JP5624009B2 - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP5624009B2
JP5624009B2 JP2011234104A JP2011234104A JP5624009B2 JP 5624009 B2 JP5624009 B2 JP 5624009B2 JP 2011234104 A JP2011234104 A JP 2011234104A JP 2011234104 A JP2011234104 A JP 2011234104A JP 5624009 B2 JP5624009 B2 JP 5624009B2
Authority
JP
Japan
Prior art keywords
layer
electrode assembly
catalyst
water retention
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011234104A
Other languages
Japanese (ja)
Other versions
JP2013093189A (en
Inventor
知子 玉井
知子 玉井
智秀 渋谷
智秀 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011234104A priority Critical patent/JP5624009B2/en
Publication of JP2013093189A publication Critical patent/JP2013093189A/en
Application granted granted Critical
Publication of JP5624009B2 publication Critical patent/JP5624009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、繊維シートを用いた燃料電池の膜電極接合体に関するものである。   The present invention relates to a membrane electrode assembly of a fuel cell using a fiber sheet.

固体高分子型燃料電池においては、固体高分子膜のプロトン伝導性を維持するために水が必要であり、加湿された反応ガスが供給される。ところが、近年の燃料電池では、触媒の利用率を向上させるために、造孔材を用いて触媒電極層内の孔(空隙)を大きくし、燃料ガスを効率よく触媒に到達させていることから、触媒電極層における水の排出性が高まっている。そのため、水分が豊富にある高加湿環境下においては、発電性能が向上するが、低加湿環境下においては、固体高分子膜のプロトン伝導性を保つのに必要な水まで排出されてしまい、発電性能が低下するという問題があった。   In a polymer electrolyte fuel cell, water is required to maintain proton conductivity of the polymer electrolyte membrane, and a humidified reaction gas is supplied. However, in recent fuel cells, in order to improve the utilization rate of the catalyst, the pores (voids) in the catalyst electrode layer are enlarged using the pore former, and the fuel gas efficiently reaches the catalyst. In addition, the water dischargeability in the catalyst electrode layer is increasing. For this reason, power generation performance is improved in a highly humid environment with abundant moisture, but in a low humid environment, water necessary for maintaining the proton conductivity of the solid polymer membrane is discharged, resulting in power generation. There was a problem that the performance deteriorated.

上記のような課題を解決する手段としては、図3に示されたような、触媒電極層32とガス拡散層34との間に、水の保持性を高める保水層33が設けられた固体高分子型燃料電池用の電極が開示されている(例えば、特許文献1参照。)。保水層33は保水作用を持つイオン伝導性ポリマーと造孔材である炭素繊維等を混合して形成されたものであり、この保水層33を設けることで、反応ガス中の相対湿度が低い場合であっても、プロトン伝導性を保持するのに十分な水分を固体高分子膜31に保持させるものである。   As a means for solving the above-described problems, as shown in FIG. 3, a solid high layer in which a water retention layer 33 for improving water retention is provided between the catalyst electrode layer 32 and the gas diffusion layer 34. An electrode for a molecular fuel cell is disclosed (for example, see Patent Document 1). The water retention layer 33 is formed by mixing an ion conductive polymer having a water retention effect and carbon fiber as a pore former, and by providing the water retention layer 33, the relative humidity in the reaction gas is low. Even so, the solid polymer film 31 retains sufficient water to maintain proton conductivity.

しかしながら、上記の特許文献1に記載された保水層33は、吸水性のあるイオン伝導性ポリマー21と、造孔材である炭素繊維22と、導電性のある炭素粒子23とを混ぜたぺーストを塗工、乾燥して形成する。その構造は、図2(a)に示されるように、イオン伝導性ポリマー21、炭素繊維22、炭素粒子23が混合された状態であり、イオン伝導性ポリマー21は炭素繊維22の間隙に存在する。そして、これら材料の間に孔(間隙)24が形成される。このような構造では、高加湿環境下においては、図2(b)に示されるように、イオン伝導性ポリマー21が水分を吸収して膨潤するため、前記孔24が膨潤したイオン伝導性ポリマー21で塞がれてしまい、ガスの透過を阻害して燃料電池の性能が低下するという課題があった。   However, the water retaining layer 33 described in the above-mentioned Patent Document 1 is a paste in which an ion-conductive polymer 21 having a water absorption property, carbon fibers 22 as a pore former, and conductive carbon particles 23 are mixed. Is formed by coating and drying. As shown in FIG. 2A, the structure is a state in which the ion conductive polymer 21, the carbon fiber 22, and the carbon particle 23 are mixed, and the ion conductive polymer 21 exists in the gap between the carbon fibers 22. . A hole (gap) 24 is formed between these materials. In such a structure, in a highly humid environment, as shown in FIG. 2B, the ion conductive polymer 21 absorbs moisture and swells, so that the ion conductive polymer 21 in which the holes 24 swell is swelled. There is a problem that the performance of the fuel cell is deteriorated by obstructing gas permeation.

