JP5622147B2 - Method for producing heat exchange reactor - Google Patents

Method for producing heat exchange reactor Download PDF

Info

Publication number
JP5622147B2
JP5622147B2 JP2010280213A JP2010280213A JP5622147B2 JP 5622147 B2 JP5622147 B2 JP 5622147B2 JP 2010280213 A JP2010280213 A JP 2010280213A JP 2010280213 A JP2010280213 A JP 2010280213A JP 5622147 B2 JP5622147 B2 JP 5622147B2
Authority
JP
Japan
Prior art keywords
heat exchange
mold
heat
coating liquid
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010280213A
Other languages
Japanese (ja)
Other versions
JP2012127588A (en
Inventor
陽平 志連
陽平 志連
阿萬 康知
康知 阿萬
佐藤 達哉
達哉 佐藤
工藤 健二
健二 工藤
金松 俊宏
俊宏 金松
裕直 小倉
裕直 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Ricoh Co Ltd
Original Assignee
Chiba University NUC
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Ricoh Co Ltd filed Critical Chiba University NUC
Priority to JP2010280213A priority Critical patent/JP5622147B2/en
Publication of JP2012127588A publication Critical patent/JP2012127588A/en
Application granted granted Critical
Publication of JP5622147B2 publication Critical patent/JP5622147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent

Description

本発明は、熱交換型反応器の製造方法に関する。 The present invention relates to a heat exchange reactor of the preparation how.

ケミカルヒートポンプは、一般に、気体と可逆的に反応して発熱する粒子が容器内に充填されている熱交換型反応器と、粒子と反応する気体を凝縮させる、又は、粒子と反応する気体が凝縮することにより生成した液体を蒸発させる蒸発凝縮器が、開閉弁を介して、配管で接続されている。このとき、熱交換器には、粒子と気体が反応することにより発生する熱を外部に移動させる熱媒体が流れる配管と、粒子と気体が反応することにより生成した物質を加熱して気体を発生させる加熱源が設置されている。一方、蒸発凝縮器には、粒子と反応する気体が凝縮した液体を加熱して蒸発させる加熱源が設置されている。加熱源としては、ヒーター、高温スチームが流れる配管等が用いられている。   A chemical heat pump generally condenses a gas that reacts with particles, or a heat exchange reactor in which particles that generate heat by reversibly reacting with gas are packed in a container, or a gas that reacts with particles condenses. The evaporating condenser for evaporating the liquid generated by the operation is connected by piping through an on-off valve. At this time, the heat exchanger generates a gas by heating a pipe through which a heat medium that moves heat generated by the reaction between the particles and the gas flows, and a substance generated by the reaction between the particles and the gas. A heating source is installed. On the other hand, the evaporative condenser is provided with a heating source that heats and evaporates the liquid in which the gas that reacts with the particles is condensed. As the heat source, a heater, piping through which high-temperature steam flows, and the like are used.

ケミカルヒートポンプは、以下のような放熱工程と蓄熱工程を交互に行うことにより、繰り返し動作させることができる。   The chemical heat pump can be operated repeatedly by alternately performing the following heat dissipation process and heat storage process.

放熱工程においては、粒子と反応する気体が凝縮することにより生成した液体を加熱源により加熱して蒸発させた後、開閉弁を開くと、熱交換器と凝縮器の間の蒸気圧差により配管を経由して熱交換器に供給された気体と熱交換器に充填されている粒子が反応することにより発生した熱が熱媒体により外部に移動する。   In the heat dissipation process, after the liquid generated by the condensation of the gas that reacts with the particles is heated and evaporated by a heating source, when the on-off valve is opened, the pipe is connected by the vapor pressure difference between the heat exchanger and the condenser. The heat generated by the reaction between the gas supplied to the heat exchanger via the particles and the particles filled in the heat exchanger moves to the outside by the heat medium.

一方、蓄熱工程においては、粒子と気体の反応により生成した生成物を加熱源により加熱して発生した気体が配管を経由して凝縮器に供給されて、凝縮した後、バルブを閉じる。   On the other hand, in the heat storage step, the product generated by the reaction between the particles and the gas is heated by a heating source, and the gas generated is supplied to the condenser via the pipe and condensed, and then the valve is closed.

しかしながら、伝熱効率に優れる熱交換器は、反応器内に気体が供給される際の圧力損失が大きいという問題があった。   However, the heat exchanger excellent in heat transfer efficiency has a problem that the pressure loss is large when gas is supplied into the reactor.

