JP5624370B2 - Moving body detection apparatus and moving body detection method - Google Patents

Moving body detection apparatus and moving body detection method Download PDF

Info

Publication number
JP5624370B2
JP5624370B2 JP2010128947A JP2010128947A JP5624370B2 JP 5624370 B2 JP5624370 B2 JP 5624370B2 JP 2010128947 A JP2010128947 A JP 2010128947A JP 2010128947 A JP2010128947 A JP 2010128947A JP 5624370 B2 JP5624370 B2 JP 5624370B2
Authority
JP
Japan
Prior art keywords
moving body
camera
image
unit
motion vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010128947A
Other languages
Japanese (ja)
Other versions
JP2011254436A (en
Inventor
川井 清幸
清幸 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Alpine Automotive Technology Inc
Original Assignee
Toshiba Alpine Automotive Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Alpine Automotive Technology Inc filed Critical Toshiba Alpine Automotive Technology Inc
Priority to JP2010128947A priority Critical patent/JP5624370B2/en
Priority to US13/094,345 priority patent/US20110298988A1/en
Priority to CN2011101116586A priority patent/CN102270344A/en
Publication of JP2011254436A publication Critical patent/JP2011254436A/en
Application granted granted Critical
Publication of JP5624370B2 publication Critical patent/JP5624370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)

Description

本発明は、車両に搭載した広角カメラで車両周辺の映像を撮影し、カメラ画像を処理して移動体を検出する移動体検出装置及び移動体検出方法に関する。   The present invention relates to a moving body detection apparatus and a moving body detection method for photographing a video around a vehicle with a wide-angle camera mounted on the vehicle and processing the camera image to detect a moving body.

従来、車両に複数のカメラを搭載し、自車両の前方や後方、或いは側方を撮影し、撮影した画像をもとに移動体を検出し、自車に接近する移動体を表示部に表示するようにした車両用画像表示装置が知られている。また撮像部を構成するカメラとして、魚眼カメラ等を用いて広視野の画像を撮影するようにした例もある。   Conventionally, a plurality of cameras are mounted on a vehicle, the front, rear or side of the host vehicle is photographed, a moving body is detected based on the photographed image, and a moving body approaching the host vehicle is displayed on the display unit. A vehicular image display device is known. There is also an example in which a wide-field image is taken using a fish-eye camera or the like as a camera constituting the imaging unit.

特許文献1には、自車移動パラメータから線形な平面に投影された画像上の動きベクトルを予測し、実測ベクトルとの差異から静止物あるいは移動体の判定を行う方法が開示されている。   Patent Document 1 discloses a method of predicting a motion vector on an image projected on a linear plane from the own vehicle movement parameter, and determining a stationary object or a moving body from a difference from an actually measured vector.

また特許文献2には、移動物体検知装置が開示されている。特許文献2では、移動観測手段によって観測された画像中の観測対象の動きベクトルを抽出し、動きベクトルを延長して動きベクトルが集中する点を求め、集中点の時間的位置変化を解析して移動物体を検知するようにしている。すなわち、線形な投影平面を前提としている。特許文献2の例は、車載カメラのようにカメラ位置が移動する場合においても、静止物の被写体と移動する被写体を判定できるようにしたもので、被写体を平面に投影し、投影した平面画像上の動きベクトルを算出し、動きベクトルの延長線上の交点を計算し、その交点の関係から移動物体を判定するものである。   Patent Document 2 discloses a moving object detection device. In patent document 2, the motion vector of the observation target in the image observed by the moving observation means is extracted, the motion vector is extended to obtain a point where the motion vector concentrates, and the temporal position change of the concentration point is analyzed. A moving object is detected. That is, a linear projection plane is assumed. In the example of Patent Document 2, a stationary object and a moving object can be determined even when the camera position moves like an in-vehicle camera. The object is projected onto a plane, and the projected plane image is displayed on the projected plane image. The motion vector is calculated, the intersection point on the extension line of the motion vector is calculated, and the moving object is determined from the relationship of the intersection point.

従って、特許文献1および特許文献2ともに、投影された画像が線形な平面上で定義されているという前提があり、この前提のもとで何らかの線形予測を伴う解析を行っている。   Therefore, both Patent Document 1 and Patent Document 2 have a premise that the projected image is defined on a linear plane, and analysis with some linear prediction is performed based on this premise.