特開2004−158388号公報JP 2004-158388 A

したがって、本発明は、上記課題を解決すべくなされたものであって、高加湿環境下において吸湿性材料が膨潤しても、保水層の間隙(孔)が塞がれず、ガスの透過を阻害することがない優れた燃料電池の膜電極接合体を提供することを目的としている。   Therefore, the present invention has been made to solve the above-described problems, and even when the hygroscopic material swells in a highly humid environment, the gap (hole) of the water retention layer is not blocked, and gas permeation is inhibited. An object of the present invention is to provide an excellent membrane electrode assembly for a fuel cell that does not occur.

本発明の膜電極接合体は、電解質膜の両面上に、順に、触媒を備える触媒電極層、ガス拡散層積層されてなる燃料電池の膜電極接合体であって、前記電解質膜の少なくとも一方の面においては、前記触媒電極層と前記ガス拡散層の間にさらに触媒を備えない保水層が設けられており、前記保水層は、吸湿性材料からなる繊維のシートに導電性炭素材料を被覆したものであり、前記吸湿性材料は、高分子電解質樹脂であることを特徴としている。 Membrane electrode assembly of the present invention, on both sides of the electrolyte membrane, in turn, a catalyst electrode layer comprising a catalyst, a membrane electrode assembly for a fuel cell gas diffusion layer are laminated, at least of the electrolyte membrane in one aspect, the water-retaining layer without further comprises a catalyst between the catalyst electrode layer and the gas diffusion layer is provided with, before Symbol moisture-holding layer, a conductive carbon material to the fibers of the sheet made of hygroscopic material der those covering is, the hygroscopic material is characterized in that a polymer electrolyte resin.

また、本発明の膜電極接合体においては、電解質膜の少なくとも一方の面において、保水層とガス拡散層との間に、撥水層を設ける構成が好ましい態様である。 In the membrane electrode assembly of the present invention, at least one surface of the electrolyte membrane, between the coercive aqueous layer and the gas diffusion layer, a configuration is a preferred embodiment to provide a water-repellent layer.

本発明の膜電極接合体によれば、造孔材として炭素繊維を用いるのではなく、吸湿性材料そのものを繊維状として保水層に多孔性を持たせることにより、吸湿性材料が膨潤しても繊維間の孔が塞がれず、ガスの透過を阻害することがない。   According to the membrane / electrode assembly of the present invention, instead of using carbon fiber as the pore former, the moisture-absorbing material can be swollen by forming the moisture-absorbing material itself into a fibrous shape and making the water retaining layer porous. The pores between the fibers are not blocked, and gas permeation is not hindered.

本発明によれば、高加湿環境下において吸湿性材料が膨潤しても、保水層の間隙(孔)が塞がれず、ガスの透過を阻害することがない優れた燃料電池の膜電極接合体を提供することができる。   According to the present invention, even if the hygroscopic material swells in a highly humid environment, the gap (hole) of the water retention layer is not blocked, and the excellent membrane electrode assembly of a fuel cell that does not inhibit gas permeation Can be provided.

本発明の燃料電池の膜電極接合体における繊維シートからなる保水層の一例を示した概念図である。It is the conceptual diagram which showed an example of the water retention layer which consists of a fiber sheet in the membrane electrode assembly of the fuel cell of this invention. 従来の燃料電池の膜電極接合体における保水層の一例を示した概念図である。It is the conceptual diagram which showed an example of the water retention layer in the membrane electrode assembly of the conventional fuel cell. 燃料電池の膜電極接合体の一部を示した概念図である。It is the conceptual diagram which showed a part of membrane electrode assembly of a fuel cell.

