exhaust passage 2, a swirling flow C is generated in the circumferential direction in the exhaust pipe 3 by a turbocharger provided upstream in the flow direction F of the exhaust purification device 1. In the installation part 6, the 1st protrusion part 7 is provided in the flow direction upstream of this turning flow C with respect to the supply valve 5a. A slope 7a is formed along the flow of the swirling flow C between the vicinity of the apex of the first protrusion 7 and the exhaust pipe surface 3a. Further, the installation portion 6 on the downstream side in the flow direction of the swirling flow C with respect to the supply valve 5a has a first inclined portion 8 inclined so as to follow the flow of exhaust from the vicinity of the supply valve 5a toward the exhaust pipe surface 3a. Is provided. The first inclined portion 8 has a gentle slope 8a so as to follow the flow of the swirling flow C. The first inclined portion 8 is provided so that the angle α formed by the flow direction of the swirling flow C and the inclined surface 8a becomes an acute angle.

図1に戻り、設置部6における供給弁5aに対する排気の流れ方向Fの上流側には、第2突起部9が設けられている。第2突起部9の頂点付近と排気管面3aとの間で排気の流れ方向Fに沿った斜面9aが形成される。また、供給弁5aに対する流れ方向Fの下流側の設置部6には、供給弁5a設置付近から排気管面3aに向けて排気の流れに沿うように傾斜した第2傾斜部10が設けられている。第2傾斜部10は排気の流れ方向Fに沿うようになだらかな斜面10aを有している。   Returning to FIG. 1, the second projecting portion 9 is provided on the upstream side in the exhaust flow direction F with respect to the supply valve 5 a in the installation portion 6. A slope 9a along the exhaust flow direction F is formed between the vicinity of the apex of the second protrusion 9 and the exhaust pipe surface 3a. In addition, a second inclined portion 10 that is inclined so as to follow the flow of exhaust gas from the vicinity of the supply valve 5a toward the exhaust pipe surface 3a is provided in the installation portion 6 on the downstream side in the flow direction F with respect to the supply valve 5a. Yes. The second inclined portion 10 has a gentle inclined surface 10a along the flow direction F of the exhaust gas.

次に排気浄化装置1の作用を説明する。まず、図2を参照して排気管3の周方向を流れる旋回流Cに対する設置部6の作用を説明する。設置部6において、供給弁5aに対するターボチャージャーから流れてきた排気の旋回流Cの流れ方向上流側では、第1突起部7により供給弁5a付近へは排気が流れない。旋回流Cは第1突起部7の頂点付近と排気管面3aとの間で形成される斜面7aに沿って流れるため、排気の流れる向きに対して後退した位置に設けられた供給弁5aには排気が直接当たらず、第1傾斜部8の斜面8aに当たる。斜面8aに当たる排気には燃料も含まれ、第1傾斜部8には燃料が当たる。この燃料により斜面8aに堆積するデポジットが流されて噴霧経路詰まりを防止する。従って、高温の排気が供給弁5aに当たることによる噴孔詰まりを防止しつつ設置部6内の噴霧経路詰まりも防止する。また、斜面8aと旋回流Cの向きとが鋭角になるように構成されているので、旋回流Cのせん断力によっても第1傾斜部8に付着するデポジットの堆積を防止できる。斜面8aと旋回流Cの向きとで作られる角度はできるだけ小さい方がよく、45°以下が好ましい。   Next, the operation of the exhaust emission control device 1 will be described. First, with reference to FIG. 2, the effect | action of the installation part 6 with respect to the swirling flow C which flows through the circumferential direction of the exhaust pipe 3 is demonstrated. In the installation portion 6, on the upstream side in the flow direction of the swirling flow C of the exhaust gas flowing from the turbocharger with respect to the supply valve 5a, the exhaust does not flow to the vicinity of the supply valve 5a by the first protrusion 7. Since the swirling flow C flows along the inclined surface 7a formed between the vicinity of the apex of the first protrusion 7 and the exhaust pipe surface 3a, the swirling flow C flows to the supply valve 5a provided at a position retreated with respect to the exhaust flow direction. Does not hit the exhaust directly, but hits the slope 8a of the first inclined portion 8. The exhaust gas hitting the inclined surface 8a includes fuel, and the first inclined portion 8 hits the fuel. Deposits deposited on the slope 8a are flowed by this fuel to prevent clogging of the spray path. Therefore, the spray path clogging in the installation part 6 is also prevented while preventing the injection hole clogging caused by the hot exhaust gas hitting the supply valve 5a. Further, since the inclined surface 8a and the direction of the swirling flow C are configured to have an acute angle, deposits deposited on the first inclined portion 8 can be prevented even by the shearing force of the swirling flow C. The angle formed by the slope 8a and the direction of the swirling flow C is preferably as small as possible, and is preferably 45 ° or less.

