JP5624807B2 - Internal combustion engine condition monitoring method and apparatus - Google Patents

Internal combustion engine condition monitoring method and apparatus Download PDF

Info

Publication number
JP5624807B2
JP5624807B2 JP2010134192A JP2010134192A JP5624807B2 JP 5624807 B2 JP5624807 B2 JP 5624807B2 JP 2010134192 A JP2010134192 A JP 2010134192A JP 2010134192 A JP2010134192 A JP 2010134192A JP 5624807 B2 JP5624807 B2 JP 5624807B2
Authority
JP
Japan
Prior art keywords
timing
signal
cylinders
explosion
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010134192A
Other languages
Japanese (ja)
Other versions
JP2011256833A (en
Inventor
輝夫 日置
輝夫 日置
内田 佳孝
佳孝 内田
古江 敏彦
敏彦 古江
尚之 財津
尚之 財津
勝紀 冨場
勝紀 冨場
健志 岡田
健志 岡田
義継 叶
義継 叶
三幸 土井
三幸 土井
良二 一宮
良二 一宮
博文 燃脇
博文 燃脇
雄一郎 川畑
雄一郎 川畑
充拡 末吉
充拡 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Kyushu Electric Power Co Inc
Original Assignee
Chiyoda Corp
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Kyushu Electric Power Co Inc filed Critical Chiyoda Corp
Priority to JP2010134192A priority Critical patent/JP5624807B2/en
Publication of JP2011256833A publication Critical patent/JP2011256833A/en
Application granted granted Critical
Publication of JP5624807B2 publication Critical patent/JP5624807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/24Safety means or accessories, not provided for in preceding sub- groups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

本発明は、複数のシリンダを有する内燃機関から発生する音響信号に基づいて、複数台のシリンダの吸気弁及び/または排気弁の状態を監視する内燃機関の状態監視方法及び装置に関するものである。   The present invention relates to an internal combustion engine state monitoring method and apparatus for monitoring the states of intake valves and / or exhaust valves of a plurality of cylinders based on acoustic signals generated from an internal combustion engine having a plurality of cylinders.

従来の内燃機関の吸・排気弁吹抜けに関する状態監視の方法では、主に排気ガス温度の状態(上昇傾向)の監視や、シリンダ内の爆発圧力計測などにより状態の監視が行われている。   In a conventional state monitoring method related to intake / exhaust valve blow-off of an internal combustion engine, the state is monitored mainly by monitoring the exhaust gas temperature (upward trend) or measuring the explosion pressure in the cylinder.

従来の内燃機関の状態監視方法のうち、排気ガス温度の状態を監視する方法では、排気ガス温度が相当高い場合、具体的には、対象シリンダの通常時または他のシリンダの排気温度平均値に比べて、排気ガス温度との間に顕著な差がある場合に、内燃機関の状態変化を捉えている。しかしながら吸・排気弁吹抜け異常については、欠損部(吹抜け部)の面積がかなり大きく、内燃機関を継続して運転することが困難なほどに損傷の程度が進んでいることが多い。また、複数のシリンダから故障シリンダの識別、吸気弁吹抜けと排気弁吹抜けの識別は困難である。 Among the conventional methods for monitoring the state of an internal combustion engine, the method of monitoring the state of the exhaust gas temperature, when the exhaust gas temperature is considerably high, specifically, the normal temperature of the target cylinder or the exhaust temperature average value of other cylinders In comparison, when there is a significant difference from the exhaust gas temperature, the change in the state of the internal combustion engine is captured. However, regarding the intake / exhaust valve blowout abnormality, the area of the missing part (blowout part) is considerably large, and the degree of damage is often advanced to the extent that it is difficult to continue operating the internal combustion engine. The identification of the failure cylinder from a plurality of cylinders, identification of the exhaust valves blow the intake valve blow is difficult.

またシリンダ内の爆発圧力計測を用いた方法においては、個別シリンダ内の圧力を直接計測するため、故障シリンダの識別は可能であるものの、センサの耐久性に課題があり、実用性に欠ける。また、吸気弁吹抜けと排気弁吹抜けの識別は不可能である。   In the method using the explosion pressure measurement in the cylinder, since the pressure in the individual cylinder is directly measured, the failure cylinder can be identified, but there is a problem in the durability of the sensor and lacks practicality. In addition, it is impossible to distinguish between intake valve blowout and exhaust valve blowout.

また従来の方法では、異常発生を初期の段階で検知することが困難であり、故障シリンダ、故障形態の識別が難しいという課題があった。また、内燃機関にセンサを直接接触させる方法では、状態監視システムの耐久性に課題があった。   Further, the conventional method has a problem that it is difficult to detect the occurrence of an abnormality at an early stage, and it is difficult to identify a failed cylinder and a failure form. Further, the method of directly contacting the sensor with the internal combustion engine has a problem with the durability of the state monitoring system.

これに対して、発明者等が先に提案した「動作部の異常診断方法及び圧縮機のバルブ異常診断方法」(特開2002−041143号公報:特許文献1)では、内燃機関から発生する音響信号に基づいて、内燃機関の異常状態を検知することが可能である。   On the other hand, in the “abnormality diagnosis method for operating portion and valve abnormality diagnosis method for compressor” (Japanese Patent Laid-Open No. 2002-041143: Patent Document 1) previously proposed by the inventors, the sound generated from the internal combustion engine is disclosed. It is possible to detect an abnormal state of the internal combustion engine based on the signal.

特開2002−041143号公報Japanese Patent Laid-Open No. 2002-041143

内燃機関は、機関を構成する要素の数が極めて多く、故障形態も多種多様であり、その中で比較的トラブル頻度が高い吸気弁・排気弁の吹抜けについては、実用的な状態監視法方法が期待されている。しかしながら特許文献1に記載の方法では、吸気弁の吹抜け(破損による気体の漏れの発生)と排気弁の吹抜けの識別は困難である。また従来は、シリンダにカーボンが付着していることを識別することも困難であった。   An internal combustion engine has an extremely large number of elements constituting the engine and a variety of failure modes. Among them, there is a practical state monitoring method for blowout of intake valves and exhaust valves, which has a relatively high frequency of trouble. Expected. However, in the method described in Patent Document 1, it is difficult to distinguish between blow-in of the intake valve (occurrence of gas leakage due to breakage) and blow-through of the exhaust valve. Conventionally, it has also been difficult to identify the carbon adhering to the cylinder.

本発明の目的は、吸気弁の吹抜け及び/または排気弁の吹抜けの識別及び/またはシリンダにカーボンが付着していることの識別が可能な内燃機関の状態監視方法及び装置を提供することにある。   An object of the present invention is to provide a state monitoring method and apparatus for an internal combustion engine that can identify the blow-by of an intake valve and / or the blow-by of an exhaust valve and / or that carbon is attached to a cylinder. .

本発明の他の目的は、内燃機関に非接触で計測可能な音響センサを用いて、機器運転中の音響計測により得られた音響信号に基づいて、燃焼関連部位の状態を監視し、吸・排気弁吹抜け異常の発生を従来方法よりも早期に検出し、且つ故障シリンダの識別や吸・排気弁吹抜けの識別が可能な方法及び装置を提供する。   Another object of the present invention is to use an acoustic sensor that can be measured in a non-contact manner with an internal combustion engine, to monitor the state of a combustion-related part based on an acoustic signal obtained by acoustic measurement during equipment operation, and Provided is a method and an apparatus capable of detecting the occurrence of an exhaust valve blowout abnormality earlier than the conventional method and identifying a failed cylinder and an intake / exhaust valve blowout.

本発明は、複数のシリンダを有する内燃機関から発生する音響信号に基づいて、複数のシリンダの吸気弁及び排気弁の状態を監視する内燃機関の状態監視方法を対象とする。本発明の方法では、内燃機関が正常なときに、非接触の音響センサを用いて取得した音響信号を第1乃至第3のフィルタを用いてフィルタ処理する。第1のフィルタは、吸気弁において異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第1のフィルタからは音響信号をフィルタ処理して第1の基準信号を取得する。第2のフィルタは、排気弁において異常が発生したときに排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第2のフィルタからは音響信号をフィルタ処理して第2の基準信号を取得する。第3のフィルタは、シリンダにおいてカーボン付着の異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第3のフィルタからは音響信号をフィルタ処理して第3の基準信号を取得する。   The present invention is directed to an internal combustion engine state monitoring method for monitoring the states of intake valves and exhaust valves of a plurality of cylinders based on acoustic signals generated from an internal combustion engine having a plurality of cylinders. In the method of the present invention, when the internal combustion engine is normal, the acoustic signal acquired using the non-contact acoustic sensor is filtered using the first to third filters. The first filter has a center frequency at which a large signal change appears at the timing of explosion when an abnormality occurs in the intake valve, and the first reference signal is obtained by filtering the acoustic signal from the first filter. To get. The second filter has a center frequency at which a large signal change appears when the exhaust valve closes and the intake valve closes when an abnormality occurs in the exhaust valve. The second filter filters an acoustic signal. Process to obtain a second reference signal. The third filter has a center frequency at which a large signal change appears at the timing of the explosion when an abnormality of carbon adhesion occurs in the cylinder. The third filter filters the acoustic signal to obtain the third frequency. Get a reference signal.

次ぎに、監視時において、非接触の音響センサを用いて得た内燃機関が発生する音響信号を第1のフィルタを用いてフィルタ処理して第1の観測信号を取得し、音響信号を第2のフィルタによりフィルタ処理して第2の観測信号を取得し、音響信号を第3のフィルタによりフィルタ処理して第3の観測信号を取得する。   Next, at the time of monitoring, the first observation signal is obtained by filtering the acoustic signal generated by the internal combustion engine obtained using the non-contact acoustic sensor using the first filter, and the second acoustic signal is obtained. The second observation signal is obtained by filtering with the first filter, and the third observation signal is obtained by filtering the acoustic signal with the third filter.

そして複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第1の観測信号に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形と、第1の基準信号に含まれる複数のシリンダの爆発のタイミングにおける複数の基準信号波形とを対比して複数のシリンダの吸気弁の状態を監視する。また複数のシリンダのそれぞれの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第2の観測信号に含まれる複数のシリンダの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける複数の観測信号波形と、第2の基準信号に含まれる複数のシリンダの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける複数の基準信号波形とを対比して複数のシリンダの排気弁の状態を監視する。さらに複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第3の観測信号に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形と、第3の基準信号に含まれる複数のシリンダの爆発のタイミングにおける複数の基準信号波形とを対比して複数のシリンダのカーボン付着状態を監視する。 Then, based on the timing information about the respective explosion timings of the plurality of cylinders, the plurality of observation signal waveforms at the explosion timings of the plurality of cylinders included in the first observation signal and the plurality included in the first reference signal. The intake valve states of a plurality of cylinders are monitored by comparing with a plurality of reference signal waveforms at the timing of the cylinder explosion. Further, based on the timing information about the timing at which the exhaust valves of the plurality of cylinders are closed and the timing at which the intake valves are closed, the timing at which the exhaust valves of the plurality of cylinders are closed and the timing at which the intake valves are closed included in the second observation signal. a plurality of observation signals waveforms, a plurality of states of a plurality of cylinders of the exhaust valve by comparing the plurality of reference signal waveforms in timing the exhaust valve is closed and the timing when the intake valve closes in a cylinder included in the second reference signal Monitor. Furthermore, based on timing information about the timing of each explosion of the plurality of cylinders, a plurality of observation signal waveforms at the timing of explosion of the plurality of cylinders included in the third observation signal and a plurality of included in the third reference signal. The carbon adhesion state of a plurality of cylinders is monitored by comparing with a plurality of reference signal waveforms at the timing of the cylinder explosion.