以下、図面を用いて本発明の燃料電池の膜電極接合体について具体的に説明する。図1は本発明の燃料電池の膜電極接合体における繊維シートからなる保水層の一例を示した概念図であり、図2は従来の燃料電池の膜電極接合体における保水層の一例を示した概念図であり、また、図3は燃料電池の膜電極接合体の一部を示した概念図である。図3に示されているように、本発明の燃料電池の膜電極接合体は、固体高分子膜31上に、触媒電極層32、保水層33、撥水層34、ガス拡散層35がこの順で設けられた構成である。   Hereinafter, the membrane electrode assembly of the fuel cell of the present invention will be specifically described with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of a water retention layer made of a fiber sheet in a membrane electrode assembly of a fuel cell according to the present invention, and FIG. 2 shows an example of a water retention layer in a membrane electrode assembly of a conventional fuel cell. FIG. 3 is a conceptual diagram, and FIG. 3 is a conceptual diagram showing a part of a membrane electrode assembly of a fuel cell. As shown in FIG. 3, the membrane electrode assembly of the fuel cell of the present invention has a catalyst electrode layer 32, a water retention layer 33, a water repellent layer 34, and a gas diffusion layer 35 on a solid polymer membrane 31. It is the structure provided in order.

本発明においては、上記の保水層に最大の特徴を有している。すなわち、図1に示されているように、保水層は、吸湿性材料からなる繊維11のシートに導電性炭素材料12を被覆した構成である。このような繊維11は、エレクトロスピニング法により作製されたものであることが好ましい。例えば、このエレクトロスピニング法を適用する装置には、先端部の中心に孔径が0.5mm程度のノズル孔を有した紡糸ノズルと、このノズルから150mm程度離間して配置されたコレクターとが備えられている。このような構成において、紡糸ノズルに高電圧を印加するとともに、コレクターをアースすることにより、紡糸ノズルとコレクターと間に大きな電圧差を生じさせる。   In the present invention, the water retention layer has the greatest feature. That is, as shown in FIG. 1, the water retention layer has a configuration in which a conductive carbon material 12 is coated on a sheet of fibers 11 made of a hygroscopic material. Such fibers 11 are preferably produced by an electrospinning method. For example, an apparatus to which this electrospinning method is applied includes a spinning nozzle having a nozzle hole with a hole diameter of about 0.5 mm at the center of the tip portion, and a collector disposed about 150 mm away from the nozzle. ing. In such a configuration, a high voltage is applied to the spinning nozzle and the collector is grounded, thereby generating a large voltage difference between the spinning nozzle and the collector.

次に、この紡糸ノズルの先端部に、適切な溶媒に溶解、または、熱溶融した吸湿性材料が誘導され、帯電されると、アースされたコレクターとの間で静電引力が働く。この静電引力により、紡糸ノズル先端の吸湿性材料溶液の表面が円錐状のテイラーコーンの形状に変形され、電荷の反発力が表面張力を超えたとき、そこから吸湿性材料溶液が連続的に放出される。そして、放出された吸湿性材料溶液がコレクターに到達するまでの間に溶媒が蒸発または固化することにより、コレクター上において吸湿性材料繊維が紡糸され、コレクター上において吸湿性材料繊維が積層されたシート状の保水層が形成される。   Next, when a hygroscopic material dissolved or heat-melted in a suitable solvent is induced at the tip of the spinning nozzle and charged, an electrostatic attractive force acts between the grounded collector. Due to this electrostatic attraction, the surface of the hygroscopic material solution at the tip of the spinning nozzle is deformed into the shape of a conical Taylor cone, and when the repulsive force of the charge exceeds the surface tension, the hygroscopic material solution continuously flows from there. Released. Then, the solvent evaporates or solidifies until the released hygroscopic material solution reaches the collector, whereby the hygroscopic material fibers are spun on the collector, and the hygroscopic material fibers are laminated on the collector. A water retention layer is formed.