続いて図1を参照して排気管3の軸線方向を流れる排気に対する設置部6の作用を説明する。設置部6において、供給弁5aに対する排気の流れ方向Fの上流側に設けられた第2突起部9により供給弁5aに直接排気を当てないようにして排気が流れる。それとともに、第2突起部9の頂点付近と排気管面3aとの間の斜面9aに沿って排気が流れるので、供給弁5a付近まで排気を導くことができる。斜面9aからの排気は、第2傾斜部10に当たり第2傾斜部10の斜面10aに沿って案内されて排気管面3aへと流れていく。これにより、設置面6付近で排気の淀み点が生じないので、第2傾斜部10へのデポジットの堆積を防止できる。   Next, the operation of the installation portion 6 for the exhaust gas flowing in the axial direction of the exhaust pipe 3 will be described with reference to FIG. In the installation portion 6, the exhaust flows so as not to directly apply the exhaust to the supply valve 5 a by the second protrusion 9 provided on the upstream side in the exhaust flow direction F with respect to the supply valve 5 a. At the same time, the exhaust gas flows along the slope 9a between the vicinity of the apex of the second protrusion 9 and the exhaust pipe surface 3a, so that the exhaust gas can be guided to the vicinity of the supply valve 5a. Exhaust gas from the inclined surface 9a hits the second inclined portion 10 and is guided along the inclined surface 10a of the second inclined portion 10 to flow to the exhaust pipe surface 3a. As a result, exhaust stagnation points do not occur in the vicinity of the installation surface 6, and deposit accumulation on the second inclined portion 10 can be prevented.

比較のため、図1及び図2に破線で従来形状の設置部11を示す。図2において、従来形状の設置部11では、旋回流Cが設置部11内の供給弁5aが供給する燃料の噴霧経路まで流入しやすく、設置部11内で排気の流速が低下するとともに供給弁5a付近まで排気が流れ、噴孔詰まりや噴霧経路詰まりを生じるおそれがあった。また、図1においても、排気が設置部6内に流れ込みやすく供給弁5aに当たると噴孔詰まりを生じるおそれがあった。本発明では、排気管3の軸線方向に流れる排気の流れ方向Fと、排気管3の周方向に流れる旋回流Cとに区別できる二つの流れに着目している。各流れにおける供給弁5aに対する流れ方向上流側では供給弁5aに排気が直接当たることを防止し、流れ方向下流側では各傾斜部8、10の斜面8a、10aに排気の流れが当たりその斜面8a、10aに沿って排気が流れる。下流側の排気には供給弁5aから供給される燃料が含まれるので燃料により各傾斜部8、10に付着したデポジットが洗い流され、デポジットの堆積を防止できる。また、第1傾斜部8においては旋回流Cによるせん断力、第2傾斜部10においては斜面10aによる淀み点の解消によってもデポジットの堆積が防止できる。このように、排気の流れに着目することで各流れにおいて設置部6内のデポジットの堆積及び供給弁5aの噴孔詰まりを防止することができる。   For comparison, the installation portion 11 having a conventional shape is shown by a broken line in FIGS. In FIG. 2, in the conventional-shaped installation part 11, the swirling flow C easily flows into the fuel spray path supplied by the supply valve 5 a in the installation part 11, and the flow rate of exhaust gas decreases in the installation part 11 and the supply valve Exhaust gas flowed to the vicinity of 5a, and there was a possibility of causing nozzle hole clogging and spray path clogging. Also in FIG. 1, if the exhaust gas easily flows into the installation portion 6 and hits the supply valve 5a, there is a possibility that the injection hole is clogged. In the present invention, attention is paid to two flows that can be distinguished from the flow direction F of the exhaust gas flowing in the axial direction of the exhaust pipe 3 and the swirling flow C flowing in the circumferential direction of the exhaust pipe 3. The exhaust is prevented from directly hitting the supply valve 5a on the upstream side in the flow direction with respect to the supply valve 5a in each flow, and the exhaust flow hits the inclined surfaces 8a and 10a of the inclined portions 8 and 10 on the downstream side in the flow direction. The exhaust flows along 10a. Since the downstream exhaust contains the fuel supplied from the supply valve 5a, the deposits adhering to the inclined portions 8 and 10 are washed away by the fuel, and deposits can be prevented. Deposits can also be prevented from being deposited by removing shearing force caused by the swirl flow C in the first inclined portion 8 and eliminating the stagnation point caused by the inclined surface 10a in the second inclined portion 10. In this way, by paying attention to the flow of exhaust gas, it is possible to prevent deposit accumulation in the installation portion 6 and clogging of the injection valve of the supply valve 5a in each flow.

