JP5622376B2 - Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer - Google Patents

Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer Download PDF

Info

Publication number
JP5622376B2
JP5622376B2 JP2009241267A JP2009241267A JP5622376B2 JP 5622376 B2 JP5622376 B2 JP 5622376B2 JP 2009241267 A JP2009241267 A JP 2009241267A JP 2009241267 A JP2009241267 A JP 2009241267A JP 5622376 B2 JP5622376 B2 JP 5622376B2
Authority
JP
Japan
Prior art keywords
group
olefin
polymerization
producing
hetero atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009241267A
Other languages
Japanese (ja)
Other versions
JP2011088831A (en
Inventor
シシュアン シン
シシュアン シン
清水 史彦
史彦 清水
丹那 晃央
晃央 丹那
志保 五郎丸
志保 五郎丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Japan Polyethylene Corp
Original Assignee
Japan Polypropylene Corp
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp, Japan Polyethylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009241267A priority Critical patent/JP5622376B2/en
Publication of JP2011088831A publication Critical patent/JP2011088831A/en
Application granted granted Critical
Publication of JP5622376B2 publication Critical patent/JP5622376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/80Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymerization Catalysts (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)

Description

本発明は、α−オレフィン重合体、α−オレフィンとプロペン酸誘導体エステル共重合体の製造に有用な金属錯体ならびにそれを用いた新規なα−オレフィン重合体の製造方法およびα−オレフィンとプロペン酸誘導体エステル共重合体の製造方法に関する。   The present invention relates to an α-olefin polymer, a metal complex useful for the production of an α-olefin and a propenoic acid derivative ester copolymer, a method for producing a novel α-olefin polymer using the same, and the α-olefin and propenoic acid. The present invention relates to a method for producing a derivative ester copolymer.

エチレンと極性基含有ビニルモノマーである酢酸ビニルや(メタ)アクリル酸エステルとを高温高圧のラジカル重合で共重合する方法は、よく知られている。しかしながら、この方法では、多数の分岐生成により結晶性の低い共重合体となるため、得られた共重合体の強度が低いという欠点がある。   A method of copolymerizing ethylene and vinyl acetate or (meth) acrylic acid ester, which is a vinyl monomer containing a polar group, by radical polymerization at high temperature and high pressure is well known. However, this method has a drawback in that the strength of the obtained copolymer is low because a copolymer having low crystallinity is formed by a large number of branch formations.

また、Brookhartらは、α−ジイミン配位子を用いたパラジウム錯体を触媒として、エチレンとアクリル酸エステルの共重合体が製造できることを報告している。しかしながら、得られた共重合体は、分岐構造に富むものであり、分岐は、メチル基、エチル基をはじめ、種々の炭素数であって、かつ、分岐の数も非常に多く、結果として、得られた共重合体は、結晶性の低いものであった(例えば、非特許文献1参照。)。   Brookhart et al. Reported that a copolymer of ethylene and an acrylate ester can be produced using a palladium complex using an α-diimine ligand as a catalyst. However, the obtained copolymer is rich in a branched structure, and the branch has various carbon numbers including a methyl group and an ethyl group, and the number of branches is very large. The obtained copolymer had low crystallinity (see, for example, Non-Patent Document 1).

リンと酸素を配位原子として有するリガンドを用いたニッケル触媒で、いわゆるSHOP系触媒(Shell Higher Olefin Process系触媒)と呼ばれる触媒を用いると、極性溶媒中でエチレン重合が可能であり、分岐の少ない直鎖状重合体が得られることが知られている。SHOP系触媒のこうした極性基耐性に期待し、SHOP系触媒を用いたエチレンと極性モノマーの共重合が試みられている。
しかしながら、エチレンとの共重合が進行するのは、極性モノマー中の極性基がオレフィンから離れている場合に限られることが報告されており、極性基がオレフィンに直接結合している(メタ)アクリル酸エステルとα−オレフィンとの共重合例は、報告されていない(例えば、非特許文献2および特許文献1参照。)。なお、例外的に、Gibsonらは、SHOP系のニッケル錯体を用いてエチレンとメタクリル酸メチルの共重合を行っているが(例えば、非特許文献8参照。)、触媒構成成分として、ビスシクロオクタジエンニッケル(Ni(COD))がフォスフィンスカベンジャーとして必要であり、かつ、メタクリル酸メチルは、重合体の末端のみに存在し、末端以外の主鎖中には取り込まれていない。
Nickel catalyst using a ligand having phosphorus and oxygen as coordination atoms, so-called SHOP-based catalyst (Shell Higher Olefin Process-based catalyst) can be used to polymerize ethylene in a polar solvent and have few branches It is known that linear polymers can be obtained. In anticipation of such polar group resistance of the SHOP catalyst, copolymerization of ethylene and a polar monomer using the SHOP catalyst has been attempted.
However, it has been reported that the copolymerization with ethylene proceeds only when the polar group in the polar monomer is separated from the olefin, and the (meth) acrylic in which the polar group is directly bonded to the olefin. No examples of copolymerization of an acid ester and an α-olefin have been reported (for example, see Non-Patent Document 2 and Patent Document 1). Exceptionally, Gibson et al. Copolymerize ethylene and methyl methacrylate using a SHOP-based nickel complex (see, for example, Non-Patent Document 8), but as a catalyst component, biscycloocta Diene nickel (Ni (COD) 2 ) is required as a phosphine scavenger, and methyl methacrylate is present only at the end of the polymer and is not incorporated into the main chain other than the end.

一方、同様のSHOP系のニッケル(0価)キレート錯体とアルミノキサンの組み合わせからなる触媒で、エチレンと不飽和カルボン酸エステルの共重合を行う方法が開示されている(例えば、特許文献2参照。)。本特許文献2の実施例においては、エチレンとアクリル酸メチルの共重合例が記載されているが、非晶性重合体が副生するため、該非晶性重合体をアセトン抽出にて除去する必要があった。また、得られた共重合体については、アクリル酸メチル含量に関する記載があるのみで、その他、構造に関する記載はない。
Pughら(例えば、非特許文献5参照。)、野崎ら(例えば、非特許文献6参照。)、Goodallら(例えば、特許文献3参照。)は、ホスフィノスルホン酸配位子を有するパラジウム錯体を触媒として用いることにより、エチレンとアクリル酸メチルの共重合体が得られることを報告している。しかしながら、これらの公知文献で用いられている触媒は、希少な資源であり、かつ、高価なパラジウムを用いているため、工業的な応用には問題が大きい。
On the other hand, a method of copolymerizing ethylene and an unsaturated carboxylic acid ester with a catalyst comprising a combination of a similar SHOP-based nickel (zero-valent) chelate complex and an aluminoxane is disclosed (for example, see Patent Document 2). . In Examples of Patent Document 2, an example of copolymerization of ethylene and methyl acrylate is described. However, since an amorphous polymer is by-produced, it is necessary to remove the amorphous polymer by acetone extraction. was there. Moreover, about the obtained copolymer, there is only description regarding a methyl acrylate content, and there is no description regarding a structure other than that.
Pugh et al. (For example, see Non-Patent Document 5), Nozaki et al. (For example, see Non-Patent Document 6), and Goodall et al. It has been reported that a copolymer of ethylene and methyl acrylate can be obtained by using as a catalyst. However, the catalyst used in these known documents is a scarce resource and uses expensive palladium, so that there is a great problem for industrial applications.

上述のように、オレフィンとアクリル酸エステルを共重合する有用な遷移金属触媒技術の開発が求められているが、一般に、シングルサイト触媒でオレフィンを重合する場合、従来のチーグラーナッタ触媒に比較して、分子量が上がりにくい傾向がある。このため、オレフィン重合体やオレフィン・アクリル酸エステル共重合体の分子量を向上させる技術についても開発が求められている。   As described above, development of useful transition metal catalyst technology for copolymerizing olefin and acrylate ester is required. Generally, when polymerizing olefin with a single site catalyst, compared to conventional Ziegler-Natta catalyst. , The molecular weight tends to be difficult to increase. For this reason, development is also demanded for techniques for improving the molecular weight of olefin polymers and olefin / acrylate copolymers.

米国特許第4,698,403号明細書US Pat. No. 4,698,403 特開昭64−14217号公報JP-A 64-14217 米国特許出願公開第2007/0049712号明細書US Patent Application Publication No. 2007/0049712

S.Mecking et al.,J.Am.Chem.Soc.,1998,120,888.S. Mecking et al. , J .; Am. Chem. Soc. 1998, 120, 888. S.D.Ittel et al.,Chem.Rev.,2000,100,1169.S. D. Itel et al. , Chem. Rev. 2000, 100, 1169. P.Braunstein et al.,J.Organomet.Chem.,1989,367,117.P. Braunstein et al. , J .; Organomet. Chem. 1989, 367, 117. S.E.Bauaoud et al.,Inorg.Chem.,1986,25,3765.S. E. Baauaud et al. Inorg. Chem. 1986, 25, 3765. E.Drent et al.,Chem.Commun.,2002,744.E. Drent et al. , Chem. Commun. 2002, 744. T.Kochi et al.,Dalton Trans.,2006,25.T. T. et al. Kochi et al. Dalton Trans. 2006, 25. U.Klabunde et al.,J.Polym.Sci.:Part A:Polym.Chem.,1987,25,1989.U. Klabunde et al. , J .; Polym. Sci. : Part A: Polym. Chem. 1987, 25, 1989. V.C.Gibson,Chem.Commun.,2001,1964.V. C. Gibson, Chem. Commun. 2001, 1964.

本発明の目的は、上記従来技術の問題点に鑑み、分岐が少なく結晶性を有するα−オレフィン重合体またはα−オレフィン・プロペン酸誘導体エステル共重合体(例えば、α−オレフィン・(メタ)アクリル酸エステル共重合体)、特に分子量の高い重合体の製造用の新規な触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・プロペン酸誘導体エステル共重合体(例えば、α−オレフィン・(メタ)アクリル酸エステル共重合体)の製造方法を提供することにある。   An object of the present invention is to provide an α-olefin polymer or an α-olefin / propenoic acid derivative ester copolymer (for example, an α-olefin / (meth) acrylic) having few branches and crystallinity in view of the problems of the prior art. Acid ester copolymer), particularly a novel catalyst component for the production of a polymer having a high molecular weight, and an α-olefin polymer or α-olefin / propenoic acid derivative ester copolymer (for example, α-olefin. It is providing the manufacturing method of (meth) acrylic acid ester copolymer).

本発明者らは、鋭意研究した結果、アリール基を母核とするリガンドであって、該アリール基に結合したリン、砒素またはアンチモン(本発明ではE1と記載)上の2個の置換基Rの少なくとも一方がヘテロ原子含有基を1個以上含有するアリール基であり、かつ、M、E、X、Yを含むメタラサイクルが六員環を形成するような特定の構造を有する遷移金属錯体を触媒成分に用い、α−オレフィンの重合やα−オレフィンと(メタ)アクリル酸エステルとの共重合を行うと、格段に分子量の高い重合体が得られることを見出し、本発明を完成するに至った。 As a result of intensive research, the present inventors have found that a ligand having an aryl group as a nucleus and two substituents R on phosphorus, arsenic or antimony (denoted as E1 in the present invention) bonded to the aryl group. At least one of 4 is an aryl group containing one or more hetero atom-containing groups, and has a specific structure in which a metallacycle including M, E 1 , X 1 , and Y 1 forms a 6-membered ring Using a transition metal complex as a catalyst component, it has been found that a polymer having an extremely high molecular weight can be obtained by polymerization of α-olefin or copolymerization of α-olefin and (meth) acrylate. It came to be completed.

すなわち、本発明の第の発明によれば、下記一般式(B)または(C)で表される化合物と、周期律表の10族に属する遷移金属を含む遷移金属錯体(D)を接触させることにより得られてなることを特徴とする金属錯体が提供される。 That is, according to the first invention of the present invention, a compound represented by the following general formula (B) or (C) is contacted with a transition metal complex (D) containing a transition metal belonging to Group 10 of the periodic table. A metal complex characterized by being obtained by providing is provided.

Figure 0005622376
Figure 0005622376

[式(B)または(C)中、Zは、水素または脱離基である。mは、Zの価数を表す。Xは、酸素を表す。Yは、炭素を表す。Eは、リンを表す。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基であって、Rの少なくとも一つは、ヘテロ原子含有基を1個以上含有する炭化水素基である。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。R10、R11、R12、R13は、それぞれ独立に、水素、ハロゲン、炭素数1〜30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2−y(R、CN、NHR、N(R、Si(OR3−x(R、OSi(OR3−x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基を表す(ここで、Rは、水素または炭素数1〜20の炭化水素基を表し、Rは、炭素数1〜20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはフォスフォニウムを表し、xは0〜3までの整数、yは0〜2までの整数を表す。)。] [In the formula (B) or (C), Z represents hydrogen or a leaving group. m represents the valence of Z. X 1 represents oxygen. Y 1 represents carbon. E 1 represents phosphorus. R 4 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom, and at least one of R 4 contains one or more hetero atom-containing groups. It is a hydrocarbon group. R 5 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom. R 10 , R 11 , R 12 , and R 13 are each independently hydrogen, halogen, a hydrocarbon group that may contain a C 1-30 hetero atom, OR 2 , CO 2 R 2 , CO 2. M ′, C (O) N (R 1 ) 2 , C (O) R 2 , SR 2 , SO 2 R 2 , SOR 2 , OSO 2 R 2 , P (O) (OR 2 ) 2-y (R 1) y, CN, NHR 2 , N (R 2) 2, Si (OR 1) 3-x (R 1) x, OSi (OR 1) 3-x (R 1) x, NO 2, SO 3 M ', PO 3 M' 2 , P (O) (OR 2 ) 2 M ', or an epoxy-containing group (wherein R 1 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms; R 2 Represents a hydrocarbon group having 1 to 20 carbon atoms, M ′ represents an alkali metal, alkaline earth metal, ammonium, quaternary ammonia. And represents an integer of 0 to 3, and y represents an integer of 0 to 2.) ]

本発明の第の発明によれば、第1の発明に係る金属錯体の存在下、α−オレフィン(a)を重合することを特徴とするα−オレフィン重合体の製造方法が提供される。
また、本発明の第の発明によれば、第の発明において、ルイス塩基の存在下で重合を行うことを特徴とするα−オレフィン重合体の製造方法が提供される。
さらに、本発明の第の発明によれば、第の発明において、有機アルミニウム化合物の非存在下で重合を行うことを特徴とするα−オレフィン重合体の製造方法が提供される。
According to the second invention of the present invention, there is provided a method for producing an α-olefin polymer, wherein the α-olefin (a) is polymerized in the presence of the metal complex according to the first invention.
According to a third aspect of the present invention, there is provided the method for producing an α-olefin polymer according to the second aspect , wherein the polymerization is carried out in the presence of a Lewis base.
Furthermore, according to the fourth aspect of the present invention, there is provided the method for producing an α-olefin polymer according to the second aspect , wherein the polymerization is performed in the absence of the organoaluminum compound.

本発明の第の発明によれば、第1の発明に係る金属錯体の存在下、α−オレフィン(a)と、プロペン酸誘導体エステル(b)とを共重合することを特徴とするα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法が提供される。
また、本発明の第の発明によれば、第の発明において、ルイス塩基の存在下で重合を行うことを特徴とするα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法が提供される。
さらに、本発明の第の発明によれば、第の発明において、有機アルミニウム化合物の非存在下で重合を行うことを特徴とするα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法が提供される。
According to a fifth invention of the present invention, α-olefin (a) and propenoic acid derivative ester (b) are copolymerized in the presence of the metal complex according to the first invention. A method for producing an olefin / propenoic acid derivative ester copolymer is provided.
According to a sixth aspect of the present invention, there is provided a process for producing an α-olefin / propenoic acid derivative ester copolymer according to the fifth aspect , wherein the polymerization is carried out in the presence of a Lewis base. The
Furthermore, according to the seventh invention of the present invention, there is provided a process for producing an α-olefin / propenoic acid derivative ester copolymer according to the fifth invention, wherein the polymerization is performed in the absence of an organoaluminum compound. Provided.