しかしながら、車載カメラとして魚眼カメラや凸面鏡を用いたカメラのように、視野角が180度のカメラでは線形に投影される平面は無限大になるため、線形投影平面が定義できない。このため、視野角が180度を超える超広角カメラでは非線形な投影法を用いて、有限な平面に投影する。従って、線形な投影平面を前提とした解析方法は超広角カメラでは適用できず、移動体の検出ができない。   However, a linear projection plane cannot be defined because a linearly projected plane is infinite with a camera having a viewing angle of 180 degrees, such as a camera using a fisheye camera or a convex mirror as an in-vehicle camera. For this reason, a super-wide-angle camera with a viewing angle exceeding 180 degrees uses a non-linear projection method to project onto a finite plane. Therefore, an analysis method based on a linear projection plane cannot be applied to an ultra-wide-angle camera, and a moving object cannot be detected.

特開平5−233813号公報Japanese Patent Laid-Open No. 5-233813 特開平8−194822号公報JP-A-8-194822

魚眼カメラや凸面鏡を用いたカメラのように視野角が180度、又は180度を超える車載カメラの場合、非線形な投影法を用いているため、線形平面を前提として予測する方法では移動体を検出することができない。   In the case of an in-vehicle camera having a viewing angle of 180 degrees or more than 180 degrees, such as a fish-eye camera or a camera using a convex mirror, a nonlinear projection method is used. It cannot be detected.

本発明はこのような事情に鑑み、広角の撮像範囲を有するカメラで撮影した非線形画像であっても移動体を検出することができる移動体検出装置及び移動体検出方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a moving body detection apparatus and a moving body detection method capable of detecting a moving body even in a non-linear image captured by a camera having a wide-angle imaging range. To do.

請求項1記載の実施形態による移動体検出装置は、車両に搭載され広角の撮像範囲を有するカメラで撮影した非線形画像を、予め設定した視角範囲の複数の画像に分割し共通のカメラ中心をもつ複数の線形な投影平面画像を生成する分割変換部と、前記複数の投影平面画像のそれぞれの動きベクトルを算出する動きベクトル算出部と、前記複数の投影平面画像の前記動きベクトルを解析し、移動体を判定する移動体判定部と、前記移動体判定部の判定結果を表示する表示部と、を具備することを特徴とする。   According to an embodiment of the present invention, a moving body detection apparatus divides a nonlinear image captured by a camera mounted on a vehicle and having a wide-angle imaging range into a plurality of images in a preset viewing angle range and has a common camera center. A division conversion unit that generates a plurality of linear projection plane images, a motion vector calculation unit that calculates a motion vector of each of the plurality of projection plane images, and analyzes and moves the motion vectors of the plurality of projection plane images A moving body determination unit that determines a body and a display unit that displays a determination result of the moving body determination unit are provided.

請求項5に記載の実施形態による移動体検出方法は、車両に搭載され広角の撮像範囲を有するカメラで撮影した非線形画像を、予め設定した視角範囲を有する複数の画像に分割し共通のカメラ中心をもつ複数の線形な投影平面画像を生成し、前記複数の投影平面画像のそれぞれの動きベクトルを算出し、前記複数の投影平面画像の前記動きベクトルを解析して移動体を判定し、前記移動体の判定結果を表示部に表示することを特徴とする。   A moving body detection method according to an embodiment of claim 5, wherein a non-linear image captured by a camera mounted on a vehicle and having a wide-angle imaging range is divided into a plurality of images having a preset viewing angle range, and a common camera center Generating a plurality of linear projection plane images, calculating respective motion vectors of the plurality of projection plane images, analyzing the motion vectors of the plurality of projection plane images, determining a moving body, and moving the movement The body determination result is displayed on the display unit.

本発明の実施形態による移動体検出装置によれば、魚眼カメラ等の超広角カメラの撮影画像を複数の線形な分割投影平面画像に変換することで、動きベクトルに基づいた移動体の判定が可能になり、移動体の方向を判定して自車への接近を報知することができ、危険回避をすることができる。   According to the moving body detection apparatus according to the embodiment of the present invention, a moving body is determined based on a motion vector by converting a captured image of a super-wide-angle camera such as a fisheye camera into a plurality of linear divided projection plane images. It becomes possible, the direction of the moving body can be determined, the approach to the own vehicle can be notified, and danger avoidance can be avoided.