そこで、特許文献1には、熱交換媒体との間での熱の授受に伴って化学的な気固系可逆反応を起こす反応材を備え、前記熱交換媒体が流れる熱交換媒体流路と、前記気固系可逆反応により前記反応材から分離若しくは前記反応材に吸収される反応ガスが流れる反応ガス流路とを備えた熱交換型反応器の製造方法が開示されている。このとき、無機化合物系反応材である前記反応材を溶媒に溶解させた反応材溶液を前記反応ガス流路内に充填する充填工程と、充填状態にある前記反応材溶液から前記溶媒を脱離する溶媒脱離工程とを経て、前記反応ガス流路側の反応器構造体表面に、前記反応材の析出相を形成する。   Therefore, Patent Document 1 includes a reaction material that undergoes a chemical gas-solid reversible reaction in association with heat exchange with the heat exchange medium, and a heat exchange medium flow path through which the heat exchange medium flows, A method for producing a heat exchange reactor comprising a reaction gas flow path through which a reaction gas separated from or absorbed by the reaction material by the gas-solid reversible reaction flows is disclosed. At this time, a filling step for filling the reaction gas flow path into the reaction material solution obtained by dissolving the reaction material, which is an inorganic compound-based reaction material, in the solvent, and desorption of the solvent from the reaction material solution in the filled state Through the solvent desorption step, the reaction material precipitation phase is formed on the surface of the reactor structure on the reaction gas flow path side.

しかしながら、反応材の析出相内に気体が供給される際の圧力損失が大きいという問題がある。   However, there is a problem that the pressure loss is large when the gas is supplied into the precipitation phase of the reaction material.

本発明は、上記従来技術が有する問題に鑑み、伝熱効率に優れ、気体が供給される際の圧力損失が小さい熱交換型反応器の製造方法を提供することを目的とする。 In view of the problem of the prior art described above has excellent heat transfer efficiency, and an object thereof is to provide a manufacturing how the pressure loss is small heat exchange reactor when the gas is supplied.

本発明の熱交換型反応器の製造方法は、可とう性を有するに、気体と可逆的に反応することが可能な物質を溶媒中に溶解又は分散させた塗布液を塗布する工程と、該塗布液が塗布されたを襞状に変形させる工程と、該襞状に変形したの前記塗布液が塗布された面を容器の内面に接触させる工程と、該容器の内面に接触した前記襞状に変形した型を焼成することにより前記を除去する工程を有し、前記型は、前記塗布液が塗布される側の表面に、円柱状の孔状部又は長手方向に延在している溝状部が形成されているThe method for producing a heat exchange reactor according to the present invention comprises a step of applying a coating solution in which a substance capable of reversibly reacting with a gas is dissolved or dispersed in a solvent in a flexible mold ; a step of the type on which the coating liquid has been applied is deformed to a wrinkled, the steps of the coating liquid of the type deformed in該襞shape is contacted with the inner surface of the container coated surface in contact with the inner surface of the container It has a step of removing the mold by firing the mold deformed into the pleated, the type, the surface on which the coating liquid is applied, a cylindrical hole shape portion or extending in the longitudinal direction A groove-like portion is formed .

本発明によれば、伝熱効率に優れ、気体が供給される際の圧力損失が小さい熱交換型反応器の製造方法を提供することができる。 According to the present invention, excellent heat transfer efficiency, it is possible to provide a manufacturing how the pressure loss is small heat exchange reactor when the gas is supplied.

本発明のケミカルヒートポンプの一例を示す図である。It is a figure which shows an example of the chemical heat pump of this invention. 図1の熱交換型反応器の本体の一例を示す斜視図である。It is a perspective view which shows an example of the main body of the heat exchange type reactor of FIG. 図2の熱交換型反応器の本体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the main body of the heat exchange type reactor of FIG. 図3の型の構造を示す斜視図である。It is a perspective view which shows the structure of the type | mold of FIG. 図3の熱交換型反応器の本体の構造を示す斜視図である。It is a perspective view which shows the structure of the main body of the heat exchange type reactor of FIG. 図4の型の構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the structure of the type | mold of FIG. 図5の熱交換型反応器の本体の構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the structure of the main body of the heat exchange type reactor of FIG. 図2の熱交換型反応器の本体の製造方法の変形例を示す斜視図である。It is a perspective view which shows the modification of the manufacturing method of the main body of the heat exchange type reactor of FIG.