本発明の金属錯体により、工業的に容易に入手可能なプロペン酸誘導体エステルと、α−オレフィンとの共重合体が製造可能となり、かつ、得られた共重合体の分子量も高い。共重合体だけでなく、α−オレフィン重合体においても、高い分子量が得られる。一般にポリマーの物性において、分子量は支配的要因の一つであり、分子量を上げることによって、ポリマー鎖間の相互作用が強まるため、本発明で得られた重合体や共重合体は、機械的・熱的物性に優れ、有用な成形体として応用可能である。さらに、本発明においては、希少かつ高価なパラジウムの代わりに、ニッケルを金属中心とした触媒を使用することができる。このように、本発明は、かかるα−オレフィン重合体やα−オレフィン・プロペン酸誘導体エステル共重合体の新規な製造法を提供するものであり、工業的にきわめて有用である。   The metal complex of the present invention makes it possible to produce a copolymer of a propenoic acid derivative ester and an α-olefin which are easily available industrially, and the resulting copolymer has a high molecular weight. A high molecular weight can be obtained not only in the copolymer but also in the α-olefin polymer. In general, the molecular weight is one of the dominant factors in the physical properties of the polymer. By increasing the molecular weight, the interaction between the polymer chains is strengthened. Therefore, the polymer and copolymer obtained in the present invention are mechanically It has excellent thermal properties and can be applied as a useful molded product. Further, in the present invention, a nickel-centered catalyst can be used in place of rare and expensive palladium. Thus, the present invention provides a novel process for producing such α-olefin polymers and α-olefin / propenoic acid derivative ester copolymers, and is extremely useful industrially.

本発明は、特定の化合物(B)および/または(C)と、ニッケル、パラジウム、コバルト、銅またはロジウム等の周期律表第9,10、11族に属する遷移金属を含む遷移金属錯体(D)とを反応させて得られる反応生成物である金属錯体(A)並びにそれを触媒成分とし、その触媒成分の存在下に行う(a)α−オレフィンの重合体の製造方法および(a)α−オレフィンと(b)プロペン酸誘導体エステルとを共重合するα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法である。
以下、重合体の構成モノマー、触媒成分である金属錯体、製造方法等について、詳細に説明する。
なお、以下の説明において、「重合」という用語は、1種類のモノマーの単独重合と複数種のモノマーの共重合を総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。
The present invention provides a transition metal complex (D) containing a specific compound (B) and / or (C) and a transition metal belonging to Groups 9, 10 and 11 of the periodic table such as nickel, palladium, cobalt, copper or rhodium. And (a) a method for producing an α-olefin polymer and (a) α which is performed in the presence of the catalyst component using the metal complex (A) which is a reaction product obtained by the reaction with This is a method for producing an α-olefin / propenoic acid derivative ester copolymer comprising copolymerizing an olefin and (b) a propenoic acid derivative ester.
Hereinafter, the constituent monomer of the polymer, the metal complex as the catalyst component, the production method and the like will be described in detail.
In the following description, the term “polymerization” is a generic term for homopolymerization of one type of monomer and copolymerization of a plurality of types of monomers. Simply referred to as “polymerization”.

1.重合体の構成モノマー
(a)α−オレフィン
本発明における成分(a)は、一般式CH=CHRで表されるα−オレフィンである。ここで、Rは、水素または炭素数1〜20の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。Rの炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましい(a)成分としては、Rが水素または炭素数1〜10の炭化水素基であるα−オレフィンが挙げられる。
さらに好ましい(a)成分としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、3−メチル−1−ブテン、4−メチル−1−ペンテン、ビニルシクロヘキセン、スチレンが挙げられる。なお、単独の(a)成分を使用してもよいし、複数の(a)成分を併用してもよい。
1. Constituent monomer (a) α-olefin of polymer The component (a) in the present invention is an α-olefin represented by the general formula CH 2 ═CHR 7 . Here, R < 7 > is hydrogen or a C1-C20 hydrocarbon group, and may have a branch, a ring, and / or an unsaturated bond. When the carbon number of R 7 is larger than 20, there is a tendency that sufficient polymerization activity is not expressed. For this reason, among them, preferred examples of the component (a) include α-olefins in which R 7 is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms.
More preferable component (a) is ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinyl. Examples thereof include cyclohexene and styrene. In addition, a single component (a) may be used, or a plurality of components (a) may be used in combination.

(b)プロペン酸誘導体エステル
本発明における成分(b)は、一般式CH=C(R)CO(R)で表されるプロペン酸誘導体エステルである。ここで、Rは、水素または炭素数1〜10の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。Rは、炭素数1〜30の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。さらに、R内の任意の位置にヘテロ原子を含有していてもよい。
の炭素数が11以上であると、十分な重合活性が発現しない傾向がある。したがって、Rは、水素または炭素数1〜10の炭化水素基であるが、好ましい(b)成分としては、Rは、水素または炭素数1〜5の炭化水素基であるプロペン酸誘導体エステルが挙げられる。より好ましい(b)成分としては、Rがメチル基であるメタクリル酸エステルまたはRが水素であるアクリル酸エステルが挙げられる。同様に、Rの炭素数が30を超えると、重合活性が低下する傾向がある。よって、Rの炭素数は1〜30であるが、Rは、好ましくは炭素数1〜18であり、さらに好ましくは炭素数1〜8である。
また、R内に含まれていても良いヘテロ原子としては、酸素、硫黄、セレン、リン、窒素、ケイ素、フッ素、ホウ素等が挙げられる。これらのヘテロ原子のうち、酸素、ケイ素、フッ素が好ましく、酸素が更に好ましい。また、Rは、ヘテロ原子を含まないものも好ましい。
(B) Propenic acid derivative ester The component (b) in the present invention is a propenoic acid derivative ester represented by the general formula CH 2 = C (R 8 ) CO 2 (R 9 ). Here, R < 8 > is hydrogen or a C1-C10 hydrocarbon group, and may have a branch, a ring, and / or an unsaturated bond. R 9 is a hydrocarbon group having 1 to 30 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond. Further, it may contain a hetero atom at an arbitrary position in R 9 .
When the carbon number of R 8 is 11 or more, there is a tendency that sufficient polymerization activity is not expressed. Therefore, although R 8 is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, as a preferable component (b), R 8 is hydrogen or a propenoic acid derivative ester that is a hydrocarbon group having 1 to 5 carbon atoms. Is mentioned. More preferable component (b) includes a methacrylic ester in which R 8 is a methyl group or an acrylate ester in which R 8 is hydrogen. Similarly, when the carbon number of R 9 exceeds 30, the polymerization activity tends to decrease. Therefore, although the number of carbon atoms of R 9 is 1 to 30, R 9 is preferably 1 to 18 carbon atoms, more preferably from 1 to 8 carbon atoms.
In addition, examples of the hetero atom that may be contained in R 9 include oxygen, sulfur, selenium, phosphorus, nitrogen, silicon, fluorine, and boron. Of these heteroatoms, oxygen, silicon and fluorine are preferred, and oxygen is more preferred. R 9 preferably does not contain a hetero atom.

さらに好ましい(b)成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸−2−アミノエチル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エチレンオキサイド、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸−2−トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリルアミド、(メタ)アクリルジメチルアミド、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸4−ヒドロキシブチル等が挙げられる。なお、単独の(b)成分を使用してもよいし、複数の(b)成分を併用してもよい。   More preferable components (b) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) Isobutyl acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, hydroxyethyl (meth) acrylate , Dimethylaminoethyl (meth) acrylate, diethylamino (meth) acrylate Ethyl, (meth) acrylic acid-2-aminoethyl, (meth) acrylic acid-2-methoxyethyl, (meth) acrylic acid-3-methoxypropyl, (meth) acrylic acid glycidyl, (meth) acrylic acid ethylene oxide, (Meth) acrylic acid trifluoromethyl, (meth) acrylic acid-2-trifluoromethylethyl, (meth) acrylic acid perfluoroethyl, (meth) acrylamide, (meth) acryldimethylamide, (meth) acrylic acid 2- Examples thereof include hydroxybutyl and 4-hydroxybutyl (meth) acrylate. In addition, a single component (b) may be used, or a plurality of components (b) may be used in combination.

2.金属錯体
本発明の金属錯体は、下記一般式(A)で表される。
2. Metal Complex The metal complex of the present invention is represented by the following general formula (A).

Figure 0005622376
Figure 0005622376

式中、Mは、周期律表の9族、10族または11族に属する遷移金属を表す。Rは、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。Lは、Mに配位したリガンドを表す。また、RとLが互いに結合して環を形成してもよい。Xは、酸素または硫黄を表す。Yは、炭素またはケイ素を表す。Eは、リン、砒素またはアンチモンを表す。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基であって、Rの少なくとも一つは、ヘテロ原子含有基を1個以上含有する炭化水素基である。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。R10、R11、R12、R13は、それぞれ独立に、水素、ハロゲン、炭素数1〜30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2−y(R、CN、NHR、N(R、Si(OR3−x(R、OSi(OR3−x(R、NO、SOM’、POM’、P(O)(ORM’またはエポキシ含有基を表す。ここで、Rは、水素または炭素数1〜20の炭化水素基を表す。また、Rは、炭素数1〜20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはフォスフォニウムを表し、xは、0〜3までの整数、yは、0〜2までの整数を表す。なお、R、R、R10、R11、R12、R13から適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。 In the formula, M represents a transition metal belonging to Group 9, 10 or 11 of the periodic table. R 3 represents hydrogen or a hydrocarbon group that may contain a hetero atom having 1 to 20 carbon atoms. L 1 represents a ligand coordinated to M. R 3 and L 1 may be bonded to each other to form a ring. X 1 represents oxygen or sulfur. Y 1 represents carbon or silicon. E 1 represents phosphorus, arsenic or antimony. R 4 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom, and at least one of R 4 contains one or more hetero atom-containing groups. It is a hydrocarbon group. R 5 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom. R 10 , R 11 , R 12 , and R 13 are each independently hydrogen, halogen, a hydrocarbon group that may contain a C 1-30 hetero atom, OR 2 , CO 2 R 2 , CO 2. M ′, C (O) N (R 1 ) 2 , C (O) R 2 , SR 2 , SO 2 R 2 , SOR 2 , OSO 2 R 2 , P (O) (OR 2 ) 2-y (R 1) y, CN, NHR 2 , N (R 2) 2, Si (OR 1) 3-x (R 1) x, OSi (OR 1) 3-x (R 1) x, NO 2, SO 3 M ', Represents PO 3 M' 2 , P (O) (OR 2 ) 2 M 'or an epoxy-containing group. Here, R 1 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms. R 2 represents a hydrocarbon group having 1 to 20 carbon atoms. M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2. A plurality of groups appropriately selected from R 4 , R 5 , R 10 , R 11 , R 12 , and R 13 are connected to each other and selected from an alicyclic ring, an aromatic ring, or oxygen, nitrogen, and sulfur. Heterocycles containing heteroatoms may be formed. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.

本発明において、Mは、周期律表の9族、10族または11族に属する遷移金属であるが、好ましくは、10族のニッケル、パラジウム、白金、9族のコバルト、ロジウムおよび11族の銅であり、さらに好ましくは、10族のニッケル、パラジウム、白金であり、最も好ましくは10族のニッケルまたはパラジウムである。
Mの価数については2価が好ましい。ここでMの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てたとき、その元素の原子上に残る電荷の数を指す。例えば、本発明の一般式(A)において、Eがリン、Xが酸素、Mがニッケル、Rがフェニル基、Lがピリジンであり、ニッケルがリン、酸素、フェニル基の炭素、ピリジンの窒素と結合を形成している場合、ニッケルの形式酸化数、すなわちニッケルの価数は2価となる。なぜならば、上述の定義に基づき、これらの結合において、電子対は、ニッケルよりも電気陰性度の大きいリン、酸素、炭素、窒素に割り当てられ、電荷は、リンが0、酸素が−1、フェニル基が−1、ピリジンが0で、錯体は、全体として電気的に中性であるため、ニッケル上に残る電荷は、+2となるからである。
2価の遷移金属としては、例えばニッケル(II)、パラジウム(II)、白金(II)、コバルト(II)が好ましく、2価以外では、銅(I)またはロジウム(III)も好ましい。
In the present invention, M is a transition metal belonging to Group 9, Group 10 or Group 11 of the Periodic Table, but preferably Group 10 nickel, palladium, platinum, Group 9 cobalt, rhodium and Group 11 copper. More preferably, they are group 10 nickel, palladium, and platinum, and most preferably group 10 nickel or palladium.
The valence of M is preferably divalent. Here, the valence of M means a formal oxidation number used in organometallic chemistry. That is, when an electron pair in a bond involving an element is assigned to an element having a high electronegativity, the number of charges remaining on the atom of the element is indicated. For example, in the general formula (A) of the present invention, E 1 is phosphorus, X 1 is oxygen, M is nickel, R 3 is a phenyl group, L 1 is pyridine, nickel is phosphorus, oxygen, a phenyl group carbon, When a bond is formed with nitrogen of pyridine, the formal oxidation number of nickel, that is, the valence of nickel is divalent. This is because, based on the above definition, in these bonds, the electron pair is assigned to phosphorus, oxygen, carbon, and nitrogen, which have a higher electronegativity than nickel, and the charges are 0 for phosphorus, -1 for oxygen, and phenyl. This is because the group is -1, the pyridine is 0, and the complex is electrically neutral as a whole, so that the charge remaining on the nickel is +2.
As the divalent transition metal, for example, nickel (II), palladium (II), platinum (II), and cobalt (II) are preferable, and copper (I) or rhodium (III) is also preferable other than divalent.

本発明においてRは、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。本発明における重合または共重合反応は、MとRの結合に、本発明における(a)成分または(b)成分が挿入することによって、開始されると考えられる。したがって、Rの炭素数が過度に多いと、この開始反応が阻害される傾向にある。このため、好ましいRとしては、炭素数1〜16、さらに好ましくは炭素数1〜10である。
の具体的な例としては、ヒドリド基、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、シクロペンチル基、シクロヘキシル基、フェニル基、p−メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等を挙げることができる。
In the present invention, R 3 represents hydrogen or a hydrocarbon group that may contain a hetero atom having 1 to 20 carbon atoms. The polymerization or copolymerization reaction in the present invention is considered to be initiated by the insertion of the component (a) or component (b) in the present invention into the bond between M and R 3 . Therefore, when the number of carbon atoms in R 3 is excessively large, this initiation reaction tends to be inhibited. For this reason, as preferable R < 3 >, it is C1-C16, More preferably, it is C1-C10.
Specific examples of R 3 include hydride group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples thereof include an n-dodecyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a p-methylphenyl group, a trimethylsilyl group, a triethylsilyl group, and a triphenylsilyl group.

本発明において、Lは、Mに配位したリガンドを表す。本発明におけるリガンドLは、配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1〜20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素−炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も、使用することができる。好ましくは、Lの炭素数は1〜16であり、さらに好ましくは1〜10である。また一般式(A)中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。
は、Mと配位結合を形成するが、本発明においては、(a)成分の重合や(a)成分と(b)成分の共重合を進行させるために、LをMから取り除く化合物(スカベンジャー)を使用する必要がない。
なお、いわゆるSHOP系金属錯体においては、本発明におけるLの代わりに、フォスフィン、たとえば、トリメチルフォスフィンやトリフェニルフォスフィンを用いても、本発明と類似の錯体を合成することができる。しかしながら、こうしたリガンドを用いた場合には、該リガンドをMから取り除くスカベンジャーを併用することが、オレフィンの重合能発現のために、必須であることが知られている(非特許文献7)。このような目的のために用いられるスカベンジャーとしては、Ni(COD)(COD:シクロオクタジエン)、B(C、アルミノキサン類、ロジウム錯体などが知られている。
In the present invention, L 1 represents a ligand coordinated to M. The ligand L 1 in the present invention is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen, and sulfur as atoms capable of coordination bonding. Further, as L 1 , a hydrocarbon compound having a carbon-carbon unsaturated bond that can be coordinated to a transition metal (which may contain a hetero atom) can also be used. Preferably, L1 has 1 to 16 carbon atoms, and more preferably 1 to 10 carbon atoms. As the L 1 to the general formula (A) coordinate bond with M in the compound having no charge is preferable.
L 1 forms a coordination bond with M, but in the present invention, L 1 is removed from M in order to promote polymerization of component (a) and copolymerization of component (a) and component (b). There is no need to use a compound (scavenger).
In the so-called SHOP metal complex, a complex similar to that of the present invention can be synthesized by using phosphine such as trimethylphosphine or triphenylphosphine instead of L 1 in the present invention. However, when such a ligand is used, it is known that using a scavenger that removes the ligand from M is essential for the expression of the olefin polymerization ability (Non-patent Document 7). As scavengers used for such purposes, Ni (COD) 2 (COD: cyclooctadiene), B (C 6 F 5 ) 3 , aluminoxanes, rhodium complexes and the like are known.