本発明の一実施形態に係る移動体検出装置の構成を示すブロック図。The block diagram which shows the structure of the moving body detection apparatus which concerns on one Embodiment of this invention. 移動体検出部の詳細な構成を示すブロック図。The block diagram which shows the detailed structure of a moving body detection part. 魚眼カメラで撮影した画像を概略的に示す説明図。Explanatory drawing which shows roughly the image image | photographed with the fisheye camera. 分割変換部の動作を説明する説明図。Explanatory drawing explaining operation | movement of a division conversion part. ピンホールカメラモデルを示す説明図。Explanatory drawing which shows a pinhole camera model. 移動体判定部の動作を説明する説明図。Explanatory drawing explaining operation | movement of a moving body determination part. 第2の実施形態に係る移動体検出装置の動作を説明する説明図。Explanatory drawing explaining operation | movement of the moving body detection apparatus which concerns on 2nd Embodiment.

以下、この発明の一実施形態に係る移動体検出装置について図面を参照して説明する。   Hereinafter, a mobile object detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る移動体検出装置100の構成を示すブロック図である。図1において、移動体検出部10は、車両1に搭載したカメラ20で撮影した画像を処理して移動体を検出し、表示部30に検出結果を表示する。   FIG. 1 is a block diagram showing a configuration of a moving object detection apparatus 100 according to an embodiment of the present invention. In FIG. 1, the moving body detection unit 10 processes an image captured by the camera 20 mounted on the vehicle 1 to detect the moving body, and displays the detection result on the display unit 30.

カメラ20は、例えば魚眼レンズカメラ等の視野角が180を超える超広角カメラであり、車両1に搭載され車両周辺の映像を撮影する。図1では、車両1の前方及び後方等にカメラ20…を搭載した例を示している。以下の説明では、カメラ20として魚眼レンズカメラ(魚眼カメラと称す)を用いた場合について述べる。   The camera 20 is a super-wide-angle camera having a viewing angle exceeding 180, such as a fish-eye lens camera, for example, and is mounted on the vehicle 1 to capture an image around the vehicle. FIG. 1 shows an example in which cameras 20... Are mounted in front and rear of the vehicle 1. In the following description, a case where a fisheye lens camera (referred to as a fisheye camera) is used as the camera 20 will be described.

図2は、移動体検出部10の詳細な構成を示すブロック図である。移動体検出部10は、メモリ11、分割変換部12、動きベクトル算出部13、移動体判定部14、元画像変換部15、接近方向判定部16及び制御部17を含む。   FIG. 2 is a block diagram illustrating a detailed configuration of the moving object detection unit 10. The moving body detection unit 10 includes a memory 11, a division conversion unit 12, a motion vector calculation unit 13, a moving body determination unit 14, an original image conversion unit 15, an approach direction determination unit 16, and a control unit 17.

以下、移動体検出部10の各部の機能と動作を説明する。制御部17は、CPU,ROM,RAM等を含むマイクロプロセッサであり、ROMに格納されたプログラムに従って移動体検出部10の各部(メモリ11、分割変換部12、動きベクトル算出部13、移動体判定部14、元画像変換部15、接近方向判定部16)の動作を制御する。   Hereinafter, functions and operations of each unit of the moving body detection unit 10 will be described. The control unit 17 is a microprocessor including a CPU, a ROM, a RAM, and the like. Each unit of the moving object detection unit 10 (memory 11, division conversion unit 12, motion vector calculation unit 13, moving object determination) according to a program stored in the ROM. Unit 14, the original image conversion unit 15, and the approach direction determination unit 16).

カメラ20は、180度以上の撮像範囲を有し、撮像面に非線形に投影した画像の撮像を行い、撮像信号をメモリ11に書き込む。カメラ20で撮影した画像(カメラ画像)を概略的に示すと、例えば図3のように非線形な画像となる。また図4は、カメラ20の撮像範囲を示す平面図である。   The camera 20 has an imaging range of 180 degrees or more, images an image projected nonlinearly on the imaging surface, and writes an imaging signal in the memory 11. An image captured by the camera 20 (camera image) is schematically shown as a non-linear image as shown in FIG. 3, for example. FIG. 4 is a plan view showing the imaging range of the camera 20.

分割変換部12は、図4で示すように撮像画像を3つの視角範囲に分割し、分割投影平面画像を生成する。カメラ座標系として、カメラ20の光軸をz軸、路面に水平の軸をx軸とし、路面に垂直の軸をy軸(図4ではy軸は紙面に垂直である)としたときのxyz座標系を考える。   The division conversion unit 12 divides the captured image into three viewing angle ranges as illustrated in FIG. 4 to generate a divided projection plane image. As the camera coordinate system, xyz when the optical axis of the camera 20 is the z-axis, the axis horizontal to the road surface is the x-axis, and the axis perpendicular to the road surface is the y-axis (in FIG. 4, the y-axis is perpendicular to the paper surface). Consider a coordinate system.

図4に示すように、z=0の平面にカメラの非線形に投影された撮像面(図3に示すような画像)を置き、焦点距離fを半径とした半円に接する3つの分割投影平面1,2,3を想定する。これら分割投影平面1,2,3の画像は、3つの仮想カメラで撮影した画像とみなせる。即ち、共通のカメラ中心O(0,0,0)を持ち、3つの仮想カメラの光軸がy=0の平面にある。中央部仮想カメラは、光軸zがカメラ20の光軸と一致しており、左仮想カメラ及び右仮想カメラの光軸L,Rは、中央部仮想カメラの光軸zに対して±60度だけ傾いている。   As shown in FIG. 4, three divided projection planes that are in contact with a semicircle having an imaging surface (an image as shown in FIG. 3) projected nonlinearly on the camera on a plane of z = 0 and having a focal length f as a radius. 1, 2, 3 are assumed. These images on the divided projection planes 1, 2, and 3 can be regarded as images taken by three virtual cameras. That is, it has a common camera center O (0, 0, 0), and the optical axes of the three virtual cameras are on the plane where y = 0. In the central virtual camera, the optical axis z coincides with the optical axis of the camera 20, and the optical axes L and R of the left virtual camera and the right virtual camera are ± 60 degrees with respect to the optical axis z of the central virtual camera. Just leaning.

図4の例では、3つの仮想カメラが夫々60度+α度の視野角をカバーする(αは若干のオーバーラップを示す)。したがって、3つの仮想カメラは共通のカメラ中心(O)をもち光軸角度の異なるピンホールカメラとなる。   In the example of FIG. 4, three virtual cameras each cover a viewing angle of 60 degrees + α degrees (α indicates a slight overlap). Therefore, the three virtual cameras are pinhole cameras having a common camera center (O) and different optical axis angles.

図5は、ピンホールカメラモデルを示す説明図である。図5において、200はz=f(fは焦点距離)の投影平面であり、この投影平面200の或る点における画素をP,P’で示している。画角は60度+αである。   FIG. 5 is an explanatory diagram showing a pinhole camera model. In FIG. 5, reference numeral 200 denotes a projection plane with z = f (f is a focal length), and pixels at a certain point on the projection plane 200 are indicated by P and P ′. The angle of view is 60 degrees + α.

各仮想カメラにおいて、視野角60度+α度の範囲で、撮像面(y=0)上の点は各投影平面上の点と1対1で対応する。この対応関係はカメラ20の投影法を決定する数式から求めることができる。また予め求めた対応関係を変換テーブル(LUT:look up table)として持っていてもよい。変換テーブル(LUT)は、非線形の撮像画像の歪みを矯正するものであり、変換テーブルに基づいて撮像データが線形な投影平面画像に変換される。   In each virtual camera, a point on the imaging plane (y = 0) has a one-to-one correspondence with a point on each projection plane within a range of a viewing angle of 60 degrees and α degrees. This correspondence can be obtained from a mathematical expression that determines the projection method of the camera 20. The correspondence relationship obtained in advance may be provided as a conversion table (LUT). The conversion table (LUT) corrects the distortion of the nonlinear captured image, and the captured data is converted into a linear projection plane image based on the conversion table.

分割変換部12は次のような変換処理を行う。メモリ11に蓄えられたカメラ20の画像情報から、中央部60度に相当する画像情報を選択して読み出し、変換テーブル(LUT)で中央部平面画像に変換する。同様に左部60度に相当する画像情報を選択し、変換テーブル(LUT)で左部平面画像に変換する。また右部60度に相当する画像情報を選択し、変換テーブル(LUT)で右部平面画像に変換する。   The division conversion unit 12 performs the following conversion process. From the image information of the camera 20 stored in the memory 11, image information corresponding to 60 degrees in the center is selected and read out, and converted into a center plane image using a conversion table (LUT). Similarly, image information corresponding to 60 degrees on the left side is selected and converted into a left plane image using a conversion table (LUT). Also, image information corresponding to 60 degrees on the right side is selected and converted into a right plane image using a conversion table (LUT).

動きベクトル算出部13は、3つの平面画像の夫々の動きベクトルを算出する。   The motion vector calculation unit 13 calculates the motion vectors of the three planar images.

動きベクトル算出は、公知のブロックマッチングや勾配法等が利用できる。周知のように、焦点距離fのピンホールカメラモデル(図5)において、カメラ(自車)移動にともなって、静止物被写体に発生する投影平面x−yにおける動きベクトル(u,v)は、次式で表わされる。

Figure 0005624370
For the motion vector calculation, a known block matching or gradient method can be used. As is well known, in the pinhole camera model (FIG. 5) with a focal length f, the motion vector (u, v) T in the projection plane xy generated on the stationary object subject as the camera (own vehicle) moves is Is expressed by the following equation.
Figure 0005624370

ここでRx,Ry,Rzは、x軸回り、y軸回り、z軸回りの自車回転成分、Tx,Ty,Tzはx,y,z軸方向の自車並進成分を表している。   Here, Rx, Ry, and Rz represent vehicle rotation components around the x axis, the y axis, and the z axis, and Tx, Ty, and Tz represent vehicle translation components in the x, y, and z axis directions.

x、yは画像平面の画素位置を表し、zはカメラから被写体までの距離を表している。この式から自車(カメラ20)の移動に伴う画像の動きが関係づけられる。   x and y represent pixel positions on the image plane, and z represents the distance from the camera to the subject. From this equation, the movement of the image accompanying the movement of the own vehicle (camera 20) is related.

画像上のある点P(x,y)の動きベクトル(u,v)が関係づけられ、自車移動パラメータを何らかの手法で求められれば、静止物被写体の画面上の動きが予測できる。予測通りであれば静止物、予測と外れるのであれば移動体との判定ができる。したがって、上式に基づいて解析をすることにより、自車移動による静止物の動きと移動体特有の動きの判定を行うことができる。   If the motion vector (u, v) of a certain point P (x, y) on the image is related and the own vehicle movement parameter can be obtained by some method, the motion of the stationary object on the screen can be predicted. If it is as predicted, it can be determined as a stationary object, and if it is not predicted, it can be determined as a moving object. Therefore, by analyzing based on the above equation, it is possible to determine the movement of the stationary object due to the movement of the vehicle and the movement specific to the moving object.

移動体判定部14は、線形予測判定により3つの平面画像の夫々の動きベクトルから3平面のそれぞれの移動体の検出を行う。例えば図6で示す中央部平面画像において、自車の動き方向をAとしたとき、自車と違う動き方向Bを示す移動体(例えば横方向から進行してくる車両)があったときに、移動体と判断する。移動体の判定には各種の判定方法がある。   The mobile body determination unit 14 detects each mobile body on three planes from the motion vectors of the three plane images by linear prediction determination. For example, in the central plane image shown in FIG. 6, when the moving direction of the own vehicle is A, and there is a moving body (for example, a vehicle traveling from the side) showing a moving direction B different from the own vehicle, Judged as a moving object. There are various determination methods for determining a moving object.

移動体判定部14による移動体の判定結果は、元画像変換部15で元のカメラ画像に重畳される。複数の分割投影平面に跨って移動する被写体も元の撮像面では連続した移動をする移動体と認識できる。   The determination result of the moving body by the moving body determination unit 14 is superimposed on the original camera image by the original image conversion unit 15. An object that moves across a plurality of divided projection planes can also be recognized as a moving body that moves continuously on the original imaging surface.

接近方向判定部16は、移動体の動きベクトルから移動方向を判定し、自車への接近有無を判定し、接近の可能性の高い移動体がある場合に、運転者に視認できるような警告用の画像情報を生成し表示部30に出力する。警告画像は、例えばどの方向から移動体が近付いているかを示す矢印等の情報である。したがって、表示部30には、自車に前方或いは後方等から接近してくる他車や人等の移動体があれば的確に運転者に報知することができる。   The approaching direction determination unit 16 determines the moving direction from the motion vector of the moving body, determines whether or not the vehicle is approaching, and a warning that can be visually recognized by the driver when there is a moving body that is likely to approach. Image information is generated and output to the display unit 30. The warning image is information such as an arrow indicating from which direction the moving body is approaching. Therefore, if there is a moving body such as another vehicle or a person approaching the host vehicle from the front or the rear, the display unit 30 can accurately notify the driver.

次に本発明の第2の実施形態について説明する。第2の実施形態は、分割変換部12の動作に特徴があり、カメラ20で撮影した画像を2つの視角範囲に分割し、分割投影平面画像を生成する。即ち、図7に示すように、カメラ中心Oを共通とし、焦点距離fを半径とする半円に接した分割投影平面1,2を持つ仮想カメラを想定する。図7ではカメラ20の光軸zに対して±45度の光軸L,Rをもつ左仮想カメラと右仮想カメラを想定する。   Next, a second embodiment of the present invention will be described. The second embodiment is characterized in the operation of the division conversion unit 12 and divides an image captured by the camera 20 into two viewing angle ranges to generate a divided projection plane image. That is, as shown in FIG. 7, a virtual camera having divided projection planes 1 and 2 in contact with a semicircle having a common camera center O and having a focal length f as a radius is assumed. In FIG. 7, a left virtual camera and a right virtual camera having optical axes L and R of ± 45 degrees with respect to the optical axis z of the camera 20 are assumed.

図4の3平面分割を2平面分割に置き換えることで、以下同様の処理を行い、動きベクトル算出部13は、2つの平面画像の夫々の動きベクトルを算出する。移動体判定部14は、2つの平面画像の夫々の動きベクトルから2平面のそれぞれの移動体の検出を行う。元画像変換部15では、元のカメラ画像に移動体判定部14による判定結果を重畳する。接近方向判定部16は、移動体の動きベクトルから移動方向を判定し、自車への接近有無を判定する。   By replacing the three-plane division in FIG. 4 with a two-plane division, the same processing is performed thereafter, and the motion vector calculation unit 13 calculates the respective motion vectors of the two plane images. The moving body determination unit 14 detects each moving body on two planes from the motion vectors of the two plane images. The original image conversion unit 15 superimposes the determination result by the moving body determination unit 14 on the original camera image. The approach direction determination unit 16 determines the direction of movement from the motion vector of the moving body, and determines whether or not the vehicle is approaching.

以上説明した実施形態によれば、魚眼カメラ等の広角カメラの撮像画像を複数の分割投影平面画像に変換することで、動きベクトルに基づいた移動体の判定が可能になり、移動体の方向を判定して自車への接近を報知することができ、危険回避をすることができる。   According to the embodiment described above, it is possible to determine a moving object based on a motion vector by converting a captured image of a wide-angle camera such as a fisheye camera into a plurality of divided projection plane images, and the direction of the moving object Can be notified and approach to the own vehicle can be notified, and danger avoidance can be avoided.

尚、以上説明した実施形態では、分割変換部12において3つ或いは2に分割する例を述べたが、それ以上に分割することもできる。またカメラ20として魚眼カメラを用いる例を述べたが、凸面鏡を用いたカメラのように視野角が180度或いは180度以上のカメラを用いることもできる。また特許請求の範囲を逸脱しない範囲内で種々の変形が可能である。   In the above-described embodiment, the example in which the division conversion unit 12 divides into three or two has been described. Although an example using a fisheye camera as the camera 20 has been described, a camera having a viewing angle of 180 degrees or 180 degrees or more, such as a camera using a convex mirror, can be used. Various modifications can be made without departing from the scope of the claims.

100…移動体検出装置
10…移動体検出部
11…メモリ
12…分割変換部
13…動きベクトル算出部
14…移動体判定部
15…元画像変換部
16…接近方向判定部
17…制御部
20…カメラ
30…表示部
DESCRIPTION OF SYMBOLS 100 ... Moving body detection apparatus 10 ... Moving body detection part 11 ... Memory 12 ... Division | segmentation conversion part 13 ... Motion vector calculation part 14 ... Moving body determination part 15 ... Original image conversion part 16 ... Approaching direction determination part 17 ... Control part 20 ... Camera 30 ... display section

Claims (7)

車両に搭載され広角の撮像範囲を有するカメラで撮影した非線形画像を、予め設定した視角範囲の複数の画像に分割し共通のカメラ中心をもつ複数の線形な投影平面画像を生成する分割変換部と、
前記複数の投影平面画像のそれぞれの動きベクトルを算出する動きベクトル算出部と、
前記複数の投影平面画像の前記動きベクトルを解析し、移動体を判定する移動体判定部と、
前記移動体判定部の判定結果を表示する表示部と、
を具備することを特徴とする移動体検出装置。
A division conversion unit that divides a nonlinear image captured by a camera mounted on a vehicle and has a wide-angle imaging range into a plurality of images in a preset viewing angle range and generates a plurality of linear projection plane images having a common camera center; ,
A motion vector calculation unit for calculating a motion vector of each of the plurality of projection plane images;
A moving body determination unit that analyzes the motion vectors of the plurality of projection plane images and determines a moving body;
A display unit for displaying a determination result of the mobile body determination unit;
A moving body detection apparatus comprising:
前記分割変換部は、180度以上の広角カメラ画像を、オーバーラップ部を有する180度以内の複数の画像に分割して複数の平面投影画像を生成することを特徴とする請求項1記載の移動体検出装置。   2. The movement according to claim 1, wherein the division conversion unit generates a plurality of planar projection images by dividing a wide-angle camera image of 180 degrees or more into a plurality of images within 180 degrees having an overlap unit. Body detection device. 前記移動体判定部は、前記動きベクトル算出部で算出した動きベクトルの方向をもとに、自車に接近する移動体の有無を判定することを特徴とする請求項1記載の移動体検出装置。   2. The moving body detection apparatus according to claim 1, wherein the moving body determination unit determines the presence or absence of a moving body approaching the host vehicle based on the direction of the motion vector calculated by the motion vector calculation unit. . 前記移動体判定部の判定結果を分割前の撮像画像に重畳する元画像変換部と、
前記元画像変換部の画像をもとに前記移動体の接近方向を判定し、前記移動体の接近を示す画像情報を前記表示部に表示する接近方向判定部を備えたことを特徴とする請求項1記載の移動体検出装置。
An original image conversion unit that superimposes the determination result of the moving body determination unit on the captured image before the division;
An approach direction determination unit that determines an approach direction of the moving body based on an image of the original image conversion unit and displays image information indicating the approach of the moving body on the display unit. Item 4. A moving body detection apparatus according to Item 1.
車両に搭載され広角の撮像範囲を有するカメラで撮影した非線形画像を、予め設定した視角範囲を有する複数の画像に分割し共通のカメラ中心をもつ複数の線形な投影平面画像を生成し、
前記複数の投影平面画像のそれぞれの動きベクトルを算出し、
前記複数の投影平面画像の前記動きベクトルを解析して移動体を判定し、
前記移動体の判定結果を表示部に表示することを特徴とする移動体検出方法。
A nonlinear image captured by a camera mounted on a vehicle and having a wide-angle imaging range is divided into a plurality of images having a preset viewing angle range to generate a plurality of linear projection plane images having a common camera center,
Calculating a motion vector of each of the plurality of projection plane images;
Analyzing the motion vectors of the plurality of projection plane images to determine a moving object;
A moving object detection method, comprising: displaying a determination result of the moving object on a display unit.
前記算出した動きベクトルの方向をもとに、自車に接近する移動体の有無を判定することを特徴とする請求項5記載の移動体検出方法。   6. The moving body detection method according to claim 5, wherein presence or absence of a moving body approaching the host vehicle is determined based on the calculated direction of the motion vector. 前記移動体の判定結果を分割前の元画像に重畳し、
前記判定結果が重畳された元画像をもとに前記移動体の接近方向を判定し、
前記移動体の接近を示す画像情報を前記表示部に表示することを特徴とする請求項5記載の移動体検出方法。
The determination result of the moving object is superimposed on the original image before division,
Determine the approaching direction of the moving body based on the original image on which the determination result is superimposed,
6. The moving object detection method according to claim 5, wherein image information indicating the approach of the moving object is displayed on the display unit.
JP2010128947A 2010-06-04 2010-06-04 Moving body detection apparatus and moving body detection method Active JP5624370B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010128947A JP5624370B2 (en) 2010-06-04 2010-06-04 Moving body detection apparatus and moving body detection method
US13/094,345 US20110298988A1 (en) 2010-06-04 2011-04-26 Moving object detection apparatus and moving object detection method
CN2011101116586A CN102270344A (en) 2010-06-04 2011-04-29 Moving object detection apparatus and moving object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128947A JP5624370B2 (en) 2010-06-04 2010-06-04 Moving body detection apparatus and moving body detection method

Publications (2)

Publication Number Publication Date
JP2011254436A JP2011254436A (en) 2011-12-15
JP5624370B2 true JP5624370B2 (en) 2014-11-12

Family

ID=45417961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128947A Active JP5624370B2 (en) 2010-06-04 2010-06-04 Moving body detection apparatus and moving body detection method

Country Status (1)

Country Link
JP (1) JP5624370B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449371B1 (en) * 2014-03-19 2014-10-13 인하대학교 산학협력단 Method for classifing driving event based on region segmentation of vechile image
JP6253467B2 (en) * 2014-03-24 2017-12-27 東芝アルパイン・オートモティブテクノロジー株式会社 Image processing apparatus and image processing program
US10442355B2 (en) 2014-09-17 2019-10-15 Intel Corporation Object visualization in bowl-shaped imaging systems
US9437001B2 (en) * 2014-09-18 2016-09-06 Intel Corporation Tracking objects in bowl-shaped imaging systems
JP2017220051A (en) * 2016-06-08 2017-12-14 ソニー株式会社 Image processing device, image processing method and vehicle
JP7189620B2 (en) * 2017-05-24 2022-12-14 Groove X株式会社 An image processing device that corrects the distortion of a celestial image and a robot equipped with it
CN111380668B (en) * 2018-12-27 2022-10-11 浙江舜宇智能光学技术有限公司 Precision detection system and precision detection method of depth camera
CN112396558B (en) * 2019-08-15 2024-07-23 株式会社理光 Image processing method, device and computer readable storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228246B2 (en) * 2008-08-04 2009-02-25 三菱自動車工業株式会社 Nose view monitor device
JP5049304B2 (en) * 2009-01-29 2012-10-17 本田技研工業株式会社 Device for displaying an image around a vehicle

Also Published As

Publication number Publication date
JP2011254436A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5624370B2 (en) Moving body detection apparatus and moving body detection method
US10726576B2 (en) System and method for identifying a camera pose of a forward facing camera in a vehicle
US20110298988A1 (en) Moving object detection apparatus and moving object detection method
US9225942B2 (en) Imaging surface modeling for camera modeling and virtual view synthesis
EP2544449B1 (en) Vehicle perimeter monitoring device
US20160379066A1 (en) Method and Camera System for Distance Determination of Objects from a Vehicle
US20170140542A1 (en) Vehicular image processing apparatus and vehicular image processing system
US20140114534A1 (en) Dynamic rearview mirror display features
JP2007129560A (en) Object detector
JP2017188744A (en) Vehicle periphery monitoring device
CN107303849B (en) Display controller and display control method for controlling the same
US10595003B2 (en) Stereo camera apparatus and vehicle comprising the same
KR20200071960A (en) Method and Apparatus for Vehicle Detection Using Lidar Sensor and Camera Convergence
JP5007863B2 (en) 3D object position measuring device
JP2008085710A (en) Driving support system
WO2018222122A1 (en) Methods for perspective correction, computer program products and systems
CN111664839A (en) Vehicle-mounted head-up display virtual image distance measuring method
JP2013084221A (en) Straight line detecting device, straight line detecting method, straight line detecting program, and photographing system
US10475154B2 (en) Machine surround view system and method for generating 3-dimensional composite surround view using same
WO2007129563A1 (en) Range finder with image selecting function for finding range
JP2004354256A (en) Calibration slippage detector, and stereo camera and stereo camera system equipped with the detector
JP2019185520A (en) Image processor and method
TW201537510A (en) 3D AVM (Around View Monitoring) image system based on probabilistic approach and acquisition method thereof
JP2014041074A (en) Image processing apparatus and inspection apparatus
US20190230264A1 (en) Image capturing apparatus and image capturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250