発明者は、吸気弁の吹抜けが、状態監視対象のシリンダの爆発のタイミングにおいて音響波形が変化する(音圧レベルが増大するなど)音響パターンとして現れること、排気弁の吹抜けが、状態監視対象のシリンダの排気弁が閉まるタイミングと吸気弁が閉まるタイミングとにおいて音響波形が変化する(音圧レベルが増大するなど)音響パターンとして現れること、及びシリンダにおけるカーボンの付着が状態監視対象のシリンダの爆発のタイミングにおいて音響波形が変化する(音圧レベルが増大するなど)音響パターンとして現れることを見出した。なお排気弁の吹抜けにおいては、最終的には爆発のタイミングにおいても音響波形が変化する。すなわち発明者は、各シリンダの吸気弁及び/または排気弁における状態を監視する場合に、吸気弁及び/または排気弁から発生する音響信号のうち、特定の作動タイミングで発生する音響信号の変化に着目することにより、吸気弁及び/または排気弁において、吹抜けが発生していること及びシリンダにカーボンが付着していることが分かることを発見した。そこで本発明においては、吸気弁については爆発のタイミングにおける第1の観測信号中に含まれる観測信号波形の基準信号波形に対する変化に基づいて吸気弁の状態を判断する。また排気弁については、排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける第2の観測信号に含まれる観測信号波形の基準信号波形に対する変化が大きくなると排気弁に吹抜けが発生する可能性が高くなっている(予兆が発生している)ものと判断する。そして、排気弁については、爆発のタイミング、排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける第2の観測信号に含まれる観測信号波形の基準信号波形に対する変化がすべて大きくなると、排気弁に完全に吹抜けが発生しているものと判断する。さらにシリンダについては、爆発のタイミングにおける第3の観測信号中に含まれる観測信号波形の基準信号波形に対する変化に基づいてシリンダへのカーボンの付着状態を判断する。この判断方法に従うと、シリンダを特定した上で、従来の方法と比べて、異常(吹き抜け)の発生の予兆を検出して、早期に異常(吹き抜け)の発生を診断することができ、またシリンダへのカーボンの付着の有無を診断することができる。 The inventor indicates that the blow-through of the intake valve appears as an acoustic pattern in which the acoustic waveform changes (such as an increase in the sound pressure level) at the timing of the explosion of the cylinder to be monitored, and the blow-through of the exhaust valve The acoustic waveform changes at the timing when the exhaust valve of the cylinder closes and the timing at which the intake valve closes (such as an increase in the sound pressure level), and the adhesion of carbon in the cylinder causes the explosion of the cylinder to be monitored. It was found that the acoustic waveform changes at the timing (such as the sound pressure level increases) and appears as an acoustic pattern. In the exhaust valve blow-through, the acoustic waveform finally changes even at the timing of the explosion. That is, when the inventor monitors the state of each cylinder at the intake valve and / or the exhaust valve, the acoustic signal generated at a specific operation timing among the acoustic signals generated from the intake valve and / or the exhaust valve. By paying attention, it has been found that in the intake valve and / or the exhaust valve, it can be seen that a blow-through has occurred and that carbon has adhered to the cylinder. Therefore, in the present invention, for the intake valve, the state of the intake valve is determined based on the change of the observation signal waveform included in the first observation signal at the explosion timing with respect to the reference signal waveform. As for the exhaust valve, if the change of the observation signal waveform included in the second observation signal with respect to the reference signal waveform at the timing when the exhaust valve closes and the timing when the intake valve closes increases, the possibility that the exhaust valve blows out increases. It is judged that there is a sign. As for the exhaust valve, when all the changes in the reference signal waveform of the observation signal waveform included in the second observation signal at the timing of explosion, the timing of closing the exhaust valve, and the timing of closing the intake valve are all increased, It is determined that a colonnade has occurred. Further, regarding the cylinder, the carbon adhesion state to the cylinder is determined based on the change of the observation signal waveform included in the third observation signal at the timing of the explosion with respect to the reference signal waveform. According to this judgment method, after identifying the cylinder, it is possible to detect the sign of the occurrence of an abnormality (blow-through) and diagnose the occurrence of the abnormality (blow-through) at an early stage, compared to the conventional method. It is possible to diagnose the presence or absence of carbon on the surface.

なお観測信号波形(音響信号)の変化は、音響波形のピーク値や平均値、波形密度など、基準音響波形に対する違いとして現れる。よってこれらの少なくとも一つの変化に着目して、吸気弁及び排気弁の吹抜け並びにシリンダへのカーボン付着の有無を判断することができる。   Note that the change in the observed signal waveform (acoustic signal) appears as a difference with respect to the reference acoustic waveform, such as the peak value, average value, and waveform density of the acoustic waveform. Therefore, by paying attention to at least one of these changes, it is possible to determine whether or not the intake valve and the exhaust valve have blown out and carbon has adhered to the cylinder.

なお本発明では、吸気弁及び排気弁の状態を同時または連続して判断してもよいが、それぞれの状態を個別に判断してもよいのは勿論である。   In the present invention, the states of the intake valve and the exhaust valve may be determined simultaneously or sequentially, but it is needless to say that each state may be determined individually.

また複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第1の観測信号に含まれる複数のシリンダの各タイミングにおける複数の観測信号波形の変化パターンと、第1の基準信号に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形の変化パターンとを対比してシリンダの吸気弁の状態を監視してもよい。さらに複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第2の観測信号に含まれる複数のシリンダの各タイミングにおける複数の観測信号波形の変化パターンに対する、第2の基準信号に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形の変化パターンとを対比してシリンダの排気弁の状態を監視してもよい。このような変化パターンに基づく判断手法を採用すると、各シリンダの動作状態を監視しながら、各シリンダの吸気弁及び排気弁の状態を監視することができる。   In addition, based on timing information about the timing of each of the plurality of cylinders, the timing at which the exhaust valve closes, and the timing at which the intake valve closes, a plurality of observation signal waveforms at each timing of the plurality of cylinders included in the first observation signal The state of the intake valve of the cylinder may be monitored by comparing this change pattern with the change pattern of the plurality of reference signal waveforms at each timing of the plurality of cylinders included in the first reference signal. Further, based on timing information about the timing of each of the plurality of cylinders, the timing at which the exhaust valve closes, and the timing at which the intake valve closes, a plurality of observation signal waveforms at each timing of the plurality of cylinders included in the second observation signal The state of the exhaust valve of the cylinder may be monitored by comparing the change pattern of the plurality of reference signal waveforms at the respective timings of the plurality of cylinders included in the second reference signal with respect to the change pattern. By adopting such a determination method based on the change pattern, it is possible to monitor the state of the intake valve and the exhaust valve of each cylinder while monitoring the operation state of each cylinder.

なお変化パターンに基づいて監視する場合には、第1の観測信号に含まれる爆発のタイミングに対応する観測信号波形に大きな変化が生じ、第1の観測信号に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形に大きな変化が生じていない変化パターンが発生しているときに、該当するシリンダの吸気弁に吹抜けが発生しているものと判断すればよい。また第2の観測信号に含まれる爆発のタイミングに対応する観測信号波形に大きな変化が生じておらず、第2の観測信号に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形に大きな変化が生じている変化パターンが発生しているときに、該当するシリンダの排気弁に吹抜けが発生する可能性が高まっている(予兆が発生している)ものと判断すればよい。さらに第2の観測信号に含まれる爆発のタイミングに対応する観測信号波形、排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形の全てに大きな変化が生じている変化パターンが発生しているときに、該当するシリンダの排気弁に吹抜けが発生しているものと判断すればよい。さらに複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングについてのタイミング情報に基づいて、第3の観測信号に含まれる複数のシリンダの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、第3の基準信号に含まれる複数のシリンダの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して複数のシリンダのカーボン付着状態を監視する。そして第3の観測信号に含まれる爆発のタイミングに対応する観測信号波形に大きな変化が生じ、第3の観測信号に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形に大きな変化が生じていない変化パターンが発生しているときに、シリンダの内部にカーボン付着が発生しているものと判断すればよい。   When monitoring based on the change pattern, a large change occurs in the observation signal waveform corresponding to the explosion timing included in the first observation signal, and this corresponds to the timing when the exhaust valve included in the first observation signal is closed. When there is a change pattern that does not cause a significant change in the observed signal waveform and the observed signal waveform corresponding to the timing at which the intake valve closes, it is determined that a blowout has occurred in the intake valve of the corresponding cylinder. That's fine. In addition, the observation signal waveform corresponding to the timing of the explosion included in the second observation signal has not changed significantly, and the observation signal waveform and the intake valve corresponding to the timing at which the exhaust valve included in the second observation signal is closed When there is a change pattern in which a large change occurs in the observed signal waveform corresponding to the closing timing, there is an increased possibility that a blowout will occur in the exhaust valve of the corresponding cylinder (a sign is generated) It can be judged as a thing. Furthermore, the observation signal waveform corresponding to the timing of the explosion included in the second observation signal, the observation signal waveform corresponding to the timing when the exhaust valve closes, and the observation signal waveform corresponding to the timing when the intake valve closes all greatly change. What is necessary is just to judge that the blowout has generate | occur | produced in the exhaust valve of the applicable cylinder, when the change pattern which has occurred. Further, based on the timing information about the timing of each of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve, the timing of the explosion of the plurality of cylinders included in the third observation signal and the exhaust valve are closed. Change pattern of a plurality of observed signal waveforms at timing and timing at which the intake valve closes, timing of explosion of a plurality of cylinders included in the third reference signal, timing at which the exhaust valve closes and timing at which the intake valve closes The carbon adhesion state of a plurality of cylinders is monitored in comparison with the waveform change pattern. Then, a large change occurs in the observation signal waveform corresponding to the explosion timing included in the third observation signal, and the observation signal waveform corresponding to the timing when the exhaust valve included in the third observation signal is closed and the timing when the intake valve is closed. What is necessary is just to judge that the carbon adhesion has generate | occur | produced inside the cylinder, when the change pattern in which the big change has not arisen in the corresponding observation signal waveform has generate | occur | produced.