本発明における好ましいLとしては、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類、環状不飽和炭化水素類などを挙げることができる。さらに好ましいLとしては、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類、環状オレフィン類が挙げられ、特に好ましいLとして、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCO(RおよびRの定義は前記の通り)を挙げることができる。
なお、RとLが互いに結合して環を形成してもよい。そのような例として、シクロオクタ−1−エニル基を挙げることができ、これも本発明における好ましい様態である。
Preferred L 1 in the present invention includes pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, alcohols, amides, aliphatic esters. , Aromatic esters, amines, cyclic unsaturated hydrocarbons and the like. More preferred L 1 includes pyridines, cyclic ethers, aliphatic esters, aromatic esters and cyclic olefins, and particularly preferred L 1 is pyridine, lutidine (dimethylpyridine), picoline (methylpyridine). , R 1 CO 2 R 2 (wherein R 1 and R 2 are as defined above).
R 3 and L 1 may be bonded to each other to form a ring. Examples of such include a cyclooct-1-enyl group, which is also a preferred embodiment in the present invention.

本発明において、Xは、酸素または硫黄を表す。これらのうち、酸素が好ましい。また、本発明において、Yは、炭素またはケイ素を表す。これらのうち、炭素が好ましい。また、本発明において、Eは、リン、砒素またはアンチモンを表す。これらのうち、リンが好ましい。 In the present invention, X 1 represents oxygen or sulfur. Of these, oxygen is preferred. In the present invention, Y 1 represents carbon or silicon. Of these, carbon is preferred. In the present invention, E 1 represents phosphorus, arsenic or antimony. Of these, phosphorus is preferred.

本発明において、Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基であって、Rの少なくとも一つは、ヘテロ原子含有基を1個以上含有する炭化水素基である。Rは、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、Rは、かさ高い方が好ましい。Rの好ましい炭素数は3〜20、さらに好ましくは6〜20である。
において、ヘテロ原子含有基中に含まれるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、フッ素、ホウ素が挙げられる。これらのヘテロ原子のうち、酸素、硫黄、窒素、リン、ケイ素が好ましい。また、これらのヘテロ原子を含むヘテロ原子含有基としては、酸素含有基として、アルコキシ基、アリーロキシ基、アシル基、アロイル基、カルボキシレート基が挙げられ、窒素含有基としては、アミノ基、アミド基が挙げられ、硫黄含有基としては、チオアルコキシ基やチオアリーロキシが挙げられ、リン含有置換基としては、フォスフィノ基が挙げられ、ケイ素含有基としては、トリアルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基が挙げられる。これらのヘテロ原子含有基のうち、もっとも好ましいのは、アミノ基、アルコキシ基、またはアリーロキシ基である。
In the present invention, each R 4 independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom, and at least one of R 4 represents a hetero atom containing group. It is a hydrocarbon group containing at least one group. R 4 is in the vicinity of the metal M and interacts with M sterically and / or electronically. In order to exert such an effect, R 4 is preferably bulky. R 4 preferably has 3 to 20 carbon atoms, more preferably 6 to 20 carbon atoms.
In R 4 , examples of the hetero atom contained in the hetero atom-containing group include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, fluorine, and boron. Of these heteroatoms, oxygen, sulfur, nitrogen, phosphorus and silicon are preferred. Examples of the heteroatom-containing group containing these heteroatoms include an oxygen group, an alkoxy group, an aryloxy group, an acyl group, an aroyl group, and a carboxylate group, and a nitrogen-containing group includes an amino group and an amide group. Examples of the sulfur-containing group include a thioalkoxy group and thioaryloxy, examples of the phosphorus-containing substituent include a phosphino group, examples of the silicon-containing group include a trialkylsilyl group, a dialkylarylsilyl group, An alkyldiarylsilyl group is mentioned. Of these heteroatom-containing groups, the most preferred is an amino group, an alkoxy group, or an aryloxy group.

前記したヘテロ原子含有基としては、電子供与性で、かつ遷移金属に配位可能なものが好ましい。こうしたヘテロ原子含有基の具体的な例としては、以下のようなものが挙げられる。
すなわち、酸素含有基として、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基、フェノキシ基、p−メチルフェノキシ基、p−メトキシフェノキシ基、アセチル基、ベンゾイル基、アセトキシ基、エチルカルボキシレート基、t−ブチルカルボキシレート基、フェニルカルボキシレート基などを挙げることができる。窒素含有基としては、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、シクロヘキシルアミノ基などを挙げることができる。硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ−n−プロポキシ基、チオイソプロポキシ基、チオ−n−ブトキシ基、チオ−t−ブトキシ基、チオフェノキシ基、p−メチルチオフェノキシ基、p−メトキシチオフェノキシ基などを挙げることができる。リン含有置換基としては、ジメチルフォスフィノ基、ジエチルフォスフィノ基、ジ−n−プロピルフォスフィノ基、シクロヘキシルフォスフィノ基などを挙げることができる。
As the hetero atom-containing group, those having an electron donating property and capable of coordinating with a transition metal are preferable. Specific examples of such heteroatom-containing groups include the following.
That is, as an oxygen-containing group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, phenoxy group, p-methylphenoxy group, p-methoxyphenoxy group, acetyl group, Examples thereof include a benzoyl group, an acetoxy group, an ethyl carboxylate group, a t-butyl carboxylate group, and a phenyl carboxylate group. Examples of the nitrogen-containing group include a dimethylamino group, a diethylamino group, a di-n-propylamino group, and a cyclohexylamino group. Examples of the sulfur-containing group include thiomethoxy group, thioethoxy group, thio-n-propoxy group, thioisopropoxy group, thio-n-butoxy group, thio-t-butoxy group, thiophenoxy group, p-methylthiophenoxy group, p- A methoxythiophenoxy group etc. can be mentioned. Examples of the phosphorus-containing substituent include dimethylphosphino group, diethylphosphino group, di-n-propylphosphino group, cyclohexylphosphino group and the like.

においては、少なくとも1つのRが1個以上のヘテロ原子含有基を有していればよいが、特に、Rが2個のヘテロ原子含有基を含有しているものが好ましい。また、Rの組み合わせとしては、2個のRが両者とも2個以上のヘテロ原子含有基を有している場合、1個のRが2個以上のヘテロ原子含有基を有しており、残りの1個のRが1個以下のヘテロ原子含有基を有している場合の2つの場合があるが、2個のRが2個以上のヘテロ原子含有基を有していることが好ましい。 In R 4, it is sufficient that at least one R 4 has one or more heteroatom-containing groups, and it is particularly preferable that R 4 contains two heteroatom-containing groups. As the combination of R 4, when two R 4 has at least two heteroatom-containing groups both, and one of R 4 has two or more heteroatom-containing groups There are two cases where the remaining one R 4 has one or less heteroatom-containing groups, but two R 4 have two or more heteroatom-containing groups. Preferably it is.

本発明において、Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基であるが、より具体的には、ヘテロ原子を含有していてもよい分岐鎖状炭化水素基、ヘテロ原子を含有していてもよい脂肪環式炭化水素基、ヘテロ原子を含有していてもよいアリール基が挙げられる。前記したように、Rは、かさ高い方が好ましい。したがって、これらのうち、ヘテロ原子を含有していてもよい脂環式炭化水素基、または、ヘテロ原子を含有していてもよいアリール基が好ましく、ヘテロ原子を含有していてもよいアリール基がもっとも好ましい。こうしたアリール基としては、フェニル基、ナフチル基、アンスラセニル基などを挙げることができる。 In the present invention, each R 4 independently represents hydrogen or a hydrocarbon group that may contain a hetero atom having 1 to 20 carbon atoms. More specifically, R 4 may contain a hetero atom. Examples thereof include a good branched chain hydrocarbon group, an alicyclic hydrocarbon group which may contain a hetero atom, and an aryl group which may contain a hetero atom. As described above, R 4 is preferably bulky. Therefore, among these, an alicyclic hydrocarbon group which may contain a hetero atom, or an aryl group which may contain a hetero atom is preferable, and an aryl group which may contain a hetero atom is preferred. Most preferred. Examples of such an aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.

本発明のRにおいて、これらアリール基の芳香族骨格に前記したヘテロ原子含有基が結合する場合、結合様式としては、ヘテロ原子含有基が芳香族骨格に直接結合してもよいし、メチレン基のようなスペーサーを介して芳香族骨格に結合してもよい。なお、メチレン基を介してヘテロ原子含有基が芳香族骨格に結合する場合、メチレン基の数は1個が好ましい。また、置換位置としては、R中の芳香族骨格のうち、Eに結合した炭素に対してオルト位が好ましい。このようにすることによって、R中のヘテロ原子がMと相互作用を持つように空間的配置をとることができる。 In R 4 of the present invention, when the hetero atom-containing group described above is bonded to the aromatic skeleton of these aryl groups, the bonding mode may be that the hetero atom-containing group may be directly bonded to the aromatic skeleton, or a methylene group. It may be bonded to the aromatic skeleton through a spacer such as When the heteroatom-containing group is bonded to the aromatic skeleton via a methylene group, the number of methylene groups is preferably one. The substitution position is preferably ortho to the carbon bonded to E 1 in the aromatic skeleton in R 4 . By doing so, it is possible to take a spatial arrangement so that the hetero atom in R 4 interacts with M.

好ましいRの具体的な例示として、2,6−ジメトキシフェニル基、2,4,6−トリメトキシフェニル基、4−メチル−2,6−ジメトキシフェニル基、4−t−ブチル−2,6−ジメトキシフェニル基、1,3−ジメトキシ−2−ナフチル基、2,6−ジエトキシフェニル基、2,4,6−トリエトキシフェニル基、4−メチル−2,6−ジエトキシフェニル基、4−t−ブチル−2,6−ジエトキシフェニル基、1,3−ジエトキシ−2−ナフチル基、2,6−ジフェノキシフェニル基、2,4,6−トリフェノキシフェニル基、4−メチル−2,6−ジフェノキシフェニル基、4−t−ブチル−2,6−ジフェノキシフェニル基、1,3−ジフェノキシ−2−ナフチル基、2,6−ジメトキシメチルフェニル基、2,4,6−トリメトキシメチルフェニル基、4−メチル−2,6−ジメトキシメチルフェニル基、4−t−ブチル−2,6−ジメトキシメチルフェニル基、1,3−ジメトキシメチル−2−ナフチル基、2,6−ジフェノキシメチルフェニル基、2,4,6−トリフェノキシメチルフェニル基、4−メチル−2,6−ジフェノキシメチルフェニル基、4−t−ブチル−2,6−ジフェノキシメチルフェニル基、1,3−ジフェノキシメチル−2−ナフチル基、2,6−ジ(2−メトキシエチル)フェニル基、2,4,6−トリ(2−メトキシエチル)フェニル基、4−メチル−2,6−ジ(2−メトキシエチル)フェニル基、4−t−ブチル−2,6−ジ(2−メトキシエチル)フェニル基、1,3−ジ(2−メトキエチル)−2−ナフチル基、2,6−ジ(2−フェノキシエチル)フェニル基、2,4,6−トリ(2−フェノキシエチル)フェニル基、4−メチル−2,6−ジ(2−フェノキシエチル)フェニル基、4−t−ブチル−2,6−ジ(2−フェノキシエチル)フェニル基、1,3−ジ(2−フェノキシエチル)−2−ナフチル基などを挙げることができる。 Specific examples of preferable R 4 include 2,6-dimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 4-methyl-2,6-dimethoxyphenyl group, 4-t-butyl-2,6. -Dimethoxyphenyl group, 1,3-dimethoxy-2-naphthyl group, 2,6-diethoxyphenyl group, 2,4,6-triethoxyphenyl group, 4-methyl-2,6-diethoxyphenyl group, 4 -T-butyl-2,6-diethoxyphenyl group, 1,3-diethoxy-2-naphthyl group, 2,6-diphenoxyphenyl group, 2,4,6-triphenoxyphenyl group, 4-methyl-2 , 6-diphenoxyphenyl group, 4-t-butyl-2,6-diphenoxyphenyl group, 1,3-diphenoxy-2-naphthyl group, 2,6-dimethoxymethylphenyl group, 2,4,6-tri Methoxymethylphenyl group, 4-methyl-2,6-dimethoxymethylphenyl group, 4-t-butyl-2,6-dimethoxymethylphenyl group, 1,3-dimethoxymethyl-2-naphthyl group, 2,6-di Phenoxymethylphenyl group, 2,4,6-triphenoxymethylphenyl group, 4-methyl-2,6-diphenoxymethylphenyl group, 4-t-butyl-2,6-diphenoxymethylphenyl group, 1,3 -Diphenoxymethyl-2-naphthyl group, 2,6-di (2-methoxyethyl) phenyl group, 2,4,6-tri (2-methoxyethyl) phenyl group, 4-methyl-2,6-di ( 2-methoxyethyl) phenyl group, 4-t-butyl-2,6-di (2-methoxyethyl) phenyl group, 1,3-di (2-methoxyethyl) -2-naphthyl group, 2,6-di 2-phenoxyethyl) phenyl group, 2,4,6-tri (2-phenoxyethyl) phenyl group, 4-methyl-2,6-di (2-phenoxyethyl) phenyl group, 4-t-butyl-2, Examples thereof include 6-di (2-phenoxyethyl) phenyl group and 1,3-di (2-phenoxyethyl) -2-naphthyl group.

本発明において、Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。Rの炭素数が11以上であると、金属錯体の安定性を損なう傾向がある。よって、Rの炭素数は0〜20であるが、好ましくは炭素数0〜10であり、さらに好ましくは炭素数0〜6である。なお、Rは、R、R10、R11、R12、R13から適宜選択された複数の基と互いに連結し、脂環式環または芳香族環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。また、2つのRは、互いに連結してもよい。この時、2つのRの合計炭素数は、2〜6が好ましい。 In the present invention, each R 5 independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom. When the carbon number of R 5 is 11 or more, the metal complex tends to be deteriorated in stability. Therefore, R 5 has 0 to 20 carbon atoms, preferably 0 to 10 carbon atoms, and more preferably 0 to 6 carbon atoms. R 5 may be linked to a plurality of groups appropriately selected from R 4 , R 10 , R 11 , R 12 , and R 13 to form an alicyclic ring or an aromatic ring. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring. Also, the two R 5 may be linked to each other. At this time, the total carbon number of the two R 5 is preferably 2 to 6.

10、R11、R12、R13については、前記した通りであるが、これらのうち、R11については、かさ高い方が、高分子量の重合体を与える傾向にあり、好ましい。R11の炭素数は1〜30であるが、炭素数3〜30であることが好ましい。
11の例を具体的に挙げると、炭化水素基として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、フェニル基、1−ナフチル基、2−ナフチル基、1−アンスラセニル基、2−アンスラセニル基、9−アンスラセニル基、4−t−ブチルフェニル基、2,4−ジ−t−ブチルフェニル基、9−フルオレニル基、シクロヘキシル基などを、ヘテロ原子含有炭化水素基として、トリフルオロメチル基、トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリフェニルシリル基、2,6−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、ペンタフルオロフェニル基、シクロヘキシルアミノ基などを挙げることができる。
これらのうち、特に好ましいR11として、t−ブチル基、トリメチルシリル基、フェニル基、9−アンスラセニル基、4−t−ブチルフェニル基、2,4−ジ−t−ブチルフェニル基が挙げられる。
R 10 , R 11 , R 12 , and R 13 are as described above. Among these, the bulkiness of R 11 is preferred because it tends to give a high molecular weight polymer. R 11 has 1 to 30 carbon atoms, preferably 3 to 30 carbon atoms.
Specific examples of R 11 include, as a hydrocarbon group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a phenyl group, and a 1-naphthyl group. 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 4-t-butylphenyl group, 2,4-di-t-butylphenyl group, 9-fluorenyl group, cyclohexyl group, etc. As a hetero atom-containing hydrocarbon group, a trifluoromethyl group, a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triphenylsilyl group, a 2,6-difluorophenyl group, 2,4,6-trifluoro A phenyl group, a pentafluorophenyl group, a cyclohexylamino group, etc. can be mentioned.
Of these, particularly preferred R 11 includes a t-butyl group, a trimethylsilyl group, a phenyl group, a 9-anthracenyl group, a 4-t-butylphenyl group, and a 2,4-di-t-butylphenyl group.

以下、本発明の金属錯体(A)を下記に例示するが、下記例示に限定されるものではない。なお、下記例示において、Meはメチル基を、Etはエチル基を、iPrはイソプロピル基を、tBuはターシャリーブチル基を、Cyはシクロヘキシル基を、Phはフェニル基を示す。   Hereinafter, although the metal complex (A) of this invention is illustrated below, it is not limited to the following illustration. In the following examples, Me represents a methyl group, Et represents an ethyl group, iPr represents an isopropyl group, tBu represents a tertiary butyl group, Cy represents a cyclohexyl group, and Ph represents a phenyl group.

