JP5623590B2 - Electron microscope equipment - Google Patents

Electron microscope equipment Download PDF

Info

Publication number
JP5623590B2
JP5623590B2 JP2013101044A JP2013101044A JP5623590B2 JP 5623590 B2 JP5623590 B2 JP 5623590B2 JP 2013101044 A JP2013101044 A JP 2013101044A JP 2013101044 A JP2013101044 A JP 2013101044A JP 5623590 B2 JP5623590 B2 JP 5623590B2
Authority
JP
Japan
Prior art keywords
light
wavelength
electron
scanning
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101044A
Other languages
Japanese (ja)
Other versions
JP2013191576A (en
Inventor
磯崎 久
久 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2013101044A priority Critical patent/JP5623590B2/en
Publication of JP2013191576A publication Critical patent/JP2013191576A/en
Application granted granted Critical
Publication of JP5623590B2 publication Critical patent/JP5623590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Description

本発明は試料の走査電子像と光学像を観察できる電子顕微鏡装置、特に電子走査中に同時に光学像の観察を可能とした電子顕微鏡装置に関するものである。   The present invention relates to an electron microscope apparatus capable of observing a scanning electron image and an optical image of a sample, and more particularly to an electron microscope apparatus capable of simultaneously observing an optical image during electronic scanning.

走査型電子顕微鏡(SEM:Scanning Electron Microscope)は、電子ビームを試料上に走査し、電子ビームの照射によって発した電子を検知して試料表面の性状について走査電子像を取得するものである。   A scanning electron microscope (SEM) scans an electron beam on a sample, detects electrons emitted by irradiation of the electron beam, and acquires a scanning electron image of the property of the sample surface.

一方、電子ビームの画角は非常に小さく、照射位置が事前に分っていないと、電子ビームを特定の位置に照射するのは極めて困難である。   On the other hand, the angle of view of the electron beam is very small, and it is extremely difficult to irradiate a specific position with the electron beam unless the irradiation position is known in advance.

この為、電子顕微鏡装置では電子顕微鏡に比べ低倍率の光学顕微鏡を備えており、先ず試料を照明光(白色光)により照明し、光学顕微鏡により試料の観察を行い、照射位置を特定し、次に電子顕微鏡に切替え、照射位置に電子ビームを走査し、観察することが行われている。   For this reason, the electron microscope apparatus has an optical microscope with a lower magnification than the electron microscope. First, the sample is illuminated with illumination light (white light), the sample is observed with the optical microscope, the irradiation position is specified, and the next The electron microscope is switched to an electron microscope, and an irradiation position is scanned with an electron beam for observation.

走査電子像を得る場合は、試料から発せられた電子を蛍光体に入射させ、蛍光体が発する光を光電変換素子により電気信号に変換し、この電気信号に基づき走査電子像が取得されている。又、光学顕微鏡を用いた光学像も、試料から反射される光を光学顕微鏡用の光電素子で受光し、電気信号に変換し、この電気信号に基づき光学像が取得されている。   When obtaining a scanning electron image, electrons emitted from a sample are made incident on the phosphor, light emitted from the phosphor is converted into an electric signal by a photoelectric conversion element, and a scanning electron image is acquired based on the electric signal. . An optical image using an optical microscope is also obtained by receiving light reflected from a sample by a photoelectric element for the optical microscope and converting it into an electrical signal, and an optical image is acquired based on the electrical signal.

ところが、電子ビームの走査で得られる電子と前記試料から反射される光とでは、エネルギレベルが著しく異なり、電子ビームを検出する光電素子に試料からの反射光が入射した場合、光電素子が飽和してしまい、或はS/Nが著しく小さくなって電子ビームを検出することができなくなってしまう。   However, the energy level of the electrons obtained by scanning the electron beam and the light reflected from the sample are significantly different. When the reflected light from the sample enters the photoelectric element that detects the electron beam, the photoelectric element is saturated. In other words, the S / N becomes extremely small, and the electron beam cannot be detected.

この為、従来より、光学顕微鏡で観察する場合と、電子顕微鏡で観察する場合とでは、完全に切替え、光学顕微鏡で観察している状態では、電子顕微鏡では観察せず、又、電子顕微鏡で観察している状態では、光学顕微鏡では観察しない様な構造となっている。   For this reason, switching between the case of observation with an optical microscope and the case of observation with an electron microscope has been completely switched. Conventionally, in the state of observation with an optical microscope, observation with an electron microscope is not possible, and observation with an electron microscope is also possible. In this state, the structure is such that it is not observed with an optical microscope.

例えば、光学顕微鏡と電子顕微鏡とが分離され、又光学顕微鏡の光軸と電子顕微鏡の光軸とは既知の関係で設けられ、試料を保持したテーブルが光学顕微鏡と電子顕微鏡との間を移動することで、光学像の観察位置と走査電子像の観察位置とが関連付けられる様になっている。   For example, the optical microscope and the electron microscope are separated, the optical axis of the optical microscope and the optical axis of the electron microscope are provided in a known relationship, and the table holding the sample moves between the optical microscope and the electron microscope. As a result, the observation position of the optical image and the observation position of the scanning electron image are associated with each other.

この為、従来の電子顕微鏡では、構造が複雑となっていると共に走査電子像と光学像とを同時に観察することができないという問題があった。   For this reason, the conventional electron microscope has a problem that the structure is complicated and the scanning electron image and the optical image cannot be observed simultaneously.

尚、走査電子像と光学像との同時観察を可能とした電子顕微鏡として特許文献1に示されるものがある。   In addition, there exists what is shown by patent document 1 as an electron microscope which enabled simultaneous observation of a scanning electron image and an optical image.

特許文献1に示されるものでは、電子顕微鏡の光学系と光学顕微鏡の光学系とを同一光軸とし、照明光と電子ビームとを同時に照射し、電子検出器からの信号については、照明光の信号を直流成分として除去し、電子のみの信号を抽出する様にしている。   In the technique disclosed in Patent Document 1, the optical system of the electron microscope and the optical system of the optical microscope are set to the same optical axis, and the illumination light and the electron beam are simultaneously irradiated. The signal is removed as a direct current component, and a signal containing only electrons is extracted.