次に、本発明を実施するための形態を図面と共に説明する。   Next, the form for implementing this invention is demonstrated with drawing.

図1に、本発明のケミカルヒートポンプの一例を示す。ケミカルヒートポンプ100は、熱交換型反応器110と蒸発凝縮器120が、開閉弁130を介して、配管140で接続されている。このとき、熱交換型反応器110には、熱交換型反応器の本体10と、熱交換型反応器の本体10で水蒸気と酸化カルシウムが反応することにより発生する熱を移動させる熱媒体が流れる配管20と、熱交換構造体11で水蒸気と酸化カルシウムが反応することにより生成した水酸化カルシウムを加熱することにより水蒸気を発生させるヒーター30が設置されている。一方、蒸発凝縮器120には、水を加熱して蒸発させるヒーター40が設置されている。また、蒸発凝縮器120では、熱交換構造体11で水酸化カルシウムを加熱することにより発生した水蒸気が凝縮する。   FIG. 1 shows an example of the chemical heat pump of the present invention. In the chemical heat pump 100, a heat exchange type reactor 110 and an evaporative condenser 120 are connected via a pipe 140 via an on-off valve 130. At this time, the heat exchange reactor 110 flows through the main body 10 of the heat exchange reactor and a heat medium that moves heat generated by the reaction of water vapor and calcium oxide in the main body 10 of the heat exchange reactor. A heater 30 that generates water vapor by heating the calcium hydroxide generated by the reaction between the water vapor and calcium oxide in the pipe 20 and the heat exchange structure 11 is installed. On the other hand, the evaporation condenser 120 is provided with a heater 40 for heating and evaporating water. Further, in the evaporative condenser 120, water vapor generated by heating calcium hydroxide in the heat exchange structure 11 is condensed.

なお、熱媒体が流れる配管の形状及び熱媒体が流れる配管を設置する位置は、水蒸気と酸化カルシウムが反応することにより発生する熱を外部に移動させることが可能であれば、特に限定されない。   The shape of the pipe through which the heat medium flows and the position at which the pipe through which the heat medium flows are not particularly limited as long as the heat generated by the reaction of water vapor and calcium oxide can be transferred to the outside.

図2に、熱交換型反応器の本体10の一例を示す。熱交換型反応器の本体10は、酸化カルシウムを含む熱交換構造体11が円筒状の容器12の内面に形成されている。このとき、熱交換構造体11は、凸状部11aが表面に形成されており、凸状部11aは、熱交換構造体11の長手方向に延在している。このため、熱交換型反応器の本体10内に水蒸気Gが供給される際に圧力損失が生じにくく、水蒸気Gが熱交換型反応器の本体10の奥部に供給されやすくなる。その結果、熱交換型反応器110と蒸発凝縮器120の飽和蒸気圧差が水蒸気Gの供給に効果的に使用され、水蒸気Gと酸化カルシウムの反応の反応速度を上昇させることができる。また、水蒸気Gと酸化カルシウムの反応の収率が上昇し、発熱量が増大する。さらに、熱交換型反応器の本体10内に水蒸気Gが供給される際に圧力損失が生じにくいことから、水蒸気と酸化カルシウムが反応することにより生成した水酸化カルシウムを加熱して水蒸気を発生させるのに必要な温度を結果的に低下させることができる。また、熱交換構造体11の表面に凸状部11aが形成されているため、熱交換構造体11の表面積が大きくなり、酸化カルシウムと水蒸気Gの可逆反応を促進することができる。さらに、容器12の内面に熱交換構造体11が形成されているため、熱交換型反応器の本体10は伝熱効率に優れる。   FIG. 2 shows an example of the main body 10 of the heat exchange reactor. In the main body 10 of the heat exchange reactor, a heat exchange structure 11 containing calcium oxide is formed on the inner surface of a cylindrical container 12. At this time, the heat exchange structure 11 has a convex portion 11 a formed on the surface, and the convex portion 11 a extends in the longitudinal direction of the heat exchange structure 11. For this reason, when the steam G is supplied into the main body 10 of the heat exchange reactor, pressure loss is unlikely to occur, and the steam G is easily supplied to the back of the main body 10 of the heat exchange reactor. As a result, the saturated vapor pressure difference between the heat exchange reactor 110 and the evaporative condenser 120 is effectively used for supplying the steam G, and the reaction rate of the reaction between the steam G and calcium oxide can be increased. In addition, the yield of the reaction between water vapor G and calcium oxide increases, and the calorific value increases. Further, since the pressure loss is unlikely to occur when the water vapor G is supplied into the main body 10 of the heat exchange reactor, the water produced by the reaction between the water vapor and calcium oxide is heated to generate water vapor. As a result, the necessary temperature can be reduced. Moreover, since the convex-shaped part 11a is formed in the surface of the heat exchange structure 11, the surface area of the heat exchange structure 11 becomes large, and the reversible reaction of calcium oxide and the water vapor | steam G can be accelerated | stimulated. Furthermore, since the heat exchange structure 11 is formed on the inner surface of the container 12, the main body 10 of the heat exchange reactor is excellent in heat transfer efficiency.