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

なお、リガンドの構造や錯体形成条件によっては、一般式(A)で示した錯体の立体異性体が形成されることもある。さらに、Mが4以外の配位数をとることもあり得る。これも一種の異性体である。本発明の錯体は、こうした異性体であってもよく、また、こうした異性体の混合物であってもよい。以下、Mが配位数5をとる場合について、一例を示した。   Depending on the ligand structure and complex formation conditions, stereoisomers of the complex represented by the general formula (A) may be formed. Further, M may have a coordination number other than 4. This is also a kind of isomer. The complex of the present invention may be such an isomer or a mixture of such isomers. Hereinafter, an example is shown for the case where M has a coordination number of 5.

Figure 0005622376
Figure 0005622376

3.金属錯体の生成方法
本発明の金属錯体(A)は、下記一般式(B)および/または(C)で表される化合物と、9族、10族または11族の遷移金属を含む遷移金属錯体(D)を接触させることにより得ることができる。
3. Method for Forming Metal Complex The metal complex (A) of the present invention is a transition metal complex containing a compound represented by the following general formula (B) and / or (C) and a transition metal of group 9, 10 or 11 It can be obtained by contacting (D).

Figure 0005622376
Figure 0005622376

一般式(B)および(C)において、Zは、水素、または脱離基である。mは、Zの価数を表す。X、Y、E、R、R、R10、R11、R12、R13は、前記した通りである。
Zは、水素、または脱離基であるが、具体的には、水素、RSO基(ここでRは、前記したとおりである)、CFSO基などを挙げることができる。
In the general formulas (B) and (C), Z is hydrogen or a leaving group. m represents the valence of Z. X 1 , Y 1 , E 1 , R 4 , R 5 , R 10 , R 11 , R 12 , R 13 are as described above.
Z is hydrogen or a leaving group, and specific examples thereof include hydrogen, R 1 SO 2 group (where R 1 is as described above), CF 3 SO 2 group, and the like. .

一般式(C)は、アニオンの形で表されているが、そのカウンターカチオンは、本発明の遷移金属錯体(D)との反応を阻害しない限りにおいて、任意のものを用いることができる。
カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはフォスフォニウム、周期律表1族〜14族の金属イオンを挙げることができる。これらのうち好ましくは、NH 、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、K、Mg 、Ca 、Al であり、さらに好ましくは、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、Kである。
Although the general formula (C) is expressed in the form of an anion, any counter cation can be used as long as it does not inhibit the reaction with the transition metal complex (D) of the present invention.
Specific examples of the counter cation include ammonium, quaternary ammonium, phosphonium, and metal ions of Groups 1 to 14 of the periodic table. Of these, preferably NH 4 + , R 1 4 N + (wherein R 1 is as described above, and four R 1 may be the same or different), and R 1 4 P + (here in R 1 is as described above, the four R 1 may be the same or different), Li +, Na +, K +, Mg 2 +, Ca 2 +, a Al 3 +, further Preferably, R 1 4 N + (wherein R 1 is as described above, and four R 1 may be the same or different), Li + , Na + , K + .

一般式(B)〜(C)で示される物質については、公知の合成法に基づいて合成することができる。
金属錯体(A)は、前記(B)または(C)で表される化合物と、本発明の金属Mを含む遷移金属錯体成分(D)との反応生成物に含まれる。
本発明で用いられる遷移金属錯体成分(D)については、一般式(B)または(C)で示される化合物と反応して重合能を有する錯体を形成可能なものが使用される。これらは、プリカーサー(前駆体)とも呼ばれることがある。たとえば、ニッケルを含む遷移金属錯体(D)としては、ビス−1,5−シクロオクタジエンニッケル(0)、一般式:(CHCRCHNiで表される錯体(ここでRは前記した通りである。)、ビスシクロペンタジエニルニッケル(2)、一般式:Ni(CHSiR で表される錯体(ここでR、Lは、本明細書に記載した通りである。)、一般式:NiR で表される錯体(ここでR、Lは、本明細書に記載した通りである。)等を使用することができる。
About the substance shown by general formula (B)-(C), it is compoundable based on a well-known synthesis method.
The metal complex (A) is contained in the reaction product of the compound represented by the above (B) or (C) and the transition metal complex component (D) containing the metal M of the present invention.
As the transition metal complex component (D) used in the present invention, those capable of reacting with the compound represented by the general formula (B) or (C) to form a complex having a polymerization ability are used. These are sometimes called precursors (precursors). For example, as the transition metal complex (D) containing nickel, bis-1,5-cyclooctadiene nickel (0), a complex represented by the general formula: (CH 2 CR 1 CH 2 ) 2 Ni (here, R 1 is as described above), a biscyclopentadienyl nickel (2), a complex represented by the general formula: Ni (CH 2 SiR 1 3 ) 2 L 1 2 (where R 1 and L 1 are And a complex represented by the general formula: NiR 1 2 L 1 2 (where R 1 and L 1 are as described in this specification) and the like. can do.

また、9族、10族または11族の遷移金属を含む遷移金属錯体(D)については、一般式:MR10 (ここで、Mは、9族、10族または11族の遷移金属、R10およびLは、本明細書に記載した通りであり、pおよびqは、Mの価数を満たす0以上の整数である。)を使用することができる。
これらの遷移金属のうち、好ましく用いられるものは、ビス−1,5−シクロオクタジエンニッケル(0)、一般式:(CHCRCHNiで表される錯体(ここでRは、本明細書に記載した通りである。)、一般式:Ni(CHSiR で表される錯体(ここでR、Lは、本明細書に記載した通りである。)、一般式:NiR で表される錯体(ここでR、Lは、本明細書に記載した通りである。)、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCHである。
特に好ましくは、ビス−1,5−シクロオクタジエンニッケル(0)、(CHCHCHNi、(CHCMeCHNi、Ni(CHSiMe(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSiMe(Lut)(以下Lutは、2,6−ルチジンを表す。)、NiPh(Py)、Ni(Ph)(Lut)、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCHである。
The transition metal complex (D) containing a Group 9, 10 or 11 transition metal is represented by the general formula: MR 10 p L 1 q (where M is a group 9, 10 or 11 transition). The metals R 10 and L 1 are as described herein, and p and q are integers of 0 or more that satisfy the valence of M.).
Among these transition metals, those preferably used are bis-1,5-cyclooctadiene nickel (0) and a complex represented by the general formula: (CH 2 CR 1 CH 2 ) 2 Ni (where R 1 Is as described in this specification.), A complex represented by the general formula: Ni (CH 2 SiR 1 3 ) 2 L 1 2 (where R 1 and L 1 are described in the present specification). ), A complex represented by the general formula: NiR 1 2 L 1 2 (where R 1 and L 1 are as described herein), Pd (dba) 2 , Pd 2 (Dba) 3 , Pd 3 (dba) 4 (where dba represents dibenzylideneacetone), Pd (OCOCH 3 ) 2 .
Particularly preferably, bis-1,5-cyclooctadiene nickel (0), (CH 2 CHCH 2 ) 2 Ni, (CH 2 CMeCH 2 ) 2 Ni, Ni (CH 2 SiMe 3 ) 2 (Py) 2 (below) Py represents pyridine.), Ni (CH 2 SiMe 3 ) 2 (Lut) 2 (hereinafter, Lut represents 2,6-lutidine), NiPh 2 (Py) 2 , Ni (Ph) 2 (Lut ) 2 , Pd (dba) 2 , Pd 2 (dba) 3 , Pd 3 (dba) 4 (where dba represents dibenzylideneacetone), Pd (OCOCH 3 ) 2 .

本発明に係る反応生成物は、前述の一般式(B)または(C)で表される化合物と前述の遷移金属錯体(D)とを、例えば、(B)+(C):(D)=1:99〜99:1(モル比)を0〜100℃のトルエン等の有機溶媒中で、減圧〜加圧下で1〜86400秒間接触させることにより、得ることができる。(D)として、Ni(COD)のトルエン溶液を用いる場合には、溶液の色が黄色から、例えば赤色に変化することにより反応生成物の生成が確認できる。 The reaction product according to the present invention comprises a compound represented by the above general formula (B) or (C) and the above transition metal complex (D), for example, (B) + (C) :( D) = 1: 99 to 99: 1 (molar ratio) in an organic solvent such as toluene at 0 to 100 ° C. under reduced pressure to increased pressure for 1 to 86400 seconds. When a toluene solution of Ni (COD) 2 is used as (D), the production of the reaction product can be confirmed by changing the color of the solution from yellow to, for example, red.

本反応後、(D)を構成している成分であって、(D)の遷移金属以外の成分は、(B)成分のZを除いた部分や(C)成分によって置換されて、本発明の金属錯体(A)が生成する。この置換反応は、定量的に進行するほうが好ましいが、場合によっては完全に進行しなくてもよい。反応終了後、金属錯体(A)以外に、(B)、(C)、(D)由来の他の成分が共存するが、本発明の重合反応または共重合反応を行う際に、これらの他の成分は除去してもよいし、除去しなくてもよい。一般的には、これらの他の成分は、除去したほうが、高活性が得られるので好ましい。   After this reaction, the component constituting (D), which is a component other than the transition metal of (D), is substituted with the portion other than Z of component (B) or component (C), and the present invention. The metal complex (A) is produced. This substitution reaction preferably proceeds quantitatively, but may not proceed completely in some cases. After completion of the reaction, in addition to the metal complex (A), other components derived from (B), (C), and (D) coexist, but when performing the polymerization reaction or copolymerization reaction of the present invention, these other components These components may or may not be removed. Generally, it is preferable to remove these other components because high activity can be obtained.

なお、反応を行う際に、本発明のLを共存させてもよい。本発明のMとして、ニッケルやパラジウムを用いた場合には、ルイス塩基性のLを系内に共存させることによって、精製した金属錯体(A)の安定性が増す場合があり、このような場合には、Lが本発明の重合反応または共重合反応を阻害しない限りにおいて、Lを共存させることが好ましい。
本発明において、反応をα−オレフィンの重合やα−オレフィンとプロペン酸誘導体エステルとの共重合に使用する反応器とは別の容器であらかじめ行ったうえで、得られた金属錯体(A)をα−オレフィンの重合やα−オレフィンとプロペン酸誘導体エステルとの共重合に供してもよいし、反応をこれらのモノマーの存在下に行ってもよい。また、反応を、α−オレフィンの重合やα−オレフィンとプロペン酸誘導体エステルとの共重合に使用する反応器の中で行ってもよい。この際に、これらのモノマーは、存在していてもよいし、存在していなくてもよい。また、一般式(B)〜(D)で示される成分については、それぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の併用が有用である。
Incidentally, when performing the reaction, it may coexist L 1 of the present invention. When nickel or palladium is used as M of the present invention, the stability of the purified metal complex (A) may be increased by allowing Lewis basic L 1 to coexist in the system. in this case, as long as the L 1 does not inhibit the polymerization reaction or copolymerization reaction of the present invention, it is preferable to coexist L 1.
In the present invention, the reaction is carried out in a separate container from the reactor used for the polymerization of α-olefin and the copolymerization of α-olefin and propenoic acid derivative ester, and the obtained metal complex (A) is used. You may use for superposition | polymerization of (alpha) -olefin, the copolymerization of (alpha) -olefin and a propenoic acid derivative ester, and you may perform reaction in presence of these monomers. Moreover, you may perform reaction in the reactor used for the superposition | polymerization of (alpha) -olefin polymerization, and (alpha) -olefin and propenoic acid derivative ester. In this case, these monomers may exist or may not exist. Moreover, about the component shown by general formula (B)-(D), each independent component may be used, respectively, and multiple types of component may be used together, respectively. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, a combination of these plural types is useful.

以下、本発明で使用可能な(B)を例示するが、下記例示に限定されるものではない。なお、下記例示において、Meはメチル基を、Etはエチル基を、iPrはイソプロピル基を、Phはフェニル基を、Cyはシクロヘキシル基を、tBuはターシャリーブチル基を示す。   Hereinafter, (B) that can be used in the present invention is exemplified, but the present invention is not limited to the following examples. In the following examples, Me represents a methyl group, Et represents an ethyl group, iPr represents an isopropyl group, Ph represents a phenyl group, Cy represents a cyclohexyl group, and tBu represents a tertiary butyl group.

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

4.重合反応
本発明において、一般式(A)で表される金属錯体を、重合または共重合の触媒成分として使用することができる。
前記したように、一般式(A)で表される金属錯体は、一般式(B)または(C)と、遷移金属錯体成分(D)との反応によって形成させることができる。一般式(A)で表される金属錯体を触媒成分に用いる場合、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持をα−オレフィンの重合やα−オレフィンとプロペン酸誘導体エステル(例えば、(メタ)アクリル酸エステル)との共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。
4). Polymerization Reaction In the present invention, the metal complex represented by the general formula (A) can be used as a catalyst component for polymerization or copolymerization.
As described above, the metal complex represented by the general formula (A) can be formed by a reaction between the general formula (B) or (C) and the transition metal complex component (D). When the metal complex represented by the general formula (A) is used as a catalyst component, an isolated one may be used, or one supported on a carrier may be used. In the reactor used for polymerization of α-olefin and copolymerization of α-olefin and propenoic acid derivative ester (for example, (meth) acrylic acid ester) in the presence or absence of these monomers. You may carry out, and you may carry out in a container different from this reactor.

使用可能な担体としては、本発明の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。
具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO−Al、SiO−V、SiO−TiO、SiO−MgO、SiO−Cr等の混合酸化物も、使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに、特に制限はなく、任意のものが使用可能である。
As a usable carrier, any carrier can be used as long as the gist of the present invention is not impaired. In general, inorganic oxides and polymer carriers can be preferably used.
Specific examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, or a mixture thereof, and SiO 2 —Al 2 O 3. , SiO 2 —V 2 O 5 , SiO 2 —TiO 2 , SiO 2 —MgO, SiO 2 —Cr 2 O 3 and other mixed oxides can also be used, inorganic silicate, polyethylene carrier, polypropylene carrier Polystyrene carrier, polyacrylic acid carrier, polymethacrylic acid carrier, polyacrylic acid ester carrier, polyester carrier, polyamide carrier, polyimide carrier and the like can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area and the like, and any one can be used.

無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。
粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
As the inorganic silicate, clay, clay mineral, zeolite, diatomaceous earth and the like can be used. A synthetic product may be used for these, and the mineral produced naturally may be used.
Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, etc. Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer. Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite. Of these specific examples, preferably, kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite Particularly preferred are montmorillonite, sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.

これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また、粉砕や造粒等の形状制御や乾燥処理を行ってもよい。 These carriers may be used as they are, but may be treated with hydrochloric acid, nitric acid, sulfuric acid, etc. and / or LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti ( Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3 may be performed. In the treatment, the corresponding acid and base may be mixed to produce a salt in the reaction system. Further, shape control such as pulverization and granulation and drying treatment may be performed.

本発明における重合反応は、プロパン、n−ブタン、イソブタン、n−ヘキサン、n−ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α−オレフィン等の液体、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。さらに、イオン液体も、溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。   The polymerization reaction in the present invention is a liquid such as a hydrocarbon solvent such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane and methylcyclohexane, a liquefied α-olefin, diethyl ether, The reaction is carried out in the presence or absence of a polar solvent such as ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like. Moreover, you may use the mixture of the liquid compound described here as a solvent. Furthermore, an ionic liquid can also be used as a solvent. In addition, in order to obtain high polymerization activity and high molecular weight, the above-mentioned hydrocarbon solvent and ionic liquid are more preferable.