然し乍ら、上記した様に、照明光による直流成分が信号成分に対して著しく大きい為、実現は極めて困難である。   However, as described above, since the direct current component due to the illumination light is significantly larger than the signal component, it is extremely difficult to realize.

特開平4−280053号公報JP-A-4-280053

本発明は斯かる実情に鑑み、走査電子像と光学像との同時観察が可能であり、更に走査電子像観察と走査電子像観察以外の観察、作業とを同時に行える様にし、而も構造も簡単な電子顕微鏡装置を提供するものである。   In view of such circumstances, the present invention enables simultaneous observation of a scanning electron image and an optical image, and enables simultaneous observation and work other than scanning electron image observation and scanning electron image observation. A simple electron microscope apparatus is provided.

発明は、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記検査光は前記波長フィルタの透過波長帯域から外れた波長を有する様に設定された電子顕微鏡装置に係るものである。 The present invention includes a scanning unit that scans an electron beam and an electron detector that detects electrons emitted from a sample scanned with the electron beam, and obtains a scanning electron image based on a detection result from the electron detector. And a foreign substance detection device for detecting foreign matter by irradiating the sample surface with inspection light and detecting scattered light from the foreign substance, and the electron detector includes a phosphor layer for electron / light conversion, A wavelength filter limited to transmit all or substantially all of the wavelength band of fluorescence from the phosphor layer, and a wavelength detection element that receives the fluorescence transmitted through the wavelength filter and performs optical / electrical conversion. The inspection light relates to an electron microscope apparatus set so as to have a wavelength outside the transmission wavelength band of the wavelength filter.

又本発明は、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料表面に干渉光を照射し、前記試料表面からの前記干渉光反射を用いて前記試料の高さ位置を検出する干渉計とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記干渉光は前記波長フィルタの透過波長帯域から外れた波長を有する様に設定された電子顕微鏡装置に係るものである。   The present invention also includes scanning means for scanning an electron beam and an electron detector for detecting electrons emitted from a sample scanned with the electron beam, and obtains a scanning electron image based on the detection result from the electron detector. A scanning electron microscope; and an interferometer that irradiates the sample surface with interference light and detects the height position of the sample using the interference light reflection from the sample surface. A phosphor layer for light conversion, a wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and receiving the fluorescence transmitted through the wavelength filter, The present invention relates to an electron microscope apparatus having a wavelength detecting element for electrical conversion, wherein the interference light is set to have a wavelength deviating from a transmission wavelength band of the wavelength filter.

又本発明は、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料に照明光を照射して該試料からの反射光を受光して光学像を得る光学顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置と、前記試料表面に干渉光を照射し、前記試料表面からの前記干渉光反射を用いて前記試料の高さ位置を検出する干渉計とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記照明光、前記検査光、前記干渉光は、前記波長フィルタの透過波長帯域から外れた波長を有し、前記照明光、前記検査光、前記干渉光それぞれが異なる波長帯を有する様に設定された電子顕微鏡装置に係るものである。 The present invention also includes scanning means for scanning an electron beam and an electron detector for detecting electrons emitted from a sample scanned with the electron beam, and obtains a scanning electron image based on the detection result from the electron detector. A scanning electron microscope, an optical microscope that irradiates the sample with illumination light and receives reflected light from the sample to obtain an optical image, and irradiates the sample surface with inspection light to detect scattered light from foreign matter. A foreign matter detection device that detects foreign matter, and an interferometer that irradiates the sample surface with interference light and detects the height position of the sample using the interference light reflection from the sample surface, The electron detector includes a phosphor layer that performs electron / light conversion, a wavelength filter that is restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and the fluorescence that has passed through the wavelength filter. Wavelength detector that receives light and converts light to electricity The illumination light, the inspection light, and the interference light have wavelengths that are out of the transmission wavelength band of the wavelength filter, and the illumination light, the inspection light, and the interference light have different wavelength bands. The present invention relates to an electron microscope apparatus set to (1).

又本発明は、前記照明光は白色光であり、該照明光の光路上に前記波長フィルタの前記透過波長帯域から外れた波長帯域を透過する波長フィルタを挿脱可能に設け、前記走査型電子顕微鏡による走査電子像観察時には、前記波長フィルタが挿入されて光学像との同時観察を可能とし、前記走査電子像観察をしていない時には、前記波長フィルタが外され、前記走査電子像観察と分離して光学像の観察を可能とした電子顕微鏡装置に係るものである。   According to the present invention, the illumination light is white light, and a wavelength filter that transmits a wavelength band outside the transmission wavelength band of the wavelength filter is detachably provided on the optical path of the illumination light, and the scanning electron At the time of scanning electron image observation with a microscope, the wavelength filter is inserted to enable simultaneous observation with an optical image. When the scanning electron image observation is not performed, the wavelength filter is removed to separate from the scanning electron image observation. Thus, the present invention relates to an electron microscope apparatus that enables observation of an optical image.

又本発明は、前記蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した前記波長フィルタを挿脱可能とした電子顕微鏡装置に係るものである。   The present invention also relates to an electron microscope apparatus capable of inserting and removing the wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted.

発明によれば、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記検査光は前記波長フィルタの透過波長帯域から外れた波長を有する様に設定されたので、検査光が走査電子像観察に与える影響がなくなり、走査電子像の観察と異物検出、異物観察が同時に行え、又走査型電子顕微鏡による走査電子像の取得と異物検出装置による異物検出とを機械的に分離して行う必要がなく、構造が簡略化できる。 According to the present invention, the scanning means for scanning the electron beam and the electron detector for detecting electrons emitted from the sample scanned with the electron beam are provided, and the scanning electron image is obtained based on the detection result from the electron detector. A scanning electron microscope to obtain, and a foreign substance detection device that irradiates the sample surface with inspection light and detects scattered light from the foreign substance to detect the foreign substance, and the electron detector is a phosphor that performs electron / photo conversion. Layer, a wavelength filter restricted so that all or almost all of the wavelength band of the fluorescence from the phosphor layer is transmitted, and a wavelength detection element that receives the fluorescence transmitted through the wavelength filter and performs optical / electrical conversion The inspection light is set to have a wavelength outside the transmission wavelength band of the wavelength filter, so that the influence of the inspection light on scanning electron image observation is eliminated, observation of the scanning electron image and foreign object detection, Foreign object observation at the same time Also it is not necessary to perform the foreign object detection by obtaining a foreign matter detecting system of a scanning electron image by a scanning electron microscope by mechanical separation, the structure can be simplified.