設置部6付近の排気の流れ方向のシミュレーション結果を以下に説明する。図3は、排気浄化装置1のシミュレーションモデルを示したもので、排気の流れ方向Fに切断した断面図である。各部材については、上述した説明と同一の参照符号を振ることにより説明を省略する。なお、図3では図1及び図2で説明した図と排気の流れ方向Fの向きが異なっている。図4に、図3のIV−IV線に沿って切断した断面図を示す。図4では排気の流れる方向のシミュレーション結果を矢印で示している。第1突起部7、及びその斜面7aにより、旋回流Cによる排気の流れは斜面7aに沿って移動し、対向する第1傾斜部8に当たって斜面8aに沿って移動する。第1突起部7を形成する斜面7aにより案内された排気の流れ方向と第1傾斜部8の斜面8aとで作られる角度βは、一例として45°という鋭角で接触する。   The simulation result of the flow direction of the exhaust gas near the installation portion 6 will be described below. FIG. 3 shows a simulation model of the exhaust emission control device 1, and is a cross-sectional view cut in the exhaust flow direction F. About each member, description is abbreviate | omitted by giving the same referential mark as the description mentioned above. In FIG. 3, the direction of the exhaust gas flow direction F is different from that illustrated in FIGS. 1 and 2. FIG. 4 shows a cross-sectional view taken along line IV-IV in FIG. In FIG. 4, the simulation results in the direction in which the exhaust flows are indicated by arrows. Due to the first protrusion 7 and its inclined surface 7a, the flow of the exhaust gas by the swirling flow C moves along the inclined surface 7a, and hits the opposing first inclined portion 8 and moves along the inclined surface 8a. The angle β formed by the flow direction of the exhaust gas guided by the inclined surface 7a forming the first protrusion 7 and the inclined surface 8a of the first inclined portion 8 contacts with an acute angle of 45 ° as an example.