本発明では、公知の添加剤の存在下または非存在下で重合反応を行うことができる。
上記添加剤としては、(b)成分のラジカル重合を禁止する重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。具体的には、モノメチルエーテルハイドロキノンや、2,6−ジ−t−ブチル4−メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。また、添加剤として、無機およびまたは有機フィラーを使用し、これらのフィラーの存在下で重合を行っても良い。さらに、本発明のLやイオン液体を添加剤として用いてもよい。
本発明における好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、プロペン酸誘導体エステル(例えば、アクリル酸エステル)の共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量〜1000当量、好ましくは0.1当量〜100当量、さらに好ましくは、0.3当量〜30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、本発明の触媒成分と混合して添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。また、本発明のLと同じルイス塩基を用いてもよいし、異なっていてもよい。
In the present invention, the polymerization reaction can be carried out in the presence or absence of a known additive.
As said additive, the polymerization inhibitor which prohibits radical polymerization of (b) component, and the additive which has the effect | action which stabilizes a production | generation copolymer are preferable. Examples of preferable additives include quinone derivatives and hindered phenol derivatives. Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl 4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction product of alkoxide of tetravalent titanium and BHT, etc. Can be used. Further, as an additive, inorganic and / or organic fillers may be used and polymerization may be performed in the presence of these fillers. Further, it may be used L 1 and an ionic liquid of the present invention as an additive.
A preferred additive in the present invention is Lewis base. By selecting an appropriate Lewis base, the activity, molecular weight, and copolymerization properties of propenoic acid derivative esters (eg, acrylate esters) can be improved. The amount of the Lewis base is 0.0001 to 1000 equivalents, preferably 0.1 to 100 equivalents, more preferably 0.3 equivalents with respect to the transition metal M in the catalyst component present in the polymerization system. ~ 30 equivalents. There is no restriction | limiting in particular about the method of adding a Lewis base to a polymerization system, Arbitrary methods can be used. For example, it may be mixed with the catalyst component of the present invention, added with a monomer, or added to the polymerization system independently of the catalyst component or the monomer. A plurality of Lewis bases may be used in combination. In addition, the same Lewis base as L 1 of the present invention may be used, or may be different.

ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、フォスフェート類、フォスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などを挙げることができる。これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6−ルチジン、2,4−ルチジン、3,5−ルチジン、ピリミジン、N,N−ジメチルアミノピリジン、N−メチルイミダゾール、2,2’−ビピリジン、アニリン、ピペリジン、1,3,5−トリアジン、2,4,6−トリス(トリフルオロメチル)−1,3,5−トリアジン、2,4,6−トリス(2−ピリジル)−s−トリアジン、キノリン、8−メチルキノリン、フェナジン、1,10−フェナンスロリン、N−メチルピロール、1,8−ジアザビシクロ−[5.4.0]−ウンデカ−7−エン、1,4−ジアザビシクロ−[2,2,2]−オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N−メチル−2−ピロリドン、4−メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5−ジメチルフラン、ジベンゾフラン、キサンテン、1,4−ジオキサン、1,3,5−トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルフォスフォニウムシクロペンタジエニド、トリフェニルフォスファイト、トリフェニルフォスフェート、トリピロリジノフォスフィン、トリス(ピロリジノ)ボランなどを挙げることができる。
Lewis bases include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters , Aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, cyclic unsaturated hydrocarbons, and the like. Among these, particularly preferred Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, aromatic esters, and among them, preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine. Derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, furan derivatives.
Specific Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N, N-dimethylaminopyridine, N-methylimidazole, 2, 2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-tris (2-pyridyl) -S-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, 1,8-diazabicyclo- [5.4.0] -undec-7-ene, 1,4 -Diazabicyclo- [2,2,2] -octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolidone, 4-methylmorpholine, benzoxazole, benzothiazole, furan, 2,5-dimethylfuran, dibenzofuran, xanthene, 1,4-dioxane, 1,3,5-trioxane, dibenzothiophene, thianthrene, triphenylphosphonium cyclo Examples thereof include pentadienide, triphenyl phosphite, triphenyl phosphate, tripyrrolidinophosphine, and tris (pyrrolidino) borane.

本発明において、重合形式に特に制限はない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。さらに、いわゆるchain transfer agent(CSA)を併用し、chain shuttlingや、coordinative chain transfer polymerization(CCTP)を行ってもよい。   In the present invention, the polymerization mode is not particularly limited. Slurry polymerization in which at least a part of the generated polymer in the medium becomes a slurry, bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization performed in a vaporized monomer, or a polymer generated in a monomer liquefied at high temperature and high pressure High-pressure ionic polymerization in which at least a part of the polymer is dissolved is preferably used. Further, any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used. Moreover, living polymerization may be sufficient and it may superpose | polymerize, combining chain transfer. Furthermore, so-called chain transfer agent (CSA) may be used in combination, and chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.

未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。   Unreacted monomers and media may be separated from the produced copolymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification. A conventionally known method can be used to separate the produced copolymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.

重合温度、重合圧力および重合時間に、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は通常−20℃〜290℃、好ましくは0℃〜250℃、共重合圧力は、0.1MPa〜100MPa、好ましくは0.3MPa〜90MPa、重合時間は、0.1分〜10時間、好ましくは0.5分〜7時間、さらに好ましくは1分〜6時間の範囲から選ぶことができる。
本発明において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン、二酸化炭素雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
The polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, but usually, optimum settings can be made in consideration of productivity and process capability from the following ranges. That is, the polymerization temperature is usually −20 ° C. to 290 ° C., preferably 0 ° C. to 250 ° C., the copolymerization pressure is 0.1 MPa to 100 MPa, preferably 0.3 MPa to 90 MPa, and the polymerization time is 0.1 minutes to 10 minutes. The time can be selected from the range of preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
In the present invention, the polymerization is generally performed in an inert gas atmosphere. For example, a nitrogen, argon or carbon dioxide atmosphere can be used, and a nitrogen atmosphere is preferably used. A small amount of oxygen or air may be mixed.

重合反応器への触媒とモノマーの供給に関しても、特に制限はなく、目的に応じてさまざまな供給法をとることができる。例えば、バッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることができる。
共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって、制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
There are no particular restrictions on the supply of catalyst and monomer to the polymerization reactor, and various supply methods can be employed depending on the purpose. For example, in the case of batch polymerization, it is possible to take a technique in which a predetermined amount of monomer is supplied to a polymerization reactor in advance and a catalyst is supplied thereto. In this case, an additional monomer or an additional catalyst may be supplied to the polymerization reactor. In the case of continuous polymerization, a method can be used in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to the polymerization reactor to continuously carry out the polymerization reaction.
Regarding the control of the composition of the copolymer, a method of controlling the copolymer by supplying a plurality of monomers to the reactor and changing the supply ratio thereof can be generally used. Other methods include controlling the copolymer composition using the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio. .

重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中のリガンド構造の制御により分子量を制御する等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
また、(b)成分自身が一種の連鎖移動剤となる場合には、(b)成分の(a)成分に対する比率や、(b)成分の濃度を制御することによっても、分子量調節が可能である。遷移金属錯体中のリガンド構造を制御して分子量調節を行う場合には、前記したR中のヘテロ原子含有基の種類、数、配置を制御したり、金属Mのまわりにかさだかい置換基を配置したり、前記したR10〜R13中にヘテロ原子を導入したりすることによって、一般に分子量が向上する傾向を利用することができる。なお、金属Mに対して、アリール基やヘテロ原子含有置換基などの電子供与性基が相互作用可能となるように電子供与性基を配置することが好ましい。こうした電子供与性基が金属Mと相互作用可能であるかどうかは、一般に、分子模型や分子軌道計算で電子供与性基と金属Mとの距離を測定することによって判断できる。
A conventionally known method can be used for controlling the molecular weight of the polymer. That is, a method for controlling the molecular weight by controlling the polymerization temperature, a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a molecular weight by controlling the ligand structure in the transition metal complex. For example. When a chain transfer agent is used, a conventionally known chain transfer agent can be used. For example, hydrogen, metal alkyl, etc. can be used.
In addition, when the component (b) itself becomes a kind of chain transfer agent, the molecular weight can be adjusted by controlling the ratio of the component (b) to the component (a) and the concentration of the component (b). is there. When the molecular weight is adjusted by controlling the ligand structure in the transition metal complex, the type, number, and arrangement of the hetero atom-containing groups in R 4 described above are controlled, and the bulky substituent around the metal M In general, the tendency to improve the molecular weight can be utilized by arranging a hetero atom in the above-described R 10 to R 13 . In addition, it is preferable to arrange | position an electron-donating group with respect to the metal M so that electron-donating groups, such as an aryl group and a hetero atom containing substituent, can interact. Whether or not such an electron-donating group can interact with the metal M can be generally determined by measuring the distance between the electron-donating group and the metal M by a molecular model or molecular orbital calculation.

本発明の共重合体は、共重合体の極性基にもとづく効果により、良好な塗装性、印刷性、帯電防止性、無機フィラー分散性、他樹脂との接着性、他樹脂との相溶化能などが発現する。こうした性質を利用して、本発明の共重合体は、さまざまな用途に使用することができる。例えば、フィルム、シート、接着性樹脂、バインダー、相溶化剤、ワックスなどとして、使用可能である。   The copolymer of the present invention has good paintability, printability, antistatic properties, inorganic filler dispersibility, adhesion to other resins, and compatibility with other resins due to the effects based on the polar groups of the copolymer. Etc. are expressed. Utilizing these properties, the copolymer of the present invention can be used for various applications. For example, it can be used as a film, sheet, adhesive resin, binder, compatibilizer, wax and the like.

以下の実施例および比較例において、本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
なお、実施例、比較例で用いた評価方法は、以下の通りである。また、接触生成物に用いるリガンドおよび比較例で用いる錯体の製造法を合成例に示す。
以下の合成例で、とくに断りのない限り、操作は精製窒素雰囲気下で行い、溶媒は、脱水・脱酸素したものを用いた。
In the following examples and comparative examples, the present invention will be described in more detail, but the present invention is not limited thereto.
In addition, the evaluation method used by the Example and the comparative example is as follows. In addition, the synthesis example shows the ligand used for the contact product and the method for producing the complex used in the comparative example.
In the following synthesis examples, unless otherwise specified, the operation was performed in a purified nitrogen atmosphere, and the solvent used was dehydrated and deoxygenated.

1.評価法
(1)融点(Tm)、結晶化温度(Tc):
以下のDSC測定により求めた。
PerkinElmer社製PYRIS Diamond DSC示差走査熱量測定装置を使用して、試料(約5mg)を210℃で5分間融解後、10℃/minの速度で−20℃まで降温し、−20℃で5分保持した後に、10℃/minの速度で210℃まで昇温することにより、融解曲線を得た。降温段階における主発熱ピークのピークトップ温度を結晶化温度Tcとした。また、融解曲線を得るために行った最後の昇温段階における主吸熱ピークのピークトップ温度を融点Tmとした。
1. Evaluation method (1) Melting point (Tm), crystallization temperature (Tc):
It calculated | required by the following DSC measurements.
Using a PerkinElmer PYRIS Diamond DSC differential scanning calorimeter, the sample (about 5 mg) was melted at 210 ° C. for 5 minutes, cooled to −20 ° C. at a rate of 10 ° C./min, and then at −20 ° C. for 5 minutes. After being held, the melting curve was obtained by raising the temperature to 210 ° C. at a rate of 10 ° C./min. The peak top temperature of the main exothermic peak in the temperature lowering stage was defined as the crystallization temperature Tc. In addition, the peak top temperature of the main endothermic peak in the final temperature increase stage performed to obtain the melting curve was defined as the melting point Tm.

(2)重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn):
以下のGPC測定により求めた。
はじめに、試料約20(mg)をポリマーラボラトリー社製高温GPC用前処理装置PL−SP 260VS用のバイアル瓶に採取し、安定剤としてBHTを含有するo−ジクロロベンゼン(BHT濃度=0.5g/L)を加え、ポリマー濃度が0.1(重量%)になるように調整した。
ポリマーを上記高温GPC用前処理装置PL−SP260VS中で135℃に加熱して溶解させ、グラスフィルターにて濾過して試料を調製した。なお、本発明におけるGPC測定において、グラスフィルターに捕捉されたポリマーはなかった。
次に、カラムとして、東ソー社製TSKgel GMH−HT(30cm×4本)およびRI検出器を装着したウォーターズ社製GPCV2000を使用して、GPC測定を行った。測定条件としては、試料溶液注入量:524.5(μl)、カラム温度:135℃、溶媒:o−ジクロロベンゼン、流量:1.0(ml/min)を採用した。
分子量の算出は、以下のように行った。
すなわち、標準試料として市販の単分散のポリスチレンを使用し、該ポリスチレン標準試料およびエチレン系重合体の粘度式から、保持時間と分子量に関する校正曲線を作成し、該校正曲線に基づいて分子量の算出を行った。
なお、粘度式としては、[η]=K×Mαを使用し、ポリスチレンに対しては、K=1.38E−4、α=0.70を使用し、エチレン系重合体に対しては、K=4.77E−4、α=0.70を使用した。
(2) Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn):
It calculated | required by the following GPC measurement.
First, about 20 (mg) of a sample was collected in a vial for a high temperature GPC pretreatment device PL-SP 260VS manufactured by Polymer Laboratories, and o-dichlorobenzene containing BHT as a stabilizer (BHT concentration = 0.5 g / L) was added to adjust the polymer concentration to 0.1 (% by weight).
The polymer was dissolved by heating to 135 ° C. in the pretreatment apparatus for high temperature GPC PL-SP260VS, and filtered through a glass filter to prepare a sample. In the GPC measurement in the present invention, no polymer was captured by the glass filter.
Next, GPC measurement was performed using Tosoh's TSKgel GMH-HT (30 cm × 4) and Waters GPCV2000 equipped with an RI detector. As measurement conditions, sample solution injection amount: 524.5 (μl), column temperature: 135 ° C., solvent: o-dichlorobenzene, flow rate: 1.0 (ml / min) were employed.
The molecular weight was calculated as follows.
That is, a commercially available monodispersed polystyrene is used as a standard sample, a calibration curve relating to the retention time and molecular weight is created from the polystyrene standard sample and the viscosity formula of the ethylene polymer, and the molecular weight is calculated based on the calibration curve. went.
In addition, as a viscosity formula, [η] = K × M α is used, for polystyrene, K = 1.38E-4, α = 0.70 is used, and for ethylene polymer, K = 4.77E-4, α = 0.70.

2.リガンド、錯体
(合成例1):リガンドB−39の合成
(1)中間体2の合成
下記のスキームにしたがって、中間体2を合成した。
2. Ligand, Complex (Synthesis Example 1): Synthesis of Ligand B-39 (1) Synthesis of Intermediate 2 Intermediate 2 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

無水THF(500ml)に50g(0.36mol)の2,6−ジメトキシベンゼン1を溶解させた。ここに、窒素雰囲気下でn−ブチルリチウムのn−ヘキサン溶液(166ml,0.42mol)を0℃で徐々に加えた。ここで得られた溶液に、無水THF(200ml)に溶解させたヨウ素(96.5g,0.38mol)の溶液を0℃で40分間かけて滴下した。得られた溶液を室温で終夜攪拌した。終了後、80mlのメタノールを滴下し、得られた混合物を減圧下に濃縮し、水(200ml)を加えた後、酢酸エチル(250ml)で3回抽出した。有機層を集め、Naおよび食塩水で該有機層を洗浄した後、硫酸ナトリウムを用いて乾燥した。乾燥後、無機塩を濾別し、減圧下に濃縮を行い、残渣をメタノール(50ml)で4回洗浄して乾燥させたところ、中間体2が黄色の固体として得られた。収量:63g(収率:66%)。 50 g (0.36 mol) of 2,6-dimethoxybenzene 1 was dissolved in anhydrous THF (500 ml). To this, an n-butyllithium n-hexane solution (166 ml, 0.42 mol) was gradually added at 0 ° C. in a nitrogen atmosphere. A solution of iodine (96.5 g, 0.38 mol) dissolved in anhydrous THF (200 ml) was added dropwise to the obtained solution at 0 ° C. over 40 minutes. The resulting solution was stirred overnight at room temperature. After completion, 80 ml of methanol was added dropwise, and the resulting mixture was concentrated under reduced pressure, water (200 ml) was added, and the mixture was extracted 3 times with ethyl acetate (250 ml). The organic layer was collected, washed with Na 2 S 2 O 3 and brine, and then dried over sodium sulfate. After drying, the inorganic salt was filtered off, concentrated under reduced pressure, and the residue was washed 4 times with methanol (50 ml) and dried, yielding intermediate 2 as a yellow solid. Yield: 63 g (yield: 66%).

(2)中間体4の合成
下記のスキームにしたがって、中間体4を合成した。
(2) Synthesis of Intermediate 4 Intermediate 4 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

無水THFに7.5g(28.3mmol)の中間体2を溶解させた。ここに、窒素雰囲気下でイソプロピルマグネシウムクロライドのTHF溶液(14.3ml,濃度:2M,溶媒:無水THF)を−50℃で徐々に添加し、得られた混合物を室温で1時間攪拌した。
次に、該混合物を−78℃に冷却し、三塩化リン(1.95g,14.1mmol)をゆっくり添加した。その後、室温で終夜攪拌し、得られた中間体4を含む反応生成物は、さらに精製することなく次の反応に使用した。
7.5 g (28.3 mmol) of Intermediate 2 was dissolved in anhydrous THF. To this, a THF solution of isopropylmagnesium chloride (14.3 ml, concentration: 2M, solvent: anhydrous THF) was gradually added at −50 ° C. under a nitrogen atmosphere, and the resulting mixture was stirred at room temperature for 1 hour.
The mixture was then cooled to −78 ° C. and phosphorus trichloride (1.95 g, 14.1 mmol) was added slowly. Thereafter, the mixture was stirred overnight at room temperature, and the resulting reaction product containing Intermediate 4 was used in the next reaction without further purification.