各シリンダの動作タイミングは、どのように決定してもよい。例えば、複数のシリンダの一つの爆発のタイミングを定めるパルサ信号(点火信号の発生に関係する信号)に基づいて、すべてのシリンダの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングについてのタイミング情報を得るようにしてもよい。   The operation timing of each cylinder may be determined in any way. For example, based on a pulsar signal (a signal related to the generation of an ignition signal) that determines the timing of one explosion of a plurality of cylinders, the timing of the explosion of all cylinders, the timing of closing exhaust valves, and the timing of closing intake valves Timing information may be obtained.

なお本発明では、吸気弁における吹抜けの発生の監視、排気弁における吹抜けの発生の監視及びシリンダにおけるカーボンの付着の監視をそれぞれ個別に行ってもよいのは勿論である。   In the present invention, it is of course possible to individually monitor the occurrence of blow-through in the intake valve, the occurrence of blow-through in the exhaust valve, and the monitoring of carbon adhesion in the cylinder.

本発明は、複数のシリンダを有する内燃機関から発生する音響信号に基づいて、複数のシリンダの吸気弁及び排気弁の状態を監視する内燃機関の状態監視装置としても把握できる。本発明の内燃機関の状態監視装置は、内燃機関から音響信号を取得する非接触の音響センサと、吸気弁において異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第1のフィルタと、排気弁において異常が発生したときに排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第2のフィルタと、シリンダにおいてカーボン付着の異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第3のフィルタと、記憶装置と監視部とを有する。記憶装置は、内燃機関が正常なときに非接触の音響センサを用いて得た音響信号を第1乃至第3のフィルタでそれぞれフィルタ処理して得た第1乃至第3の基準信号を記憶し、監視時において、非接触の音響センサを用いて得た内燃機関が発生する音響信号を第1乃至第3のフィルタによりそれぞれフィルタ処理して得た第1乃至第3の観測信号を取得して記憶する。監視部は、記憶装置に記憶された第1乃至第3の基準信号と第1乃至第3の観測信号に基づいて複数のシリンダの吸気弁及び排気弁の状態を監視する。そして本発明では、監視部が、複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第1の観測信号に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形と、第1の基準信号に含まれる複数のシリンダの爆発のタイミングにおける複数の基準信号波形とを対比して複数のシリンダの吸気弁の状態を監視し、複数のシリンダのそれぞれの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第2の観測信号に含まれる複数のシリンダの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける複数の観測信号波形と、第2の基準信号に含まれる複数のシリンダの排気弁が閉まるタイミング及び吸気弁が閉まるタイミングにおける複数の基準信号波形とを対比して複数のシリンダの排気弁の状態を監視し、複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第3の観測信号に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形と、第3の基準信号に含まれる複数のシリンダの爆発のタイミングにおける複数の基準信号波形とを対比して複数のシリンダのカーボン付着状態を監視するように構成されている。 The present invention can also be grasped as an internal combustion engine state monitoring device that monitors the states of intake valves and exhaust valves of a plurality of cylinders based on acoustic signals generated from an internal combustion engine having a plurality of cylinders. The internal combustion engine state monitoring apparatus according to the present invention has a non-contact acoustic sensor that acquires an acoustic signal from the internal combustion engine, and a center that can acquire a signal in which a large signal change appears at the timing of an explosion when an abnormality occurs in the intake valve. A first filter having a frequency, and a second filter having a center frequency capable of acquiring a signal in which a large signal change appears at a timing when the exhaust valve closes and an intake valve closes when an abnormality occurs in the exhaust valve. And a third filter having a center frequency capable of acquiring a signal in which a large signal change appears at the timing of explosion when an abnormality of carbon adhesion occurs in the cylinder, a storage device, and a monitoring unit. The storage device stores first to third reference signals obtained by filtering the acoustic signals obtained using the non-contact acoustic sensor when the internal combustion engine is normal with the first to third filters, respectively. During the monitoring, first to third observation signals obtained by filtering the acoustic signals generated by the internal combustion engine obtained using the non-contact acoustic sensor with the first to third filters are obtained. Remember. The monitoring unit monitors the states of the intake valves and the exhaust valves of the plurality of cylinders based on the first to third reference signals and the first to third observation signals stored in the storage device. In the present invention, the monitoring unit, based on the timing information about the explosion timing of each of the plurality of cylinders, a plurality of observation signal waveforms at the explosion timing of the plurality of cylinders included in the first observation signal, The state of the intake valves of the plurality of cylinders is monitored by comparing with the plurality of reference signal waveforms at the timing of explosion of the plurality of cylinders included in one reference signal, and the timing at which the exhaust valves of the plurality of cylinders are closed and the intake air Included in the second reference signal and a plurality of observed signal waveforms at the timing when the exhaust valves of the plurality of cylinders included in the second observation signal and the timing when the intake valve closes based on the timing information about the timing at which the valves close exhaust valves of the plurality of cylinders are multiple in timing and timing at which the intake valve closes closed to The state of the exhaust valves of the plurality of cylinders is compared with the quasi-signal waveform, and the explosion of the plurality of cylinders included in the third observation signal is based on the timing information about the timing of each of the plurality of cylinders. And comparing the plurality of observation signal waveforms at the timing of the cylinder and the plurality of reference signal waveforms at the timing of the explosion of the plurality of cylinders included in the third reference signal to monitor the carbon adhesion state of the plurality of cylinders. ing.

なお本発明では、吸気弁における吹抜けの発生の監視、排気弁における吹抜けの発生の監視及びシリンダにおけるカーボンの付着の監視をそれぞれ個別に行うように内燃機関の状態監視装置を構成してもよいのは勿論である。   In the present invention, the state monitoring device of the internal combustion engine may be configured to individually monitor the occurrence of blow-through in the intake valve, monitor the occurrence of blow-through in the exhaust valve, and monitor carbon adhesion in the cylinder. Of course.

本発明の方法の実施の形態の一例を実施するために用いる本発明の内燃機関の状態監視装置の構成を概略的に示した図である。It is the figure which showed schematically the structure of the state monitoring apparatus of the internal combustion engine of this invention used in order to implement an example of embodiment of the method of this invention. 同時に3つのシリンダの3個の吸気弁と3個の排気弁から発生する音を集音した音響信号をフーリエ変換して周波数軸上のパワースペクトル(音圧スペクトル)として示した図である。It is the figure which showed as a power spectrum (sound pressure spectrum) on a frequency axis by Fourier-transforming the acoustic signal which collected the sound which generate | occur | produces simultaneously from three intake valves and three exhaust valves of three cylinders. (A)は動作タイミングを示す図であり、(B)乃至(E)はそれぞれ診断方法を説明するために用いる波形図である。(A) is a figure which shows an operation timing, (B) thru | or (E) are the waveform diagrams used in order to demonstrate a diagnostic method, respectively. 内燃機関の作動タイミングと、シリンダにおける動作状態の関係を示す図である。It is a figure which shows the relationship between the operation timing of an internal combustion engine, and the operation state in a cylinder. (A)は動作タイミングを示す図であり、(B)乃至(D)はそれぞれ診断方法を説明するために用いる波形図である。(A) is a figure which shows an operation timing, (B) thru | or (D) are the waveform diagrams used in order to demonstrate a diagnostic method, respectively.

以下図面を参照して本発明の内燃機関の状態監視方法の一実施の形態について詳細に説明する。図1は本発明の方法の実施の形態の一例を実施するために用いる本発明の内燃機関の状態監視装置の実施の形態の構成を概略的に示した図である。本実施の形態では、発電機を駆動するための16気筒の内燃機関のシリンダ1乃至16の吸気弁SV及び排気弁DVの異常を、音響信号を用いて診断する。シリンダ1乃至3が位置する内燃機関の部分から発生する音を音響信号に変換する音響センサAとしてマイクロフォンを用いる。本実施の形態では、6の音響センサを用いて16気筒のシリンダ1乃至16から音響信号を取得している。音響センサAは、3台のシリンダ1乃至3の吸気弁SV及び排気弁DVが位置する内機関の部分から発生する音響信号を収集できる位置に、機関とは非接触状態で配置される。なお音響センサAは、他のシリンダから発生する音も収集することになる。 Hereinafter, an embodiment of a state monitoring method for an internal combustion engine according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically showing the configuration of an embodiment of a state monitoring apparatus for an internal combustion engine of the present invention used for carrying out an example of an embodiment of a method of the present invention. In the present embodiment, the abnormality of the intake valves SV and the exhaust valves DV of the cylinders 1 to 16 of the 16-cylinder internal combustion engine for driving the generator is diagnosed using acoustic signals. A microphone is used as the acoustic sensor A that converts sound generated from the portion of the internal combustion engine in which the cylinders 1 to 3 are located into an acoustic signal. In the present embodiment, acoustic signals are acquired from the 16-cylinder cylinders 1 to 16 using six acoustic sensors. Acoustic sensor A is in a position to collect a sound signal generated from a portion of the combustion engine among the three cylinders 1 to 3 of the intake valve SV and the exhaust valve DV located, the engine is placed in a non-contact state. The acoustic sensor A also collects sounds generated from other cylinders.

またこの例では、内燃機関の作動タイミング(爆発のタイミング、吸気弁が閉じるタイミング、排気弁が閉じるタイミング等)を測定するために、内燃機関によって回転駆動される回転子に対して設けたパルサ(回転検出器)の出力を利用する。パルサ(回転検出器)は、回転子の回転位置に基づいて、シリンダ1乃至16の一つのシリンダにおける上死点でパルス信号を出力する。その他のシリンダの上死点位置は、パルサの出力に基づいて計算により求められる。そして作動タイミング検出部OTDは、パルサの出力に基づいて、すべてのシリンダ1乃至16の爆発のタイミング、吸気弁が閉じるタイミング、排気弁が閉じるタイミング等のタイミングを決定する。音響センサAの出力は、作動タイミング検出部OTDによって検出された作動タイミングの情報と一緒にレコーダRに記録される。音響センサ及びレコーダRは、可搬式のものであれば、作業員が測定現場まで持参する。なおこのレコーダRは、アナログまたはデジタルのいずれにより、データを記録してもよい。データ分析部DAは、診断の対象とするデータ(音響信号データと動作タイミング・データ)を分析して取得する。   In this example, in order to measure the operation timing of the internal combustion engine (explosion timing, intake valve close timing, exhaust valve close timing, etc.), a pulser provided for a rotor that is driven to rotate by the internal combustion engine ( Use the output of the rotation detector. The pulser (rotation detector) outputs a pulse signal at the top dead center in one of the cylinders 1 to 16 based on the rotational position of the rotor. The top dead center positions of other cylinders are obtained by calculation based on the output of the pulsar. Based on the output of the pulser, the operation timing detection unit OTD determines timings such as the explosion timing of all the cylinders 1 to 16, the intake valve closing timing, the exhaust valve closing timing, and the like. The output of the acoustic sensor A is recorded in the recorder R together with information on the operation timing detected by the operation timing detection unit OTD. If the acoustic sensor and the recorder R are portable, the operator brings them to the measurement site. The recorder R may record data either analog or digitally. The data analysis unit DA analyzes and acquires data to be diagnosed (acoustic signal data and operation timing data).