なお、熱交換構造体11は、潮解性物質を含む層が表面に形成されていてもよい。これにより、酸化カルシウムと水蒸気の反応速度を上昇させると共に、酸化カルシウムが反応することにより生成した水酸化カルシウムを加熱して水蒸気を発生させる温度を低下させることができる。   The heat exchange structure 11 may have a layer containing a deliquescent material formed on the surface. Thereby, while raising the reaction rate of calcium oxide and water vapor | steam, the temperature which heats the calcium hydroxide produced | generated when calcium oxide reacts and generates water vapor | steam can be lowered | hung.

潮解性物質としては、特に限定されないが、塩化マグネシウム、塩化コバルト(II)、塩化カルシウム、塩化リチウム、硫化ナトリウム等が挙げられる。   Although it does not specifically limit as a deliquescent substance, Magnesium chloride, cobalt (II) chloride, calcium chloride, lithium chloride, sodium sulfide, etc. are mentioned.

また、熱交換構造体11は、熱伝導性材料をさらに含んでいることが好ましく、容器12との界面に熱伝導性材料を含む層が形成されていることがさらに好ましい。これにより、熱交換型反応器の本体10の伝熱効率を向上させることができる。   The heat exchange structure 11 preferably further includes a heat conductive material, and more preferably a layer including the heat conductive material is formed at the interface with the container 12. Thereby, the heat transfer efficiency of the main body 10 of the heat exchange reactor can be improved.

熱伝導性材料としては、特に限定されないが、炭素繊維、金属糸、グラファイト粒子、金属粒子等が挙げられる。   Although it does not specifically limit as a heat conductive material, Carbon fiber, a metal thread | yarn, a graphite particle, a metal particle, etc. are mentioned.

さらに、熱交換構造体11の表面に、微細な凹凸が形成されていることが好ましく、熱交換構造体11の長手方向に延在する微細な溝状部が形成されていることがさらに好ましい。これにより、熱交換構造体11の表面積をさらに大きくすることができる。   Furthermore, it is preferable that fine irregularities are formed on the surface of the heat exchange structure 11, and it is more preferable that a fine groove-like portion extending in the longitudinal direction of the heat exchange structure 11 is formed. Thereby, the surface area of the heat exchange structure 11 can be further increased.

ケミカルヒートポンプ100は、以下のような放熱工程と蓄熱工程を交互に行うことにより、繰り返し動作させることができる。   The chemical heat pump 100 can be operated repeatedly by alternately performing the following heat dissipation process and heat storage process.

放熱工程においては、水蒸気が凝縮することにより生成した水をヒーター30により加熱して蒸発させた後、開閉弁130を開放すると、熱交換型反応器110と蒸発凝縮器20の間の蒸気圧差により配管140を経由して熱交換型反応器110に供給された水蒸気と、熱交換構造体11に含まれる酸化カルシウムが反応して発生した熱が熱媒体により外部に移動する。   In the heat dissipation step, water generated by the condensation of water vapor is heated by the heater 30 and evaporated, and then the on-off valve 130 is opened, due to the vapor pressure difference between the heat exchange reactor 110 and the evaporation condenser 20. Heat generated by the reaction between water vapor supplied to the heat exchange reactor 110 via the pipe 140 and calcium oxide contained in the heat exchange structure 11 is transferred to the outside by the heat medium.