(3)中間体6の合成
下記のスキームにしたがって、中間体6を合成した。
(3) Synthesis of Intermediate 6 Intermediate 6 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

無水THF(40ml)に化合物5(3g,14.4mmol)を溶解させ、窒素雰囲気下でsec−ブチルリチウムの溶液(11ml,14.4mol)を−78℃で徐々に添加し、得られた混合物を−78℃で2時間攪拌した。
次いで、該溶液に、上記で得られた中間体4のTHF溶液を−30℃で滴下し、得られた混合物を室温で1時間攪拌した。得られた反応混合物に硫黄(1.84g,57.6mmol)を加え、室温で終夜攪拌した。終了後、反応混合物に水を加え(THFを減圧除去)、酢酸エチルで抽出を行い、有機層を硫酸ナトリウムで乾燥した。無機塩を濾別して有機層を減圧下に濃縮した。得られた残渣を石油エーテル/酢酸エチルを溶媒としてカラムで精製し、目的とする中間体6が得られた。
Compound 5 (3 g, 14.4 mmol) was dissolved in anhydrous THF (40 ml), and a solution of sec-butyllithium (11 ml, 14.4 mol) was gradually added at −78 ° C. under a nitrogen atmosphere, and the resulting mixture was obtained. Was stirred at −78 ° C. for 2 hours.
Then, the THF solution of Intermediate 4 obtained above was added dropwise to the solution at −30 ° C., and the resulting mixture was stirred at room temperature for 1 hour. Sulfur (1.84 g, 57.6 mmol) was added to the obtained reaction mixture, and the mixture was stirred at room temperature overnight. After completion, water was added to the reaction mixture (THF was removed under reduced pressure), extraction was performed with ethyl acetate, and the organic layer was dried over sodium sulfate. The inorganic salt was filtered off and the organic layer was concentrated under reduced pressure. The obtained residue was purified with a column using petroleum ether / ethyl acetate as a solvent to obtain the intended intermediate 6.

(4)リガンドB−39の合成
下記のスキームにしたがって、リガンドB−39を合成した。
(4) Synthesis of Ligand B-39 Ligand B-39 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体6(9g)を酢酸エチル(150ml)に溶解させ、塩化水素ガスを−40℃で15分間バブリングした。室温まで徐々に昇温させ、室温でさらに30分間攪拌した。反応混合物を減圧下に濃縮し、中間体7を白色固体として得た(6.2g)。
ラネーニッケル触媒をTHF(20ml)に懸濁させ、中間体7(4.2g,7mmol)のTHF溶液(180ml)を加えて室温で16時間攪拌した。その後固体を濾別し、濾液を減圧下に濃縮した。得られた個体を酢酸エチルと石油エーテルの混合溶媒で再結晶し、目的とするリガンドB−39を白色固体として得た。収量2.8g。
H−NMR(CDCl,δppm):7.17(2H,t),6.97(1H,d),6.60(1H,d),6.59(1H,t),6.55(1H,t),6.43(4H,dd),6.33(1H,d),3.92(2H,d),3.55(12H,s),1.35(9H,s);
31P−NMR(CDCl,δppm):−48.2(s)
Intermediate 6 (9 g) was dissolved in ethyl acetate (150 ml) and hydrogen chloride gas was bubbled at −40 ° C. for 15 minutes. The temperature was gradually raised to room temperature, and the mixture was further stirred at room temperature for 30 minutes. The reaction mixture was concentrated under reduced pressure to give Intermediate 7 as a white solid (6.2 g).
Raney nickel catalyst was suspended in THF (20 ml), a solution of intermediate 7 (4.2 g, 7 mmol) in THF (180 ml) was added, and the mixture was stirred at room temperature for 16 hours. The solid was then filtered off and the filtrate was concentrated under reduced pressure. The obtained solid was recrystallized with a mixed solvent of ethyl acetate and petroleum ether to obtain the target ligand B-39 as a white solid. Yield 2.8g.
1 H-NMR (CDCl 3 , δ ppm): 7.17 (2H, t), 6.97 (1H, d), 6.60 (1H, d), 6.59 (1H, t), 6.55 (1H, t), 6.43 (4H, dd), 6.33 (1H, d), 3.92 (2H, d), 3.55 (12H, s), 1.35 (9H, s) ;
31 P-NMR (CDCl 3 , δ ppm): −48.2 (s)

(合成例2):リガンドB−43の合成
(1)中間体2の合成
下記のスキームにしたがって、中間体2を合成した。ここで、MOMは、メトキシメチル基を表す(以下同様)。
Synthesis Example 2 Synthesis of Ligand B-43 (1) Synthesis of Intermediate 2 Intermediate 2 was synthesized according to the following scheme. Here, MOM represents a methoxymethyl group (the same applies hereinafter).

Figure 0005622376
Figure 0005622376

オルトクレゾール1(50g,463mmol)を、別途調整した水素化ナトリウム(2.91g,1.5eq,ミネラルオイル中に60%濃度で分散したもの)のTHF(600ml)溶液に0℃で攪拌しながら滴下した。室温まで徐々に昇温し、室温で1時間反応させた。
次いで、クロロメトキシメタン(52.7ml,770mmol)を0℃で滴下し、室温に昇温した後、室温で終夜攪拌した。得られた反応混合物に水を加え、THFを減圧下に除去し、水および酢酸エチルを用いて抽出操作を行った。有機層を10%NaOH水溶液、次いで、飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られたオイルを減圧蒸留にて精製し、目的とする中間体2を50g得た。
Orthocresol 1 (50 g, 463 mmol) was stirred at 0 ° C. in a THF (600 ml) solution of sodium hydride (2.91 g, 1.5 eq, dispersed in mineral oil at a concentration of 60%) prepared separately. It was dripped. The temperature was gradually raised to room temperature, and the reaction was allowed to proceed for 1 hour at room temperature.
Then, chloromethoxymethane (52.7 ml, 770 mmol) was added dropwise at 0 ° C., the temperature was raised to room temperature, and the mixture was stirred at room temperature overnight. Water was added to the obtained reaction mixture, THF was removed under reduced pressure, and extraction operation was performed using water and ethyl acetate. The organic layer was washed with 10% aqueous NaOH solution, then with saturated brine, and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting oil was purified by distillation under reduced pressure to obtain 50 g of the intended intermediate 2.

(2)中間体3の合成
下記のスキームにしたがって、中間体3を合成した。
(2) Synthesis of Intermediate 3 Intermediate 3 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

5g(32.9mmol)の中間体2をTHF(80ml)に溶解し、ここに、n−ブチルリチウム(2.5M,13.2ml,32.9mmol)を窒素雰囲気下、0℃で滴下し、その温度で2時間攪拌した。
次いで、この反応混合物に、B(OMe)(5.6ml,1.5eq.)のTHF溶液を−78℃で徐々に加え、室温に昇温した後、室温で終夜攪拌した。得られた反応混合物に1規定塩酸20mLを加え、水およびジエチルエーテルを用いて抽出操作を行った。有機層を飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られた粗生成物を石油エーテルを用いて再結晶し、中間体3を得た。
5 g (32.9 mmol) of Intermediate 2 was dissolved in THF (80 ml), and n-butyllithium (2.5 M, 13.2 ml, 32.9 mmol) was added dropwise thereto at 0 ° C. under a nitrogen atmosphere. Stir at that temperature for 2 hours.
Next, a THF solution of B (OMe) 3 (5.6 ml, 1.5 eq.) Was gradually added to this reaction mixture at −78 ° C., and the mixture was warmed to room temperature and stirred overnight at room temperature. 20 mL of 1N hydrochloric acid was added to the obtained reaction mixture, and extraction operation was performed using water and diethyl ether. The organic layer was washed with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting crude product was recrystallized using petroleum ether to obtain Intermediate 3.

(3)中間体4の合成
下記のスキームにしたがって、中間体4を合成した。
(3) Synthesis of Intermediate 4 Intermediate 4 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体3(12.88g,47.8mmol)、1−ブロモ−3,5−ジ−tert−ブチルベンゼン(103g,1.1eq.)、テトラキス(トリフェニルホスフィン)パラジウム(2.76g,0.05eq.)、炭酸ナトリウム(6.10g,1.2eq.)、蒸留水(8ml)、エタノール(8ml)、トルエン(150ml)よりなる混合物を、100℃で16時間攪拌した。室温まで冷却した後、水および酢酸エチルを用いて抽出操作を行った。有機層を飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られたオイルを石油エーテル/酢酸エチル(80/1)を溶媒としてカラムで精製し、16gの粗生成物を得た。得られた粗生成物にメタノール50mlを加え、析出した固体を濾過により回収した。得られた個体を減圧下にて1時間乾燥し、中間体4(14.5g)を無色固体として得た。   Intermediate 3 (12.88 g, 47.8 mmol), 1-bromo-3,5-di-tert-butylbenzene (103 g, 1.1 eq.), Tetrakis (triphenylphosphine) palladium (2.76 g,. 05 eq.), Sodium carbonate (6.10 g, 1.2 eq.), Distilled water (8 ml), ethanol (8 ml) and toluene (150 ml) were stirred at 100 ° C. for 16 hours. After cooling to room temperature, extraction operation was performed using water and ethyl acetate. The organic layer was washed with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting oil was purified by a column using petroleum ether / ethyl acetate (80/1) as a solvent to obtain 16 g of a crude product. 50 ml of methanol was added to the obtained crude product, and the precipitated solid was collected by filtration. The obtained solid was dried under reduced pressure for 1 hour to obtain Intermediate 4 (14.5 g) as a colorless solid.

(4)中間体5の合成
下記のスキームにしたがって、中間体5を合成した。
(4) Synthesis of Intermediate 5 Intermediate 5 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

2.43g(7.1mmol)の中間体4をTHF(40ml)に溶解し、ここにsec−ブチルリチウムを−78℃で滴下し、その温度で2時間攪拌した。ついで2g(7.1mmol)のP(o−OMePh)Clを−30℃で滴下し、室温まで徐々に昇温し、室温で終夜攪拌した。得られた反応混合物に硫黄(0.91g,27.4mmol)を加え、室温で終夜攪拌した。得られた反応混合物に水を加え、THFを減圧下に除去し、水および酢酸エチルを用いて抽出操作を行った。有機層を飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られた固体を石油エーテル/酢酸エチル(5/1)を溶媒としてカラムで精製し、目的とする中間体5を1.6g得た。 2.43 g (7.1 mmol) of Intermediate 4 was dissolved in THF (40 ml), and sec-butyllithium was added dropwise thereto at −78 ° C., followed by stirring at that temperature for 2 hours. Subsequently, 2 g (7.1 mmol) of P (o-OMePh) 2 Cl was added dropwise at −30 ° C., the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature overnight. Sulfur (0.91 g, 27.4 mmol) was added to the obtained reaction mixture, and the mixture was stirred at room temperature overnight. Water was added to the obtained reaction mixture, THF was removed under reduced pressure, and extraction operation was performed using water and ethyl acetate. The organic layer was washed with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting solid was purified with a column using petroleum ether / ethyl acetate (5/1) as a solvent to obtain 1.6 g of the intended intermediate 5.

(5)中間体6の合成
下記のスキームにしたがって、中間体6を合成した。
(5) Synthesis of Intermediate 6 Intermediate 6 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体5(1.6g)を酢酸エチルに溶解させ、塩化水素ガスを−78℃で15分間バブリングした。室温まで徐々に昇温させ、室温でさらに1時間攪拌した。反応混合物を減圧下に濃縮し、中間体6を得た。   Intermediate 5 (1.6 g) was dissolved in ethyl acetate and hydrogen chloride gas was bubbled at −78 ° C. for 15 minutes. The temperature was gradually raised to room temperature, and the mixture was further stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure to obtain Intermediate 6.

(6)リガンドB−43の合成
下記のスキームにしたがって、リガンドB−43を合成した。
(6) Synthesis of Ligand B-43 Ligand B-43 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

ラネーニッケル触媒(1.5g,17.5mmol)をTHF(10ml)に懸濁させ、中間体6(0.8g,1.4mmol)のTHF溶液(20ml)を加えて室温で48時間攪拌した。その後固体を濾別し、濾液を減圧下に濃縮した。得られた個体を酢酸エチルと石油エーテルの混合溶媒で再結晶し、目的とするリガンドB−43を白色固体として得た。
H−NMR(CDCl,δppm):7.35(1H,s),7.28−7.18(6H,m),6.99(2H,t),6.86(2H,t),6.80−6.77(2H,m),6.74(1H,t),5.79(1H,s),3.66(6H,s),3.46(2H,s),1.29(18H,s);
31P−NMR(CDCl,δppm):−33.6(s)
Raney nickel catalyst (1.5 g, 17.5 mmol) was suspended in THF (10 ml), a solution of intermediate 6 (0.8 g, 1.4 mmol) in THF (20 ml) was added, and the mixture was stirred at room temperature for 48 hours. The solid was then filtered off and the filtrate was concentrated under reduced pressure. The obtained solid was recrystallized with a mixed solvent of ethyl acetate and petroleum ether to obtain the target ligand B-43 as a white solid.
1 H-NMR (CDCl 3 , δ ppm): 7.35 (1H, s), 7.28-7.18 (6H, m), 6.99 (2H, t), 6.86 (2H, t) 6.80-6.77 (2H, m), 6.74 (1H, t), 5.79 (1H, s), 3.66 (6H, s), 3.46 (2H, s), 1.29 (18H, s);
31 P-NMR (CDCl 3 , δ ppm): −33.6 (s)

(合成例3):リガンドB−34の合成
(1)中間体3の合成
下記のスキームにしたがって、中間体3を合成した。
Synthesis Example 3 Synthesis of Ligand B-34 (1) Synthesis of Intermediate 3 Intermediate 3 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体2(0.57g,4.1mmol)、1−ブロモ−3,5−ジ−tert−ブチルベンゼン(1.0g,3.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.21g,0.05eq.)、炭酸ナトリウム(0.59g,1.5eq.)、蒸留水(1ml)、エタノール(2ml)、トルエン(20ml)よりなる混合物を、100℃で16時間攪拌した。室温まで冷却した後、水および酢酸エチルを用いて抽出操作を行った。有機層を飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られたオイルを石油エーテル/酢酸エチル(80/1)を溶媒としてカラムで精製し、1gの粗生成物3を得た。   Intermediate 2 (0.57 g, 4.1 mmol), 1-bromo-3,5-di-tert-butylbenzene (1.0 g, 3.7 mmol), tetrakis (triphenylphosphine) palladium (0.21 g, 0 .05 eq.), Sodium carbonate (0.59 g, 1.5 eq.), Distilled water (1 ml), ethanol (2 ml), and toluene (20 ml) were stirred at 100 ° C. for 16 hours. After cooling to room temperature, extraction operation was performed using water and ethyl acetate. The organic layer was washed with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting oil was purified by a column using petroleum ether / ethyl acetate (80/1) as a solvent to obtain 1 g of a crude product 3.

(2)中間体4の合成
下記のスキームにしたがって、中間体4を合成した。
(2) Synthesis of Intermediate 4 Intermediate 4 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体3(26g,92mmol)を、別途調整した水素化ナトリウム(2.91g,1.5eq,ミネラルオイル中に60%濃度で分散したもの)のTHF(600ml)溶液に0℃で攪拌しながら滴下した。室温まで徐々に昇温し、室温で1時間反応させた。
次いで、クロロメトキシメタン(52.7ml,770mmol)を0℃で滴下し、室温に昇温した後、室温で終夜攪拌した。得られた反応混合物に水を加え、THFを減圧下に除去し、水および酢酸エチルを用いて抽出操作を行った。有機層を10%NaOH水溶液、次いで飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、目的とする中間体4を26g得た。
While stirring Intermediate 3 (26 g, 92 mmol) in a solution of sodium hydride (2.91 g, 1.5 eq, dispersed in mineral oil at a concentration of 60%) prepared separately in THF (600 ml) at 0 ° C. It was dripped. The temperature was gradually raised to room temperature, and the reaction was allowed to proceed for 1 hour at room temperature.
Then, chloromethoxymethane (52.7 ml, 770 mmol) was added dropwise at 0 ° C., the temperature was raised to room temperature, and the mixture was stirred at room temperature overnight. Water was added to the obtained reaction mixture, THF was removed under reduced pressure, and extraction operation was performed using water and ethyl acetate. The organic layer was washed with 10% NaOH aqueous solution and then with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure to obtain 26 g of the intended intermediate 4.