図5は排気の流れ方向Fに切断した断面図における、排気の流速のシミュレーション結果を示した図である。なお、図5は流速を速度ごとに区別した分布図である。第2突起部9の斜面9aに沿って案内された排気は、斜面9aに沿った方向に流れるため、供給弁5aが設置された最奥部6aへは流れ込まない。最奥部6a付近の流速は小さく、シミュレーション結果から最奥部6a付近へは排気が流れ込みにくいといえる。一方、斜面9aに沿って案内された排気は第2傾斜部10に当たり、斜面10aに沿って流れて排気管3内の主流に合流する。第2傾斜部10付近では斜面10aが排気管面3aとなだらかにつながり、排気がある程度の速さを保ったまま流れるので、淀み点が生じることがない。従って、デポジットの堆積を抑制し、噴霧経路詰まりを防止できる。   FIG. 5 is a diagram showing a simulation result of the flow velocity of the exhaust gas in a cross-sectional view cut in the flow direction F of the exhaust gas. FIG. 5 is a distribution diagram in which the flow velocity is distinguished for each speed. Since the exhaust gas guided along the slope 9a of the second protrusion 9 flows in the direction along the slope 9a, it does not flow into the innermost part 6a where the supply valve 5a is installed. The flow velocity in the vicinity of the innermost portion 6a is small, and it can be said from the simulation results that the exhaust gas hardly flows into the vicinity of the innermost portion 6a. On the other hand, the exhaust gas guided along the inclined surface 9 a hits the second inclined portion 10, flows along the inclined surface 10 a, and joins the main flow in the exhaust pipe 3. In the vicinity of the second inclined portion 10, the inclined surface 10a is smoothly connected to the exhaust pipe surface 3a, and the exhaust gas flows while maintaining a certain speed, so that no stagnation point is generated. Accordingly, deposit accumulation can be suppressed and spray path clogging can be prevented.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本形態では、排気浄化装置として酸化触媒と燃料の組み合わせで説明したが、これに限られない。例えば、尿素等の還元剤と選択還元型NOx触媒(SCR)等の各種周知の排気浄化方法を適用してよい。また、本形態では、ターボチャージャーに対して排気の流れ方向下流側に設けられた排気浄化装置1として説明したがこれに限られない。主流となる流れ方向Fの他に旋回流Cが生じるような場所に排気浄化装置を設ける場合に本発明は適用できる。本形態では、旋回流C及び排気の流れ方向Fの二つの流れに着目して第1突起部7、第1傾斜部8、第2突起部9及び第2傾斜部10を設けた形態で説明したが、これに限られない。第1突起部7及び第1傾斜部8、又は、第2突起部9及び第2傾斜部10のいずれか一方のみを設けた形態であってもよい。特に第1突起部7及び第1傾斜部8のみを設けた形態であってもよく、これにより旋回流Cによる噴孔詰まり及び噴霧経路詰まりを防止できる。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, in the present embodiment, the exhaust purification device has been described using a combination of an oxidation catalyst and fuel, but is not limited thereto. For example, various known exhaust purification methods such as a reducing agent such as urea and a selective reduction type NOx catalyst (SCR) may be applied. Further, in the present embodiment, the exhaust gas purification device 1 provided on the downstream side in the exhaust flow direction with respect to the turbocharger has been described. However, the present invention is not limited to this. The present invention can be applied to the case where the exhaust gas purification device is provided in a place where the swirling flow C is generated in addition to the main flow direction F. In this embodiment, focusing on two flows in the swirling flow C and the exhaust flow direction F, the first protrusion 7, the first inclined portion 8, the second protruding portion 9, and the second inclined portion 10 are described. However, it is not limited to this. The form which provided only any one of the 1st projection part 7 and the 1st inclination part 8, or the 2nd projection part 9 and the 2nd inclination part 10 may be sufficient. In particular, the configuration may be such that only the first protrusion 7 and the first inclined portion 8 are provided, whereby the nozzle hole clogging and spray path clogging due to the swirling flow C can be prevented.

1 排気浄化装置
3 排気管
3a 排気管面
4 排気浄化触媒
5 還元剤供給装置
5a 供給弁
6 設置部
7 第1突起部
8 第1傾斜部
DESCRIPTION OF SYMBOLS 1 Exhaust purification device 3 Exhaust pipe 3a Exhaust pipe surface 4 Exhaust purification catalyst 5 Reducing agent supply apparatus 5a Supply valve 6 Installation part 7 1st projection part 8 1st inclination part

Claims (4)