又本発明によれば、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料表面に干渉光を照射し、前記試料表面からの前記干渉光反射を用いて前記試料の高さ位置を検出する干渉計とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記干渉光は前記波長フィルタの透過波長帯域から外れた波長を有する様に設定されたので、干渉光が走査電子像観察に与える影響がなくなり、走査電子像観察と試料の高さ測定とが同時に行え、又走査型電子顕微鏡による走査電子像の取得と干渉計による試料の高さ測定とを機械的に分離して行う必要がなく、構造が簡略化できる。   Further, according to the present invention, the scanning means for scanning the electron beam and the electron detector for detecting the electrons emitted from the sample scanned with the electron beam are provided, and the scanning electron image is based on the detection result from the electron detector. And an interferometer that irradiates the sample surface with interference light and detects the height position of the sample using the interference light reflection from the sample surface, and the electron detector Is a phosphor layer that performs electron / light conversion, a wavelength filter that is restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and receives the fluorescence that has passed through the wavelength filter, Since it has a wavelength detecting element for optical / electrical conversion, and the interference light is set to have a wavelength outside the transmission wavelength band of the wavelength filter, the influence of the interference light on the scanning electron image observation is eliminated, and scanning is performed. Electron image observation and sample Is performed measurement and simultaneously, also a height measurement of the sample and obtaining a scanning electron image by a scanning electron microscope according to the interferometer need not be performed by mechanically separated, the structure can be simplified.

又本発明によれば、電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料に照明光を照射して該試料からの反射光を受光して光学像を得る光学顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置と、前記試料表面に干渉光を照射し、前記試料表面からの前記干渉光反射を用いて前記試料の高さ位置を検出する干渉計とを具備し、前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、前記照明光、前記検査光、前記干渉光は、前記波長フィルタの透過波長帯域から外れた波長を有し、前記照明光、前記検査光、前記干渉光それぞれが異なる波長帯を有する様に設定されたので、照明光、検査光、干渉光が走査電子像観察に与える影響がなくなり、走査電子像観察と、光学像観察、異物検出、異物観察、試料の高さ測定とが同時に行え、更に、走査型電子顕微鏡による走査電子像の取得と光学顕微鏡による光学像の取得、異物検出装置による異物検出、干渉計による試料の高さ測定とを機械的に分離して行う必要がなく、構造が簡略化できる。 Further, according to the present invention, the scanning means for scanning the electron beam and the electron detector for detecting the electrons emitted from the sample scanned with the electron beam are provided, and the scanning electron image is based on the detection result from the electron detector. a scanning electron microscope to obtain an optical microscope to obtain an optical image by receiving the reflected light from the sample by irradiating the illumination light to the sample, is irradiated with inspection light on the surface of the sample, scattered light from the foreign matter A foreign matter detection device for detecting foreign matter and detecting a foreign matter, and an interferometer for irradiating the sample surface with interference light and detecting the height position of the sample using the interference light reflection from the sample surface. The electron detector includes a phosphor layer for electron / light conversion, a wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and the wavelength filter transmitted through the wavelength filter. Wavelength detector that receives fluorescence and converts light to electricity The illumination light, the inspection light, and the interference light have wavelengths outside the transmission wavelength band of the wavelength filter, and the illumination light, the inspection light, and the interference light have different wavelength bands. Therefore, illumination light, inspection light, and interference light have no effect on scanning electron image observation. Scanning electron image observation, optical image observation, foreign object detection, foreign object observation, and sample height measurement Furthermore, it is necessary to separate the acquisition of the scanning electron image by the scanning electron microscope and the acquisition of the optical image by the optical microscope, the detection of the foreign material by the foreign material detection device, and the measurement of the sample height by the interferometer. And the structure can be simplified.

又本発明によれば、前記照明光は白色光であり、該照明光の光路上に前記波長フィルタの前記透過波長帯域から外れた波長帯域を透過する波長フィルタを挿脱可能に設け、前記走査型電子顕微鏡による走査電子像観察時には、前記波長フィルタが挿入されて光学像との同時観察を可能とし、前記走査電子像観察をしていない時には、前記波長フィルタが外され、前記走査電子像観察と分離して光学像の観察を可能としたので、試料のフルカラー光学像を取得することが可能となる。   According to the invention, the illumination light is white light, and a wavelength filter that transmits a wavelength band that is out of the transmission wavelength band of the wavelength filter is detachably provided on the optical path of the illumination light. When observing a scanning electron image with a scanning electron microscope, the wavelength filter is inserted to enable simultaneous observation with an optical image. When the scanning electron image observation is not performed, the wavelength filter is removed, and the scanning electron image observation is performed. Since the optical image can be observed separately, it is possible to obtain a full-color optical image of the sample.

又本発明によれば、前記蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した前記波長フィルタを挿脱可能としたので、同時観察が不要な際に、照明光を消した状態で電子顕微鏡装置を使用し、より感度が高い観測が可能となる等の優れた効果を発揮する。   Further, according to the present invention, since the wavelength filter restricted to transmit all or almost all of the wavelength band of fluorescence from the phosphor layer can be inserted and removed, it is possible to perform illumination when simultaneous observation is unnecessary. Uses an electron microscope device with the light turned off, and exhibits superior effects such as higher sensitivity observation.

本発明が実施される電子顕微鏡装置の概略構成図である。It is a schematic block diagram of the electron microscope apparatus by which this invention is implemented. 該電子顕微鏡装置を他の方向から見た概略構成図である。It is the schematic block diagram which looked at this electron microscope apparatus from the other direction. 該電子顕微鏡装置に用いられる電子検出器の一例を示す説明図である。It is explanatory drawing which shows an example of the electron detector used for this electron microscope apparatus. (A)は、波長検出素子の感度領域と蛍光体層が発する蛍光の波長帯の関係を示す線図、(B)は、前記電子検出器に組込まれる波長フィルタの透過波長帯域を示す線図である。(A) is a diagram showing the relationship between the sensitivity region of the wavelength detection element and the wavelength band of the fluorescence emitted from the phosphor layer, and (B) is a diagram showing the transmission wavelength band of the wavelength filter incorporated in the electron detector. It is. 他の蛍光体層を用いた場合の、発光される蛍光の波長帯域を示す線図である。It is a diagram which shows the wavelength range | band of the light-emission fluorescence at the time of using another fluorescent substance layer.