(3)中間体6の合成
下記のスキームにしたがって、中間体6を合成した。
(3) Synthesis of Intermediate 6 Intermediate 6 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

2.15g(6.6mmol)の中間体4をTHF(40ml)に溶解し、ここにtert−ブチルリチウム(4.1mL,6.6mmol)を−78℃で滴下し、室温まで徐々に昇温し、室温で3時間攪拌した。ついで1.87g(6.6mmol)の化合物5(THF溶液20mL)を0℃で滴下し、室温まで徐々に昇温し、室温で終夜攪拌した。得られた反応混合物に硫黄(0.91g,27.4mmol)を加え、室温で4時間攪拌した。得られた反応混合物に水を加え、THFを減圧下に除去し、水および酢酸エチルを用いて抽出操作を行った。有機層を飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、得られた固体を石油エーテル/酢酸エチル(20/1)を溶媒としてカラムで精製し、目的とする中間体6を1.2g(32%)得た。   2.15 g (6.6 mmol) of Intermediate 4 was dissolved in THF (40 ml), and tert-butyllithium (4.1 mL, 6.6 mmol) was added dropwise thereto at −78 ° C., and the temperature was gradually raised to room temperature. And stirred at room temperature for 3 hours. Subsequently, 1.87 g (6.6 mmol) of compound 5 (THF solution 20 mL) was added dropwise at 0 ° C., the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature overnight. Sulfur (0.91 g, 27.4 mmol) was added to the obtained reaction mixture, and the mixture was stirred at room temperature for 4 hours. Water was added to the obtained reaction mixture, THF was removed under reduced pressure, and extraction operation was performed using water and ethyl acetate. The organic layer was washed with saturated brine and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure. The resulting solid was purified by a column using petroleum ether / ethyl acetate (20/1) as a solvent, and 1.2 g (32%) of the intended intermediate 6 was obtained. )Obtained.

(4)リガンドB−34の合成
下記のスキームにしたがって、リガンドB−34を合成した。
(4) Synthesis of Ligand B-34 Ligand B-34 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

中間体6(1.2g)を酢酸エチル25mLに溶解させ、塩化水素ガスを−78℃で15分間バブリングした。室温まで徐々に昇温させ、室温でさらに1時間攪拌した。反応混合物を減圧下に濃縮し、リガンドB−34を得た。
H−NMR(CDCl,δppm):7.44−7.35(6H,m),6.94−6.91(6H,m),6.87−6.85(2H,m),6.44(1H,d),3.78(6H,s),1.38(18H,s);
31P−NMR(CDCl,δppm):−47.3(s)
Intermediate 6 (1.2 g) was dissolved in 25 mL of ethyl acetate and hydrogen chloride gas was bubbled at −78 ° C. for 15 minutes. The temperature was gradually raised to room temperature, and the mixture was further stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure to give ligand B-34.
1 H-NMR (CDCl 3 , δ ppm): 7.44-7.35 (6H, m), 6.94-6.91 (6H, m), 6.87-6.85 (2H, m), 6.44 (1H, d), 3.78 (6H, s), 1.38 (18H, s);
31 P-NMR (CDCl 3 , δ ppm): −47.3 (s)

(合成例4):リガンドB−7の合成
(1)中間体2の合成
下記のスキームにしたがって、中間体2を合成した。
Synthesis Example 4 Synthesis of Ligand B-7 (1) Synthesis of Intermediate 2 Intermediate 2 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

2,4−ジ−t−ブチルフェノール(10g,48.5mmol)をTHF(100ml)に溶解させた。この溶液を、別途調整した水素化ナトリウム(2.91g,1.5eq,ミネラルオイル中に60%濃度で分散したもの)のTFH(200ml)溶液に0℃で攪拌しながら滴下した。室温まで徐々に昇温し、室温で2時間反応させた。
次いで、クロロメトキシメタン(7.76g)を0℃で滴下し、室温に昇温した後、室温で3時間反応させた。曇った白色溶液に対し、水および酢酸エチルを用いて抽出操作を行った。有機層をKOH水溶液(1M,150ml)、次いで水(150ml)で洗浄し、硫酸ナトリウム上で乾燥させた。無機塩を濾別した後、減圧下に濃縮し、淡黄色のオイルを得た。得られたオイルを、石油エーテル/酢酸エチル(40/1)を溶媒としてカラムで精製し、目的とする中間体2を10.5g得た。
2,4-di-t-butylphenol (10 g, 48.5 mmol) was dissolved in THF (100 ml). This solution was added dropwise to a separately prepared TFH (200 ml) solution of sodium hydride (2.91 g, 1.5 eq, dispersed in mineral oil at a concentration of 60%) at 0 ° C. with stirring. The temperature was gradually raised to room temperature, and the reaction was allowed to proceed at room temperature for 2 hours.
Next, chloromethoxymethane (7.76 g) was added dropwise at 0 ° C., the temperature was raised to room temperature, and the mixture was reacted at room temperature for 3 hours. The cloudy white solution was extracted with water and ethyl acetate. The organic layer was washed with aqueous KOH (1M, 150 ml), then water (150 ml) and dried over sodium sulfate. The inorganic salt was filtered off and concentrated under reduced pressure to obtain a pale yellow oil. The obtained oil was purified by a column using petroleum ether / ethyl acetate (40/1) as a solvent to obtain 10.5 g of the intended intermediate 2.

(2)中間体4の合成
下記のスキームにしたがって、中間体4を合成した。
(2) Synthesis of Intermediate 4 Intermediate 4 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

0.75g(3.0mmol)の中間体2をTHF(30ml)に溶解し、ここに、n−ブチルリチウム(2.5M,1.2ml,3.0mmol)をアルゴン雰囲気下、0℃で滴下した。室温まで徐々に昇温し、室温で3時間反応を行った。
次いで、この反応混合物に、ビス(2−メトキシフェニル)クロロフォスフィン(700mg,2.50mmol)を15mlのTHFに溶解させた溶液を0℃で滴下した。徐々に室温まで昇温し、室温で終夜攪拌を行った。攪拌終了後、脱気した飽和塩化アンモニウム水溶液(10ml)を加え、有機層を分離した後ジエチルエーテルで抽出し、食塩水(10ml)で洗浄した後、硫酸ナトリウム上で乾燥し、中間体4を得た。
同様の操作を繰り返し、最終的に中間体4を8g得た。
0.75 g (3.0 mmol) of Intermediate 2 was dissolved in THF (30 ml), and n-butyllithium (2.5 M, 1.2 ml, 3.0 mmol) was added dropwise at 0 ° C. under an argon atmosphere. did. The temperature was gradually raised to room temperature, and the reaction was carried out at room temperature for 3 hours.
Next, a solution of bis (2-methoxyphenyl) chlorophosphine (700 mg, 2.50 mmol) dissolved in 15 ml of THF was added dropwise to the reaction mixture at 0 ° C. The temperature was gradually raised to room temperature, and the mixture was stirred at room temperature overnight. After completion of the stirring, deaerated saturated ammonium chloride aqueous solution (10 ml) was added, the organic layer was separated, extracted with diethyl ether, washed with brine (10 ml), dried over sodium sulfate, and intermediate 4 was obtained. Obtained.
The same operation was repeated to finally obtain 8 g of intermediate 4.

(3)中間体B−7_HClの合成
下記のスキームにしたがって、中間体B−7_HClを合成した。
(3) Synthesis of Intermediate B-7_HCl Intermediate B-7_HCl was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

合成例4(2)で得られた中間体4(8g)をジエチルエーテル(500ml)に溶解させ、−78℃で塩化水素ガスを25分間バブリングさせた。その後、室温まで昇温し、室温で終夜攪拌を行った。攪拌終了後、溶媒を留去し、B−7_HClを得た。   Intermediate 4 (8 g) obtained in Synthesis Example 4 (2) was dissolved in diethyl ether (500 ml), and hydrogen chloride gas was bubbled at −78 ° C. for 25 minutes. Then, it heated up to room temperature and stirred overnight at room temperature. After completion of stirring, the solvent was distilled off to obtain B-7_HCl.

(4)リガンドB−7の合成
下記のスキームにしたがって、リガンドB−7を合成した。
(4) Synthesis of Ligand B-7 Ligand B-7 was synthesized according to the following scheme.

Figure 0005622376
Figure 0005622376

合成例4(3)で得られた中間体B−7_HClのうち、7.3gをジエチルエーテル(500ml)に溶解し、−78℃でアンモニアガスを30分間バブリングさせた。
次いで、室温まで徐々に昇温し、室温で終夜攪拌を行った。攪拌終了後、溶媒を留去し、粗B−7を得た。ここで得られた粗B−7をジエチルエーテル(10ml)に分散させた後、100mlのn−ヘキサンを加えて懸濁洗浄を行った。固体成分を除去した後、溶媒を減圧下に除去し、目的とするリガンドB−7を得た。収量:5.2g。
H−NMR(MeOD,δppm):7.38−6.69(m,10H),3.70(s,6H),1.43(s,9H),1.10(s,9H);
31P−NMR(MeOD,δppm):−48.2(s).
Of the intermediate B-7_HCl obtained in Synthesis Example 4 (3), 7.3 g was dissolved in diethyl ether (500 ml), and ammonia gas was bubbled at −78 ° C. for 30 minutes.
Next, the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature overnight. After completion of the stirring, the solvent was distilled off to obtain crude B-7. The crude B-7 obtained here was dispersed in diethyl ether (10 ml), and then 100 ml of n-hexane was added to perform suspension washing. After removing the solid components, the solvent was removed under reduced pressure to obtain the target ligand B-7. Yield: 5.2g.
1 H-NMR (MeOD, δ ppm): 7.38-6.69 (m, 10H), 3.70 (s, 6H), 1.43 (s, 9H), 1.10 (s, 9H);
31 P-NMR (MeOD, δ ppm): −48.2 (s).

(合成例4)
ニッケル錯体1の合成:
1.237g(4.0mmol)のアシルトリフェニルフォスフォラニルメタレンと1.10g(4.0mmol)のビス−1,5−シクロオクタジエンニッケル(0)(以下、Ni(COD)と称する)の混合物に、室温で40mlのトルエンを加え、黄色懸濁液を得た。この懸濁液に、注射器を用いて0.86g(8.0mmol)の2,6−ルチジンを加えた。得られた混合物を室温で攪拌した後、攪拌しながら60℃まで昇温し、60℃で3.5時間反応させ、暗褐色の溶液を得た。得られた溶液をカニューラにて濾過し、得られた暗黄色の濾液を減圧下に濃縮し、元の容積の1/4にした。この濃縮溶液に、液が濁りを生じるまでn−ヘキサン(約3ml)を滴下した。
次いで、この濁りが生じた液を65℃まで昇温し、透明な溶液を得た。得られた透明な溶液を室温まで2〜3時間かけてゆっくり冷却し、室温付近で黄色微結晶を析出させた。得られた結晶を、母液中で一晩保持した。その後、上澄みをカニューラで濾別し、残った固体を3mlのn−ヘキサンで2回洗浄し、最後に固体を6×10−3mbarで減圧下1時間乾燥し、1.17gの黄色結晶を得た(収率:60.4%)。
H−NMR(C,δppm):7.67(m,5H),7.37(d,2H),7.2−7.0(m,4H),6.77(m,4H),6.56(d,1H),6.50(t,1H),6.15(d,1H),4.20(s,1H),3.49(s,6H),2.06(s,3H);
31P−NMR(C,δppm):21.78(s).
(Synthesis Example 4)
Synthesis of nickel complex 1:
1.237 g (4.0 mmol) of acyltriphenylphosphoranylmetallene and 1.10 g (4.0 mmol) of bis-1,5-cyclooctadiene nickel (0) (hereinafter referred to as Ni (COD) 2 ), 40 ml of toluene was added at room temperature to obtain a yellow suspension. To this suspension, 0.86 g (8.0 mmol) of 2,6-lutidine was added using a syringe. The resulting mixture was stirred at room temperature, then heated to 60 ° C. with stirring, and reacted at 60 ° C. for 3.5 hours to obtain a dark brown solution. The resulting solution was filtered with a cannula, and the resulting dark yellow filtrate was concentrated under reduced pressure to ¼ of the original volume. To this concentrated solution, n-hexane (about 3 ml) was added dropwise until the liquid became cloudy.
Next, the turbid liquid was heated to 65 ° C. to obtain a transparent solution. The obtained transparent solution was slowly cooled to room temperature over 2 to 3 hours, and yellow fine crystals were precipitated at around room temperature. The resulting crystals were kept overnight in the mother liquor. Thereafter, the supernatant was filtered off with a cannula, the remaining solid was washed twice with 3 ml of n-hexane, and finally the solid was dried at 6 × 10 −3 mbar under reduced pressure for 1 hour to obtain 1.17 g of yellow crystals. Obtained (yield: 60.4%).
1 H-NMR (C 6 D 6 , δ ppm): 7.67 (m, 5H), 7.37 (d, 2H), 7.2-7.0 (m, 4H), 6.77 (m, 4H), 6.56 (d, 1H), 6.50 (t, 1H), 6.15 (d, 1H), 4.20 (s, 1H), 3.49 (s, 6H), 2. 06 (s, 3H);
31 P-NMR (C 6 D 6 , δ ppm): 21.78 (s).

Figure 0005622376
Figure 0005622376

[実施例1〜10]
合成例1で得られたリガンドB−39を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
以下の操作は、すべて高純度アルゴン雰囲気下で行った。以下、ビス−1,5−シクロオクタジエンニッケル(0)をNi(COD)と称する。
初めに4mlのスクリューキャップ付きバイアル瓶に、合成例1で得られたB−39(23.4mg)を秤り取った。次に、Ni(COD)(28mg)を20mlのバイアル瓶に秤り取り、トルエン(10ml)に溶解させ、10mMのNi(COD)トルエン溶液を調製した。得られた溶液は、黄色透明であった。ここで得られたNi(COD)トルエン溶液(5.0ml)を、B−39を有するバイアル瓶に加え、スクリューキャップで密閉した後、30秒間振って攪拌し、溶液を得た。その後、溶液の色が次第に暗黄色から赤色に変化し、沈殿は見られなかった。室温で3時間静置した後、得られた溶液0.5mlを2mlのバイアル瓶に分取し、トルエン(1.5ml)で希釈し、B−39とNi(COD)の反応生成物の2.5mM溶液を得た。ここで、反応生成物の濃度は、B−14とNi(COD)が1対1で反応して、ニッケル錯体を形成しているとして計算した。
[Examples 1 to 10]
Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization using ligand B-39 obtained in Synthesis Example 1
(1) Formation of complex All the following operations were performed in a high-purity argon atmosphere. Hereinafter, bis-1,5-cyclooctadiene nickel (0) is referred to as Ni (COD) 2 .
First, B-39 (23.4 mg) obtained in Synthesis Example 1 was weighed into a 4 ml vial with a screw cap. Next, Ni (COD) 2 (28 mg) was weighed into a 20 ml vial and dissolved in toluene (10 ml) to prepare a 10 mM Ni (COD) 2 toluene solution. The resulting solution was yellow and transparent. The Ni (COD) 2 toluene solution (5.0 ml) obtained here was added to a vial having B-39, sealed with a screw cap, and then shaken for 30 seconds to obtain a solution. Thereafter, the color of the solution gradually changed from dark yellow to red, and no precipitation was observed. After standing at room temperature for 3 hours, 0.5 ml of the resulting solution was dispensed into a 2 ml vial, diluted with toluene (1.5 ml), and the reaction product of B-39 and Ni (COD) 2 A 2.5 mM solution was obtained. Here, the concentration of the reaction product was calculated on the assumption that B-14 and Ni (COD) 2 reacted one-to-one to form a nickel complex.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
内容積約10mlの攪拌翼ならびに内筒付きオートクレーブに、乾燥トルエン(4.2ml)およびコノモノマーとして所定量のアクリル酸エステルを仕込んだ。なお、エチレンのホモ重合を行う場合には、アクリル酸エステルの仕込みは行わなかった。攪拌しながらオートクレーブを所定温度に昇温した後、エチレンをオートクレーブに供給し、温度と圧力が所定の条件になるように調整した。調整終了後、上記(1)で得られた反応生成物を所定量供給し、共重合を開始させた。所定時間重合させた後、一酸化炭素を吹き込んだ。未反応ガスを除去した後、内筒を取り出し、減圧下に溶媒および未反応コモノマーを除去し、恒量になるまで乾燥を行った。
共重合に用いたコモノマーの種類と量については、表1に記載した。なお、コモノマーは、Aldrich社製のAldrich Inhibitor Removerを充填したカラムを用いて、高純度アルゴン雰囲気下、室温で精製した後に使用した。
また、重合に用いたトルエン量、重合温度、重合中のオートクレーブ内圧についても、表1に記載した。表1において、tBAはアクリル酸tブチルを示す。また、活性Vpは、重合に用いた錯体1molあたり、重合時間1時間あたりの共重合体収量(kg)を表す。なお、Vpは、B−14とNi(COD)が1対1で反応してニッケル錯体を形成しているとして計算した。得られた重合体に関するGPCならびにDSC測定結果についても、表1に記載した。
(2) Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization To a stirring blade having an internal volume of about 10 ml and an autoclave with an inner cylinder were charged dry toluene (4.2 ml) and a predetermined amount of acrylic acid ester as a conomonomer. When ethylene homopolymerization was performed, the acrylic ester was not charged. The temperature of the autoclave was raised to a predetermined temperature while stirring, and then ethylene was supplied to the autoclave so that the temperature and pressure were adjusted to predetermined conditions. After completion of the adjustment, a predetermined amount of the reaction product obtained in (1) was supplied to start copolymerization. After polymerization for a predetermined time, carbon monoxide was blown. After removing the unreacted gas, the inner cylinder was taken out, and the solvent and unreacted comonomer were removed under reduced pressure, followed by drying until a constant weight was obtained.
The types and amounts of comonomers used for copolymerization are listed in Table 1. The comonomer was used after purification at room temperature in a high-purity argon atmosphere using a column packed with Aldrich Inhibitor Remover manufactured by Aldrich.
Table 1 also shows the amount of toluene used for the polymerization, the polymerization temperature, and the autoclave internal pressure during the polymerization. In Table 1, tBA represents tbutyl acrylate. Moreover, active Vp represents the copolymer yield (kg) per 1 hour of polymerization time per 1 mol of complexes used for polymerization. Vp was calculated on the assumption that B-14 and Ni (COD) 2 reacted one-on-one to form a nickel complex. The GPC and DSC measurement results for the obtained polymer are also shown in Table 1.