このようにして製造された繊維状の吸湿性材料も水分を吸収して膨潤することには変わりないが、繊維間の孔径を制御することによって、吸湿性材料が膨潤しても繊維間の孔が塞がれず、ガスの透過を阻害することがない。本発明の燃料電池の膜電極接合体においては、保水層を形成する吸湿性材料繊維は、直径が5〜2000nmであることが好ましく、より好ましくは200nm程度である。また、繊維間の平均孔径を1μm以上とすることが好ましい。従来のように保水層をペーストで形成すると、孔の径は0.1〜0.3μm程度となり、吸湿性材料が膨潤すると塞がれてしまうが、1μm以上であると、上記の本発明の効果を確実に発揮することができる。   Although the fibrous hygroscopic material produced in this way also absorbs moisture and swells, the pores between the fibers can be controlled even if the hygroscopic material swells by controlling the pore size between the fibers. Is not blocked and does not impede gas permeation. In the fuel cell membrane electrode assembly of the present invention, the hygroscopic material fiber forming the water retention layer preferably has a diameter of 5 to 2000 nm, more preferably about 200 nm. Moreover, it is preferable that the average hole diameter between fibers shall be 1 micrometer or more. When the water-retaining layer is formed with a paste as in the past, the diameter of the pores is about 0.1 to 0.3 μm, and when the hygroscopic material swells, it is blocked, but when it is 1 μm or more, The effect can be exhibited reliably.

また、本発明における保水層は、触媒電極層とガス拡散層との間に設けられていることから、触媒電極層とガス拡散層とを電気的に導通させるためには保水層も電気伝導性を備える必要がある。そのため、本発明における吸湿性材料の繊維は炭素粒子等の導電材により被覆されていることが必須である。   In addition, since the water retention layer in the present invention is provided between the catalyst electrode layer and the gas diffusion layer, the water retention layer is also electrically conductive in order to electrically connect the catalyst electrode layer and the gas diffusion layer. It is necessary to have. Therefore, it is essential that the fibers of the hygroscopic material in the present invention are covered with a conductive material such as carbon particles.

さらに、本発明における吸湿性材料としては、固体高分子電解質膜で使用されるプロトン伝導性高分子を用いることができる。このような高分子としては、パーフルオロ系高分子、ベンズイミダゾール系高分子、ポリイミド系高分子、ポリエーテルイミド系高分子、ポリフェニレンスルフィド系高分子、ポリスルホン系高分子、ポリエーテルスルホン系高分子、ポリエーテルケトン系高分子、ポリエーテルエーテルケトン系高分子、ポリフェニルキノキサリン系高分子等が挙げられる。   Furthermore, as the hygroscopic material in the present invention, a proton conductive polymer used in a solid polymer electrolyte membrane can be used. Such polymers include perfluoro polymers, benzimidazole polymers, polyimide polymers, polyetherimide polymers, polyphenylene sulfide polymers, polysulfone polymers, polyethersulfone polymers, Examples thereof include polyether ketone polymers, polyether ether ketone polymers, and polyphenylquinoxaline polymers.

また、本発明の燃料電池の膜電極接合体における固体高分子膜は、上記構成の保水層により、十分に保水されており、プロトン伝導性が良好に維持されている。このような固体高分子膜としては、従来公知のイオン伝導性を有する電解質膜を用いることができ、例えば、パーフルオロ系高分子、ベンズイミダゾール系高分子、ポリイミド系高分子、ポリエーテルイミド系高分子、ポリフェニレンスルフィド系高分子、ポリスルホン系高分子、ポリエーテルスルホン系高分子、ポリエーテルケトン系高分子、ポリエーテルエーテルケトン系高分子、ポリフェニルキノキサリン系高分子等からなる膜が挙げられる。   In addition, the solid polymer membrane in the membrane electrode assembly of the fuel cell of the present invention is sufficiently retained by the water retention layer having the above-described configuration, and the proton conductivity is maintained well. As such a solid polymer film, a conventionally known ion conductive electrolyte film can be used. For example, a perfluoro polymer, a benzimidazole polymer, a polyimide polymer, a polyether imide polymer Examples thereof include a film made of a molecule, a polyphenylene sulfide polymer, a polysulfone polymer, a polyethersulfone polymer, a polyetherketone polymer, a polyetheretherketone polymer, a polyphenylquinoxaline polymer, or the like.