フィルタ装置は第1のフィルタF1と、第2のフィルタF2と第3のフィルタF3とを備えている。第1のフィルタF1は、吸気弁において異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第1のフィルタF1からは音響信号をフィルタ処理して第1の基準信号Sr1を取得する。中心周波数は、内燃機関の種類によって異なるが、例えば3〜7kHzの周波数を用いることができる。また第2のフィルタF2は、排気弁において異常が発生したときに排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第2のフィルタF2からは音響信号をフィルタ処理して第2の基準信号Sr2を取得する。中心周波数は、内燃機関の種類によって異なるが、例えば23〜27kHzの周波数を用いることができる。フィルタ装置Fは、データ分析部DAが選択した音響信号をそれぞれフィルタ処理して出力する。図2は例えば、シリンダ3乃至5が位置する部分に対して音響センサ(マイクロフォン)を設置して同時に3つのシリンダの3個の吸気弁SVと3個の排気弁DVから発生する音を含む音響信号をフーリエ変換して周波数軸上のパワースペクトル(音圧スペクトル)として示した図の一例である。この図の縦軸は音圧である。第3のフィルタF3は、シリンダにおいてカーボン付着の異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持っており、第3のフィルタF3からは音響信号をフィルタ処理して第3の基準信号Sr3を取得する。中心周波数は、内燃機関の種類によって異なるが、例えば23〜27kHzの周波数を用いることができる。 The filter device includes a first filter F1, a second filter F2, and a third filter F3. The first filter F1 has a center frequency at which a large signal change appears at the timing of the explosion when an abnormality occurs in the intake valve. The first filter F1 filters the acoustic signal and performs the first processing. A reference signal Sr1 is acquired. Although the center frequency varies depending on the type of the internal combustion engine, for example, a frequency of 3 to 7 kHz can be used. The second filter F2 has a center frequency at which a large signal change appears when the exhaust valve closes and the intake valve closes when an abnormality occurs in the exhaust valve. The signal is filtered to obtain a second reference signal Sr2 . Although the center frequency varies depending on the type of the internal combustion engine, for example, a frequency of 23 to 27 kHz can be used. The filter device F filters and outputs the acoustic signals selected by the data analysis unit DA. In FIG. 2, for example, an acoustic sensor (microphone) is installed in a portion where the cylinders 3 to 5 are located, and acoustics including sounds generated from three intake valves SV and three exhaust valves DV of three cylinders at the same time. It is an example of the figure which carried out the Fourier transformation of the signal, and showed it as a power spectrum (sound pressure spectrum) on a frequency axis. The vertical axis of this figure is the sound pressure. The third filter F3 has a center frequency at which a large signal change appears at the timing of the explosion when an abnormality of carbon adhesion occurs in the cylinder. 3 reference signal Sr3 is acquired. Although the center frequency varies depending on the type of the internal combustion engine, for example, a frequency of 23 to 27 kHz can be used.

また図3(A)は、内燃機関の作動タイミングを示す図である。図3(A)において、例えば「燃4」の文字は、「シリンダ4の爆発のタイミング」を示し、「排9」は「シリンダ9の排気弁が閉じるタイミング」を示しており、「吸6」は「シリンダ6の吸気弁が閉じるタイミング」を示している。また図3(A)の0Vラインを基準に並ぶパルス信号は、前述のパルサの信号の例を示している。   FIG. 3A is a diagram showing the operation timing of the internal combustion engine. In FIG. 3A, for example, the characters “Fuel 4” indicate “the timing of explosion of the cylinder 4”, “Exhaust 9” indicates “the timing at which the exhaust valve of the cylinder 9 closes”, and “Suction 6”. "" Indicates the timing when the intake valve of the cylinder 6 is closed. " Further, the pulse signals arranged with reference to the 0V line in FIG. 3A show examples of the above-described pulser signals.

図3(B)は、内燃機関が正常なときに非接触の音響センサにより取得した監視対象シリンダ3乃至5廻りからの音響信号を第1のフィルタF1によりフィルタ処理して得た、第1の基準信号Sr1である。第1の基準信号Sr1には、吸気弁の状況の情報が含まれる。図3(B)に見られるように、正常時には、爆発のタイミングに対応する領域P1、排気弁が閉じるタイミングに対応する領域P2及び吸気弁が閉じるタイミングに対応する領域P3のいずれにおいても、フィルタ処理された第1の基準信号Sr1中には大きな変化はない。また図3(D)は、内燃機関が正常なときに非接触の音響センサにより取得した監視対象シリンダ3乃至5廻りからの音響信号を第2のフィルタF2を用いてフィルタ処理して得た第2の基準信号Sr2である。第2の基準信号には、排気弁の状況の情報が含まれる。図3(D)に見られるように、正常時には、爆発のタイミングに対応する領域P1、排気弁が閉じるタイミングに対応する領域P2及び吸気弁が閉じるタイミングに対応する領域P3のいずれにおいても、フィルタ処理された第2の基準信号Sr2中に明確な基準信号波形の存在が見られる。図3(C)は、監視のために非接触の音響センサにより取得した監視対象シリンダ3乃至5廻りからの音響信号を第1のフィルタF1によりフィルタ処理して得た第1の観測信号So1である。なおこの例では、シリンダ4の吸気弁SVに吹抜けが発生している場合を示している。また図3(E)は、監視のために非接触の音響センサにより取得した監視対象シリンダ3乃至5廻りからの音響信号を第2のフィルタF2を用いてフィルタ処理して得た、第2の観測信号So2である。なおこの例では、シリンダ4の排気弁DVに吹抜けが発生している場合を示している。図3(B)乃至(E)においては、それぞれ所定の周波数帯域成分をフィルタ処理により時間軸上の音響波形として顕在化している。 FIG. 3B shows a first filter obtained by filtering an acoustic signal from around the monitoring target cylinders 3 to 5 acquired by a non-contact acoustic sensor when the internal combustion engine is normal, using a first filter F1. This is the reference signal Sr1 . The first reference signal Sr1 includes information on the state of the intake valve. As shown in FIG. 3B, in the normal state, the filter is used in any of the region P1 corresponding to the timing of explosion, the region P2 corresponding to the timing of closing the exhaust valve, and the region P3 corresponding to the timing of closing the intake valve. There is no significant change in the processed first reference signal Sr1 . Further, FIG. 3D shows a first example obtained by filtering the acoustic signal from around the monitored cylinders 3 to 5 acquired by the non-contact acoustic sensor when the internal combustion engine is normal using the second filter F2. 2 reference signal Sr2 . The second reference signal includes information on the state of the exhaust valve. As can be seen from FIG. 3D, in the normal state, in any of the region P1 corresponding to the explosion timing , the region P2 corresponding to the exhaust valve closing timing , and the region P3 corresponding to the intake valve closing timing , The presence of a clear reference signal waveform can be seen in the processed second reference signal Sr2 . FIG. 3C shows a first observation signal So1 obtained by filtering an acoustic signal from around the monitoring target cylinders 3 to 5 acquired by a non-contact acoustic sensor for monitoring with a first filter F1. is there. In this example, a case where the blow-by has occurred in the intake valve SV of the cylinder 4 is shown. FIG. 3E shows a second filter obtained by filtering an acoustic signal from around the monitoring target cylinders 3 to 5 acquired by a non-contact acoustic sensor for monitoring using the second filter F2. This is the observation signal So2 . In this example, a case is shown in which an exhaust valve DV has occurred in the exhaust valve DV of the cylinder 4. In FIGS. 3B to 3E, predetermined frequency band components are manifested as acoustic waveforms on the time axis by filtering.

また図5(A)は、内燃機関の作動タイミングを示す図であり、図5(A)における表示は図3(A)の表示と同じである。また図5(A)の0Vラインを基準に並ぶパルス信号は、前述のパルサの信号の例を示している。図5(B)は、内燃機関が正常なときに非接触の音響センサにより取得した監視対象シリンダ6廻りからの音響信号を第3のフィルタF3によりフィルタ処理して得た、第3の基準信号Sr3である。第3の基準信号Sr3には、シリンダ内へのカーボン付着の情報が含まれる。図5(B)に見られるように、正常時には、爆発のタイミング「燃6」において、フィルタ処理された第3の基準信号Sr3中に異常と思われるような大きな変化はない。また図5(C)は、図5(B)よりも約1年後に内燃機関が正常なときに非接触の音響センサにより取得した監視対象シリンダ6廻りからの音響信号を第3のフィルタF3を用いてフィルタ処理して得た第3の観測信号So3である。図5(C)と図5(B)とを比較してみると、両者の爆発のタイミングにおける観測信号波形に大きな相違はない。図5(D)は、さらに約1年後に監視のために非接触の音響センサにより取得した監視対象シリンダ6廻りからの音響信号を第3のフィルタF3によりフィルタ処理して得た第3の観測信号So3である。なおこの例では、シリンダ6にカーボンの付着が発生していた。図5(C)と図5(D)とを比較してみると、両者の爆発のタイミングにおける観測信号波形に大きな相違がある。すなわちシリンダ6にカーボンが付着している状態では、爆発のタイミングにおける観測信号波形は時間軸方向に波形の大きな広がりが見られる。図5(B)乃至(D)においては、それぞれ所定の周波数帯域成分をフィルタ処理により時間軸上の音響波形として顕在化している。 FIG. 5A is a diagram showing the operation timing of the internal combustion engine, and the display in FIG. 5A is the same as the display in FIG. Further, the pulse signals arranged with reference to the 0V line in FIG. 5A show examples of the above-described pulser signals. FIG. 5B shows a third reference signal obtained by filtering the acoustic signal from around the monitoring target cylinder 6 acquired by the non-contact acoustic sensor when the internal combustion engine is normal with the third filter F3. Sr3 . The third reference signal Sr3 includes information on carbon adhesion in the cylinder. As shown in FIG. 5B, at the time of normal, there is no large change that seems to be abnormal in the filtered third reference signal Sr3 at the explosion timing “fuel 6”. Further, FIG. 5C shows a third filter F3 for an acoustic signal from around the monitoring target cylinder 6 acquired by a non-contact acoustic sensor when the internal combustion engine is normal about one year after FIG. 5B. This is a third observation signal So3 obtained by using the filtering process. Comparing FIG. 5C and FIG. 5B, there is no significant difference in the observed signal waveforms at the timing of the explosion. FIG. 5D shows a third observation obtained by filtering the acoustic signal from around the monitoring target cylinder 6 acquired by the non-contact acoustic sensor for monitoring after about one year with the third filter F3. Signal So3 . In this example, carbon adheres to the cylinder 6. Comparing FIG. 5C and FIG. 5D, there is a great difference in the observed signal waveforms at the timing of the explosion. That is, in the state where carbon is attached to the cylinder 6, the observation signal waveform at the timing of the explosion has a large spread in the time axis direction. 5B to 5D, each predetermined frequency band component is manifested as an acoustic waveform on the time axis by filtering.