以下、図面を参照しつつ本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1、図2に於いて、本発明に係る電子顕微鏡装置1の概略を説明する。   First, the outline of the electron microscope apparatus 1 according to the present invention will be described with reference to FIGS.

該電子顕微鏡装置1は、走査型電子顕微鏡2、光学顕微鏡3、干渉計4、前記走査型電子顕微鏡2、前記光学顕微鏡3、前記干渉計4の作動を制御する制御部5を具備し、前記光学顕微鏡3の光軸6、前記走査型電子顕微鏡2の光軸7の交差する点に測定対象(試料)8が設置され、該測定対象8はX−Yの2方向に移動可能な検査ステージ9に載置されている。   The electron microscope apparatus 1 includes a scanning electron microscope 2, an optical microscope 3, an interferometer 4, a control unit 5 that controls the operation of the scanning electron microscope 2, the optical microscope 3, and the interferometer 4, A measurement object (sample) 8 is installed at a point where the optical axis 6 of the optical microscope 3 and the optical axis 7 of the scanning electron microscope 2 intersect, and the measurement object 8 can move in two directions of XY. 9 is mounted.

前記走査型電子顕微鏡2の光軸7は前記光学顕微鏡3の光軸6に対して所定角度(例えば60°)傾斜しており、前記光軸6と前記光軸7の交差する点が前記測定対象8の観察点となっている。前記光軸7に沿って電子ビームが前記測定対象8に照射され、又電子ビーム走査手段10によって所定範囲を走査する様になっている。電子ビームが照射されることで、前記測定対象8から発せられた電子11は電子検出器12によって検出される。又、前記検査ステージ9は電子ビームの照射と同期してX−Yの2方向に移動し、電子ビームは前記測定対象8の所要範囲を走査する。   The optical axis 7 of the scanning electron microscope 2 is inclined at a predetermined angle (for example, 60 °) with respect to the optical axis 6 of the optical microscope 3, and the point where the optical axis 6 and the optical axis 7 intersect is the measurement point. This is the observation point of the object 8. An electron beam is irradiated onto the measurement object 8 along the optical axis 7 and a predetermined range is scanned by the electron beam scanning means 10. By irradiating the electron beam, the electrons 11 emitted from the measurement object 8 are detected by the electron detector 12. The inspection stage 9 moves in two directions XY in synchronism with the irradiation of the electron beam, and the electron beam scans the required range of the measurement object 8.

前記電子検出器12の検出結果は前記制御部5に送出され、検出結果に基づき前記制御部5に於いて走査電子像が作成される。   The detection result of the electron detector 12 is sent to the control unit 5, and a scanning electron image is created in the control unit 5 based on the detection result.

前記光軸6上には照明光(白色光)を発するLED13、第1ハーフミラー14、第2ハーフミラー15、対物レンズ16が配置され、更に前記LED13と前記第1ハーフミラー14との間には波長フィルタ40(後述)が前記光軸6に対して挿脱可能に設けられる。   An LED 13 that emits illumination light (white light), a first half mirror 14, a second half mirror 15, and an objective lens 16 are disposed on the optical axis 6, and further between the LED 13 and the first half mirror 14. A wavelength filter 40 (described later) is provided to be detachable with respect to the optical axis 6.

前記LED13は発光駆動部17によって発光が制御される。前記LED13から発せられた照明光は前記第1ハーフミラー14、前記第2ハーフミラー15、前記対物レンズ16を通して前記測定対象8に照射され、該測定対象8で反射された照明光は前記第2ハーフミラー15を通り、前記第1ハーフミラー14で反射されて観察用CCD18で受光される様になっている。   The light emission of the LED 13 is controlled by the light emission drive unit 17. The illumination light emitted from the LED 13 is applied to the measurement object 8 through the first half mirror 14, the second half mirror 15, and the objective lens 16, and the illumination light reflected by the measurement object 8 is the second light. The light passes through the half mirror 15, is reflected by the first half mirror 14, and is received by the observation CCD 18.

前記干渉計4は光軸19を有し、該光軸19は前記第2ハーフミラー15で偏向され、前記測定対象8上に到達する。前記光軸19上に第3ハーフミラー21が配設され、該第3ハーフミラー21を挾んで一方に計測用CCD22、他方に参照鏡23が配設されている。   The interferometer 4 has an optical axis 19 that is deflected by the second half mirror 15 and reaches the measurement object 8. A third half mirror 21 is disposed on the optical axis 19, a measurement CCD 22 is disposed on one side of the third half mirror 21, and a reference mirror 23 is disposed on the other side.

計測用光源24から前記光軸19上に干渉用の単波長光が射出され、単波長光の一部は前記第3ハーフミラー21を透過し、前記第2ハーフミラー15で反射され、前記対物レンズ16を通して前記測定対象8に照射される。該測定対象8で反射された単波長光は、前記第2ハーフミラー15、前記第3ハーフミラー21を通って前記計測用CCD22で受光される。又、前記第3ハーフミラー21で反射された前記単波長光の残部は前記参照鏡23で反射され、前記第3ハーフミラー21を透過した後、前記計測用CCD22で受光される。該計測用CCD22は、前記測定対象8からの反射光と前記参照鏡23からの反射光を受光し、両反射光の干渉により前記測定対象8の高さ方向の位置を測定する。   Single-wavelength light for interference is emitted from the measurement light source 24 onto the optical axis 19, and a part of the single-wavelength light is transmitted through the third half mirror 21, reflected by the second half mirror 15, and the objective. The measurement object 8 is irradiated through the lens 16. The single wavelength light reflected by the measurement object 8 is received by the measurement CCD 22 through the second half mirror 15 and the third half mirror 21. Further, the remaining portion of the single wavelength light reflected by the third half mirror 21 is reflected by the reference mirror 23, passes through the third half mirror 21, and then is received by the measurement CCD 22. The measurement CCD 22 receives the reflected light from the measuring object 8 and the reflected light from the reference mirror 23, and measures the position of the measuring object 8 in the height direction by interference of both reflected lights.

前記測定対象8の観察点のX−Y位置と前記干渉計4で得られる高さ方向の位置とで観察点の3次元位置情報が得られる。   Three-dimensional position information of the observation point is obtained from the XY position of the observation point of the measurement object 8 and the position in the height direction obtained by the interferometer 4.

又、前記測定対象8の表面の異物を検出する異物検出装置25が設けられる。   In addition, a foreign matter detection device 25 for detecting foreign matter on the surface of the measurement object 8 is provided.

該異物検出装置25は、異物検出用の検査光を照射する異物検出用光源26と異物によって反射される散乱光を検出する散乱光検出器27を有し、前記異物検出用光源26の照射光軸28は前記走査型電子顕微鏡2の光軸7とは異なった方向から前記測定対象8の表面に入射する様になっている。又、前記散乱光検出器27の光軸29は散乱光を受光し易い様に、図2の紙面に対して垂直な方向となっている。即ち、前記照射光軸28と前記光軸6を含む平面と、前記光軸29と前記光軸6を含む平面とは直交している。尚、図2は理解を容易にする為、前記照射光軸28と前記光軸29とが同一平面内にある様に示している。   The foreign matter detection device 25 includes a foreign matter detection light source 26 that emits inspection light for detecting foreign matter and a scattered light detector 27 that detects scattered light reflected by the foreign matter. The axis 28 enters the surface of the measuring object 8 from a direction different from the optical axis 7 of the scanning electron microscope 2. Further, the optical axis 29 of the scattered light detector 27 is in a direction perpendicular to the paper surface of FIG. 2 so as to easily receive the scattered light. That is, the plane including the irradiation optical axis 28 and the optical axis 6 is orthogonal to the plane including the optical axis 29 and the optical axis 6. Note that FIG. 2 shows the irradiation optical axis 28 and the optical axis 29 in the same plane for easy understanding.

前記測定対象8の表面に検査光を照射し、前記測定対象8の表面に異物が有った場合、異物により検査光が散乱され、前記散乱光検出器27によって散乱光が検出される。検出可能な異物の大きさは、使用される検査光の波長によって異なるが、赤色系の光を使用した場合でも、前記光学顕微鏡3では観察が難しいサブミクロンの大きさの異物を検出可能である。更に、検査光の画角は、電子ビームより大きく、検査光の照射位置を特定すること、目的とする検査部位を探すことは電子ビームより簡単である。   When the surface of the measuring object 8 is irradiated with inspection light and there is a foreign object on the surface of the measuring object 8, the inspection light is scattered by the foreign object, and the scattered light detector 27 detects the scattered light. Although the size of the foreign matter that can be detected varies depending on the wavelength of the inspection light used, even when red light is used, it is possible to detect a foreign matter having a size of submicron that is difficult to observe with the optical microscope 3. . Further, the field angle of the inspection light is larger than that of the electron beam, and it is easier to specify the irradiation position of the inspection light and find the target inspection site than the electron beam.

次に、前記電子検出器12について図3により説明する。   Next, the electron detector 12 will be described with reference to FIG.

ガラス基板等の透明板31に蛍光体層32が形成されて電子/光変換部材(シンチレータ)33が構成され、該電子/光変換部材33に、波長フィルタ34、ライトガイド35、波長検出素子36が順次連設され、更にこれらが遮光カバー37で覆われることで一体化され、前記電子検出器12を構成している。   A phosphor layer 32 is formed on a transparent plate 31 such as a glass substrate to constitute an electron / light conversion member (scintillator) 33. The electron / light conversion member 33 includes a wavelength filter 34, a light guide 35, and a wavelength detection element 36. Are sequentially arranged and further covered with a light shielding cover 37 to be integrated to constitute the electron detector 12.

前記蛍光体層32に電子11が入射することで、該蛍光体層32が所定量域の波長(蛍光)を発光する。蛍光は前記波長フィルタ34を通過し、更に前記ライトガイド35を経て前記波長検出素子36に到達する。該波長検出素子36は蛍光を電気信号に変換する。従って、前記電子検出器12は、電子/光/電気変換し、電子11が入射すると、電気信号を発する。   When the electrons 11 enter the phosphor layer 32, the phosphor layer 32 emits a wavelength (fluorescence) in a predetermined amount region. The fluorescent light passes through the wavelength filter 34 and further reaches the wavelength detection element 36 through the light guide 35. The wavelength detection element 36 converts fluorescence into an electrical signal. Therefore, the electron detector 12 performs electron / light / electric conversion, and emits an electric signal when the electron 11 is incident.

本発明では、前記電子検出器12が電子11を変換して検出する光、前記LED13が照射する照明光、前記計測用光源24が照射する単波長光、前記異物検出用光源26が照射する検査光を異なる波長帯の光とし、それぞれを波長で分離し、又、分離した波長を選択して検出する様にし、複数の光学系で同時観察可能としたものである。   In the present invention, light that the electron detector 12 converts and detects the electrons 11, illumination light that the LED 13 irradiates, single wavelength light that the measurement light source 24 irradiates, and inspection that the foreign matter detection light source 26 irradiates The light is made into light of different wavelength bands, each is separated by wavelength, and the separated wavelengths are selected and detected so that they can be observed simultaneously by a plurality of optical systems.

以下、図4、図5を参照して前記電子検出器12について更に説明する。   Hereinafter, the electron detector 12 will be further described with reference to FIGS.

図4(A)中、曲線Aは、前記蛍光体層32から発せられる波長帯域を示し、曲線Bは前記波長検出素子36が検出する波長帯域を示している。図示される様に、前記曲線Bの波長帯域の方が前記曲線Aの波長帯域より広くなっており、前記波長検出素子36に到達する波長帯域を前記曲線A、即ち前記蛍光体層32が発する蛍光の波長帯域に限定しても、感度上支障はない。   In FIG. 4A, a curve A indicates a wavelength band emitted from the phosphor layer 32, and a curve B indicates a wavelength band detected by the wavelength detection element 36. As shown in the figure, the wavelength band of the curve B is wider than the wavelength band of the curve A, and the curve A, that is, the phosphor layer 32 emits the wavelength band reaching the wavelength detecting element 36. Even if it is limited to the fluorescence wavelength band, there is no problem in sensitivity.

図4(B)中、曲線Cは前記波長フィルタ34の波長透過特性を示している。該波長フィルタ34は透過波長帯域Wを有し、該透過波長帯域Wは蛍光の波長帯域の殆どを含み、波長の透過を蛍光の波長帯に略限定するものである。例えば300nm〜600nmの波長帯を透過する。尚、前記波長フィルタ34で蛍光の波長の透過帯域を制限する場合は、蛍光の透過光量が90%〜95%以上となる様に設定する。   In FIG. 4B, curve C shows the wavelength transmission characteristic of the wavelength filter 34. The wavelength filter 34 has a transmission wavelength band W. The transmission wavelength band W includes most of the fluorescence wavelength band, and the transmission of the wavelength is substantially limited to the fluorescence wavelength band. For example, it transmits a wavelength band of 300 nm to 600 nm. When the wavelength filter 34 restricts the transmission band of the fluorescence wavelength, it is set so that the amount of transmitted fluorescence is 90% to 95% or more.

従って、前記LED13から発する照明光、前記計測用光源24から発する干渉用の単波長光、前記異物検出用光源26から発せられる検査光の波長を前記透過波長帯域Wから外れたものとすれば、電子ビームを走査し、走査電子像を観察すると同時に他の照明光による観察が行える。この時、照明光、前記計測用光源24からの光が前記波長フィルタ34を透過する透過率は0.001%以下が好ましい。   Accordingly, if the illumination light emitted from the LED 13, the interference single wavelength light emitted from the measurement light source 24, and the wavelength of the inspection light emitted from the foreign object detection light source 26 are out of the transmission wavelength band W, By scanning the electron beam and observing the scanning electron image, observation with another illumination light can be performed. At this time, the transmittance with which the illumination light and the light from the measurement light source 24 pass through the wavelength filter 34 is preferably 0.001% or less.

例えば、前記異物検出用光源26が発する検査光の波長が、図4(B)中、波長Dで示されるとすると、検査光は前記波長フィルタ34によって遮断され、前記波長検出素子36には到達しない。即ち、前記異物検出装置25により前記測定対象8の表面の異物を検出、或は観察しつつ走査電子像の観察が可能である。   For example, if the wavelength of the inspection light emitted by the foreign object detection light source 26 is indicated by a wavelength D in FIG. 4B, the inspection light is blocked by the wavelength filter 34 and reaches the wavelength detection element 36. do not do. That is, the scanning electronic image can be observed while detecting or observing the foreign matter on the surface of the measurement object 8 by the foreign matter detection device 25.

又、前記干渉計4では、前記計測用CCD22で得た像を、目視で観察する必要はないので、選択可能な波長帯域は広くなり、前記透過波長帯域W、前記波長D以外の波長を選択することが容易である。   In the interferometer 4, it is not necessary to visually observe the image obtained by the CCD 22 for measurement, so that the selectable wavelength band is widened, and a wavelength other than the transmission wavelength band W and the wavelength D is selected. Easy to do.

次に、図5は、前記蛍光体層32が発する蛍光の波長帯域の他の例を示しており、図5中曲線Eで示される波長帯域では、蛍光のピークは波長400nmに集中し、又波長帯域の広がりも、図4(A)の曲線Aで示した場合よりも狭くなっている。可視光の波長は380nm〜780nmと言われており、前記曲線Eを持つ前記蛍光体層32では、前記波長フィルタ34の透過波長帯域Wを380nm〜530nm程度に制限することで、蛍光の波長帯域の殆どをカバーでき、又透過波長帯域Wを380nm〜530nm程度に制限することで、530nm〜780nmの波長帯域の可視光、即ち青系の光を除く可視光の使用が可能となる。   Next, FIG. 5 shows another example of the wavelength band of the fluorescence emitted by the phosphor layer 32. In the wavelength band indicated by the curve E in FIG. 5, the fluorescence peak is concentrated at a wavelength of 400 nm. The spread of the wavelength band is also narrower than that shown by the curve A in FIG. The wavelength of visible light is said to be 380 nm to 780 nm. In the phosphor layer 32 having the curve E, the transmission wavelength band W of the wavelength filter 34 is limited to about 380 nm to 530 nm, so that the fluorescence wavelength band By limiting the transmission wavelength band W to about 380 nm to 530 nm, it is possible to use visible light in a wavelength band of 530 nm to 780 nm, that is, visible light excluding blue light.

更に、530nm〜780nmの波長帯域の一部を前記光学顕微鏡3の照明光に、又残りの他の波長帯域を前記異物検出装置25の検査光にそれぞれ割当てれば、前記光学顕微鏡3による光学像の観察、前記異物検出装置25による異物検出、及び前記走査型電子顕微鏡2による走査電子像の観察を同時に行うことができる。尚、上記した各波長帯域は、例示であって、本発明は上記各波長帯域に限定されるものではない。   Further, if a part of the wavelength band of 530 nm to 780 nm is assigned to the illumination light of the optical microscope 3 and the other wavelength band is assigned to the inspection light of the foreign object detection device 25, an optical image by the optical microscope 3 is obtained. Observation, foreign object detection by the foreign object detection device 25, and observation of a scanning electron image by the scanning electron microscope 2 can be performed simultaneously. Each wavelength band described above is an exemplification, and the present invention is not limited to each wavelength band.

尚、前記LED13は、前記透過波長帯域Wより外れた波長帯の光を発するものを選択してもよく、或は前記LED13から射出される光を白色光とし、前記波長フィルタ40を設け、前記透過波長帯域Wより外れた波長帯域に制限してもよい。   The LED 13 may be selected to emit light having a wavelength band outside the transmission wavelength band W, or the light emitted from the LED 13 is white light, and the wavelength filter 40 is provided. You may restrict | limit to the wavelength band out of the transmission wavelength band W.

この場合、前記波長フィルタ40を前記光軸6に対して挿脱可能とし、前記光学顕微鏡3単独で光学像を観察する場合に、前記波長フィルタ40を外しておけば、フルカラーの光学像を観察することができる。   In this case, when the wavelength filter 40 can be inserted into and removed from the optical axis 6 and an optical image is observed with the optical microscope 3 alone, if the wavelength filter 40 is removed, a full-color optical image is observed. can do.

上記した様に、前記電子検出器12が検知する波長帯域、前記光学顕微鏡3の照明光の波長帯、前記検査光の波長帯域を分離することで、更に電子顕微鏡装置1の利便性が向上する。   As described above, the convenience of the electron microscope apparatus 1 is further improved by separating the wavelength band detected by the electron detector 12, the wavelength band of the illumination light of the optical microscope 3, and the wavelength band of the inspection light. .

即ち、先ず前記光学顕微鏡3により前記測定対象8の光学像を観察し、所定の観察部位を特定する。光学像を観察しつつ、前記異物検出装置25により検査光を照射し、散乱光により照射位置を更に限定する。次に、電子ビームを照射して観察部位の走査電子像の観察を行う。   That is, first, an optical image of the measurement object 8 is observed with the optical microscope 3, and a predetermined observation site is specified. While observing the optical image, the foreign object detection device 25 irradiates the inspection light, and the irradiation position is further limited by the scattered light. Next, an electron beam is irradiated to observe a scanning electron image of the observation site.

前記光学顕微鏡3の光学系の画角、検査光の画角、電子ビームの画角は順次小さくなるので、電子ビームの照射位置の特定が容易になる。又、前記光学顕微鏡3による観察、前記異物検出装置25による観察を同時に行えるので、観察部位特定時の修正、変更は、何時でも容易に可能である。   Since the angle of view of the optical system of the optical microscope 3, the angle of view of the inspection light, and the angle of view of the electron beam are sequentially reduced, it is easy to specify the irradiation position of the electron beam. In addition, since the observation with the optical microscope 3 and the observation with the foreign object detection device 25 can be performed at the same time, correction and change at the time of specifying the observation site can be easily performed at any time.

又、波長フィルタ34を挿脱可能とすることもできる。これにより、同時観察が不要な際に、照明光を消した状態で電子顕微鏡装置1を使用し、より感度が高い観測が可能となる。これは、S/N比を向上させたい場合に有効である。   Further, the wavelength filter 34 can be inserted and removed. Thereby, when simultaneous observation is unnecessary, the electron microscope apparatus 1 is used in a state in which the illumination light is extinguished, so that observation with higher sensitivity is possible. This is effective when it is desired to improve the S / N ratio.

尚、前記異物検出装置25で異物を検出した場合、前記電子検出器12によって得られた情報から、スペクトル分析等により、異物の物性を得る等、異物の検査を行ってもよい。   When foreign matter is detected by the foreign matter detection device 25, foreign matter inspection such as obtaining physical properties of the foreign matter by spectrum analysis or the like from information obtained by the electronic detector 12 may be performed.

1 電子顕微鏡装置
2 走査型電子顕微鏡
3 光学顕微鏡
4 干渉計
5 制御部
8 測定対象
11 電子
12 電子検出器
13 LED
24 計測用光源
25 異物検出装置
26 異物検出用光源
27 散乱光検出器
DESCRIPTION OF SYMBOLS 1 Electron microscope apparatus 2 Scanning electron microscope 3 Optical microscope 4 Interferometer 5 Control part 8 Measuring object 11 Electron 12 Electron detector 13 LED
24 Light Source for Measurement 25 Foreign Object Detection Device 26 Light Source for Foreign Object Detection 27 Scattered Light Detector

Claims (5)

電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置とを具備し、
前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、
前記検査光は、前記走査電子像を取得する為に、前記波長検出素子で受光される前記波長フィルタの透過波長帯域から外れた波長を有する様に設定され、
前記検査光を照射することによる前記試料表面の異物の検出と同時に、前記走査電子像による観察が可能な様に構成されたことを特徴とする電子顕微鏡装置。
A scanning means for scanning an electron beam; and a scanning electron microscope having an electron detector for detecting electrons emitted from a sample scanned with the electron beam, and obtaining a scanning electron image based on a detection result from the electron detector; Irradiating the sample surface with inspection light, and detecting the scattered light from the foreign matter to detect the foreign matter, and a foreign matter detection device,
The electron detector includes a phosphor layer for electron / light conversion, a wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and the fluorescence transmitted through the wavelength filter. A wavelength detecting element that receives light and converts light / electricity,
The inspection light is set to have a wavelength outside the transmission wavelength band of the wavelength filter received by the wavelength detection element in order to acquire the scanning electron image,
An electron microscope apparatus configured to be capable of observing with the scanning electron image simultaneously with the detection of the foreign matter on the sample surface by irradiating the inspection light.
電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、
前記試料表面に計測光を照射し、前記試料表面からの反射光の干渉を用いて前記試料の高さ位置を検出する干渉計とを具備し、
前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、
前記計測光は、前記走査電子像を取得する為に、前記波長検出素子で受光される前記波長フィルタの透過波長帯域から外れた波長を有する様に設定され、
前記走査電子像による観察と同時に、前記計測光を照射することによる前記試料の高さ位置検出が可能な様に構成されたことを特徴とする電子顕微鏡装置。
A scanning means for scanning an electron beam; and a scanning electron microscope having an electron detector for detecting electrons emitted from a sample scanned with the electron beam, and obtaining a scanning electron image based on a detection result from the electron detector; ,
An interferometer that irradiates the sample surface with measurement light and detects the height position of the sample using interference of reflected light from the sample surface;
The electron detector includes a phosphor layer for electron / light conversion, a wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and the fluorescence transmitted through the wavelength filter. A wavelength detecting element that receives light and converts light / electricity,
The measurement light is set so as to have a wavelength outside the transmission wavelength band of the wavelength filter received by the wavelength detection element in order to acquire the scanning electron image,
An electron microscope apparatus configured to be capable of detecting the height position of the sample by irradiating the measurement light simultaneously with observation by the scanning electron image.
電子ビームを走査する走査手段と、電子ビームが走査された試料から発せられる電子を検出する電子検出器を有し、該電子検出器からの検出結果に基づき走査電子像を得る走査型電子顕微鏡と、前記試料に照明光を照射して該試料からの反射光を受光して光学像を得る光学顕微鏡と、前記試料表面に検査光を照射し、異物からの散乱光を検出して異物検出を行う異物検出装置と、
前記試料表面に計測光を照射し、前記試料表面からの反射光の干渉を用いて前記試料の高さ位置を検出する干渉計とを具備し、
前記電子検出器は電子/光変換する蛍光体層と、該蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した波長フィルタと、該波長フィルタを透過した前記蛍光を受光し、光/電気変換する波長検出素子を有し、
前記照明光、前記検査光、前記計測光は、前記走査電子像を取得する為に前記波長検出素子で受光される前記波長フィルタの透過波長帯域から外れた波長を有し、且つ前記照明光、前記検査光、前記計測光それぞれが異なる波長帯を有する様に設定され、
前記照明光を照射することによる光学像観察、前記検査光を照射することによる前記試料表面の異物検出、前記電子ビームによる走査電子像観察、更に前記計測光を照射することによる前記試料の高さ位置検出が同時に可能な様に構成されたことを特徴とする電子顕微鏡装置。
A scanning means for scanning an electron beam; and a scanning electron microscope having an electron detector for detecting electrons emitted from a sample scanned with the electron beam, and obtaining a scanning electron image based on a detection result from the electron detector; Irradiating the sample with illumination light and receiving reflected light from the sample to obtain an optical image; and irradiating the sample surface with inspection light and detecting scattered light from the foreign matter to detect foreign matter. A foreign matter detection device to perform;
An interferometer that irradiates the sample surface with measurement light and detects the height position of the sample using interference of reflected light from the sample surface;
The electron detector includes a phosphor layer for electron / light conversion, a wavelength filter restricted so that all or substantially all of the wavelength band of fluorescence from the phosphor layer is transmitted, and the fluorescence transmitted through the wavelength filter. A wavelength detecting element that receives light and converts light / electricity,
The illumination light, the inspection light, and the measurement light have a wavelength outside the transmission wavelength band of the wavelength filter that is received by the wavelength detection element to acquire the scanning electron image, and the illumination light, The inspection light and the measurement light are set to have different wavelength bands,
Optical image observation by irradiating the illumination light, detection of foreign matter on the sample surface by irradiating the inspection light, scanning electron image observation by the electron beam, and height of the sample by irradiating the measurement light An electron microscope apparatus configured so that position detection is possible at the same time.
前記照明光は白色光であり、該照明光の光路上に前記波長フィルタの前記透過波長帯域から外れた波長帯域を透過する波長フィルタを挿脱可能に設け、前記走査型電子顕微鏡による走査電子像観察時には、前記波長フィルタが挿入されて光学像との同時観察を可能とし、前記走査電子像観察をしていない時には、前記波長フィルタが外され、前記走査電子像観察と分離して光学像の観察を可能とした請求項1〜請求項3の内いずれか一項に記載の電子顕微鏡装置。 The illumination light is white light, and a wavelength filter that transmits a wavelength band that is out of the transmission wavelength band of the wavelength filter is detachably provided on the optical path of the illumination light, and a scanning electron image by the scanning electron microscope At the time of observation, the wavelength filter is inserted to enable simultaneous observation with an optical image. When the scanning electronic image observation is not performed, the wavelength filter is removed and separated from the scanning electronic image observation to separate the optical image. The electron microscope apparatus as described in any one of Claims 1-3 which enabled observation. 前記蛍光体層からの蛍光の波長帯域の全て或は略全てが透過する様に制限した前記波長フィルタを挿脱可能としたことを特徴とする請求項1〜請求項3の内いずれか一項に記載の電子顕微鏡装置。 Any one of claims 1 to 3, characterized in that the removably said wavelength filter all or substantially all of the wavelength bands of fluorescence was limited during the transmission from the phosphor layer The electron microscope apparatus described in 1.
JP2013101044A 2013-05-13 2013-05-13 Electron microscope equipment Active JP5623590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101044A JP5623590B2 (en) 2013-05-13 2013-05-13 Electron microscope equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101044A JP5623590B2 (en) 2013-05-13 2013-05-13 Electron microscope equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008334064A Division JP5492409B2 (en) 2008-12-26 2008-12-26 Electron microscope equipment

Publications (2)

Publication Number Publication Date
JP2013191576A JP2013191576A (en) 2013-09-26
JP5623590B2 true JP5623590B2 (en) 2014-11-12

Family

ID=49391569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101044A Active JP5623590B2 (en) 2013-05-13 2013-05-13 Electron microscope equipment

Country Status (1)

Country Link
JP (1) JP5623590B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543663Y2 (en) * 1974-05-11 1980-10-14
JPH01120749A (en) * 1987-11-02 1989-05-12 Hitachi Ltd Automatic focusing device for electron microscope
JPH0756788B2 (en) * 1987-12-04 1995-06-14 株式会社日立製作所 electronic microscope
JPH07208963A (en) * 1994-01-20 1995-08-11 Nikon Corp Compound type microscope
JP3534582B2 (en) * 1997-10-02 2004-06-07 株式会社日立製作所 Pattern defect inspection method and inspection device
JP5066393B2 (en) * 2007-06-06 2012-11-07 株式会社日立ハイテクノロジーズ Foreign object / defect inspection / observation system

Also Published As

Publication number Publication date
JP2013191576A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5492409B2 (en) Electron microscope equipment
JP5770434B2 (en) Electron microscope equipment
US11009461B2 (en) Defect investigation device simultaneously detecting photoluminescence and scattered light
CN106483646B (en) Micro-spectroscope
JP5570963B2 (en) Optical measuring device
US11694324B2 (en) Inspection apparatus and inspection method
TW201213849A (en) Image generation device
TW201935148A (en) Systems and methods for device-correlated overlay metrology
KR20130138214A (en) Defect inspection and photoluminescence measurement system
JP2014016531A5 (en)
KR20190031233A (en) Defect inspection device of wide gap semiconductor substrate
JP2009109788A (en) Laser scanning microscope
KR20210144683A (en) Inspection device and inspection method
JP2010256623A (en) Microscope observation apparatus
JP5623590B2 (en) Electron microscope equipment
JP2010157392A (en) Electron microscope device
KR102067972B1 (en) Led inspection system capable of simultaneous detection of photoluminescence and scattered light
JP2005091701A (en) Fluorescence microscope and exciting light source control method thereof
JP2017020880A (en) Film thickness unevenness inspection device
US9535007B2 (en) Measuring apparatus and fluorescence measuring method
KR101926050B1 (en) Inspection apparatus using ultraviolet ray
KR20220123378A (en) Inspection device and inspection method
JP2006010585A (en) Measuring instrument dedicated to cathode luminescence
JP2012211770A (en) Electron beam analyzer
JP6720430B1 (en) Inspection device and inspection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250