一方、蓄熱工程においては、酸化カルシウムと水蒸気が反応することにより生成した酸化カルシウムを加熱することにより発生した水蒸気が配管140を経由して蒸発凝縮器120に供給されて、凝縮した後、開閉弁130を閉じる。   On the other hand, in the heat storage process, water vapor generated by heating calcium oxide generated by the reaction of calcium oxide and water vapor is supplied to the evaporation condenser 120 via the pipe 140 and condensed, and then the on-off valve 130 is closed.

なお、熱交換構造体11に含まれる物質としては、水蒸気と可逆的に反応することが可能であれば、酸化カルシウムに限定されず、硫酸カルシウム、酸化マグネシウム等が挙げられる。   The substance contained in the heat exchange structure 11 is not limited to calcium oxide as long as it can react reversibly with water vapor, and examples thereof include calcium sulfate and magnesium oxide.

また、水蒸気の代わりに、アンモニア等を用いてもよい。   Further, ammonia or the like may be used instead of water vapor.

アンモニアと可逆的に反応することが可能な物質としては、特に限定されないが、塩化バリウム、塩化カルシウム等が挙げられる。   The substance capable of reacting reversibly with ammonia is not particularly limited, and examples thereof include barium chloride and calcium chloride.

図3に、熱交換型反応器の本体10の製造方法の一例を示す。まず、溝状部51aが形成されている型51(図4参照)に、酸化カルシウムを溶媒中に分散させた塗布液52を、スキージ53を用いて塗布し、溝状部51a内に塗布液52を充填する(図3(a)参照)。このとき、型51は、焼却又は溶解により除去することが可能な樹脂等の材料を用いて作製されている。また、必要に応じて、型51に塗布された塗布液52に含まれる溶媒を除去してもよい。次に、型51の塗布液52が塗布された面を容器12の内面に接触させる(図3(b)参照)。さらに、加熱及び/又は減圧により塗布液52に含まれる溶媒を除去した後、型51を焼却又は溶解により除去する。これにより、容器12の内面に、長手方向に延在している凸状部11aが表面に形成されている熱交換構造体11が形成されている熱交換型反応器の本体10(図5参照)が得られる(図3(c)参照)。このとき、型51を除去しても塗布液52の形状が保たれる程度に溶媒の含有量を調整した場合は、型51を除去した後、塗布液52に含まれる溶媒を除去してもよい。また、焼成により型51及び塗布液52に含まれる溶媒を同時に除去してもよい。   In FIG. 3, an example of the manufacturing method of the main body 10 of a heat exchange type reactor is shown. First, a coating liquid 52 in which calcium oxide is dispersed in a solvent is applied using a squeegee 53 to a mold 51 (see FIG. 4) in which the groove 51a is formed, and the coating liquid is applied in the groove 51a. 52 (see FIG. 3A). At this time, the mold 51 is manufactured using a material such as a resin that can be removed by incineration or dissolution. Moreover, you may remove the solvent contained in the coating liquid 52 apply | coated to the type | mold 51 as needed. Next, the surface of the mold 51 on which the coating liquid 52 is applied is brought into contact with the inner surface of the container 12 (see FIG. 3B). Furthermore, after removing the solvent contained in the coating liquid 52 by heating and / or decompression, the mold 51 is removed by incineration or dissolution. Thereby, the main body 10 of the heat exchange reactor in which the heat exchange structure 11 in which the convex portion 11a extending in the longitudinal direction is formed on the surface is formed on the inner surface of the container 12 (see FIG. 5). ) Is obtained (see FIG. 3C). At this time, when the content of the solvent is adjusted to such an extent that the shape of the coating liquid 52 is maintained even if the mold 51 is removed, the solvent contained in the coating liquid 52 may be removed after the mold 51 is removed. Good. Moreover, you may remove simultaneously the solvent contained in the type | mold 51 and the coating liquid 52 by baking.

なお、塗布液52を塗布する前の型51に、潮解性物質を溶媒中に溶解させた溶液を塗布してもよい。このとき、必要に応じて、型51に塗布された溶液に含まれる溶媒を除去してもよい。   A solution in which a deliquescent substance is dissolved in a solvent may be applied to the mold 51 before the application liquid 52 is applied. At this time, you may remove the solvent contained in the solution apply | coated to the type | mold 51 as needed.

また、型51の塗布液52が塗布された面に、熱伝導性材料を散布してもよいし、熱伝導性材料を溶媒中に分散させた分散液を塗布してもよい。このとき、必要に応じて、型51に塗布された分散液に含まれる溶媒を除去してもよい。   Further, the heat conductive material may be sprayed on the surface of the mold 51 on which the coating liquid 52 is applied, or a dispersion liquid in which the heat conductive material is dispersed in a solvent may be applied. At this time, you may remove the solvent contained in the dispersion liquid apply | coated to the type | mold 51 as needed.