さらに、本発明における触媒電極層は、従来公知のカーボンブラックに白金を担持させた白金担持触媒をカソードとして、また、カーボンブラックに白金及びルテニウムを担持させた触媒をアノードとして用いることもでき、さらには、上記の保水層と同様に、繊維状に紡糸した原料樹脂を繊維シートを作製し、この繊維表面に触媒を付着させた構成の触媒電極層を用いてもよい。この触媒電極層の原料樹脂としては、上記の固体高分子膜に用いられる樹脂を使用することができる。   Furthermore, the catalyst electrode layer in the present invention can be used as a cathode a platinum-supported catalyst in which platinum is supported on a conventionally known carbon black, and a catalyst in which platinum and ruthenium are supported on carbon black as an anode. As in the case of the water retention layer, a catalyst electrode layer having a structure in which a fiber sheet is spun into a fiber and a catalyst is attached to the fiber surface may be used. As the raw material resin for the catalyst electrode layer, the resin used for the solid polymer film can be used.

また、本発明におけるガス拡散層としては、供給される反応ガスを触媒電極層に円滑に供給して触媒−電解質膜−気体の三相界面の形成を助けるものであれば、いずれのものでもよく、例えば気孔率80%程度の炭素紙(carbon paper)や炭素布(carbon cloth)を用いることができる。   In addition, the gas diffusion layer in the present invention may be any one as long as it smoothly supplies the supplied reaction gas to the catalyst electrode layer and assists the formation of a catalyst-electrolyte membrane-gas three-phase interface. For example, carbon paper or carbon cloth having a porosity of about 80% can be used.

11…吸湿性材料繊維、12…炭素粒子、21…イオン伝導性ポリマー、
22…炭素繊維、23…炭素粒子、24…孔、31…固体高分子膜、
32…触媒電極層、33…保水層、34…撥水層、35…ガス拡散層、36…水
11 ... Hygroscopic material fiber, 12 ... Carbon particles, 21 ... Ion conductive polymer,
22 ... carbon fiber, 23 ... carbon particles, 24 ... pore, 31 ... solid polymer film,
32 ... Catalyst electrode layer, 33 ... Water retention layer, 34 ... Water repellent layer, 35 ... Gas diffusion layer, 36 ... Water

Claims (2)

電解質膜の両面上に、順に、触媒を備える触媒電極層、ガス拡散層が積層されてなる燃料電池の膜電極接合体であって、
前記電解質膜の少なくとも一方の面においては、前記触媒電極層と前記ガス拡散層の間にさらに触媒を備えない保水層が設けられており、
前記保水層は、吸湿性材料からなる繊維のシートに導電性炭素材料を被覆したものであり、
前記吸湿性材料は、高分子電解質樹脂であることを特徴とする膜電極接合体。
A membrane electrode assembly of a fuel cell in which a catalyst electrode layer including a catalyst and a gas diffusion layer are sequentially laminated on both surfaces of an electrolyte membrane,
On at least one surface of the electrolyte membrane, a water retention layer not further comprising a catalyst is provided between the catalyst electrode layer and the gas diffusion layer,
The water retention layer is a fiber sheet made of a hygroscopic material coated with a conductive carbon material,
The membrane / electrode assembly is characterized in that the hygroscopic material is a polymer electrolyte resin.
前記電解質膜の少なくとも一方の面において、前記保水層と前記ガス拡散層との間に、撥水層を設けたことを特徴とする請求項1に記載の膜電極接合体。 The membrane electrode assembly according to claim 1 , wherein a water repellent layer is provided between the water retention layer and the gas diffusion layer on at least one surface of the electrolyte membrane .
JP2011234104A 2011-10-25 2011-10-25 Membrane electrode assembly Expired - Fee Related JP5624009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234104A JP5624009B2 (en) 2011-10-25 2011-10-25 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234104A JP5624009B2 (en) 2011-10-25 2011-10-25 Membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2013093189A JP2013093189A (en) 2013-05-16
JP5624009B2 true JP5624009B2 (en) 2014-11-12

Family

ID=48616172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234104A Expired - Fee Related JP5624009B2 (en) 2011-10-25 2011-10-25 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5624009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281670B2 (en) 2019-09-30 2023-05-26 パナソニックIpマネジメント株式会社 Wiring duct support parts and wiring duct system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2971603A1 (en) * 2014-12-24 2016-06-30 3M Innovative Properties Company Porous adhesive networks in electrochemical devices
JP7419780B2 (en) 2019-12-09 2024-01-23 Toppanホールディングス株式会社 Membrane electrode assembly for fuel cells and polymer electrolyte fuel cells