[実施例11〜15]
合成例1で得られたリガンドB−39を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
実施例1〜10と同様にして実施した。
[Examples 11 to 15]
Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization using ligand B-39 obtained in Synthesis Example 1
(1) Formation of complex It implemented like Example 1-10.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
オートクレーブに添加剤として2,6−ルチジンを加えた以外は、実施例1〜10と同様にして、エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合を行った。
結果を表1に示す。
(2) Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization Ethylene homopolymerization and ethylene / acrylic were conducted in the same manner as in Examples 1 to 10 except that 2,6-lutidine was added to the autoclave as an additive. The acid ester was copolymerized.
The results are shown in Table 1.

[実施例16〜19]
合成例2で得られたリガンドB−43を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
リガンドとして合成例2で得られたB−43(27.0mg)を用いた以外は、実施例1〜10と同様にして、錯体の形成を行った。
[Examples 16 to 19]
Homopolymerization of ethylene and copolymerization of ethylene / acrylic acid ester using ligand B-43 obtained in Synthesis Example 2:
(1) Formation of complex A complex was formed in the same manner as in Examples 1 to 10, except that B-43 (27.0 mg) obtained in Synthesis Example 2 was used as the ligand.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
錯体として上記(1)で得られた化合物を用いた以外は、実施例1〜10と同様にして、エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合を行った。
結果を表2に示す。表2の記載項目についても表1と同様である。
(2) Homopolymerization of ethylene and copolymerization of ethylene / acrylic acid ester Except for using the compound obtained in (1) above as a complex, the homopolymerization of ethylene and ethylene / acrylic acid ester were conducted in the same manner as in Examples 1-10. Acrylic ester copolymerization was performed.
The results are shown in Table 2. The items described in Table 2 are the same as in Table 1.

[実施例20、21]
合成例2で得られたリガンドB−43を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
実施例16〜19と同様にして実施した。
[Examples 20 and 21]
Homopolymerization of ethylene and copolymerization of ethylene / acrylic acid ester using ligand B-43 obtained in Synthesis Example 2:
(1) Formation of complex It implemented like Example 16-19.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
オートクレーブに添加剤として2,6−ルチジンを加えた以外は、実施例16〜19と同様にして、エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合を行った。
結果を表2に示す。
(2) Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization Ethylene homopolymerization and ethylene / acrylic were carried out in the same manner as in Examples 16 to 19 except that 2,6-lutidine was added as an additive to the autoclave. The acid ester was copolymerized.
The results are shown in Table 2.

[比較例1、2]
B−34を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
リガンドとして合成例3で得られたB−34(26.3mg)を使用した以外は、実施例1〜10と同様にして、錯体の形成を行った。
[Comparative Examples 1 and 2]
Homopolymerization of ethylene using B-34 and copolymerization of ethylene acrylate:
(1) Formation of complex A complex was formed in the same manner as in Examples 1 to 10 except that B-34 (26.3 mg) obtained in Synthesis Example 3 was used as a ligand.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
容積2リッターのオートクレーブを使用した以外は、実施例1〜10と同様にして、エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合を行った。
結果を表3に示す。表3の記載項目についても、表1と同様である。
(2) Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization Ethylene homopolymerization and ethylene / acrylic acid ester copolymerization were carried out in the same manner as in Examples 1 to 10, except that a 2-liter autoclave was used. Went.
The results are shown in Table 3. The items described in Table 3 are the same as in Table 1.

[比較例3〜23]
B−7を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
(1)錯体の形成
リガンドとして合成例4で得られたB−7(22.5mg)を使用した以外は、実施例1〜10と同様にして、錯体の形成を行った。
[Comparative Examples 3 to 23]
Homopolymerization of ethylene using B-7 and copolymerization of ethylene acrylate:
(1) Formation of complex A complex was formed in the same manner as in Examples 1 to 10, except that B-7 (22.5 mg) obtained in Synthesis Example 4 was used as the ligand.

(2)エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合
錯体として上記(1)で得られた化合物を用いた以外は、実施例1〜10と同様にして、エチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合を行った。
結果を表4に示す。表4の記載項目についても、表1と同様である。
(2) Homopolymerization of ethylene and copolymerization of ethylene / acrylic acid ester Except for using the compound obtained in (1) above as a complex, the homopolymerization of ethylene and ethylene / acrylic acid ester were conducted in the same manner as in Examples 1-10. Acrylic ester copolymerization was performed.
The results are shown in Table 4. The items described in Table 4 are the same as in Table 1.

[比較例24〜35]
ニッケル錯体1を用いるエチレンのホモ重合ならびにエチレン・アクリル酸エステルの共重合:
リガンドと遷移金属錯体成分(D)との接触生成物の代わりに、合成例5で得られたニッケル錯体1を使用した以外は、実施例1〜10と同様にして重合を行った。
結果を表5に示す。表5の記載項目についても、表1と同様である。
[Comparative Examples 24-35]
Homopolymerization of ethylene using nickel complex 1 and copolymerization of ethylene acrylate:
Polymerization was carried out in the same manner as in Examples 1 to 10 except that the nickel complex 1 obtained in Synthesis Example 5 was used instead of the contact product of the ligand and the transition metal complex component (D).
The results are shown in Table 5. The items described in Table 5 are the same as in Table 1.

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

Figure 0005622376
Figure 0005622376

本発明で用いる重合触媒は、希少かつ高価なパラジウムの代わりに、ニッケルを金属中心とした触媒を使用し、かつ、本発明で得られる重合体や共重合体は、機械的・熱的物性に優れ、有用な成形体として応用可能であるため、産業上にきわめて有用である。   The polymerization catalyst used in the present invention uses a nickel-centered catalyst instead of rare and expensive palladium, and the polymer or copolymer obtained in the present invention has mechanical and thermal properties. Since it can be applied as an excellent and useful molded article, it is extremely useful in industry.

Claims (7)

下記一般式(B)または(C)で表される化合物と、周期律表の10族に属する遷移金属を含む遷移金属錯体(D)を接触させることにより得られてなることを特徴とする金属錯体。
Figure 0005622376
[式(B)または(C)中、Zは、水素または脱離基である。mは、Zの価数を表す。Xは、酸素を表す。Yは、炭素を表す。Eは、リンを表す。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基であって、Rの少なくとも一つは、ヘテロ原子含有基を1個以上含有する炭化水素基である。Rは、それぞれ独立に、水素または炭素数1〜20のヘテロ原子を含有していてもよい炭化水素基を表す。R10、R11、R12、R13は、それぞれ独立に、水素、ハロゲン、炭素数1〜30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2−y(R、CN、NHR、N(R、Si(OR3−x(R、OSi(OR3−x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基を表す(ここで、Rは、水素または炭素数1〜20の炭化水素基を表し、Rは、炭素数1〜20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはフォスフォニウムを表し、xは0〜3までの整数、yは0〜2までの整数を表す。)。]
Following general formula (B) or metal compound represented by the (C), characterized by comprising obtained by contacting the transition metal complex (D) containing a transition metal belonging to group 10 of the periodic table Complex.
Figure 0005622376
[In the formula (B) or (C), Z represents hydrogen or a leaving group. m represents the valence of Z. X 1 represents oxygen. Y 1 represents carbon. E 1 represents phosphorus. R 4 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom, and at least one of R 4 contains one or more hetero atom-containing groups. It is a hydrocarbon group. R 5 each independently represents hydrogen or a hydrocarbon group that may contain a C 1-20 hetero atom. R 10 , R 11 , R 12 , and R 13 are each independently hydrogen, halogen, a hydrocarbon group that may contain a C 1-30 hetero atom, OR 2 , CO 2 R 2 , CO 2. M ′, C (O) N (R 1 ) 2 , C (O) R 2 , SR 2 , SO 2 R 2 , SOR 2 , OSO 2 R 2 , P (O) (OR 2 ) 2-y (R 1) y, CN, NHR 2 , N (R 2) 2, Si (OR 1) 3-x (R 1) x, OSi (OR 1) 3-x (R 1) x, NO 2, SO 3 M ', PO 3 M' 2 , P (O) (OR 2 ) 2 M ', or an epoxy-containing group (wherein R 1 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms; R 2 Represents a hydrocarbon group having 1 to 20 carbon atoms, M ′ represents an alkali metal, alkaline earth metal, ammonium, quaternary ammonia. And represents an integer of 0 to 3, and y represents an integer of 0 to 2.) ]
請求項1に記載の金属錯体の存在下、α−オレフィン(a)を重合することを特徴とするα−オレフィン重合体の製造方法。   The manufacturing method of the alpha olefin polymer characterized by superposing | polymerizing alpha olefin (a) in presence of the metal complex of Claim 1. ルイス塩基の存在下で重合を行うことを特徴とする請求項に記載のα−オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 2 , wherein the polymerization is carried out in the presence of a Lewis base. 有機アルミニウム化合物の非存在下で重合を行うことを特徴とする請求項に記載のα−オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 2 , wherein the polymerization is carried out in the absence of an organoaluminum compound. 請求項1に記載の金属錯体の存在下、α−オレフィン(a)と、プロペン酸誘導体エステル(b)とを共重合することを特徴とするα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法。   Production of an α-olefin / propenoic acid derivative ester copolymer comprising copolymerizing an α-olefin (a) and a propenoic acid derivative ester (b) in the presence of the metal complex according to claim 1. Method. ルイス塩基の存在下で重合を行うことを特徴とする請求項に記載のα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法。 The method for producing an α-olefin / propenoic acid derivative ester copolymer according to claim 5 , wherein the polymerization is carried out in the presence of a Lewis base. 有機アルミニウム化合物の非存在下で重合を行うことを特徴とする請求項に記載のα−オレフィン・プロペン酸誘導体エステル共重合体の製造方法。 The method for producing an α-olefin / propenoic acid derivative ester copolymer according to claim 5 , wherein the polymerization is carried out in the absence of an organoaluminum compound.
JP2009241267A 2009-10-20 2009-10-20 Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer Active JP5622376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241267A JP5622376B2 (en) 2009-10-20 2009-10-20 Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241267A JP5622376B2 (en) 2009-10-20 2009-10-20 Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer

Publications (2)

Publication Number Publication Date
JP2011088831A JP2011088831A (en) 2011-05-06
JP5622376B2 true JP5622376B2 (en) 2014-11-12

Family

ID=44107427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241267A Active JP5622376B2 (en) 2009-10-20 2009-10-20 Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer

Country Status (1)

Country Link
JP (1) JP5622376B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043979A (en) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp METHOD OF PRODUCING COPOLYMER OF α-OLEFIN AND (METH)ACRYLIC ACID ESTER
JP5882885B2 (en) * 2011-12-23 2016-03-09 日本ポリエチレン株式会社 Polar group-containing olefin copolymer, method for producing the same, adhesive material using the same, laminate and other products for use
CN104024290B (en) 2011-12-23 2016-12-07 日本聚乙烯株式会社 Polar functionalities olefin copolymer, polynary system polar olefin copolymer and olefin-based resin combination and utilize its adhesives, duplexer and other purposes goods
JP5877148B2 (en) * 2012-12-21 2016-03-02 日本ポリプロ株式会社 Method for producing copolymer of α-olefin and polar group-containing comonomer
EP3214100B1 (en) 2014-10-28 2019-05-29 The University of Tokyo Method for producing polar group-containing olefin polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698403A (en) * 1985-10-15 1987-10-06 E. I. Du Pont De Nemours And Company Nickel-catalyzed copolymerization of ethylene
JPS6414217A (en) * 1987-07-08 1989-01-18 Tosoh Corp Production of ethylene copolymer
US7635739B2 (en) * 2005-08-31 2009-12-22 Rohm And Haas Company Substantially linear polymers and methods of making and using same

Also Published As

Publication number Publication date
JP2011088831A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4524335B2 (en) Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and (meth) acrylic acid ester copolymer
JP5232718B2 (en) Polymerization catalyst component containing novel metal complex and method for producing α-olefin polymer or α-olefin / (meth) acrylate copolymer using the same
US10550211B2 (en) Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer
JP5292059B2 (en) Method for producing α-olefin / (meth) acrylic acid ester copolymer and α-olefin / (meth) acrylic acid ester copolymer
JP5812764B2 (en) Metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and (meth) acrylic acid ester copolymer
JP5597582B2 (en) Metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and (meth) acrylic acid ester copolymer
WO2018021446A1 (en) Metal complex and production method therefor, catalyst component for olefin polymerization and catalyst for olefin polymerization containing metal complex, and method for producing polymer and copolymer of α-olefin using catalyst for olefin polymerization
JP5622376B2 (en) Novel metal complex, method for producing α-olefin polymer using the same, and method for producing α-olefin and propenoic acid derivative ester copolymer
JP6618290B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
JP5863538B2 (en) Metal complex and method for producing α-olefin and (meth) acrylic acid ester copolymer using the same
JP5863539B2 (en) Metal complex and method for producing α-olefin and (meth) acrylic acid ester copolymer using the same
JP6356507B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
JP2018016582A (en) METAL COMPLEX AND METHOD FOR PRODUCING THE SAME, CATALYST COMPONENT FOR OLEFIN POLYMERIZATION AND CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE METAL COMPLEX, AND METHOD FOR PRODUCING α-OLEFIN POLYMER USING THE CATALYST FOR OLEFIN POLYMERIZATION
JP5989572B2 (en) Metal complex and method for producing α-olefin and (meth) acrylic acid ester copolymer using the same
JP6938265B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization containing the metal complex, a catalyst for olefin polymerization, and a method for producing an α-olefin polymer using the catalyst for olefin polymerization.
JP6913051B2 (en) A metal complex and a method for producing an α-olefin / (meth) acrylic acid ester copolymer using the metal complex.
JP7329937B2 (en) Method for producing α-olefin/(meth)acrylate copolymer
JP6938264B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization and a catalyst for olefin polymerization containing the metal complex, and a method for producing an α-olefin polymer and a copolymer using the catalyst for olefin polymerization.
JP6771946B2 (en) New solid-supported olefin polymerization catalyst and its production method
JP2024056642A (en) Metal complex, olefin polymerization catalyst component and olefin polymerization catalyst which comprise that metal complex, and production method of olefin polymer using that olefin polymerization catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250