第1乃至第3のフィルタF1乃至F3で使用するフィルタの帯域幅は、診断の対象となる弁の種類及び数に応じて異なってくる。このフィルタの帯域幅の設定については、帯域の変更が可能なフィルタ装置を用いて、適切に設定しておけばよい。   The bandwidths of the filters used in the first to third filters F1 to F3 vary depending on the type and number of valves to be diagnosed. About the setting of the bandwidth of this filter, what is necessary is just to set appropriately using the filter apparatus which can change a band.

第1のフィルタF1によってフィルタ処理された第1の基準信号Sr1は、記憶装置Mの第1の基準信号記憶部M1に記憶され、第1のフィルタF1によってフィルタ処理された第1の観測信号So1は、記憶装置Mの第1の観測信号記憶部M2に記憶される。また第2のフィルタによってフィルタ処理された第2の基準信号Sr2は、記憶装置Mの第2の基準信号記憶部M3に記憶され、第2のフィルタF2によってフィルタ処理された第2の観測信号So2は、記憶装置Mの第2の観測信号記憶部M4に記憶される。さらに第3のフィルタによってフィルタ処理された第3の基準信号Sr3は、記憶装置Mの第3の基準信号記憶部M5に記憶され、第3のフィルタF2によってフィルタ処理された第3の観測信号So3は、記憶装置Mの第3の観測信号記憶部M6に記憶される。   The first reference signal Sr1 filtered by the first filter F1 is stored in the first reference signal storage unit M1 of the storage device M, and the first observation signal So1 filtered by the first filter F1. Is stored in the first observation signal storage unit M2 of the storage device M. The second reference signal Sr2 filtered by the second filter is stored in the second reference signal storage unit M3 of the storage device M, and the second observation signal So2 filtered by the second filter F2. Is stored in the second observation signal storage unit M4 of the storage device M. Further, the third reference signal Sr3 filtered by the third filter is stored in the third reference signal storage unit M5 of the storage device M, and the third observation signal So3 filtered by the third filter F2. Is stored in the third observation signal storage unit M6 of the storage device M.

監視部MTは、図3(A)に示されるような3つのシリンダ3乃至5のそれぞれの爆発のタイミング「燃3」「燃4」「燃5」についてのタイミング情報に基づいて、図3(C)に示す第1の観測信号So1に含まれる3つのシリンダ3乃至5の爆発のタイミングにおける3つの観測信号波形W13乃至W15と、図3(B)に示される第1の基準信号Sr1に含まれ3つのシリンダ3乃至5の爆発のタイミング「燃3」「燃4」「燃5」における3つ基準信号波形W3乃至W5との対比に基づいて複数のシリンダの吸気弁SVの状態を監視する。図3(B)と図3(C)とを対比すると、シリンダ4の爆発のタイミングにおいて、観測信号波形W14の振幅及び周期に大きな変化が現れている。これに対してシリンダ3及び5の爆発のタイミングにおいて、観測信号波形W13及びW15には、特に変化は現れていない。またシリンダ4の、排気弁DVが閉じるタイミング「排4」と吸気弁SVが閉じるタイミング「吸4」に対応する領域P2及びP3に現れる基準信号波形及び観測信号波形にも、変化は現れていない。このことからシリンダの吸気弁SVにおける異常の発生(吹抜け)は、複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第1の観測信号So1に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形(例えばW13〜W15)と、第1の基準信号Sr1に含まれる複数のシリンダの爆発のタイミングにおける複数の基準信号波形(例えばW3〜W5)とを対比することにより複数のシリンダの吸気弁の状態を診断することができることが判った。 Based on the timing information about the explosion timings “Fuel 3”, “Fuel 4” and “Fuel 5” of each of the three cylinders 3 to 5 as shown in FIG. Included in the three observation signal waveforms W13 through W15 at the timing of the explosion of the three cylinders 3 through 5 included in the first observation signal So1 shown in C) and the first reference signal Sr1 shown in FIG . The states of the intake valves SV of a plurality of cylinders are monitored based on the comparison with the three reference signal waveforms W3 to W5 at the timings of explosion of the three cylinders 3 to 5 "Fuel 3", "Fuel 4" and "Fuel 5". . Comparing FIG. 3B and FIG. 3C, a large change appears in the amplitude and period of the observation signal waveform W14 at the timing of the explosion of the cylinder 4. On the other hand, there is no particular change in the observation signal waveforms W13 and W15 at the timing of the explosion of the cylinders 3 and 5. In addition, there is no change in the reference signal waveform and the observation signal waveform appearing in the regions P2 and P3 corresponding to the timing “exhaust 4” when the exhaust valve DV closes and the timing “suction 4” when the intake valve SV closes. . Therefore, the occurrence of an abnormality (blow-out) in the intake valve SV of the cylinder is determined based on the timing information about the timing of explosion of each of the plurality of cylinders, and the timing of explosion of the plurality of cylinders included in the first observation signal So1. By comparing a plurality of observed signal waveforms (for example, W13 to W15) in FIG. 5 with a plurality of reference signal waveforms (for example, W3 to W5) at the timing of explosion of the plurality of cylinders included in the first reference signal Sr1 It was found that the condition of the intake valve of the cylinder can be diagnosed.

また監視部MTは、図3の波形の例で説明すると、図3(A)に示されるような3つのシリンダ3乃至5のそれぞれの爆発のタイミング「燃3」「燃4」「燃5」についてのタイミング情報に基づいて、図3()に示す第2の観測信号So2に含まれる3つのシリンダ3乃至5の爆発のタイミングにおける3つの観測信号波形W13´乃至W15´と、図3(D)に示すの基準信号Sr2に含まれ3つのシリンダ3乃至5の爆発のタイミング「燃3」「燃4」「燃5」における3つ基準信号波形W3′乃至W5′との対比に基づいて複数のシリンダの排気弁DVの状態を監視する。図3(E)と図3()とを対比すると、シリンダ4の爆発のタイミングにおいて、観測信号波形W14′と基準信号波形W4′の振幅及び周期には、殆ど変化が見られない。また図3(E)に示されるように、シリンダ4の排気弁DVが閉じるタイミング「排4」と吸気弁SVが閉じるタイミング「吸4」に対応する領域P2及びP3に現れる観測信号波形(W41′,W42′)には、図3(D)に示された第2の基準信号Sr2のシリンダ4の排気弁DVが閉じるタイミング「排4」と吸気弁SVが閉じるタイミング「吸4」に対応する領域P2及びP3に現れる基準信号波形(W41,W42)とを比べると、振幅及び周期に明確な変化が現れている。なおさらに吹き抜けが進行すると、爆発のタイミングにおける観測信号波形W14′にも基準信号波形W4′と比べて大きな変化が現れる。このことからシリンダの排気弁DVにおける異常の発生(吹抜け)の予兆として、複数のシリンダの爆発のタイミングと、複数のシリンダのそれぞれの排気弁DVが閉じるタイミングと、吸気弁SVが閉じるタイミングについてのタイミング情報に基づいて、第2の観測信号So2に含まれる複数のシリンダの爆発のタイミングにおける複数の観測信号波形(W14′等)、複数のシリンダの排気弁DVが閉じるタイミング及び吸気弁SVが閉じるタイミングにおける複数の観測信号波形(例えばW41′,W42′)と、第1の基準信号Sr1に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形(例えばW41,W42)との対比に基づいて、複数のシリンダの排気弁DVの状態を診断することができることが判った。 Further, the monitoring unit MT will be described with reference to the waveform example of FIG. 3. The explosion timings “fuel 3”, “fuel 4”, and “fuel 5” of each of the three cylinders 3 to 5 as shown in FIG. based on the timing information, FIG. 3 and three observation signal waveforms at the timing of the explosion of the three cylinders 3 to 5 included in the second observation signal So2 shown in (E) W13 'to W15', FIG. 3 ( Comparison with the three reference signal waveforms W3 'to W5' in the timings of the explosions "Fuel 3", "Fuel 4" and "Fuel 5" included in the second reference signal Sr2 shown in FIG . Based on the above, the states of the exhaust valves DV of the plurality of cylinders are monitored. Comparing FIG. 3 (E) and FIG. 3 ( D ), almost no change is observed in the amplitude and period of the observation signal waveform W14 ′ and the reference signal waveform W4 ′ at the explosion timing of the cylinder 4. Further, as shown in FIG. 3E, observed signal waveforms (W41) appearing in regions P2 and P3 corresponding to the timing “exhaust 4” when the exhaust valve DV of the cylinder 4 is closed and the timing “suction 4” when the intake valve SV is closed. ', W42') corresponds to the timing "exhaust 4" when the exhaust valve DV of the cylinder 4 closes and the timing "suction 4" when the intake valve SV closes of the second reference signal Sr2 shown in FIG. When compared with the reference signal waveforms (W41, W42) appearing in the areas P2 and P3, the amplitude and the period clearly change. As the blow-through progresses further, the observed signal waveform W14 ′ at the explosion timing also changes greatly as compared with the reference signal waveform W4 ′. From this, as a sign of the occurrence of an abnormality (blow-off) in the exhaust valve DV of the cylinder, the timing of the explosion of the plurality of cylinders, the timing of closing the exhaust valves DV of the plurality of cylinders, and the timing of closing the intake valve SV Based on the timing information, a plurality of observation signal waveforms (such as W14 ′) at the timing of explosion of the plurality of cylinders included in the second observation signal So2, the timing at which the exhaust valves DV of the plurality of cylinders close, and the intake valve SV are closed. Based on a comparison between a plurality of observed signal waveforms (for example, W41 ′, W42 ′) at the timing and a plurality of reference signal waveforms (for example, W41, W42) at each timing of the plurality of cylinders included in the first reference signal Sr1. It has been found that the states of the exhaust valves DV of a plurality of cylinders can be diagnosed.

なお、図3(D)に示された第2の基準信号Sr2及び図3(E)に示された第2の観測信号So2には、排気弁DVが閉じるタイミング及び吸気弁SVが閉じるタイミング以外のその他のタイミングで比較的大きな波形が現れているが、これらは周囲の他の音源からのノイズ信号である。本実施の形態では、タイミング情報に基づいて波形の対比をするためのノイズ信号の影響を受けることはない。 Note that the second observation signal S o2 shown in FIG. 3 and the second reference signal S shown in (D) r2 and FIG. 3 (E), the timing the exhaust valve DV is closed and the intake valve SV Although a relatively large waveform appears at other timings other than the timing of closing, these are noise signals from other surrounding sound sources. In this embodiment, there is no influence of a noise signal for comparing waveforms based on timing information.