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334871A (en) * 1999-05-28 2000-12-05 Oji Paper Co Ltd Base material for laminated sheet, prepreg and production thereof
JP3778506B2 (en) * 2002-11-08 2006-05-24 本田技研工業株式会社 Electrode for polymer electrolyte fuel cell
KR100599799B1 (en) * 2004-06-30 2006-07-12 삼성에스디아이 주식회사 Polymer electrolyte membrane, membrane-electrode assembly, fuel cell, and method for preparing the membrane-electrode assembly
JP2006244789A (en) * 2005-03-01 2006-09-14 Toyota Motor Corp Fuel cell
JP2007184129A (en) * 2006-01-05 2007-07-19 Nissan Motor Co Ltd Membrane-electrode assembly of polymer electrolyte fuel cell
JP2007220416A (en) * 2006-02-15 2007-08-30 Aisin Seiki Co Ltd Electrode for fuel cell and method of manufacturing electrode for fuel cell
JP2007227033A (en) * 2006-02-21 2007-09-06 Nissan Motor Co Ltd Method of manufacturing material for gas diffusion electrode, gas diffusion electrode, and polymer electrolyte fuel cell
WO2007102026A2 (en) * 2006-03-07 2007-09-13 Afc Energy Plc Electrodes of a fuel cell
JP2009037933A (en) * 2007-08-02 2009-02-19 Tomoegawa Paper Co Ltd Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly and manufacturing method for the solid polymer fuel cell, and the solid polymer fuel cell
JP2009026698A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Catalyst layer member for solid polymer electrolyte fuel cell, membrane electrode assembly using the same, and manufacturing methods of them
JPWO2009075357A1 (en) * 2007-12-13 2011-04-28 旭硝子株式会社 Method for producing electrode for polymer electrolyte fuel cell, membrane electrode assembly, and catalyst layer
EP2254181B1 (en) * 2008-03-21 2012-10-24 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell comprising the same
JP5328407B2 (en) * 2009-02-20 2013-10-30 日本バイリーン株式会社 Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281670B2 (en) 2019-09-30 2023-05-26 パナソニックIpマネジメント株式会社 Wiring duct support parts and wiring duct system

Also Published As

Publication number Publication date
JP2013093189A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5043232B2 (en) Ion conductive resin fiber, ion conductive composite membrane, membrane electrode assembly and fuel cell
US8617751B2 (en) Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
US9722271B2 (en) Polymer electrolyte membrane, membrane electrode assembly and fuel cell including the same
KR101178644B1 (en) Ion conductive hybrid membrane, membrane-electrode assembly and fuel cell
US10431837B2 (en) Membrane electrode assembly
JP5375022B2 (en) Method for producing fiber and method for producing catalyst layer
JP5165205B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
KR20130118582A (en) Electrode for fuel cell, method of preparing same, membrane-electrode assembly and fuel cell system including same
CN102668207B (en) Macromolecular electrolyte membrane for a fuel cell, and a membrane electrode assembly and a fuel cell comprising the same
Yusoff et al. An overview on the development of nanofiber‐based as polymer electrolyte membrane and electrocatalyst in fuel cell application
JP5624009B2 (en) Membrane electrode assembly
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP2009026698A (en) Catalyst layer member for solid polymer electrolyte fuel cell, membrane electrode assembly using the same, and manufacturing methods of them
KR20160009584A (en) Base material for gas diffusion electrode
KR100903612B1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2007220416A (en) Electrode for fuel cell and method of manufacturing electrode for fuel cell
KR102130873B1 (en) Reinforced membrane, membrane electrode assembly and fuel cell comprising the same, and method for manufacturing thereof
JP5875957B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
KR20070014679A (en) Polymer membrane for fuel cell, method of preparing same and fuel cell system comprising same
KR20060086531A (en) Electrode for fuel cell, and a fuel cell comprising the same
KR20090044315A (en) Polymer composite membrane for fuel cell and method of preparing the same and membrane electrode assembly and fuel cell comprising the same
JP2015022888A (en) Substrate for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and solid polymer fuel cell
JP6193669B2 (en) Base material for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
KR20090040566A (en) Electrolyte membrane having excellent durability and fuel cell comprising the same
Shang et al. Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. Energies 2021, 14, 6709

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5624009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees