JP5622900B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5622900B2
JP5622900B2 JP2013141742A JP2013141742A JP5622900B2 JP 5622900 B2 JP5622900 B2 JP 5622900B2 JP 2013141742 A JP2013141742 A JP 2013141742A JP 2013141742 A JP2013141742 A JP 2013141742A JP 5622900 B2 JP5622900 B2 JP 5622900B2
Authority
JP
Japan
Prior art keywords
substrate
plating
film
electroless
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013141742A
Other languages
Japanese (ja)
Other versions
JP2013231239A (en
Inventor
貴文 福本
貴文 福本
廣田 正樹
正樹 廣田
尚樹 岡本
尚樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Osaka Prefecture University
Original Assignee
Nissan Motor Co Ltd
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Osaka Prefecture University filed Critical Nissan Motor Co Ltd
Priority to JP2013141742A priority Critical patent/JP5622900B2/en
Publication of JP2013231239A publication Critical patent/JP2013231239A/en
Application granted granted Critical
Publication of JP5622900B2 publication Critical patent/JP5622900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors

Description

本発明は、Zn化合物基板にめっきを形成する、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, in which plating is formed on a Zn compound substrate.

ZnSのようなZn(亜鉛)を含む化合物は半導体装置を用いた光学部品の封止材、窓材として用いられる。例えば、光学素子としての半導体装置を形成した第1の基板にZnSからなる第2の基板を接合することで半導体装置を封止した光学部品がある。   A compound containing Zn (zinc) such as ZnS is used as a sealing material and window material for optical components using a semiconductor device. For example, there is an optical component in which a semiconductor device is sealed by bonding a second substrate made of ZnS to a first substrate on which a semiconductor device as an optical element is formed.

ZnSよりなる基板の表面上にめっき処理により金属膜を形成する場合には、このZnSが良導体ではないため、電解めっきを適用することができない。したがって、電解めっきの代わりに、又は電解めっきの下地として、無電解めっきを施すことが考えられる。   When a metal film is formed on a surface of a substrate made of ZnS by plating, electrolytic plating cannot be applied because ZnS is not a good conductor. Therefore, it is conceivable to perform electroless plating instead of electrolytic plating or as a base for electrolytic plating.

プラスチックスのような不導体に無電解めっきを行って、金属膜を不導体の表面上に形成する一般的な工程は、主に脱脂、エッチング、プレディップ、触媒化(キャタリスト、アクセレータ)、無電解めっきの工程から成り立つ(非特許文献1)。より詳細には、まず、被めっき材をめっき治具に取り付け、次に指紋、油などの汚れを除去するために脱脂し、洗浄する。次に行うエッチング工程は密着性を上げるために被めっき材にアンカー効果を付与するものであって、被めっき材の表面を酸で荒らすことで、被めっき材の表面を化学的に粗化する。中和した後に触媒化工程を行う。この触媒化工程は一般的にキャタリストとアクセレータとから成り立つ。キャタリストでは被めっき材の表面に対して、Sn2+−Pd2+の錯体の吸着を行い、アクセレータでは硫酸又は塩酸等によりSnイオンを溶解させ、金属パラジウムを析出させる(Sn2++Pd2+→Sn4++Pd)。この触媒化工程で金属触媒核が被めっき材の表面に形成され、後工程の無電解めっきで金属層を形成可能になる。無電解めっき工程は、無電解銅めっきや無電解ニッケルめっきが、それぞれの製品の要求に応じて使い分けられて用いられ、無電解めっき浴に触媒化工程後の被めっき材を浸漬して金属層を被めっき材の表面に形成していた。 The general process of electroless plating on nonconductors such as plastics and forming a metal film on the surface of nonconductors is mainly degreasing, etching, pre-dip, catalyzing (catalyst, accelerator), It consists of a process of electroless plating (Non-Patent Document 1). More specifically, the material to be plated is first attached to a plating jig, and then degreased and cleaned to remove dirt such as fingerprints and oil. The next etching step is to impart an anchor effect to the material to be plated in order to improve adhesion, and chemically roughen the surface of the material to be plated by roughening the surface of the material to be plated with acid. . After neutralization, the catalyzing step is performed. This catalyzing process generally consists of a catalyst and an accelerator. The catalyst adsorbs the Sn 2+ -Pd 2+ complex to the surface of the material to be plated, and the accelerator dissolves Sn ions with sulfuric acid or hydrochloric acid to precipitate metallic palladium (Sn 2+ + Pd 2 + → Sn 4+ + Pd). In this catalyzing step, metal catalyst nuclei are formed on the surface of the material to be plated, and a metal layer can be formed by electroless plating in a subsequent step. In the electroless plating process, electroless copper plating and electroless nickel plating are used properly according to the requirements of each product, and the metal layer is formed by immersing the material to be plated after the catalyzing process in the electroless plating bath Was formed on the surface of the material to be plated.

上述のように、無電解めっき工程の前には、被めっき材の表面にパラジウムなどの触媒金属核を付着させておく必要がある。そのための触媒化工程では、今日では一般的にキャタリストと呼ばれる錫−パラジウム混合溶液と酸との処理液が多く用いられている。   As described above, before the electroless plating step, it is necessary to attach a catalytic metal nucleus such as palladium to the surface of the material to be plated. In the catalyzing process for that purpose, a treatment solution of a tin-palladium mixed solution and an acid, generally called a catalyst, is often used today.

電気鍍金研究会編、「無電解めっき 基礎と応用」、日刊工業新聞社、1994年5月30日、p132Electroplating Study Group, “Electroless Plating Basics and Applications”, Nikkan Kogyo Shimbun, May 30, 1994, p132

上述した一般的な無電解めっき方法をZnS基板に適用して、実際にめっきを行ったところ、めっき膜の密着性が非常に弱く、テープ試験で剥がれるレベルの密着性であった。これでは常用上で必要とされるめっき密着性を具備していない。   When the above-described general electroless plating method was applied to the ZnS substrate and the plating was actually performed, the adhesion of the plating film was very weak, and the adhesion was such that it could be peeled off in the tape test. This does not have plating adhesion required for regular use.

上記課題を解決するために、本発明は、Cu薄膜が形成された基板上に無電解めっき膜を形成する前に、Znを含む化合物よりなる基板を硫酸銅溶液に浸漬してこの基板上にCu薄膜を形成することを要旨とする。   In order to solve the above-described problems, the present invention immerses a substrate made of a compound containing Zn into a copper sulfate solution before forming an electroless plating film on the substrate on which the Cu thin film is formed. The gist is to form a Cu thin film.

本発明によれば、Znを含む化合物よりなる基板を硫酸銅溶液に浸漬する事で、基板のZn+が溶解して、残りの元素がCuと結合し置換めっきが行われる。このことで亜鉛化合物の表面にCuの非常に薄い膜が形成される。このことにより、ZnSのような自己触媒性を持たない化合物でも無電解めっきで密着性の高い被膜を形成することができるようになる。 According to the present invention, by immersing a substrate made of a compound containing Zn in a copper sulfate solution, Zn + of the substrate is dissolved, and the remaining elements are bonded to Cu to perform displacement plating. This forms a very thin film of Cu on the surface of the zinc compound. This makes it possible to form a film with high adhesion by electroless plating even with a compound that does not have autocatalytic properties such as ZnS.

本発明のめっき基板の製造方法の概念を時系列的に説明する断面図である。It is sectional drawing explaining the concept of the manufacturing method of the plating substrate of this invention in time series. 本発明の方法により得られるめっき基板の断面図である。It is sectional drawing of the plating substrate obtained by the method of this invention. 基板を保持する治具の一例の概略図である。It is the schematic of an example of the jig | tool holding a board | substrate. 図3の治具の概略図である。It is the schematic of the jig | tool of FIG. 実施例のX線光電子分光法による測定結果を示すチャートである。It is a chart which shows the measurement result by the X-ray photoelectron spectroscopy of an Example. 基板を保持する治具の一例の概略図であるIt is the schematic of an example of the jig | tool holding a board | substrate. 図6の治具の動作を示す概略図である。It is the schematic which shows operation | movement of the jig | tool of FIG. 図6の治具の断面図である。It is sectional drawing of the jig | tool of FIG. めっき液中で揺動しない治具の一例の概略図である。It is the schematic of an example of the jig | tool which does not rock | fluctuate in a plating solution. 光学部品の説明図である。It is explanatory drawing of an optical component. 光学部品の製造方法を時系列的に説明する断面図である。It is sectional drawing explaining the manufacturing method of an optical component in time series. 光学部品の別の製造方法を時系列的に説明する断面図である。It is sectional drawing explaining another manufacturing method of an optical component in time series. 実施例1の密着性測定試料の断面及び破壊界面の概略図である。It is the schematic of the cross section and fracture interface of the adhesiveness measurement sample of Example 1. 実施例における膜厚均一性の評価箇所を示す断面図である。It is sectional drawing which shows the evaluation location of the film thickness uniformity in an Example. 実施例における孔部の顕微鏡写真である。It is a microscope picture of the hole in an Example. 実施例における孔部の顕微鏡写真である。It is a microscope picture of the hole in an Example.

(第1実施形態:無電解めっき基板の製造方法)
以下、本発明のめっき基板の製造方法の実施形態を、図面を用いつつ具体的に説明する。
(First Embodiment: Method for Manufacturing Electroless Plating Substrate)
Hereinafter, an embodiment of a method for producing a plated substrate of the present invention will be specifically described with reference to the drawings.

図1は、本発明のめっき基板の製造方法の概念を時系列的に説明する断面図である。図示した本実施形態では、無電解めっきがNiめっきである例について説明する。   FIG. 1 is a cross-sectional view illustrating the concept of the method for producing a plated substrate of the present invention in time series. In the illustrated embodiment, an example in which the electroless plating is Ni plating will be described.

まず被めっき材である基板11を用意する(図1(a))。本実施形態では、基板11は、例えばZnSよりなるものとすることができる。この基板11を硫酸銅溶液に浸漬して、基板11上にCu薄膜12を形成する(図1(b))。図示した例ではCu薄膜12は、基板11上で島状に点在している。次に、無電解めっきの一例として無電解Niめっき膜13を、このCu薄膜12が形成された基板11上に形成する(図1(c))。図示した本実施形態では、この無電解Niめっき膜13の上に更に電解めっきにより電解Cuめっき膜14を形成している(図1(d))。   First, a substrate 11 that is a material to be plated is prepared (FIG. 1A). In the present embodiment, the substrate 11 can be made of, for example, ZnS. The substrate 11 is immersed in a copper sulfate solution to form a Cu thin film 12 on the substrate 11 (FIG. 1B). In the illustrated example, the Cu thin films 12 are scattered in an island shape on the substrate 11. Next, as an example of electroless plating, an electroless Ni plating film 13 is formed on the substrate 11 on which the Cu thin film 12 is formed (FIG. 1C). In the illustrated embodiment, an electrolytic Cu plating film 14 is further formed on the electroless Ni plating film 13 by electrolytic plating (FIG. 1D).

以上のような工程を経て、図2に断面図で示すように、基板11上にCu薄膜12が形成され、そのCu薄膜12を覆って無電解Niめっき膜13が形成され、そして、この無電解Niめっき膜13上に電解Cuめっき膜14が形成されためっき基板が得られている。   Through the steps described above, a Cu thin film 12 is formed on the substrate 11, and an electroless Ni plating film 13 is formed covering the Cu thin film 12, as shown in a sectional view in FIG. A plated substrate having an electrolytic Cu plating film 14 formed on the electrolytic Ni plating film 13 is obtained.

発明者らは、ZnSよりなる基板に従来の方法で無電解めっきを実施した場合に、めっき密着性が劣っていた理由について研究を進めた。その結果、以下の原因によるもの考えられる。   The inventors conducted research on the reason why the plating adhesion was poor when electroless plating was performed on a substrate made of ZnS by a conventional method. As a result, the following causes are considered.

まず、ZnS基板は酸に可溶しやすく、特に塩酸には激しく溶解する。これについては、実際に0.5Mの塩酸にてZnS基板を5分間浸漬させたところ、表面がエッチングされ、表面の粗面化が確認できた。ZnSは硫酸には溶解しないが、塩酸には溶解される。このことにより、ZnS基板には、H+が溶解する作用よりもむしろ、塩化物イオン(Clイオン)がZn2+と結合して錯イオンを形成する作用が優先し、ZnS基板の溶解を促していると考えられる。ZnS基板が溶解すると、無電解めっきの下地となる金属触媒が密着していないために、その後の無電解めっきを行っても密着性が確保できない結果になる。 First, the ZnS substrate is easily soluble in acid, and particularly vigorously dissolved in hydrochloric acid. As for this, when the ZnS substrate was actually immersed in 0.5 M hydrochloric acid for 5 minutes, the surface was etched, and it was confirmed that the surface was roughened. ZnS does not dissolve in sulfuric acid but dissolves in hydrochloric acid. As a result, the ZnS substrate has priority over the action of chloride ions (Cl ions) binding to Zn 2+ to form complex ions, rather than the action of H + dissolution, which promotes dissolution of the ZnS substrate. It is thought that. When the ZnS substrate is dissolved, the metal catalyst that is the base of the electroless plating is not in close contact, so that even if the subsequent electroless plating is performed, the adhesion cannot be ensured.

もっとも、従来の無電解めっき法には塩酸は不可欠である。すなわち、触媒化工程のキャタリストにおいては、一般的に混合触媒液は塩化第一スズ及び塩化パラジウムと、塩酸との混合溶液であり、通常は市販されている塩化第一スズ及び塩化パラジウムの濃縮液を多量の塩酸溶液で薄めて使用する。この時、塩酸は、Clイオンを基板表面に吸着させて、その後のキャタリストが形成され易くする役割を担っている。   However, hydrochloric acid is indispensable for the conventional electroless plating method. That is, in the catalyst process catalyst, the mixed catalyst solution is generally a mixed solution of stannous chloride and palladium chloride and hydrochloric acid, and is usually a commercially available concentration of stannous chloride and palladium chloride. Dilute the solution with a large amount of hydrochloric acid solution. At this time, hydrochloric acid plays a role of adsorbing Cl ions on the substrate surface and facilitating the formation of a subsequent catalyst.

また、キャタリストの前工程であるプレディップ工程でも、基板を粗化又は清浄化するためにClイオンを添加した液を用いることがあり、さらには浴を作る際に製品溶液と塩酸を混ぜて作製しなければならないケースが多い。   Also, in the pre-dip process, which is a pre-process of the catalyst, a solution containing Cl ions may be used to roughen or clean the substrate. Furthermore, when making a bath, the product solution and hydrochloric acid are mixed. There are many cases that must be made.

更に、無電解めっき液では、Clイオンを含む界面活性剤が、添加剤として用いられるケースもある。   Further, in the electroless plating solution, a surfactant containing Cl ions may be used as an additive.

これらのことから、従来法ではClイオンレスで触媒化を行うことは難しいと考えられてきた。   For these reasons, it has been considered difficult to carry out catalysis without using Cl ions in the conventional method.

この点につき、本実施形態では、ZnS基板を硫酸銅溶液に浸漬する。この浸漬により、基板のZn+が溶解して、残りの元素がCuと結合し置換めっきが行われる。ZnS基板表面に、Cu薄膜が数原子程度の厚さで堆積される。そのことで、自己触媒性を持たないZnS表面にCuという触媒層が形成されることになり、後工程の無電解めっきによってめっき膜をZnS基板上に形成されることが可能となる。 In this regard, in this embodiment, the ZnS substrate is immersed in a copper sulfate solution. By this immersion, Zn + of the substrate is dissolved, and the remaining elements are combined with Cu, and displacement plating is performed. A Cu thin film is deposited on the ZnS substrate surface with a thickness of several atoms. As a result, a catalyst layer called Cu is formed on the ZnS surface that does not have autocatalytic properties, and a plated film can be formed on the ZnS substrate by electroless plating in a later step.

また、ZnS基板を浸漬する硫酸銅溶液には塩酸は加えられず、硫酸が加えられる。この溶液ではZnS基板が溶解しないので、ZnS基板表面に付着形成したCu薄膜は高い密着性を有する。そのため、このCu薄膜上に形成した無電解めっき膜も密着性が高い。   Further, hydrochloric acid is not added to the copper sulfate solution in which the ZnS substrate is immersed, but sulfuric acid is added. Since this solution does not dissolve the ZnS substrate, the Cu thin film deposited on the surface of the ZnS substrate has high adhesion. Therefore, the electroless plating film formed on this Cu thin film has high adhesion.

Znを含む化合物よりなる基板は、ZnS基板に限られず、ZnSe基板、ZnO基板及びZnTe基板を用いることができる。ZnSe基板、ZnO基板及びZnTe基板は、ZnS基板と似た特性を有する化合物である。   The substrate made of a compound containing Zn is not limited to a ZnS substrate, and a ZnSe substrate, a ZnO substrate, and a ZnTe substrate can be used. A ZnSe substrate, a ZnO substrate, and a ZnTe substrate are compounds having characteristics similar to those of a ZnS substrate.

また、無電解めっきは無電解Niめっきに限られず、無電解Cuめっきでもよく、特に限定はしない。   The electroless plating is not limited to electroless Ni plating, and may be electroless Cu plating, and is not particularly limited.

[密着性向上について]
Znを含む化合物よりなる基板実際を硫酸銅溶液に浸漬してこの基板上にCu薄膜を形成することにより得られる密着性向上について、実際にZnS基板を硫酸銅処理後、表面にNiめっきを4μm厚、形成させた後、Niめっき膜の厚み方向に対して引張試験を行ったところ、6.6MPa以上の引張強度が得られた。この数値は引張試験に使用した接着剤の引張強度によるものであり、実際のZnS界面とめっき膜との密着強度は、この数値よりも高いと考えられる。一方、従来法をZnS基板に適用してNiめっきを形成した場合、すなわち、触媒化工程にHClベースのキャタリストを用いた場合には、めっき膜がテープ試験で剥がれた。この場合のZnS界面とめっき膜との密着強度は、テープの規格から0.1MPa以下である。したがって、本実施形態のめっき基板の製造方法は、従来法に比べて160倍以上の強度向上が確認できた。
[Adhesion improvement]
Regarding the adhesion improvement obtained by immersing a substrate made of a compound containing Zn in a copper sulfate solution to form a Cu thin film on this substrate, after actually treating the ZnS substrate with copper sulfate, the surface was plated with 4 μm of Ni plating After the thickness was formed, a tensile test was performed in the thickness direction of the Ni plating film, and a tensile strength of 6.6 MPa or more was obtained. This value is based on the tensile strength of the adhesive used in the tensile test, and the adhesion strength between the actual ZnS interface and the plating film is considered to be higher than this value. On the other hand, when Ni plating was formed by applying the conventional method to a ZnS substrate, that is, when an HCl-based catalyst was used in the catalyzing process, the plating film was peeled off by the tape test. In this case, the adhesion strength between the ZnS interface and the plating film is 0.1 MPa or less from the tape standard. Therefore, it was confirmed that the plating substrate manufacturing method of this embodiment improved the strength by 160 times or more compared with the conventional method.

[コストについて]
従来法では、Niめっき膜形成工程前に行う触媒層の形成工程は、中和、キャタリスト、アクセレータの3工程からなり、それらの工程間のそれぞれに水洗工程が入るのに比べて、本実施形態の方法では、硫酸銅溶液に浸漬して水洗するだけで済み、大幅に工程数が減る。また、従来法におけるPd触媒はμmサイズでの厚みで形成する必要があり、キャタリストを含む液を繰り返し使用していると、液中でのPdの濃度が下がってくる。そのため、液の可能処理枚数はある程度制限される。一方、本実施形態の方法では、基板上に形成されるCu触媒の厚さは1nm以下であり、硫酸銅溶液液を繰り返し使用しても、Cu消費量が少ないために液成分の変化は極めて少ないと考えられる。また、従来法の触媒であるPdと本実施形態の方法の触媒であるCuの原価、液の構成を比較しても本実施形態のほうが単純な構成になっており、大幅な低コスト化が可能と考えられる。
[About cost]
In the conventional method, the formation process of the catalyst layer performed before the Ni plating film formation process consists of three steps of neutralization, catalyst, and accelerator, compared to the case where a water washing step is inserted between each of these steps. In the method of the form, it is only necessary to immerse in a copper sulfate solution and wash with water, and the number of steps is greatly reduced. In addition, the Pd catalyst in the conventional method needs to be formed with a thickness of μm, and when a liquid containing catalyst is repeatedly used, the concentration of Pd in the liquid decreases. Therefore, the number of liquids that can be processed is limited to some extent. On the other hand, in the method of the present embodiment, the thickness of the Cu catalyst formed on the substrate is 1 nm or less. It is thought that there are few. In addition, even if the cost and liquid composition of Pd, which is the catalyst of the conventional method, and Cu, which is the catalyst of the method of the present embodiment, are compared, the present embodiment has a simpler structure, which greatly reduces the cost. It seems possible.

硫酸銅溶液は、硫酸:0.1〜2.0モル/リットル、硫酸銅:0.1〜1.0モル/リットルの濃度で含有することが好ましい。触媒原料の金属塩として硫酸銅を、溶液として硫酸銅水溶液を用いることで、ZnS等の亜鉛を含む化合物よりなる基板の溶解を抑制しながら、基板表面に触媒層を形成することができる。ここに、硫酸銅は、0.1モル/リットル以上とすることにより、異常析出が起こらず、また、1.0モル/リットル以下とすることにより、常温での保管で硫酸銅の結晶が溶液中に析出しないため、0.1〜2.0モル/リットルの範囲とするのが好ましい。硫酸は、基材の過度な溶解を抑制する作用を有しており、その効果を十分に発揮させ他の弊害を生じない範囲として0.1〜2.0モル/リットルの範囲とするのが好ましい。   The copper sulfate solution is preferably contained at a concentration of sulfuric acid: 0.1 to 2.0 mol / liter and copper sulfate: 0.1 to 1.0 mol / liter. By using copper sulfate as the metal salt of the catalyst raw material and copper sulfate aqueous solution as the solution, the catalyst layer can be formed on the substrate surface while suppressing dissolution of the substrate made of a compound containing zinc such as ZnS. Here, when copper sulfate is 0.1 mol / liter or more, abnormal precipitation does not occur, and when it is 1.0 mol / liter or less, copper sulfate crystals do not precipitate in the solution when stored at room temperature. Therefore, the range of 0.1 to 2.0 mol / liter is preferable. Sulfuric acid has an action of suppressing excessive dissolution of the base material, and is preferably in the range of 0.1 to 2.0 mol / liter as a range in which the effect is sufficiently exhibited and other harmful effects are not caused.

Cu薄膜を形成した後は、無電解めっき膜を形成する前に、基板にCuよりもイオン化傾向の大きい金属を接触させ、接触させたまま無電解めっき膜の形成を開始することが好ましい。ZnSなどのZnを含む化合物よりなる基板の表面に付着したCu薄膜に、Cuよりもイオン化傾向の大きい金属(卑金属)を一時的に接触させ、被めっき材を卑金属にすることにより、微小電流を通じ、めっき反応を開始させることができる。したがって、上述したようなZnを含む化合物よりなる基板に無電解めっきで密着性の高い被膜を形成することができるという効果に加えて、また、平滑な基板についても無電解めっきを始動することができ、よって無電解めっきを容易に実施することができるという効果がある。   After forming the Cu thin film, before forming the electroless plating film, it is preferable that a metal having a higher ionization tendency than Cu is brought into contact with the substrate and the formation of the electroless plating film is started while keeping the contact. By passing a small amount of current through a temporary contact of a metal (base metal) that has a higher ionization tendency than Cu with a Cu thin film attached to the surface of a substrate made of a Zn-containing compound such as ZnS, and making the material to be plated a base metal. The plating reaction can be started. Therefore, in addition to the effect that a highly adhesive film can be formed by electroless plating on a substrate made of a compound containing Zn as described above, electroless plating can also be started for a smooth substrate. Therefore, there is an effect that electroless plating can be easily performed.

このようなCuよりもイオン化傾向の大きい金属(卑金属)は、例えばNiがある。Ni以外にも用いることができる材料としては、Fe、Co、Cr等がある。なお、Cuよりも卑な金属であっても、後工程のめっき液中で簡単に溶解する金属は使用できない。したがって、めっき液中で簡単に溶解する金属は、基板に接触させる金属からは除かれる。   An example of such a metal (base metal) having a higher ionization tendency than Cu is Ni. Materials other than Ni include Fe, Co, Cr and the like. In addition, even if it is a base metal rather than Cu, the metal which melt | dissolves easily in the plating solution of a post process cannot be used. Therefore, the metal that is easily dissolved in the plating solution is excluded from the metal that contacts the substrate.

基板にCuよりもイオン化傾向の大きい金属を接触させる具体的な方法は、Cuよりもイオン化傾向の大きい金属を備える治具で基板を保持することがある。無電解めっき工程時にめっき液中に浸漬させた基板を保持する治具そのものに、めっき反応を開始させる効果を付与することにより、卑金属を接触させるためのプロセスを省略することができ、よって、低コスト化が可能となる。   As a specific method of bringing a metal having a higher ionization tendency than Cu into contact with the substrate, the substrate may be held by a jig including a metal having a higher ionization tendency than Cu. By giving the effect of initiating the plating reaction to the jig itself that holds the substrate immersed in the plating solution during the electroless plating process, the process for contacting the base metal can be omitted. Cost can be reduced.

図3に、無電解めっき工程時に基板21を保持する治具31の一例を概略図で示す。図3(a)は平面図であり、図3(b)は斜視図、図3(c)は断面図である。図示した治具31は、概略コの字断面形状を有しており、Cu薄膜が形成された基板21の両面を挟持する。この治具31の少なくとも基板21と接する部分がCuよりもイオン化傾向の大きい金属よりなる。このような治具を用いることにより、別途に卑金属を接触させるための材料を用意したり、接触させるプロセスを行ったりしなくても、基板21の表面に形成されているCu薄膜に、Cuよりもイオン化傾向の大きい金属(卑金属)を一時的に接触させることができる。   FIG. 3 schematically shows an example of the jig 31 that holds the substrate 21 during the electroless plating process. 3A is a plan view, FIG. 3B is a perspective view, and FIG. 3C is a cross-sectional view. The illustrated jig 31 has a substantially U-shaped cross-sectional shape, and sandwiches both surfaces of the substrate 21 on which a Cu thin film is formed. At least a portion in contact with the substrate 21 of the jig 31 is made of a metal having a higher ionization tendency than Cu. By using such a jig, a Cu thin film formed on the surface of the substrate 21 can be made from Cu without preparing a material for contacting the base metal separately or performing a contact process. In addition, a metal (base metal) having a large ionization tendency can be temporarily brought into contact.

無電解めっき時においては、図4に斜視図で示すように、治具31にワイヤ32を固着し、このワイヤ32により、治具31及び基板21をめっき浴中に吊り下げるようにする。ワイヤは、例えば鉄線に絶縁テープで保護したものとすることができる。   At the time of electroless plating, as shown in a perspective view in FIG. 4, a wire 32 is fixed to the jig 31, and the jig 31 and the substrate 21 are suspended in the plating bath by the wire 32. The wire can be, for example, an iron wire protected with an insulating tape.

無電解めっきとしてNiめっきを形成する場合の無電解Niめっき浴は、コハク酸ナトリウムとDLりんご酸及びニッケルの塩化物又は硫化物、又はスルファミン酸化物をそれぞれ0.1から1.0モル/リットル、ホスフィン酸ナトリウムを0.1〜1.0モル/リットルの濃度で含有されているものとすることができる。これらの成分の濃度の上限値、下限値については、いずれも正常に無電解めっきを析出できる(めっき液の分解が起こらず、かつ、試薬の酸化還元反応により無電解めっきが起こる)範囲の濃度として定められた。これらの成分を含むめっき浴とすることにより、ZnS基板上に形成されたCuの触媒を活性化し、密着性に優れた無電解Niめっき膜を形成することが可能となる。したがって、上述したようなZnを含む化合物よりなる基板に無電解めっきで密着性の高い被膜を形成することができるという効果を一層高めることができる。   Electroless Ni plating bath for forming Ni plating as electroless plating is 0.1 to 1.0 mol / liter of sodium succinate and DL malic acid and nickel chloride or sulfide, or sulfamine oxide, sodium phosphinate, respectively. In a concentration of 0.1 to 1.0 mol / liter. Concerning the upper and lower limits of the concentration of these components, the concentration is within a range where both electroless plating can be normally deposited (the plating solution does not decompose and electroless plating occurs due to the oxidation-reduction reaction of the reagent). It was decided as. By using a plating bath containing these components, it is possible to activate the Cu catalyst formed on the ZnS substrate and form an electroless Ni plating film having excellent adhesion. Therefore, it is possible to further enhance the effect that a film having high adhesion can be formed by electroless plating on a substrate made of a compound containing Zn as described above.

無電解めっきとしてNiめっきを形成する場合の無電解Niめっき浴は、上述した成分に加えて、サッカリンナトリウムを0.001〜0.010モル/リットルを添加してなるめっき浴とすることもできる。上記したサッカリンナトリウムの濃度の上限値、下限値については、正常に無電解めっきを析出でき(めっき液の分解が起こらず、かつ、試薬の酸化還元反応により無電解めっきが起こる)範囲の濃度として定められた。無電解Niめっき浴にサッカリンを加えることで、めっき膜の内部応力が抑制される効果がある。したがって、上述したようなZnを含む化合物よりなる基板に無電解めっきで密着性の高い被膜を形成することができるという効果を一層向上させることができる。   In the case of forming Ni plating as electroless plating, the electroless Ni plating bath may be a plating bath obtained by adding 0.001 to 0.010 mol / liter of saccharin sodium in addition to the above-described components. The upper and lower limits of the saccharin sodium concentration described above are defined as concentrations within which electroless plating can be normally deposited (the plating solution does not decompose and electroless plating occurs due to the oxidation-reduction reaction of the reagent). It was. By adding saccharin to the electroless Ni plating bath, the internal stress of the plating film can be suppressed. Therefore, it is possible to further improve the effect that a film having high adhesion can be formed by electroless plating on a substrate made of a compound containing Zn as described above.

図5(a)〜(d)は、後で詳しく述べる実施例1による無電解Niめっき後の基板表面のX線光電子分光法(XPS)での分析の結果を示すチャートである。縦軸がそれぞれの結合エネルギーにおけるX線光電子の強度、横軸が原子の結合エネルギーを示す。これらの図から分かるように、分析の結果、亜鉛はZnSの化学状態で、銅はCu2Oの化学状態で、ニッケルは酸化ニッケル(III)Ni2O3及び硫化ニッケルNiSの化学状態で、存在している。 FIGS. 5A to 5D are charts showing the results of X-ray photoelectron spectroscopy (XPS) analysis of the substrate surface after electroless Ni plating according to Example 1 described in detail later. The vertical axis represents the intensity of X-ray photoelectrons at each binding energy, and the horizontal axis represents the atom binding energy. As can be seen from these figures, as a result of analysis, zinc is in the chemical state of ZnS, copper is in the chemical state of Cu 2 O, nickel is in the chemical state of nickel oxide (III) Ni 2 O 3 and nickel sulfide NiS, Existing.

基材表面に銅触媒が形成される反応は、以下の式に示すものと考えられる。   The reaction in which the copper catalyst is formed on the substrate surface is considered to be shown in the following formula.

硫酸銅溶液に浸漬することにより以下の反応が起こる。   The following reactions occur when immersed in a copper sulfate solution.

ZnS+Cu2+ →CuS+Zn2+
ZnS+2Cu2+ →Cu2S+Zn2+
次に、浸漬後の基材を水洗・乾燥する過程で以下の反応が起こる。
ZnS + Cu 2+ → CuS + Zn 2+
ZnS + 2Cu 2+ → Cu 2 S + Zn 2+
Next, the following reaction occurs in the process of washing and drying the substrate after immersion.

2CuS+7/2O2 →Cu2O+2SO3 (固)
2Cu2S+4O2 →2Cu2O+2SO3 (固)
2CuS+5/2O2 →Cu2O+2SO2 (気)
Cu2S+3/2 O2 →Cu2O+SO2 (気)
銅触媒が形成された基材の上に無電解Ni−Pめっき膜が形成される反応は、以下の式に示すものと考えられる。
2CuS + 7 / 2O 2 → Cu 2 O + 2SO 3 (solid)
2Cu 2 S + 4O 2 → 2Cu 2 O + 2SO 3 (solid)
2CuS + 5 / 2O 2 → Cu 2 O + 2SO 2 (ki)
Cu 2 S + 3/2 O 2 → Cu 2 O + SO 2 (ki)
The reaction in which the electroless Ni-P plating film is formed on the base material on which the copper catalyst is formed is considered to be represented by the following formula.

無電解Ni−Pめっき液に浸漬することにより以下の反応が起こる。   The following reactions occur when immersed in an electroless Ni-P plating solution.

まず、還元剤の作用により、
Cu2O+2H+ →2Cu+H2O (Cu2Oが還元されCuとなる。)
上記の反応により金属Cuが形成ざれることで、以下の反応が起こる。
First, due to the action of the reducing agent,
Cu 2 O + 2H + → 2Cu + H 2 O (Cu 2 O is reduced to Cu)
The following reaction occurs when metal Cu is not formed by the above reaction.

H2PO2 - +H2O→H2PO3 -+2H++2e-
Ni2+ +ZnS→NiS+Zn2+ (界面における結合)
Ni2+ +2e- →Ni (Ni膜の堆積)
次に、浸漬後の基材を水洗・乾燥する過程でめっき膜表面では以下の反応が起こる。
H 2 PO 2 - + H 2 O → H 2 PO 3 - + 2H + + 2e -
Ni 2+ + ZnS → NiS + Zn 2+ (bonding at the interface)
Ni 2+ + 2e - → Ni ( Ni film deposition)
Next, the following reaction occurs on the surface of the plating film in the process of washing and drying the substrate after immersion.

4Ni+3O2 →2Ni2O3 (表面の自然酸化)
一般に、CuやNiの大気中での酸化反応は、表面の数原子層から数十原子層程度で起こると考えられる。本分析で用いた測定試料のめっき膜の膜厚はいずれも数nmであった。それらの事実から、CuやNiの酸化物が観察されたと考えられる。
4Ni + 3O 2 → 2Ni 2 O 3 (Surface natural oxidation)
In general, the oxidation reaction of Cu and Ni in the atmosphere is considered to occur in the surface from several atomic layers to several tens of atomic layers. The thickness of the plating film of the measurement sample used in this analysis was several nm. From these facts, it is considered that oxides of Cu and Ni were observed.

上記の反応・測定結果から、基材上に無電解めっき膜が形成される過程は以下に示すものと考えられる。   From the above reaction / measurement results, the process of forming the electroless plating film on the base material is considered as follows.

基材を硫酸銅水溶液に浸漬することで、基材上にCuSまたはCu2Sが形成され、水洗・乾燥過程でそれらはCu2Oに変化する。 By immersing the base material in an aqueous copper sulfate solution, CuS or Cu 2 S is formed on the base material, and they change to Cu 2 O during the water washing and drying process.

次に、Cu2Oが形成された基材を無電解めっき浴に浸漬することで、Cu2Oがめっき液に含有される還元剤により還元され金属Cuに変化する。 Next, by immersing the base material on which Cu 2 O is formed in an electroless plating bath, Cu 2 O is reduced by the reducing agent contained in the plating solution to change to metal Cu.

次に、金属Cuを触媒として、めっき治具の接触により、微小電流が流れ、無電解めっきが始動し、無電解めっき膜が基材上に形成される。   Next, with a metal Cu as a catalyst, a minute current flows by contact of the plating jig, electroless plating is started, and an electroless plated film is formed on the substrate.

次に、それらを水洗・乾燥する過程で、無電解めっき膜表面には数nm程度の酸化膜が、形成される。   Next, in the process of washing and drying them, an oxide film of about several nm is formed on the electroless plating film surface.

無電解Ni−Pめっきの過程で、NiSが形成されたことは、基材と強い密着力を持つ化学的な結合を持つ層がめっき膜に形成されたことを示す。それにより、本発明により形成した無電解Ni−Pめっき膜と基材との間には強い密着力が得られたと考えられる。   The formation of NiS in the process of electroless Ni-P plating indicates that a layer having a chemical bond with strong adhesion to the substrate was formed on the plating film. Thereby, it is considered that strong adhesion was obtained between the electroless Ni-P plating film formed according to the present invention and the substrate.

(第2実施形態:電解めっき基板の製造方法)
Znを含む化合物よりなる無電解めっき膜を形成する工程の後、この無電解めっき膜上に電解Cuめっき膜を形成する工程を行うことができる。Znを含む化合物よりなる基板に無電解めっきを施したものを製品としてのめっき基板とすることができるが、この無電解めっき上に電解めっきを施したものを製品としてのめっき基板とすることもできる。
(Second Embodiment: Method for Manufacturing Electroplating Substrate)
After the step of forming an electroless plating film made of a compound containing Zn, a step of forming an electrolytic Cu plating film on the electroless plating film can be performed. A substrate made of a compound containing Zn and subjected to electroless plating can be used as a plated substrate as a product, but a product obtained by performing electrolytic plating on this electroless plating can also be used as a plated substrate as a product. it can.

無電解めっき膜上に電解Cuめっき膜を形成することで、めっき全体の膜厚を増やすことができる。また、めっき全体の膜厚を増やすことができることから、ZnS基板内で貫通孔を設けて、その貫通孔を無電解めっき電解Cuめっきで充填させることにより、気密性を確保した貫通電極を形成することが可能となる。   By forming an electrolytic Cu plating film on the electroless plating film, the film thickness of the entire plating can be increased. In addition, since the thickness of the entire plating can be increased, a through-hole that ensures airtightness is formed by providing a through-hole in the ZnS substrate and filling the through-hole with electroless plating electrolytic Cu plating. It becomes possible.

電解Cuめっき液は、硫酸0.1から2.0モル/リットル、硫酸銅0.1〜1.0モル/リットル、塩化物イオン0.001〜0.1モル/リットルの濃度で含有されているものとすることができる。硫酸銅は、0.1モル/リットル以上とすることにより、異常析出が起こらず、また、1.0モル/リットル以下とすることにより、常温での保管で硫酸銅の結晶が溶液中に析出しないため、0.1〜2.0モル/リットルの範囲とするのが好ましい。硫酸は、過度な溶解を抑制する作用を有しているため、十分な効果を発揮させ他の弊害を生じない範囲として0.1〜2.0モル/リットルの範囲とするのが好ましい。塩化物イオンの濃度の上限は塩化物イオンによる結晶粒の粗大化が起こらない限界濃度、下限は塩化物イオンによるめっき析出の促進効果が得られる最低の濃度として0.001〜0.1モル/リットルの範囲とするのが好ましい。   The electrolytic Cu plating solution may be contained at a concentration of 0.1 to 2.0 mol / liter of sulfuric acid, 0.1 to 1.0 mol / liter of copper sulfate, and 0.001 to 0.1 mol / liter of chloride ions. By making the copper sulfate 0.1 mol / liter or more, abnormal precipitation does not occur, and by making it 1.0 mol / liter or less, copper sulfate crystals do not precipitate in the solution when stored at room temperature, It is preferable to be in the range of -2.0 mol / liter. Since sulfuric acid has an action of suppressing excessive dissolution, it is preferably in a range of 0.1 to 2.0 mol / liter as a range that exhibits a sufficient effect and does not cause other harmful effects. The upper limit of the chloride ion concentration is the limit concentration at which crystal grains are not coarsened by the chloride ion, and the lower limit is the range of 0.001 to 0.1 mol / liter as the minimum concentration at which the plating precipitation promotion effect by the chloride ion can be obtained. It is preferable to do this.

電解Cuめっき液を上記の各成分濃度に調整することにより、被めっき材に対し、空隙や空孔の欠陥を抑制して、めっき膜を形成することが可能となる。このめっき液には、表面形態や膜厚の制御のためにポリエチレングリコールやジスルフィド結合を持つ種々の有機化合物を添加することもできる。   By adjusting the electrolytic Cu plating solution to the concentration of each component described above, it is possible to form a plating film while suppressing defects in voids and holes in the material to be plated. Polyethylene glycol and various organic compounds having a disulfide bond can be added to the plating solution to control the surface form and film thickness.

電解Cuめっきを形成する工程においては、電解Cuめっき液中に浸漬した基板を、めっき液の流動により揺動させることが好ましい。被めっき物を揺動させることで、被めっき材周りのめっき液に不規則的な流れを発生させ、それにより金属イオンの拡散が促進する効果がある。その効果により、めっき膜に生じる膜厚不均一性や空隙や欠陥の発生を抑制する効果がある。また、めっき液の流れを利用するため、一般的に揺動に用いられるような動力装置を必要としないため、コストを低下させることができる。   In the step of forming the electrolytic Cu plating, it is preferable to swing the substrate immersed in the electrolytic Cu plating solution by the flow of the plating solution. By swinging the object to be plated, an irregular flow is generated in the plating solution around the material to be plated, thereby promoting the diffusion of metal ions. Due to this effect, there is an effect of suppressing the film thickness non-uniformity generated in the plating film and the generation of voids and defects. Further, since the flow of the plating solution is used, a power device that is generally used for rocking is not required, so that the cost can be reduced.

なお、このようにめっき液中に浸漬した基板を、めっき液の流動により揺動させることは、電解Cuめっき工程の時ばかりでなく、その前工程の無電解めっき工程の時に行うこともできる。無電解めっき工程の時に行う場合であっても被めっき物を揺動させることで、被めっき材周りのめっき液に不規則的な流れを発生させ、それにより金属イオンの拡散が促進する効果がある。その効果により、めっき膜に生じる膜厚不均一性や空隙や欠陥の発生を抑制する効果がある。また、めっき液の流れを利用するため、一般的に揺動に用いられるような動力装置を必要としないため、コストを低下させることができる。   Note that the substrate immersed in the plating solution as described above can be swung not only during the electrolytic Cu plating step but also during the electroless plating step prior to the electrolytic Cu plating step. Even if it is performed during the electroless plating process, swinging the object to be plated generates an irregular flow in the plating solution around the material to be plated, thereby promoting the diffusion of metal ions. is there. Due to this effect, there is an effect of suppressing the film thickness non-uniformity generated in the plating film and the generation of voids and defects. Further, since the flow of the plating solution is used, a power device that is generally used for rocking is not required, so that the cost can be reduced.

(第3実施形態:めっき用治具)
めっき液中に浸漬した基板を、めっき液の流動により揺動させるのに適した治具の一例を図6〜8に示す。なお、図6〜8では同一部材については同一符号を付している。図6(a)は治具50の上面図、図6(b)は治具50の正面図、図6(c)は治具50の斜視図である。治具50は、無電解めっきが形成された基板41を保持する治具であって、絶縁性素材からなり基板41に当接する基板担持部51と、めっき液の流動による可撓性を有する筒状部52と、この筒状部52内に挿通され基板担持部51を通じて基板41と電気的に接続するとともに電源(図示せず)と接続する導体53とを備えている。基板担持部51及び導体53は、図8に断面を示すように、基板41の一部を挟み込む形状を有していて、基板41の両面がめっき液と接触可能になっている。このような治具50を用いることによって、基板41の揺動を発現させる効果がある。
(Third embodiment: jig for plating)
An example of a jig suitable for swinging the substrate immersed in the plating solution by the flow of the plating solution is shown in FIGS. 6-8, the same code | symbol is attached | subjected about the same member. 6A is a top view of the jig 50, FIG. 6B is a front view of the jig 50, and FIG. 6C is a perspective view of the jig 50. The jig 50 is a jig for holding the substrate 41 on which the electroless plating is formed. The jig 50 is made of an insulating material and is in contact with the substrate 41. The cylinder 50 has flexibility due to the flow of the plating solution. And a conductor 53 that is inserted into the cylindrical portion 52 and is electrically connected to the substrate 41 through the substrate holding portion 51 and connected to a power source (not shown). As shown in a cross section in FIG. 8, the substrate carrier 51 and the conductor 53 have a shape that sandwiches a part of the substrate 41, and both surfaces of the substrate 41 can come into contact with the plating solution. By using such a jig 50, there is an effect of causing the substrate 41 to swing.

電気Cuめっきは、マグネチックスターラやプロペラミキサーなどの攪拌器によってめっき液が攪拌されているか、又は送液ポンプを使っためっき液の流動化が行われているか、又は、空気ポンプを用いた気泡によるめっき液の攪拌を伴って行われる。   In electro Cu plating, the plating solution is agitated by a stirrer such as a magnetic stirrer or propeller mixer, or the plating solution is fluidized using a feed pump, or bubbles using an air pump This is performed with stirring of the plating solution.

攪拌されている液中に、図6に示した治具50に取り付けた基板41を浸漬すると、筒状部52が可撓性を有する材料からなり、また、筒状部52内に挿通されている部分の導体53も可撓性を有することから、図7に示すように攪拌により生じためっき液の流れにより筒状部52が撓み、基板41及び基板担持部51が揺動する。このように基板41が揺動されている状態で、電流を加え、電気めっきを行う。このことにより、めっき液の攪拌に加えて、基板41が揺動することにより、基板41表面及び内部にめっき液の流れが形成され、金属イオンの拡散が促進されると考えられる。この効果は、無電解めっきに治具50を適用した場合にも同様の効果が得られると考えられる。   When the substrate 41 attached to the jig 50 shown in FIG. 6 is immersed in the stirred liquid, the cylindrical portion 52 is made of a flexible material, and is inserted into the cylindrical portion 52. Since the portion of the conductor 53 is also flexible, as shown in FIG. 7, the cylindrical portion 52 is bent by the flow of the plating solution generated by stirring, and the substrate 41 and the substrate carrying portion 51 are swung. In such a state where the substrate 41 is swung, electric current is applied and electroplating is performed. Thus, in addition to the stirring of the plating solution, the substrate 41 is swung, so that a flow of the plating solution is formed on the surface and inside of the substrate 41 and the diffusion of metal ions is promoted. It is considered that this effect can be obtained when the jig 50 is applied to electroless plating.

このように、めっき液中に浸漬した基板を保持する治具の可撓性によって、基板を揺動させることができるように、めっき治具の形状によりめっき膜の膜厚、形状、膜厚均一性を制御することができる。治具の形状を変化させることで、めっき液の流れの状態やイオンの拡散、微小電流の流れ方を制御し、被めっき物の局部的なめっき速度を変化させることで、めっき膜の膜厚、形状、膜厚均一性を制御する効果がある。   Thus, the plating film thickness, shape, and film thickness are uniform depending on the shape of the plating jig so that the substrate can be swung by the flexibility of the jig holding the substrate immersed in the plating solution. Gender can be controlled. By changing the shape of the jig, the plating solution flow state, ion diffusion, and the flow of minute current are controlled, and the local plating speed of the object to be plated is changed, so that the plating film thickness There is an effect of controlling the shape and film thickness uniformity.

比較のために図9に、めっき液中で揺動しない治具の一例を正面図(図9(a))、側面図(図9(b))及び上面図(図9(c))で示す。図9に示した治具は、剛性を有する絶縁性素材からなる基板担持部61と、基板担持部61の内部に設けられるとともに、基板担持部の一端で露出して図示しない電源と接続する導体62とを有している。この図9に示した治具では、材料の断面を示している。基板担持部61が剛性を有しているため電解めっき中に攪拌により生じためっき液の流れによっても撓まない。   For comparison, FIG. 9 is a front view (FIG. 9A), a side view (FIG. 9B), and a top view (FIG. 9C) of an example of a jig that does not swing in the plating solution. Show. The jig shown in FIG. 9 is provided with a substrate carrying portion 61 made of a rigid insulating material, and a conductor that is provided inside the substrate carrying portion 61 and is exposed at one end of the substrate carrying portion and connected to a power source (not shown). 62. The jig shown in FIG. 9 shows a cross section of the material. Since the substrate holding part 61 has rigidity, it is not bent even by the flow of the plating solution generated by stirring during the electrolytic plating.

(第4実施形態:半導体装置の製造方法)
次に、本発明のめっき基板製造方法を適用した半導体装置の製造方法について説明する。
Fourth Embodiment: Semiconductor Device Manufacturing Method
Next, a manufacturing method of a semiconductor device to which the plating substrate manufacturing method of the present invention is applied will be described.

光学素子としての半導体装置を形成した第1の基板にZnSからなる第2の基板を接合することで半導体装置を封止した光学部品に関して、低コストで製造するために、光学部品の製造過程においてウエハレベルパッケージングの適用を考えると、ZnSからなる第2の基板に貫通電極を形成し、この貫通電極を通して光学素子と接続することが望ましい。そのため、第2の基板に形成した貫通孔内に貫通電極用として導電性金属を充填することが求められる。また、半導体装置を形成した第1の基板とZnSからなる第2の基板とを表面活性化接合やはんだ接合の方法で接合するには、第2の基板の接合部に金属膜を形成しておくことが求められる。しかし、ZnSは良導体ではないため、第2の基板の貫通孔への金属の充填や接合部の金属膜の形成を、直接に電気めっきにより行うことはできない。   In an optical component manufacturing process, an optical component in which a semiconductor device is sealed by bonding a second substrate made of ZnS to a first substrate on which a semiconductor device as an optical element is formed is manufactured at low cost. Considering the application of wafer level packaging, it is desirable to form a through electrode on the second substrate made of ZnS and connect to the optical element through the through electrode. Therefore, it is required to fill the through hole formed in the second substrate with a conductive metal for the through electrode. In addition, in order to join the first substrate on which the semiconductor device is formed and the second substrate made of ZnS by a surface activated joining method or a solder joining method, a metal film is formed on the joining portion of the second substrate. It is required to keep. However, since ZnS is not a good conductor, the filling of the metal into the through hole of the second substrate and the formation of the metal film at the joint cannot be performed directly by electroplating.

そこで、貫通電極の形成や第2の基板の接合部に金属膜を形成に、本発明のめっき基板製造方法を適用して半導体装置を製造する。より具体的には、素子領域を有する第1基板に、Znを含む化合物よりなる第2基板を接合してなる半導体装置を製造するときに、第2基板に貫通孔を形成した後、この第2基板を硫酸銅溶液に浸漬して貫通孔を含む基板の表面上にCu薄膜を形成し、その後にCu薄膜が形成された基板表面上に無電解めっき膜を形成した後、電解Cuめっきを行って第2基板の貫通孔にCuを充填する。   Therefore, a semiconductor device is manufactured by applying the plating substrate manufacturing method of the present invention to the formation of the through electrode and the formation of the metal film at the joint portion of the second substrate. More specifically, when manufacturing a semiconductor device in which a second substrate made of a compound containing Zn is bonded to a first substrate having an element region, after forming a through hole in the second substrate, Two substrates are immersed in a copper sulfate solution to form a Cu thin film on the surface of the substrate including the through holes, and then an electroless plating film is formed on the surface of the substrate on which the Cu thin film is formed. Then, the through hole of the second substrate is filled with Cu.

この製造方法を図10〜12を用いて説明する。   This manufacturing method will be described with reference to FIGS.

図10は本発明の半導体装置の製造方法を適用して得られた半導体装置の一例としての光学部品の模式的な断面図(図10(a))及び上面図(図10(b))である。図示した光学部品は、窓基板110と素子基板100とで構成され、それぞれメタル層180を介して図10(b)の上面図のように素子基板100外枠を周回させるように接合されており、窓基板110と素子基板100との間には空間領域150を有している。   FIG. 10 is a schematic cross-sectional view (FIG. 10A) and top view (FIG. 10B) of an optical component as an example of a semiconductor device obtained by applying the semiconductor device manufacturing method of the present invention. is there. The illustrated optical component is composed of a window substrate 110 and an element substrate 100, and is joined to circulate the outer frame of the element substrate 100 through a metal layer 180 as shown in the top view of FIG. A space region 150 is provided between the window substrate 110 and the element substrate 100.

また、窓基板110には素子からの信号を取り出すために、貫通電極120が複数個、図10(b)の上面図に示されるように平面的に配列されている。また、貫通電極120の周囲は少なくとも他の接合用のメタル層180とは窓基板110により絶縁されている。窓基板110の表面には、貫通電極120と接続する表面電極140が形成されている。また、貫通電極120と素子基板100の電極とは、電極130を介して接続されている。なお、窓基板110と素子基板100とを接合するために、両者の対向する表面にそれぞれ形成されるメタル層180は、窓基板110に形成されたものと素子基板100に形成されものとが、Au、Cu、Al等の金属であって、かつ、同じ材料であることが望ましい。また、窓基板110の貫通電極120と素子基板100の電極とを接続する電極130もまた、窓基板110に形成されたものと素子基板100に形成されものとが、Au、Cu、Al等の金属であって、かつ、同じ材料であることが望ましい。   Further, a plurality of through electrodes 120 are arranged in a plane on the window substrate 110 as shown in the top view of FIG. 10B in order to extract signals from the elements. The periphery of the through electrode 120 is insulated from at least another bonding metal layer 180 by the window substrate 110. A surface electrode 140 connected to the through electrode 120 is formed on the surface of the window substrate 110. Further, the through electrode 120 and the electrode of the element substrate 100 are connected via the electrode 130. In addition, in order to join the window substrate 110 and the element substrate 100, the metal layer 180 respectively formed on the opposing surfaces of the two are the one formed on the window substrate 110 and the one formed on the element substrate 100. It is desirable that they are metals such as Au, Cu, Al, and the same material. In addition, the electrode 130 that connects the through electrode 120 of the window substrate 110 and the electrode of the element substrate 100 is also formed of the window substrate 110 and the element substrate 100 such as Au, Cu, and Al. It is desirable that they are metal and are the same material.

図10に示した光学部品の製造プロセスの一例を、図11に示す時系列的な模式的断面図を用いて説明する。   An example of a manufacturing process of the optical component shown in FIG. 10 will be described using a time-series schematic cross-sectional view shown in FIG.

まず、窓基板210を用意する。この窓基板210は裏面側の中央部において、後で接合する素子基板の素子エリアに対応する位置に、空間領域となる凹部を有しており、その凹部を予めマスク材してのレジスト215や保護樹脂等で埋めておく(図11(a))。なお、図示した本実施例では光学部品として光学センサを製造するために窓基板210は裏面側の中央部に凹部を設けた例を示しているが、光学センサの種類によって、また、他の半導体装置の構成によって、この凹部は無くても構わない。   First, the window substrate 210 is prepared. This window substrate 210 has a concave portion to be a space region at a position corresponding to an element area of an element substrate to be bonded later, in the central portion on the back surface side. It is filled with a protective resin or the like (FIG. 11A). In the illustrated embodiment, an example in which the window substrate 210 is provided with a recess in the central portion on the back side in order to manufacture an optical sensor as an optical component is shown. However, depending on the type of the optical sensor and other semiconductors Depending on the configuration of the apparatus, this recess may be omitted.

次に、窓基板210に、貫通孔225を設ける(図11(b))。この貫通孔225を形成するための孔あけ方法はドリル、ブラスト、レーザ、エッチング等の加工方法を用いればよい。   Next, the through-hole 225 is provided in the window substrate 210 (FIG. 11B). As a drilling method for forming the through hole 225, a processing method such as drilling, blasting, laser, or etching may be used.

次に、窓基板210を、本発明のめっき基板の方法に従い、硫酸銅溶液に浸漬することで、実施例1で示した、置換めっきが行われ、窓基板210の表面全体及び貫通孔の内面にCu薄膜226が付着する(図11(c))。この時、レジスト215にはCu薄膜226が付着しない。   Next, according to the plating substrate method of the present invention, the window substrate 210 is immersed in a copper sulfate solution to perform the displacement plating shown in Example 1, and the entire surface of the window substrate 210 and the inner surface of the through hole are formed. Cu thin film 226 adheres to (FIG. 11 (c)). At this time, the Cu thin film 226 does not adhere to the resist 215.

次に、第1実施形態で述べたようなNi無電解めっきを行うことで、Cu薄膜226が付着したエリア全てに無電解Ni膜227が生成される(図11(d))。この時もレジスト215には無電解Ni膜227は生成されない。   Next, by performing Ni electroless plating as described in the first embodiment, an electroless Ni film 227 is generated in all areas to which the Cu thin film 226 is attached (FIG. 11D). At this time, the electroless Ni film 227 is not formed on the resist 215.

無電解Ni膜227が生成されたことにより、めっき後の窓基板210は導電体となり、電解めっきが可能となる。そこで、次に、めっき後の窓基板210に対して、第2実施形態で示したような、Cuの電解めっきを行うことで、窓基板210の表面に電解Cu膜228が形成されるともに、貫通孔225の内部がCuで充填される(図11(e))。   By generating the electroless Ni film 227, the window substrate 210 after plating becomes a conductor, and electrolytic plating becomes possible. Then, next, the electrolytic Cu film 228 is formed on the surface of the window substrate 210 by performing electrolytic plating of Cu as shown in the second embodiment on the window substrate 210 after plating. The inside of the through hole 225 is filled with Cu (FIG. 11E).

貫通孔225の内部へのCuの充填後、窓基板210の上面下面をラッピング及びポリッシングすることで、上面下面に形成されている余分なCuめっき膜を除去して、ZnSよりなる窓基板210の表面を露出させる(図11(f))。   After filling the inside of the through-hole 225 with Cu, the upper and lower surfaces of the window substrate 210 are lapped and polished to remove excess Cu plating film formed on the upper and lower surfaces of the window substrate 210 made of ZnS. The surface is exposed (FIG. 11 (f)).

さらに、窓基板210の下面側(素子基板260との接合側)に電極用パッド230及び封止用メタル層280を成膜する。また、窓基板210の上面側も同様に、電極パッド231をパターニングする(図11(g))。この時、電極用パッド230、封止用メタル層280及び電極パッド231の成膜方法はスパッタ、蒸着、めっき等を用い、マスクにより選択的に形成すればよい。   Further, an electrode pad 230 and a sealing metal layer 280 are formed on the lower surface side of the window substrate 210 (the bonding side with the element substrate 260). Similarly, the electrode pad 231 is patterned on the upper surface side of the window substrate 210 (FIG. 11G). At this time, the electrode pad 230, the sealing metal layer 280, and the electrode pad 231 may be formed selectively using a mask using sputtering, vapor deposition, plating, or the like.

次に、窓基板210の光透過部に該当する凹部250のレジストを除去する(図11(h))。   Next, the resist in the concave portion 250 corresponding to the light transmission portion of the window substrate 210 is removed (FIG. 11H).

最後に、窓基板210と素子基板260と接合する((図11(i))。これにより、素子基板260のパッケージングが可能となる。この時、窓基板210と素子基板260との接合方法は、表面活性化接合、半田接合、抵抗加熱、拡散接合等の接合方法を用いればよい。   Finally, the window substrate 210 and the element substrate 260 are bonded ((FIG. 11 (i)), thereby enabling packaging of the element substrate 260. At this time, a method of bonding the window substrate 210 and the element substrate 260 In this case, a bonding method such as surface activation bonding, solder bonding, resistance heating, or diffusion bonding may be used.

本実施形態の半導体装置の製造方法によれば、ZnS基板を窓材とした光学センサの貫通電極として、本発明のめっき方法を適用することができる。このため、高耐久性、また高気密性が得られ、センサの信頼性を向上させることができる。   According to the method for manufacturing a semiconductor device of the present embodiment, the plating method of the present invention can be applied as a through electrode of an optical sensor using a ZnS substrate as a window material. For this reason, high durability and high airtightness can be obtained, and the reliability of the sensor can be improved.

そして本実施形態の半導体装置の製造方法により製造された半導体装置は、不導体のZnS基板に無電解めっきでNiの層を設けることにより、このNiの層を配線として利用できる。また、Niの層を電解めっき用の導通層として利用でき、後工程の電解Cuめっきにより光学部材となるZnS基板に対して貫通電極を形成できる。また、基板のZnSとNiとはNiSという化合物ができ、ZnS基板と強い結合力を持つので、密着性の高いめっき膜となる。   The semiconductor device manufactured by the semiconductor device manufacturing method of this embodiment can use this Ni layer as wiring by providing a non-conductive ZnS substrate with an Ni layer by electroless plating. Further, the Ni layer can be used as a conductive layer for electrolytic plating, and a through electrode can be formed on a ZnS substrate serving as an optical member by subsequent electrolytic Cu plating. Further, ZnS and Ni of the substrate form a compound called NiS and has a strong bonding force with the ZnS substrate, so that a plating film with high adhesion is obtained.

さらに、ZnS基板を光学用デバイスの窓基板に適用することを考えると、硫酸銅溶液への浸漬により形成されるCu薄膜は、非常に薄いことから、成膜後の工程で除去しきれなくても基板自体の透過率にほとんど影響しないと推定できる。   Furthermore, considering the application of ZnS substrates to optical device window substrates, the Cu thin film formed by immersion in a copper sulfate solution is very thin and cannot be completely removed in the post-deposition process. Can be estimated to have little effect on the transmittance of the substrate itself.

図12に、光学部品の製造プロセスの別の例を、時系列的な模式的断面図を用いて説明する。なお、図12において、図11と同一部材については同一符号を付しており、以下の説明では重複する説明を省略する。   FIG. 12 illustrates another example of the optical component manufacturing process using time-series schematic cross-sectional views. In FIG. 12, the same members as those in FIG. 11 are denoted by the same reference numerals, and redundant description is omitted in the following description.

図12に示した製造プロセスの、図11に示した製造プロセスとの相違点は、封止用メタルを電解Cuめっき膜228で生成する点である。   The difference between the manufacturing process shown in FIG. 12 and the manufacturing process shown in FIG. 11 is that a sealing metal is generated by the electrolytic Cu plating film 228.

図12(b)に示すように、窓基板210の裏面の端部近傍に、予め、切り欠き部240を設けておく。その後は、図11を用いて先に説明したのと同じ製造プロセスを経ることで、切り欠き部240にも無電解Ni膜227と電解Cuめっき膜228が形成される(図12(e))。   As shown in FIG. 12B, a notch 240 is provided in advance near the end of the back surface of the window substrate 210. Thereafter, through the same manufacturing process as described above with reference to FIG. 11, the electroless Ni film 227 and the electrolytic Cu plating film 228 are also formed in the notch 240 (FIG. 12E). .

これを、図11で示したのと同様にラッピング、ポリッシングすることで、ZnSよりなる窓基板210の表面を露出させても、封止エリアには電解Cuめっき膜228が残存する。これにより、図11で示した製造プロセスのように、別途、封止用メタル層280をスパッタ等の成膜方法で作成するプロセスを設けなくても、窓基板210の切り欠き部240に形成された電解Cuめっき膜228が直接、封止用メタル層となるために、素子基板260側と接合できる。これにより、プロセス数が削減できるので、低コスト化に繋がる。 This is lapped and polished in the same manner as shown in FIG. 11, so that the electrolytic Cu plating film 228 remains in the sealing area even if the surface of the window substrate 210 made of ZnS is exposed. Thus, unlike the manufacturing process shown in FIG. 11, the sealing metal layer 280 is formed in the notch 240 of the window substrate 210 without providing a process for forming the sealing metal layer 280 by a film forming method such as sputtering. Since the electrolytic Cu plating film 228 directly becomes a sealing metal layer, it can be joined to the element substrate 260 side. As a result, the number of processes can be reduced, leading to cost reduction.

このように、図12に示す製造プロセスでは、貫通電極ばかりでなく、素子基板との接合部にも本発明のめっき方法を適用することで、封止用メタル層を金属等のスパッタ工程で形成することが不用となり、低コスト化に繋がる。更に、封止用メタル層としての電解Cuめっき膜は、高密着性を有していることから、接合部の信頼性向上にも繋がる。   Thus, in the manufacturing process shown in FIG. 12, the metal layer for sealing is formed by a sputtering process of metal or the like by applying the plating method of the present invention not only to the through electrode but also to the joint portion with the element substrate. Doing so is unnecessary, leading to cost reduction. Furthermore, since the electrolytic Cu plating film as the metal layer for sealing has high adhesion, it leads to improvement in the reliability of the joint.

次に、本発明を実施例によって具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

(実施例1)
実施例1では、ZnS基板を硫酸銅溶液に浸漬してこの基板上にCu薄膜を形成し、その後にCu薄膜が形成された基板上に無電解めっき膜を形成した。
Example 1
In Example 1, a ZnS substrate was immersed in a copper sulfate solution to form a Cu thin film on the substrate, and then an electroless plating film was formed on the substrate on which the Cu thin film was formed.

硫酸銅(CuSO4・5H2O)及び硫酸(H2SO4)を主成分として、次に示す組成になる硫酸銅水溶液を調製した。なお、硫酸は、基板の過度な溶解を抑制する作用を示すものである。 A copper sulfate aqueous solution having the following composition was prepared using copper sulfate (CuSO 4 .5H 2 O) and sulfuric acid (H 2 SO 4 ) as main components. In addition, sulfuric acid shows the effect | action which suppresses the excessive melt | dissolution of a board | substrate.

■硫酸銅水溶液の組成:
CuSO4・5H2O: 0.6モル/リットル
H2SO4: 1.8モル/リットル
そして上記の水溶液に基板を浸漬し、水溶液温度25℃で80分間浸漬処理を行い、基板11上に銅触媒であるCu薄膜12を形成した(図1(b)参照)。
■ Composition of aqueous copper sulfate solution:
CuSO 4 · 5H 2 O: 0.6 mol / liter
H 2 SO 4 : 1.8 mol / liter Then, the substrate was immersed in the above aqueous solution, and an immersion treatment was performed at an aqueous solution temperature of 25 ° C. for 80 minutes to form a Cu thin film 12 as a copper catalyst on the substrate 11 (FIG. 1B). )reference).

なお、この時、銅触媒は非常に薄い薄膜状で、その膜厚は原子数個分しか付着しておらず、外観上は銅触媒をつける前とほとんど変わらない。   At this time, the copper catalyst is in the form of a very thin thin film, and the film thickness is only a few atoms attached, and the appearance is almost the same as before the copper catalyst was applied.

次に、硫酸ニッケル(NiSO4・6H2O)及び次亜りん酸ナトリウム(H2NaO2P・H2O)、コハク酸ナトリウム(NaOOCCH2CH2COONa・6H2O)、DL-りんご酸(HOOCCHOHCH2COOH)、サッカリン(C7H4NNaO3S・2H2O)を含む無電解Ni−Pめっき浴に、水酸化ナトリウムによりpHを4.8に調整して、次の組成のめっき浴を調製した。 Next, nickel sulfate (NiSO 4 · 6H 2 O) and sodium hypophosphite (H 2 NaO 2 P · H 2 O), sodium succinate (NaOOCCH 2 CH 2 COONa · 6H 2 O), DL- malic acid Adjust the pH to 4.8 with sodium hydroxide to an electroless Ni-P plating bath containing (HOOCCHOHCH 2 COOH) and saccharin (C 7 H 4 NNaO 3 S · 2H 2 O) Prepared.

■無電解Ni-Pめっき浴の組成:
NiSO4・6H2O: 0.1モル/リットル
H2NaO2P・H2O: 0.3モル/リットル
NaOOCCH2CH2COONa・6H2O: 0.1モル/リットル
HOOCCHOHCH2COOH: 0.1モル/リットル
C7H4NNaO3S・2H2O: 0.006モル/リットル
pH: 4.8
図3に示すように、銅触媒を形成した基板21は、厚さ10μm以上のニッケル皮膜が表面に形成された治具31により保持される。図3に示した治具31は基板21の一部を両面から挟み込む形状を有しており、基板21に直接接触させ、基板21の担持と共にCuよりもイオン化傾向の大きい異種金属であるニッケルを銅触媒に接触させた。
■ Composition of electroless Ni-P plating bath:
NiSO 4 · 6H 2 O: 0.1 mol / liter
H 2 NaO 2 P · H 2 O: 0.3 mol / liter
NaOOCCH 2 CH 2 COONa ・ 6H 2 O: 0.1 mol / liter
HOOCCHOHCH 2 COOH: 0.1 mol / liter
C 7 H 4 NNaO 3 S · 2H 2 O: 0.006 mol / liter
pH: 4.8
As shown in FIG. 3, the substrate 21 on which the copper catalyst is formed is held by a jig 31 having a nickel film having a thickness of 10 μm or more formed on the surface. The jig 31 shown in FIG. 3 has a shape in which a part of the substrate 21 is sandwiched from both sides. The jig 31 is brought into direct contact with the substrate 21 and nickel, which is a dissimilar metal having a higher ionization tendency than Cu together with the support of the substrate 21. Contacted with a copper catalyst.

図4に示すように治具31に絶縁テープで保護した鉄線よりなるワイヤ32を取り付け、めっき浴槽内で基板21を吊り下げ保持できるようにした。   As shown in FIG. 4, a wire 32 made of an iron wire protected with an insulating tape is attached to a jig 31 so that the substrate 21 can be suspended and held in the plating bath.

そして上記のめっき浴に銅触媒を形成した基板21を治具31と共に浸漬し、浴温70℃で無電解めっきを210分間行い、平均膜厚が15μmの無電解Ni-Pめっき膜13を形成した(図1(c)参照)。   Then, the substrate 21 on which the copper catalyst is formed is immersed in the above plating bath together with the jig 31, and electroless plating is performed for 210 minutes at a bath temperature of 70 ° C. to form an electroless Ni—P plating film 13 having an average film thickness of 15 μm. (See FIG. 1 (c)).

図5(a)〜(d)は、実施例1による無電解Niめっき後の基板表面のX線光電子分光法(XPS)での分析の結果を示すチャートである。縦軸がそれぞれの結合エネルギーにおけるX線光電子の強度、横軸が原子の結合エネルギーを示す。これらの図から分かるように、分析の結果、亜鉛はZnSの化学状態で、銅はCu2Oの化学状態で、ニッケルは酸化ニッケル(III)Ni2O3及び硫化ニッケルNiSの化学状態で、存在している。 5A to 5D are charts showing the results of analysis by X-ray photoelectron spectroscopy (XPS) of the substrate surface after electroless Ni plating according to Example 1. FIG. The vertical axis represents the intensity of X-ray photoelectrons at each binding energy, and the horizontal axis represents the atom binding energy. As can be seen from these figures, as a result of analysis, zinc is in the chemical state of ZnS, copper is in the chemical state of Cu 2 O, nickel is in the chemical state of nickel oxide (III) Ni 2 O 3 and nickel sulfide NiS, Existing.

無電解Ni−Pめっきの過程で、NiSが形成されたことは、基材と強い密着力を持つ化学的な結合を持つ層がめっき膜に形成されたことを示す。それにより、本発明により形成した無電解Ni−Pめっき膜と基材との間には強い密着力が得られたと考えられる。   The formation of NiS in the process of electroless Ni-P plating indicates that a layer having a chemical bond with strong adhesion to the substrate was formed on the plating film. Thereby, it is considered that strong adhesion was obtained between the electroless Ni-P plating film formed according to the present invention and the substrate.

(実施例2)
実施例2では、上記実施例1により無電解Ni-Pめっき膜13を形成したZnS基板に電気銅めっきを実施した。
(Example 2)
In Example 2, electrolytic copper plating was performed on the ZnS substrate on which the electroless Ni—P plating film 13 was formed according to Example 1 described above.

硫酸鋼(CuSO4・5H2O)および硫酸(H2SO4)を主成分とする電気銅めっき浴に、塩酸(HCl)を添加して、次の組成のめっき浴を調製した。なお、ビスジスルフィド(SPS)はめっき促進剤として、ポリエチレングリコール(PEG)はめっき抑制剤として作用するものである。 Hydrochloric acid (HCl) was added to an electrolytic copper plating bath mainly composed of sulfuric acid steel (CuSO 4 .5H 2 O) and sulfuric acid (H 2 SO 4 ) to prepare a plating bath having the following composition. Bisdisulfide (SPS) acts as a plating accelerator, and polyethylene glycol (PEG) acts as a plating inhibitor.

■電気銅めっき浴の組成:
CuSO4・5H2O: 0.6モル/リットル
H2SO4: 1.8モル/リットル
HCl: 100ppm
ビス(3−スルフォプロピル)ジスルフィド(SPS): 5ppm
ポリエチレングリコール(PEG4000): 600ppm
図6に示すように、銅触媒及び無電解Ni−Pめっき膜を形成した基板41は、治具50により保持される。図6のように治具50は絶縁性素材である基板担持部51及び銅である導体53とを有し、この導体53により基板41に対する電気的導通を確保した。また、治具50の筒状部52はめっき液の流れにより変形させられる可撓性を持つ。図8に示すように治具50の基板担持部51及び導体53は基板41の一部を挟みこむ形状とし、基板41の両面がめっき液と触れるようにした。
■ Composition of electrolytic copper plating bath:
CuSO 4 · 5H 2 O: 0.6 mol / liter
H 2 SO 4 : 1.8 mol / liter
HCl: 100ppm
Bis (3-sulfopropyl) disulfide (SPS): 5ppm
Polyethylene glycol (PEG4000): 600ppm
As shown in FIG. 6, the substrate 41 on which the copper catalyst and the electroless Ni—P plating film are formed is held by a jig 50. As shown in FIG. 6, the jig 50 has a substrate holding portion 51 that is an insulating material and a conductor 53 that is copper, and electrical conduction to the substrate 41 is ensured by the conductor 53. Further, the cylindrical portion 52 of the jig 50 has flexibility to be deformed by the flow of the plating solution. As shown in FIG. 8, the substrate holding part 51 and the conductor 53 of the jig 50 are shaped so as to sandwich a part of the substrate 41 so that both surfaces of the substrate 41 are in contact with the plating solution.

そして上記のめっき浴に基板41を浸漬し、無電解Ni−Pめっき膜が形成された基板41を陰極、銅板を陽極として、めっき浴温度25℃、陰極電流密度5mA/cm2の条件で180分間電気めっきを行い、無電解Ni−Pめっき膜の上に、電気Cuめっき膜14を形成した(図1(d)参照)。 Then, the substrate 41 is immersed in the above plating bath, and the substrate 41 on which the electroless Ni—P plating film is formed is used as a cathode and the copper plate is used as an anode, and the plating bath temperature is 25 ° C. and the cathode current density is 5 mA / cm 2 . Electroplating was performed for a minute, and an electric Cu plating film 14 was formed on the electroless Ni-P plating film (see FIG. 1D).

この電気めっき過程において攪拌器によってめっき液が攪拌されていて、この攪拌により生じためっき液の流れにより治具50が撓み、基板担持部51及び基板41が揺動する(図7参照))。このような基板41が揺動されている状態で、電流を加え、電気めっきを行う。   In this electroplating process, the plating solution is stirred by the stirrer, and the jig 50 is bent by the flow of the plating solution generated by the stirring, and the substrate holding portion 51 and the substrate 41 are swung (see FIG. 7). In such a state where the substrate 41 is swung, an electric current is applied to perform electroplating.

(実施例3)
実施例3は、実施例2の電気Cuめっきの条件を10mA/cm2、めっき時間を90分とした以外は実施例2と同様にして電気めっきを行った。
Example 3
In Example 3, electroplating was performed in the same manner as in Example 2 except that the conditions for electro Cu plating in Example 2 were 10 mA / cm 2 and the plating time was 90 minutes.

(比較例1)
比較例1は、基板をZnSからガラスに変えた他は、実施例1と同様な硫酸銅水溶液を用い、実施例1と同様に浸漬処理を行った。
(Comparative Example 1)
In Comparative Example 1, the same copper sulfate aqueous solution as in Example 1 was used, except that the substrate was changed from ZnS to glass, and immersion treatment was performed in the same manner as in Example 1.

(比較例2)
比較例2は、実施例1の無電解Ni−Pめっきで用いる治具を非金属であるプラスティック製に変えた他は、実施例1と同様な無電解めっき浴を用い、実施例1と同様に無電解Ni−Pめっきを行った。
(Comparative Example 2)
In Comparative Example 2, the same electroless plating bath as in Example 1 was used except that the jig used in electroless Ni-P plating in Example 1 was changed to a non-metallic plastic. Then, electroless Ni-P plating was performed.

(比較例3)
比較例3は、Ni膜により覆われた鉄線による接触を行った他は、実施例1と同様な無電解めっき浴を用い、比較例2と同様にプラスティック製の治具を用いて無電解Ni−Pめっきを行った。
(Comparative Example 3)
Comparative Example 3 uses an electroless plating bath similar to that of Example 1 except that contact is made with an iron wire covered with a Ni film, and uses a jig made of plastic as in Comparative Example 2 to perform electroless Ni. -P plating was performed.

(比較例4)
比較例4は、硫酸銅溶液への基板の浸漬を行わず、よって銅触媒の形成を行わなかった他は、実施例1と同様な無電解めっき浴を用い、実施例1と同様に無電解Ni−Pめっきを行った。
(Comparative Example 4)
Comparative Example 4 uses the same electroless plating bath as in Example 1 except that the substrate was not immersed in the copper sulfate solution, and thus the copper catalyst was not formed. Ni-P plating was performed.

(比較例5)
比較例5は、無電解Ni−Pめっきを行わなかった他は、実施例2と同様な電気めっき浴を用い、実施例2と同様に電気Cuめっきを行った。
(Comparative Example 5)
In Comparative Example 5, electro-Cu plating was performed in the same manner as in Example 2 using the same electroplating bath as in Example 2 except that electroless Ni-P plating was not performed.

(比較例6)
比較例6は、従来法(中和、キャタリスト、アクセレータの3工程でそれぞれの工程間に水洗が入る)により無電解めっき膜の形成を行った。
(Comparative Example 6)
In Comparative Example 6, an electroless plating film was formed by a conventional method (water washing was performed between the three steps of neutralization, catalyst, and accelerator).

(実施例4)
実施例4は、図9に示す基材が揺動しない治具を用いて電気Cuめっきを行った他は、実施例3と同様なめっき浴を用い、実施例3と同様に電気Cuめっきを行った。
Example 4
Example 4 uses the same plating bath as in Example 3 except that electro Cu plating is performed using a jig that does not swing the substrate shown in FIG. went.

以上述べた実施例1及び実施例2と、比較例1〜4、6について、基板上への無電解Ni−Pめっきの可・不可及びめっき膜の均一性を目視にて観察した。結果を表1に示す。
For Example 1 and Example 2 described above and Comparative Examples 1 to 4 and 6, the electroless Ni—P plating on the substrate was observed and the uniformity of the plating film was visually observed. The results are shown in Table 1.

表1から、実施例1が最も均一性に優れていることが明らかである。また、比較例5では電気Cuめっきを行うことができなかったことから、無電解Ni−Pめっき膜は、電気Cuめっきを行うために必要であることは明らかである。   From Table 1, it is clear that Example 1 is most excellent in uniformity. Further, since the electro Cu plating could not be performed in the comparative example 5, it is clear that the electroless Ni-P plating film is necessary for performing the electro Cu plating.

次に、実施例1と比較例6とのめっき基板の密着性の評価を行った。密着性試験は、JIS-H8504に規定された方法でJIS-Z1522に準拠する粘着テープを用いて行った。その結果、実施例1ではめっき膜が剥離しなかったが、比較例6では無電解めっき膜が剥離した。このことから、実施例1が密着性に優れていることが明らかである。   Next, the adhesion of the plating substrates of Example 1 and Comparative Example 6 was evaluated. The adhesion test was performed using an adhesive tape compliant with JIS-Z1522 by the method specified in JIS-H8504. As a result, in Example 1, the plating film did not peel off, but in Comparative Example 6, the electroless plating film peeled off. From this, it is clear that Example 1 is excellent in adhesion.

更に、実施例1の密着性を測定するため、次の密着性試験を行った。   Furthermore, in order to measure the adhesion of Example 1, the following adhesion test was performed.

この密着性試験は、以下の手順で行った(図13参照)。   This adhesion test was performed according to the following procedure (see FIG. 13).

(1) 治具74(□12mm)とZnS基板サンプル71(□12mm)とを接着剤73(3M Scotch-weld DP-460 オフホワイト)にて固定し、常温硬化させる。 (1) Fix jig 74 (□ 12mm) and ZnS substrate sample 71 (□ 12mm) with adhesive 73 (3M Scotch-weld DP-460 off-white) and cure at room temperature.

(2) 治具74との接着後、ZnS基板サンプル71の側面(4面全て)をサンドペーパにて表面を磨き、側面の接着剤残りを落とす。 (2) After bonding to the jig 74, the surface of the ZnS substrate sample 71 (all four surfaces) is polished with sandpaper, and the adhesive residue on the side surface is removed.

(3) 引張り試験を実施する(n=1)。引張速度は1.0 mm/min (ロードセル5kN)である。 (3) Conduct a tensile test (n = 1). The tensile speed is 1.0 mm / min (load cell 5kN).

その結果、接着剤73が破壊し、さらにZnS基板サンプル71が母材破壊したが、めっき膜72の剥離は起こらなかった。このことから、めっき膜72の密着性は16.6MPa以上であることが分かった。   As a result, the adhesive 73 was broken and the ZnS substrate sample 71 was broken, but the plating film 72 was not peeled off. From this, it was found that the adhesion of the plating film 72 was 16.6 MPa or more.

次に、実施例3と実施例4とについて、電解Cuめっきして得られた電解Cuめっき膜14について、膜厚均一性及び形状を測定して評価した。   Next, about Example 3 and Example 4, about the electrolytic Cu plating film 14 obtained by carrying out electrolytic Cu plating, the film thickness uniformity and the shape were measured and evaluated.

この膜厚均一性の評価は、図14に断面図で示すように電解Cuめっきを施したZnS基板81の孔部82近傍を厚み方向に切断し、切断断面を顕微鏡観察して、基板81に形成された電解Cuめっき膜の膜厚及び孔部82のめっき膜の膜厚を測定して評価した。   As shown in the cross-sectional view of FIG. 14, this film thickness uniformity is evaluated by cutting the vicinity of the hole 82 of the ZnS substrate 81 subjected to electrolytic Cu plating in the thickness direction, and observing the cut cross section with a microscope. The film thickness of the formed electrolytic Cu plating film and the film thickness of the plating film in the hole 82 were measured and evaluated.

図15はそれらの顕微鏡写真であり、図15(a)は実施例3を、図15(b)は実施例4を示す。図15(a)に示した実施例3では、孔内部にCuめっき膜が厚く形成されている。これに対して図15(a)に示した実施例4では、孔内部のCuめっき膜は実施例3と比べて薄く、実施例3よりも不均一であることが観察された。   FIGS. 15A and 15B are micrographs thereof, FIG. 15A shows Example 3, and FIG. 15B shows Example 4. FIG. In Example 3 shown in FIG. 15A, a thick Cu plating film is formed inside the hole. On the other hand, in Example 4 shown in FIG. 15A, it was observed that the Cu plating film inside the hole was thinner than Example 3 and was more non-uniform than Example 3.

次に、実施例2と実施例3とについて、電解Cuめっきして得られた電解Cuめっき膜についても同様にして、膜厚均一性及び形状を測定して評価した。   Next, Example 2 and Example 3 were similarly evaluated by measuring the film thickness uniformity and shape of the electrolytic Cu plating film obtained by electrolytic Cu plating.

図16は基板の孔部を厚み方向に切断した箇所の顕微鏡写真であり、図16(a)は実施例2、図16(b)は実施例3を示す。図16(a)の実施例2では、孔内部がほとんどCuめっき膜で充填されている。これに対して図16(b)の実施例3では、Cuめっき膜は実施例2ほどには十分に充填されていないことが観察された。   FIG. 16 is a photomicrograph of a portion where the hole of the substrate is cut in the thickness direction. FIG. 16 (a) shows Example 2 and FIG. 16 (b) shows Example 3. In Example 2 of FIG. 16A, the inside of the hole is almost filled with a Cu plating film. On the other hand, in Example 3 of FIG. 16B, it was observed that the Cu plating film was not sufficiently filled as in Example 2.

以上述べた各実施形態において、基板11、21、41は本発明のZnを含む化合物よりなる基板に対応する。素子基板100、260は本発明の第1基板に対応する。窓基板110、210は、本発明の第2基板に対応する。   In each of the embodiments described above, the substrates 11, 21, and 41 correspond to substrates made of a compound containing Zn of the present invention. The element substrates 100 and 260 correspond to the first substrate of the present invention. Window substrates 110 and 210 correspond to the second substrate of the present invention.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

11 基板
12 Cu薄膜
13 無電解Niめっき膜
14 電解Cuめっき膜
50 治具
52 筒状部52(可撓性部材)
100、260 素子基板(第1基板)
110、210 窓基板(第2基板)
225 貫通孔
DESCRIPTION OF SYMBOLS 11 Board | substrate 12 Cu thin film 13 Electroless Ni plating film 14 Electrolytic Cu plating film 50 Jig 52 Cylindrical part 52 (flexible member)
100, 260 Element substrate (first substrate)
110, 210 Window substrate (second substrate)
225 Through hole

Claims (1)

素子領域を有する第1基板に、Znを含む化合物よりなる第2基板を接合してなる半導体装置を製造する方法であって、
前記第2基板に貫通孔を形成した後、この第2基板を硫酸銅溶液に浸漬して貫通孔を含む基板の表面上にCu薄膜を形成し、その後に、Cuよりもイオン化傾向の大きい金属を備える治具で基板を保持することにより、基板にCuよりもイオン化傾向の大きい金属を接触させ、接触させたまま無電解めっき膜の形成を開始し、Cu薄膜が形成された基板表面上に無電解めっき膜を形成した後、電解Cuめっきを行って第2基板の貫通孔にCuを充填する工程
を有することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a second substrate made of a compound containing Zn is bonded to a first substrate having an element region,
After forming a through hole in the second substrate, the second substrate is immersed in a copper sulfate solution to form a Cu thin film on the surface of the substrate including the through hole, and then a metal having a higher ionization tendency than Cu. By holding a substrate with a jig provided with, a metal having a higher ionization tendency than Cu is brought into contact with the substrate, and formation of an electroless plating film is started while being in contact with the substrate, on which the Cu thin film is formed. A method of manufacturing a semiconductor device, comprising: forming an electroless plating film, and performing electrolytic Cu plating to fill the through hole of the second substrate with Cu.
JP2013141742A 2013-07-05 2013-07-05 Manufacturing method of semiconductor device Active JP5622900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141742A JP5622900B2 (en) 2013-07-05 2013-07-05 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141742A JP5622900B2 (en) 2013-07-05 2013-07-05 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009159806A Division JP5344695B2 (en) 2009-07-06 2009-07-06 Method for manufacturing plated substrate

Publications (2)

Publication Number Publication Date
JP2013231239A JP2013231239A (en) 2013-11-14
JP5622900B2 true JP5622900B2 (en) 2014-11-12

Family

ID=49677926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141742A Active JP5622900B2 (en) 2013-07-05 2013-07-05 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5622900B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486864B2 (en) * 1999-09-13 2004-01-13 株式会社トッパン エヌイーシー・サーキット ソリューションズ 富山 Method for forming copper wiring on substrate and substrate on which copper wiring is formed
JP2002285381A (en) * 2001-03-28 2002-10-03 Murata Mfg Co Ltd Ceramic electronic parts and electrode forming method for the same
JP4511215B2 (en) * 2004-02-25 2010-07-28 京セラ株式会社 Manufacturing method of ceramic multilayer wiring board
DE102004032706A1 (en) * 2004-07-06 2006-02-02 Epcos Ag Method for producing an electrical component and the component

Also Published As

Publication number Publication date
JP2013231239A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
TWI436884B (en) Metal layer accumulating an imide substrate and a method for producing the same
TWI433958B (en) Method for treating metal surfaces
JP2005336614A (en) Method for metallizing plastic surface
KR20100101598A (en) Anisotropic conductive joint package
US20140076618A1 (en) Method of forming gold thin film and printed circuit board
KR20110052647A (en) Surface-treated copper foil and copper-clad laminate
JP5755231B2 (en) Electroless plating of tin and tin alloys
Ogutu et al. Hybrid method for metallization of glass interposers
JP5622900B2 (en) Manufacturing method of semiconductor device
JP5344695B2 (en) Method for manufacturing plated substrate
TW201330716A (en) Substrate and method for preparing the same
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
JP4751796B2 (en) Circuit forming substrate and manufacturing method thereof
JP2014031576A (en) Method for producing printed circuit board
JP2007321189A (en) Catalytic agent for electroless plating
KR20190102099A (en) Method of forming electroless nickel strike plating solution and nickel plating film
EP4204599A1 (en) Method for electroless nickel deposition onto copper without activation with palladium
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP4096671B2 (en) Electronic component plating method and electronic component
JP2003293143A (en) Cleaning agent for palladium catalyst, method for cleaning palladium catalyst, method for plating electronic parts using the agent, and electronic parts
JP2009176646A (en) Foil-shaped conductor, wiring member, and manufacturing method of wiring member conductor
JP3833493B2 (en) Copper foil used for TAB tape carrier, TAB carrier tape and TAB tape carrier using this copper foil
JP4069181B2 (en) Electroless plating method
JP2005023301A (en) Adhered layer-forming liquid, method for producing bonded layer of copper with resin by using the liquid and laminated material of them
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350