また監視部は、図5の波形の例で説明すると、複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングについてのタイミング情報に基づいて、第3の観測信号So3に含まれる複数のシリンダの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、第3の基準信号Sr3に含まれる複数のシリンダの爆発のタイミング、排気弁が閉じるタイミング及び吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して複数のシリンダのカーボン付着状態を監視する。   In the example of the waveform shown in FIG. 5, the monitoring unit describes the third observation signal So3 based on the timing information about the timing of each of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve. The timing of explosion of the plurality of cylinders included, the change pattern of the plurality of observation signal waveforms at the timing of closing the exhaust valve and the timing of closing the intake valve, and the timing of explosion of the plurality of cylinders included in the third reference signal Sr3, The carbon adhesion state of a plurality of cylinders is monitored by comparing the change patterns of the plurality of reference signal waveforms at the timing when the exhaust valve closes and the timing when the intake valve closes.

上記の吹抜けが発生しているか否か、カーボンが付着しているか否かの判断基準を音響の変化パターンとして表現すると、下記の表1のとおりになる。

Figure 0005624807
Table 1 below shows the criteria for determining whether or not the above-mentioned blow-through has occurred and whether or not carbon is attached as an acoustic change pattern.
Figure 0005624807

上記パターンを利用すると、複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第1の観測信号So1に含まれる複数のシリンダの各タイミングにおける複数の観測信号波形に対する、第1の基準信号Sr1に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形の変化パターンに基づいてシリンダの吸気弁の状態を監視することができる。また複数のシリンダのそれぞれの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングについてのタイミング情報に基づいて、第2の観測信号So2に含まれる複数のシリンダの各タイミングにおける複数の観測信号波形に対する、第2の基準信号Sr2に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形の変化パターンに基づいてシリンダの排気弁の状態を監視することができる。また複数のシリンダのそれぞれの爆発のタイミングについてのタイミング情報に基づいて、第3の観測信号So3に含まれる複数のシリンダの各タイミングにおける複数の観測信号波形の変化パターンと、第3の基準信号Sr3に含まれる複数のシリンダの各タイミングにおける複数の基準信号波形の変化パターンとを対比して複数のシリンダのカーボン付着状態を監視することができる。 When the above pattern is used, each timing of the plurality of cylinders included in the first observation signal So1 is based on the timing information about the timing of each of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve. The state of the intake valve of the cylinder can be monitored based on the change pattern of the plurality of reference signal waveforms at each timing of the plurality of cylinders included in the first reference signal Sr1 with respect to the plurality of observation signal waveforms in FIG. Further, based on timing information about the timing of each of the plurality of cylinders, the timing at which the exhaust valve closes, and the timing at which the intake valve closes, a plurality of observation signals at each timing of the plurality of cylinders included in the second observation signal So2. The state of the exhaust valve of the cylinder can be monitored based on the change pattern of the plurality of reference signal waveforms at each timing of the plurality of cylinders included in the second reference signal Sr2 with respect to the waveform. Further, based on the timing information about the respective explosion timings of the plurality of cylinders, the change patterns of the plurality of observation signal waveforms at the respective timings of the plurality of cylinders included in the third observation signal So3 and the third reference signal Sr3 The carbon adhering states of the plurality of cylinders can be monitored by comparing the change patterns of the plurality of reference signal waveforms at the respective timings of the plurality of cylinders included in the cylinder.

このような変化パターンに基づく判断手法を採用すると、各シリンダの動作状態を監視しながら、各シリンダの吸気弁及び排気弁の状態と複数のシリンダのカーボン付着状態を監視することができる。   When such a determination method based on the change pattern is employed, it is possible to monitor the intake valve and exhaust valve states of each cylinder and the carbon adhesion states of a plurality of cylinders while monitoring the operation state of each cylinder.

なおこの変化パターンに基づいて監視する場合には、第1の観測信号So1に含まれる爆発のタイミングに対応する観測信号波形に大きな変化が生じ、第1の観測信号So1に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形に大きな変化が生じていない変化パターンが発生しているときに、シリンダの吸気弁に吹抜けが発生しているものと判断すればよい。また第2の観測信号So2に含まれる爆発のタイミングに対応する観測信号波形に大きな変化が生じておらず、第2の観測信号So2に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形に大きな変化が生じている変化パターンが発生しているときに、シリンダの排気弁に吹抜けが発生する可能性がある(予兆がある)とものと判断すればよい。そして第2の観測信号So2に含まれる爆発のタイミングに対応する観測信号波形、第2の観測信号So2に含まれる排気弁が閉まるタイミングに対応する観測信号波形及び吸気弁が閉まるタイミングに対応する観測信号波形の全てに大きな変化が生じている変化パターンが発生しているときに、シリンダの排気弁に吹抜けが発生していると判断すればよい。さらに第3の観測信号So3に含まれる複数のシリンダの爆発のタイミングに対応する観測信号波形に大きな変化が生じている変化パターンが発生しているときに、シリンダにカーボンが付着している状態が発生していると判断すればよい。 Note when monitoring on the basis of the change pattern, a large change occurs in the observed signal waveform corresponding to the timing of the explosion are contained in the first observation signal So1, exhaust valve closes included in the first observation signal So1 It is determined that a blow-through has occurred in the intake valve of the cylinder when there is a change pattern in which the observation signal waveform corresponding to the timing and the observation signal waveform corresponding to the timing when the intake valve closes do not change significantly. do it. The observation signal waveform corresponding to the timing of the explosion included in the second observation signal So2 has not changed significantly, and the observation signal waveform and the intake air corresponding to the timing at which the exhaust valve included in the second observation signal So2 is closed. When there is a change pattern in which a large change occurs in the observed signal waveform corresponding to the timing at which the valve closes, it may be judged that there is a possibility that a blowout may occur in the exhaust valve of the cylinder (there is a sign). That's fine. The observed signal waveform corresponding to the timing of the explosion are contained in the second observation signal So2, the observation corresponding to the observed signal waveforms and timing of the intake valve is closed corresponds to the timing at which the exhaust valve closes in the second observation signal So2 What is necessary is just to judge that the blowout has occurred in the exhaust valve of the cylinder when a change pattern in which a large change occurs in all of the signal waveforms is generated. Furthermore, when there is a change pattern in which a large change occurs in the observation signal waveform corresponding to the explosion timing of the plurality of cylinders included in the third observation signal So3 , there is a state in which carbon is attached to the cylinder. What is necessary is just to judge that it has generate | occur | produced.

排気弁の損傷過程を音響の変化パターンにより状態監視するイメージを図4に示す。図4のイメージから、「吸・排気弁の強い着座」、「異物の食い込みによる弁座の欠損」、「吹抜け部より排気ガスの噴出」、「吹抜け部の拡大」を、観測信号波形の変化の程度から判定することができる。図4に示すように、本発明によれば、聴感による検知や、排気ガスの温度異常による検知と比べて、早期に異常の発生を検知することができる。   FIG. 4 shows an image of state monitoring of the damage process of the exhaust valve by an acoustic change pattern. From the image in Fig. 4, changes in the observed signal waveform are: "Strong seating of the intake and exhaust valves", "Damage of the valve seat due to encroachment of foreign matter", "Exhaust of exhaust gas from the blowout part", "Expansion of the blowout part" It can be determined from the degree. As shown in FIG. 4, according to the present invention, it is possible to detect the occurrence of abnormality at an early stage as compared with detection by audibility or detection by temperature abnormality of exhaust gas.

本発明では、内燃機関運転中に計測した音響信号(音響時刻歴データ)について、内燃機関の作動工程(サイクル)の時間長さで切り出し、燃焼関連部位の作動タイミングとの関連付けを施した音響波形により、状態監視対象となるシリンダの状態を診断する。正常状態を示す基準信号の基準信号波形に対して計測された音響信号(観測信号)の波形(観測信号波形)を比較することにより、音響パターン(または音響波形)の違いから、吸・排気弁の吹抜けを診断することができる。   In the present invention, an acoustic waveform (acoustic time history data) measured during operation of the internal combustion engine is cut out by the time length of the operation process (cycle) of the internal combustion engine and correlated with the operation timing of the combustion related part. Thus, the state of the cylinder to be monitored is diagnosed. By comparing the waveform (observation signal waveform) of the measured acoustic signal (observation signal) with the reference signal waveform of the reference signal indicating the normal state, the intake / exhaust valve can be determined from the difference in acoustic pattern (or acoustic waveform). Can be diagnosed.

上記実施の形態によれば、状態監視対象のシリンダの爆発のタイミング、排気弁が閉まるタイミング、吸気弁が閉まるタイミングにおける音響信号の変化(音響波形のピーク値や平均値、波形密度などの変化や基準音響波形に対する違い)に基づき、吸・排気弁の吹抜けを診断することができる。また本実施の形態によれば、シリンダにおけるカーボンの付着が状態監視対象のシリンダの爆発のタイミングにおいて音響波形が変化する(音圧レベルが増大するなど)音響パターンとして現れることに基づいて、シリンダへのカーボンの付着を診断することができる。特に、正常運転状態時の基準音響波形に対して状態監視時の音響波形を比較することにより、吸・排気弁吹抜けの初期状態より異常を検出するので、排気ガス温度の変化が従来の監理値(30℃程度)に至る以前の状態から異常を早期に検出することができる。また本実施の形態では、内燃機関に対して非接触の音響センサを用いるので、高温で且つ振動の大きい環境においても状態監視が可能である。また本実施の形態によれば、シリンダ内爆発圧力計測用のセンサと比較して、状態監視システムの耐久性や実用性を高めることができる。 According to the above embodiment, the timing of the explosion of the cylinder to be monitored, the timing at which the exhaust valve closes, the change in the acoustic signal at the timing at which the intake valve closes (change in the peak value or average value of the acoustic waveform, waveform density, etc. Based on the difference with respect to the reference acoustic waveform, the intake / exhaust valve can be diagnosed. Further, according to the present embodiment, the adhesion of carbon in the cylinder appears on the cylinder based on the fact that the acoustic waveform changes (such as the sound pressure level increases) at the timing of the explosion of the cylinder to be monitored. It is possible to diagnose the adhesion of carbon. In particular, by comparing the acoustic waveform at the time of condition monitoring with the reference acoustic waveform at the time of normal operation, abnormalities are detected from the initial state of intake / exhaust valve blow-off, so the change in exhaust gas temperature is the conventional supervised value Abnormalities can be detected at an early stage from the state before reaching (about 30 ° C.). Further, in the present embodiment, since a non-contact acoustic sensor is used for the internal combustion engine, it is possible to monitor the state even in an environment where the temperature is high and vibration is large. Further, according to the present embodiment, the durability and practicality of the state monitoring system can be improved as compared with the sensor for measuring the explosion pressure in the cylinder.

上記の実施の形態では、吸気弁における吹抜けの発生の監視、排気弁における吹抜けの発生の監視及びシリンダにおけるカーボンの付着の監視を同時に行っているが、吸気弁における吹抜けの発生の監視、排気弁における吹抜けの発生の監視及びシリンダにおけるカーボンの付着の監視をそれぞれ個別に行ってもよく、またこれらを個別に行うように内燃機関の状態監視装置を構成してもよいのは勿論である。   In the above embodiment, the occurrence of blow-through in the intake valve, the occurrence of blow-through in the exhaust valve, and the monitoring of carbon adhesion in the cylinder are simultaneously performed, but the occurrence of blow-through in the intake valve is monitored. Obviously, the occurrence of blow-through in the cylinder and the monitoring of carbon adhesion in the cylinder may be individually performed, and the state monitoring device of the internal combustion engine may be configured to perform these individually.

本発明によれば、音響法を用いて内燃機関の状態監視をすることができ、音響信号の変化パターン(または音響波形)を用いて故障シリンダ及び故障形態の識別が可能になる。さらに従来と比べて、異常の発生を早期に検知することが可能になる。また本発明によれば、異常早期検知、故障シリンダ・故障形態の識別、状態監視システムの耐久性の観点において、従来方法に比べて優れており、内燃機関の設備管理の高度化を実現することができる。   According to the present invention, the state of an internal combustion engine can be monitored using an acoustic method, and a failure cylinder and a failure form can be identified using a change pattern (or acoustic waveform) of an acoustic signal. Furthermore, it is possible to detect the occurrence of an abnormality early compared to the conventional case. Further, according to the present invention, it is superior to conventional methods in terms of early detection of abnormalities, identification of faulty cylinders / fault forms, and durability of a state monitoring system, and realizes advanced management of internal combustion engine equipment. Can do.

SV 吸気弁
DV 排気弁
1乃至14 シリンダ
,E 音響センサ
R レコーダ
OTD 作動タイミング検出部
DA データ分析器
F フィルタ装置
M 記憶装置
MT 監視部
SV Intake valve DV Exhaust valve 1-14 Cylinder A , E Acoustic sensor R Recorder OTD Operation timing detector DA Data analyzer F Filter device M Storage device MT Monitoring unit

Claims (5)

複数のシリンダを有する内燃機関から発生する音響信号に基づいて、前記複数のシリンダの吸気弁及び排気弁の状態を監視する内燃機関の状態監視方法であって、
非接触の音響センサを用いて、前記内燃機関が正常なときに前記音響信号を取得し、
前記吸気弁において異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持った第1のフィルタで前記音響信号をフィルタ処理して第1の基準信号を取得し、
前記排気弁において異常が発生したときに前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおいて大きな信号の変化が現れる中心周波数を持った第2のフィルタで前記音響信号をフィルタ処理して第2の基準信号を取得し、
前記シリンダにおいてカーボン付着の異常が発生したときに前記爆発のタイミングにおいて大きな信号の変化が現れる中心周波数を持った第3のフィルタで前記音響信号をフィルタ処理して第3の基準信号を取得し、
監視時において、前記非接触の音響センサを用いて得た前記内燃機関が発生する音響信号を前記第1のフィルタによりフィルタ処理して第1の観測信号を取得し、前記音響信号を前記第2のフィルタによりフィルタ処理して第2の観測信号を取得し、前記音響信号を前記第3のフィルタによりフィルタ処理して第3の観測信号を取得し、
前記複数のシリンダのそれぞれの爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングについてのタイミング情報に基づいて、前記第1の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、前記第1の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記吸気弁の状態を監視し、
前記複数のシリンダのそれぞれの前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングについてのタイミング情報に基づいて、前記第2の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングにおける複数の観測信号波形の変化パターンと、前記第2の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記排気弁の状態を監視し、
前記複数のシリンダのそれぞれの爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングについてのタイミング情報に基づいて、前記第3の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、前記第3の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記シリンダのカーボン付着状態を監視することを特徴とする内燃機関の状態監視方法。
An internal combustion engine state monitoring method for monitoring states of intake valves and exhaust valves of the plurality of cylinders based on an acoustic signal generated from an internal combustion engine having a plurality of cylinders,
Using a non-contact acoustic sensor, the acoustic signal is acquired when the internal combustion engine is normal,
Filtering the acoustic signal with a first filter having a center frequency at which a large signal change appears at the timing of an explosion when an abnormality occurs in the intake valve to obtain a first reference signal;
When the abnormality occurs in the exhaust valve, the acoustic signal is filtered by a second filter having a center frequency at which a large signal change appears at the timing when the exhaust valve closes and the timing when the intake valve closes. Get the reference signal of
Obtaining a third reference signal by filtering the acoustic signal with a third filter having a center frequency at which a large signal change appears at the timing of the explosion when an abnormality of carbon adhesion occurs in the cylinder;
During monitoring, an acoustic signal generated by the internal combustion engine obtained by using the non-contact acoustic sensor is filtered by the first filter to obtain a first observation signal, and the acoustic signal is converted to the second signal. To obtain a second observation signal by filtering with the filter of (2), to obtain a third observation signal by filtering the acoustic signal with the third filter,
The timing of the explosion of the plurality of cylinders included in the first observation signal based on the timing information about the timing of each explosion of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve , A change pattern of a plurality of observation signal waveforms at a timing at which the exhaust valve is closed and a timing at which the intake valve is closed, a timing of the explosion of the plurality of cylinders included in the first reference signal, and a timing at which the exhaust valve is closed And monitoring the state of the intake valve of the plurality of cylinders in comparison with a change pattern of a plurality of reference signal waveforms at the timing of closing the intake valve,
The timing of the explosion of the plurality of cylinders included in the second observation signal based on the timing information about the timing at which the exhaust valve of each of the plurality of cylinders closes and the timing at which the intake valve closes, the exhaust valve A change pattern of a plurality of observed signal waveforms at a timing at which the intake valve is closed and a timing at which the intake valve is closed; an explosion timing of the plurality of cylinders included in the second reference signal; a timing at which the exhaust valve is closed; The state of the exhaust valves of the plurality of cylinders is monitored by comparing with a change pattern of a plurality of reference signal waveforms at the timing when the
The timing of the explosion of the plurality of cylinders included in the third observation signal based on the timing information about the timing of each explosion of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve , A change pattern of a plurality of observed signal waveforms at a timing at which the exhaust valve is closed and a timing at which the intake valve is closed, a timing of the explosion of the plurality of cylinders included in the third reference signal, and a timing at which the exhaust valve is closed And a carbon adhering state of the cylinders of the plurality of cylinders by monitoring a change pattern of a plurality of reference signal waveforms at a timing when the intake valve is closed.
前記第1の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じ、前記第1の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じていない前記変化パターンが発生しているときに、前記シリンダの前記吸気弁に吹抜けが発生しているものと判断し、
前記第2の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じておらず、前記第2の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じている前記変化パターンが発生しているときに、前記シリンダの前記排気弁に吹抜けが発生する可能性が高くなっているものと判断し、
前記第3の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じ、前記第3の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じていない前記変化パターンが発生しているときに、前記シリンダの前記シリンダにカーボン付着が発生しているものと判断することを特徴とする請求項に記載の内燃機関の状態監視方法。
The observation signal waveform corresponding to the timing when the exhaust valve included in the first observation signal closes and the exhaust valve included in the first observation signal closes, and the observation signal waveform corresponding to the timing of the explosion included in the first observation signal. When the change pattern in which a large change has not occurred in the observed signal waveform corresponding to the timing at which the intake valve is closed, it is determined that a blow-through has occurred in the intake valve of the cylinder,
The observation signal corresponding to the timing at which the exhaust valve included in the second observation signal is closed without significant change in the observation signal waveform corresponding to the timing of the explosion included in the second observation signal. When the change pattern in which a large change occurs in the observed signal waveform corresponding to the waveform and the timing at which the intake valve closes is likely to occur, the exhaust valve of the cylinder is likely to be blown out. Judging that
A large change occurs in the observation signal waveform corresponding to the timing of the explosion included in the third observation signal, and the observation signal waveform corresponding to the timing at which the exhaust valve included in the third observation signal is closed and the When the change pattern in which a large change has not occurred in the observed signal waveform corresponding to the timing at which the intake valve is closed occurs, it is determined that carbon adhesion has occurred in the cylinder of the cylinder. The state monitoring method for an internal combustion engine according to claim 1 .
前記複数のシリンダの一つの前記爆発のタイミングを定める信号に基づいて、すべてのシリンダの前記爆発のタイミング、前記排気弁が閉まるタイミング、前記吸気弁が閉まるタイミングについての前記タイミング情報を得る請求項1または2に記載の内燃機関の状態監視方法。 The timing information on the timing of the explosion, the timing of closing the exhaust valve, and the timing of closing the intake valve of all the cylinders is obtained based on a signal that determines the timing of the explosion of one of the plurality of cylinders. Or the internal combustion engine condition monitoring method of 2. 複数のシリンダを有する内燃機関から発生する音響信号に基づいて、前記複数のシリンダの吸気弁及び排気弁の状態を監視する内燃機関の状態監視装置であって、
前記内燃機関から前記音響信号を取得する非接触の音響センサと、
前記吸気弁において異常が発生したときに爆発のタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第1のフィルタと、
前記排気弁において異常が発生したときに前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第2のフィルタと、
前記シリンダにおいてカーボン付着の異常が発生したときに前記爆発のタイミングにおいて大きな信号の変化が現れる信号を取得できる中心周波数を持った第3のフィルタと、
前記内燃機関が正常なときに前記非接触の音響センサを用いて得た前記音響信号を前記第1乃至第3のフィルタでそれぞれフィルタ処理して得た前記第1乃至第3の基準信号を記憶し、監視時において、前記非接触の音響センサを用いて得た前記内燃機関が発生する音響信号を前記第1乃至第3のフィルタによりそれぞれフィルタ処理して得た第1乃至第3の観測信号を取得して記憶する記憶装置と、
前記記憶装置に記憶された前記第1乃至第3の基準信号と前記第1乃至第3の観測信号に基づいて前記複数のシリンダの吸気弁及び排気弁の状態を監視する監視部とを備え、
前記監視部は、
前記複数のシリンダのそれぞれの爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングについてのタイミング情報に基づいて、前記第1の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、前記第1の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記吸気弁の状態を監視し、
前記複数のシリンダのそれぞれの前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングについてのタイミング情報に基づいて、前記第2の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングにおける複数の観測信号波形の変化パターンと、前記第2の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉まるタイミング及び前記吸気弁が閉まるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記排気弁の状態を監視し、
前記複数のシリンダのそれぞれの爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングについてのタイミング情報に基づいて、前記第3の観測信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の観測信号波形の変化パターンと、前記第3の基準信号に含まれる前記複数のシリンダの前記爆発のタイミング、前記排気弁が閉じるタイミング及び前記吸気弁が閉じるタイミングにおける複数の基準信号波形の変化パターンとを対比して前記複数のシリンダの前記シリンダのカーボン付着状態を監視するように構成されていることを特徴とする内燃機関の状態監視装置。
A state monitoring device for an internal combustion engine that monitors states of intake valves and exhaust valves of the plurality of cylinders based on an acoustic signal generated from the internal combustion engine having a plurality of cylinders,
A non-contact acoustic sensor for acquiring the acoustic signal from the internal combustion engine;
A first filter having a center frequency capable of obtaining a signal in which a large signal change appears at the timing of an explosion when an abnormality occurs in the intake valve;
A second filter having a center frequency capable of obtaining a signal in which a large signal change appears at a timing when the exhaust valve closes and a timing when the intake valve closes when an abnormality occurs in the exhaust valve;
A third filter having a center frequency capable of acquiring a signal in which a large signal change appears at the timing of the explosion when an abnormality of carbon adhesion occurs in the cylinder;
The first to third reference signals obtained by filtering the acoustic signals obtained using the non-contact acoustic sensor with the first to third filters when the internal combustion engine is normal are stored. In monitoring, the first to third observation signals obtained by filtering the acoustic signals generated by the internal combustion engine obtained using the non-contact acoustic sensor with the first to third filters, respectively. A storage device for acquiring and storing
A monitoring unit that monitors the states of the intake valves and the exhaust valves of the plurality of cylinders based on the first to third reference signals and the first to third observation signals stored in the storage device;
The monitoring unit
The timing of the explosion of the plurality of cylinders included in the first observation signal based on the timing information about the timing of each explosion of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve , A change pattern of a plurality of observation signal waveforms at a timing at which the exhaust valve is closed and a timing at which the intake valve is closed, a timing of the explosion of the plurality of cylinders included in the first reference signal, and a timing at which the exhaust valve is closed And monitoring the state of the intake valve of the plurality of cylinders in comparison with a change pattern of a plurality of reference signal waveforms at the timing of closing the intake valve,
The timing of the explosion of the plurality of cylinders included in the second observation signal based on the timing information about the timing at which the exhaust valve of each of the plurality of cylinders closes and the timing at which the intake valve closes, the exhaust valve A change pattern of a plurality of observed signal waveforms at a timing at which the intake valve is closed and a timing at which the intake valve is closed; an explosion timing of the plurality of cylinders included in the second reference signal; a timing at which the exhaust valve is closed; The state of the exhaust valves of the plurality of cylinders is monitored by comparing with a change pattern of a plurality of reference signal waveforms at the timing when the
The timing of the explosion of the plurality of cylinders included in the third observation signal based on the timing information about the timing of each explosion of the plurality of cylinders, the timing of closing the exhaust valve, and the timing of closing the intake valve , A change pattern of a plurality of observed signal waveforms at a timing at which the exhaust valve is closed and a timing at which the intake valve is closed, a timing of the explosion of the plurality of cylinders included in the third reference signal, and a timing at which the exhaust valve is closed and combustion engine among characterized in that it is configured to monitor the carbon adhesion state of the cylinder of the by comparing the change in the pattern of the plurality of reference signal waveforms at the intake valve closing timing of the plurality cylinders Condition monitoring device.
前記監視部は、
前記第1の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じ、前記第1の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じていない前記変化パターンが発生しているときに、前記シリンダの前記吸気弁に吹抜けが発生しているものと判断し、
前記第2の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じておらず、前記第2の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じている前記変化パターンが発生しているときに、前記シリンダの前記排気弁に吹抜けが発生する可能性が高くなっているものと判断し、
前記第3の観測信号に含まれる前記爆発のタイミングに対応する前記観測信号波形に大きな変化が生じ、前記第3の観測信号に含まれる前記排気弁が閉まるタイミングに対応する前記観測信号波形及び前記吸気弁が閉まるタイミングに対応する前記観測信号波形に大きな変化が生じていない前記変化パターンが発生しているときに、前記シリンダの前記シリンダにカーボン付着が発生しているものと判断することを特徴とする請求項に記載の内燃機関の状態監視装置。
The monitoring unit
The observation signal waveform corresponding to the timing when the exhaust valve included in the first observation signal closes and the exhaust valve included in the first observation signal closes, and the observation signal waveform corresponding to the timing of the explosion included in the first observation signal. When the change pattern in which a large change has not occurred in the observed signal waveform corresponding to the timing at which the intake valve is closed, it is determined that a blow-through has occurred in the intake valve of the cylinder,
The observation signal corresponding to the timing at which the exhaust valve included in the second observation signal is closed without significant change in the observation signal waveform corresponding to the timing of the explosion included in the second observation signal. When the change pattern in which a large change occurs in the observed signal waveform corresponding to the waveform and the timing at which the intake valve closes is likely to occur, the exhaust valve of the cylinder is likely to be blown out. Judging that
A large change occurs in the observation signal waveform corresponding to the timing of the explosion included in the third observation signal, and the observation signal waveform corresponding to the timing at which the exhaust valve included in the third observation signal is closed and the When the change pattern in which a large change has not occurred in the observed signal waveform corresponding to the timing at which the intake valve is closed occurs, it is determined that carbon adhesion has occurred in the cylinder of the cylinder. The state monitoring device for an internal combustion engine according to claim 4 .
JP2010134192A 2010-06-11 2010-06-11 Internal combustion engine condition monitoring method and apparatus Active JP5624807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134192A JP5624807B2 (en) 2010-06-11 2010-06-11 Internal combustion engine condition monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134192A JP5624807B2 (en) 2010-06-11 2010-06-11 Internal combustion engine condition monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2011256833A JP2011256833A (en) 2011-12-22
JP5624807B2 true JP5624807B2 (en) 2014-11-12