内燃機関の排気通路内に配置された排気浄化触媒と、前記排気浄化触媒に対して排気の流れ方向上流側から前記排気浄化触媒に還元剤を供給する還元剤供給装置と、を備えた内燃機関の排気浄化装置において、
前記排気通路を形成する排気管には、前記還元剤供給装置の供給弁が設置された、前記排気管の円筒形状の排気管面に対して後退した設置部が設けられ、前記設置部には、前記供給弁に対し前記排気管内を周方向に流れる排気の上流側で突出する第1突出部と、その下流側で前記供給弁から前記排気管面に向けて排気の流れに沿うように傾斜した第1傾斜部と、が設けられている内燃機関の排気浄化装置。
An internal combustion engine comprising: an exhaust purification catalyst disposed in an exhaust passage of the internal combustion engine; and a reducing agent supply device that supplies a reducing agent to the exhaust purification catalyst from an upstream side in an exhaust flow direction with respect to the exhaust purification catalyst In the exhaust purification device of
The exhaust pipe that forms the exhaust passage is provided with an installation portion that is provided with a supply valve of the reducing agent supply device and that is retreated with respect to the cylindrical exhaust pipe surface of the exhaust pipe. A first projecting portion projecting on the upstream side of the exhaust gas flowing in the circumferential direction in the exhaust pipe with respect to the supply valve, and inclined downstream from the supply valve toward the exhaust pipe surface along the flow of the exhaust gas An exhaust purification device for an internal combustion engine provided with the first inclined portion.
前記供給弁から供給される還元剤が前記第1傾斜部に当たるように前記供給弁が前記設置部に設置されている請求項1に記載の排気浄化装置。   2. The exhaust emission control device according to claim 1, wherein the supply valve is installed in the installation portion so that the reducing agent supplied from the supply valve hits the first inclined portion. 前記還元剤供給装置が、内燃機関の過給機に対して排気の流れ方向下流側に設けられている請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein the reducing agent supply device is provided on the downstream side in the exhaust flow direction with respect to the supercharger of the internal combustion engine. 前記設置部には、前記供給弁に対し前記排気管内を軸線方向に流れる排気の上流側で突出する第2突出部と、その下流側で前記供給弁から前記排気管面に向けて排気の流れに沿うように傾斜した第2傾斜部と、が設けられている請求項1〜3のいずれか一項に記載の排気浄化装置。   The installation portion includes a second projecting portion projecting on the upstream side of the exhaust gas flowing in the axial direction in the exhaust pipe with respect to the supply valve, and an exhaust flow from the supply valve toward the exhaust pipe surface on the downstream side. The exhaust emission control device according to any one of claims 1 to 3, further comprising a second inclined portion that is inclined so as to extend along the line.
JP2011098196A 2011-04-26 2011-04-26 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5626100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098196A JP5626100B2 (en) 2011-04-26 2011-04-26 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098196A JP5626100B2 (en) 2011-04-26 2011-04-26 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012229649A JP2012229649A (en) 2012-11-22
JP5626100B2 true JP5626100B2 (en) 2014-11-19

Family

ID=47431384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098196A Expired - Fee Related JP5626100B2 (en) 2011-04-26 2011-04-26 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5626100B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622903B2 (en) * 2006-03-17 2011-02-02 三菱自動車工業株式会社 Additive supply device
JP2008248746A (en) * 2007-03-29 2008-10-16 Tokyo Roki Co Ltd Muffler with exhaust emission control function
JP4936008B2 (en) * 2008-02-28 2012-05-23 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP2010084700A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Exhaust emission control device and method for manufacturing the exhaust emission control device
JP5239764B2 (en) * 2008-11-13 2013-07-17 三菱自動車工業株式会社 Engine exhaust system structure
JP4826639B2 (en) * 2009-02-27 2011-11-30 トヨタ自動車株式会社 Exhaust pipe structure of internal combustion engine

Also Published As

Publication number Publication date
JP2012229649A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
KR101610707B1 (en) Pre-injection exhaust flow modifier
JP5714844B2 (en) Exhaust gas purification device
WO2014087536A1 (en) Device for detecting fault in exhaust gas purifier
WO2014112072A1 (en) Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device provided with same
US9726063B2 (en) In-line flow diverter
JP2008014213A (en) Exhaust gas processing device
JP6167031B2 (en) Exhaust gas purification device
JP4708320B2 (en) NOX purification device
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5641134B2 (en) Exhaust gas purification device for internal combustion engine
JP5500909B2 (en) Exhaust purification device
JP2006125324A (en) Liquid reducing agent injection nozzle structure
JP2009074455A (en) Exhaust emission control device of internal combustion engine
JP4830570B2 (en) Exhaust gas purification system
JP2009085050A (en) Additive injection valve, additive injection device and exhaust emission control system
JP5287988B2 (en) Exhaust gas purification device for internal combustion engine
JP2006077691A (en) Exhaust emission control system for diesel engine
JP2010144660A (en) Exhaust gas post-processing unit
JPWO2012147205A1 (en) Exhaust gas purification device for internal combustion engine
JP5626100B2 (en) Exhaust gas purification device for internal combustion engine
JP2016079960A (en) Exhaust emission control system
JP2016109004A (en) Exhaust emission control device
JP5648315B2 (en) Fuel pool prevention mechanism and engine system
WO2012164748A1 (en) Exhaust purification device for internal combustion engine
US20140041370A1 (en) Exhaust Treatment System for Internal Combustion Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

LAPS Cancellation because of no payment of annual fees