Family

ID=45473260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134192A Active JP5624807B2 (en) 2010-06-11 2010-06-11 Internal combustion engine condition monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP5624807B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874488B2 (en) * 2015-01-29 2018-01-23 General Electric Company System and method for detecting operating events of an engine
US9784635B2 (en) * 2015-06-29 2017-10-10 General Electric Company Systems and methods for detection of engine component conditions via external sensors
US10760543B2 (en) 2017-07-12 2020-09-01 Innio Jenbacher Gmbh & Co Og System and method for valve event detection and control

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818141A (en) * 1981-07-25 1983-02-02 Hitachi Zosen Corp Method and apparatus for detection of blown out vent valve of internal combustion engine
JPS639833A (en) * 1986-07-01 1988-01-16 Ube Ind Ltd Abnormality diagnosing method for valve part of internal combustion engine
JPH0749765B2 (en) * 1986-11-12 1995-05-31 住友重機械工業株式会社 Method for early detection of exhaust valve blow-through in internal combustion engine
JP3083546B2 (en) * 1990-10-16 2000-09-04 株式会社小野測器 Engine knock detection method
JP3053304B2 (en) * 1992-10-28 2000-06-19 ヤンマーディーゼル株式会社 Failure prediction device for internal combustion engine
JP3318431B2 (en) * 1994-02-22 2002-08-26 東邦瓦斯株式会社 Engine failure diagnosis device
JP3790932B2 (en) * 1995-05-25 2006-06-28 株式会社キューキ Operating state determination device for internal combustion engine
JP2000240479A (en) * 1999-02-19 2000-09-05 Nippon Soken Inc Internal combustion engine for detecting biting of foreign matter between intake and exhaust valves
JP3573037B2 (en) * 1999-12-01 2004-10-06 日産自動車株式会社 Sound vibration control device for variable valve engine
JP2002041143A (en) * 2000-07-31 2002-02-08 Chiyoda Corp Method for diagnosing abnormality of operating part and method for diagnosing abnormality of compressor valve
JP2002188445A (en) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd Control system for autoignition/spark ignition type internal combustion engine
JP4327582B2 (en) * 2003-12-24 2009-09-09 株式会社日本自動車部品総合研究所 Knocking detection device
JP2005226481A (en) * 2004-02-10 2005-08-25 Nissan Motor Co Ltd Deposit quantity detection device and knocking control device for engine
DE102006054603A1 (en) * 2006-11-20 2008-05-21 Robert Bosch Gmbh Diagnosing e.g. components damages detecting, method for e.g. diesel engine of motor vehicle, involves recording sound of engine using microphone, and converting sound into electrical signal for diagnosing operating condition of engine
JP5003571B2 (en) * 2008-04-11 2012-08-15 トヨタ自動車株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP2011256833A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US9759213B2 (en) Compressor valve health monitor
US10352823B2 (en) Methods of analysing apparatus
JP6302406B2 (en) System and method for diagnosing an engine
Jamaludin et al. Monitoring extremely slow rolling element bearings: part I
CN103998775A (en) Method for determining mechanical damage to a rotor blade of a wind turbine
BR112017015786B1 (en) METHOD OF ANALYSIS OF THE OPERATIONAL STATUS OF A MACHINE AND SYSTEM FOR THE ANALYSIS OF THE OPERATIONAL STATUS OF A MACHINE
KR102058841B1 (en) Systems and methods to detect generator collector flashover
JP5624807B2 (en) Internal combustion engine condition monitoring method and apparatus
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
KR102063974B1 (en) Engine misfire diagnosis system and method using discrete Fourier transform and analysis of fluctuation of engine speed with linear component removed
JPH10281859A (en) Abnormality diagnostic method and device
US20140107905A1 (en) Method for diagnosing a supercharging system of internal combustion engines
JP2002041143A (en) Method for diagnosing abnormality of operating part and method for diagnosing abnormality of compressor valve
WO2019130525A1 (en) Engine anomaly detection device
JP3875981B2 (en) Anomaly diagnosis method and apparatus for rolling bearing
Abadi et al. Single and multiple misfire detection in internal combustion engines using vold-kalman filter order-tracking
KR100749667B1 (en) System and method for engine condition diagnosis from crankshaft angular speed
Allam et al. Diesel engine fault detection using vibration and acoustic emission signals
JP2006029240A (en) Monitoring/diagnosis system
JP3739681B2 (en) Vibration monitoring method and apparatus
JPS5920589A (en) Method of observing operating condition of reciprocating compressor
Autar An automated diagnostic expert system for diesel engines
JP6373012B2 (en) Engine diagnostic device
Byington et al. Recent case studies in bearing fault detection and prognosis
Kallappa et al. High frequency incipient fault detection for engine bearing components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5624807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250