一方、溝状部51aの代わりに、円柱状の孔状部51a'が形成されている型51'(図6参照)を用いると、熱交換型反応器の本体10'(図7参照)が得られる。熱交換型反応器の本体10'は、容器12の内面に、円柱状の凸状部11a'が表面に形成されている熱交換構造体11'が形成されている。   On the other hand, when a mold 51 ′ (see FIG. 6) in which a cylindrical hole 51a ′ is formed instead of the groove 51a, the main body 10 ′ (see FIG. 7) of the heat exchange reactor is used. can get. In the main body 10 ′ of the heat exchange reactor, a heat exchange structure 11 ′ is formed on the inner surface of the container 12. A columnar convex portion 11 a ′ is formed on the surface.

型51'としては、特に限定されないが、特開2007−98930号公報に開示されているハニカム構造体を用いることができる。   Although it does not specifically limit as type | mold 51 ', The honeycomb structure currently disclosed by Unexamined-Japanese-Patent No. 2007-98930 can be used.

図8に、熱交換型反応器の本体10の製造方法の変形例を示す。まず、表面に微細な溝状部61aが形成されているフィルム状の型61に、酸化カルシウムを溶媒中に分散させた塗布液62を、スキージ63を用いて塗布し、溝状部61a内に塗布液62を充填する(図8(a)参照)。このとき、型61は、焼却又は溶解により除去することが可能な樹脂等の材料を用いて作製されている。また、必要に応じて、型61に塗布された塗布液62に含まれる溶媒を除去してもよい。次に、塗布液62が塗布された型61を襞状に変形させた後、型61の塗布液62が塗布された面を容器12の内面に接触させる(図8(b)参照)。さらに、加熱及び/又は減圧により塗布液62に含まれる溶媒を除去した後、型61を焼却又は溶解により除去する。これにより、容器12の内面に、長手方向に延在している凸状部11aが表面に形成されていると共に、長手方向に延在している微細な溝状部11bが表面に形成されている熱交換構造体11が形成されている熱交換型反応器の本体10が得られる(図8(c)参照)。このとき、型61を除去しても塗布液62の形状が保たれる程度に溶媒の含有量を調整した場合は、型61を除去した後、塗布液62に含まれる溶媒を除去してもよい。また、焼成により型61及び塗布液62に含まれる溶媒を同時に除去してもよい。   In FIG. 8, the modification of the manufacturing method of the main body 10 of a heat exchange type reactor is shown. First, a coating liquid 62 in which calcium oxide is dispersed in a solvent is applied to a film-like mold 61 having a fine groove-like portion 61a formed on the surface using a squeegee 63, and the groove-like portion 61a is then applied. The coating liquid 62 is filled (see FIG. 8A). At this time, the mold 61 is manufactured using a material such as a resin that can be removed by incineration or dissolution. Moreover, you may remove the solvent contained in the coating liquid 62 apply | coated to the type | mold 61 as needed. Next, after the mold 61 coated with the coating liquid 62 is deformed into a bowl shape, the surface of the mold 61 coated with the coating liquid 62 is brought into contact with the inner surface of the container 12 (see FIG. 8B). Further, after removing the solvent contained in the coating liquid 62 by heating and / or decompression, the mold 61 is removed by incineration or dissolution. Thereby, on the inner surface of the container 12, the convex portion 11 a extending in the longitudinal direction is formed on the surface, and the fine groove-like portion 11 b extending in the longitudinal direction is formed on the surface. The main body 10 of the heat exchange reactor in which the heat exchange structure 11 is formed is obtained (see FIG. 8C). At this time, when the content of the solvent is adjusted to such an extent that the shape of the coating liquid 62 is maintained even if the mold 61 is removed, the solvent contained in the coating liquid 62 may be removed after the mold 61 is removed. Good. Moreover, you may remove simultaneously the solvent contained in the type | mold 61 and the coating liquid 62 by baking.

なお、塗布液62を塗布する前の型61に、潮解性物質を溶媒中に溶解させた溶液を塗布してもよい。このとき、必要に応じて、型61に塗布された溶液に含まれる溶媒を除去してもよい。   A solution in which a deliquescent substance is dissolved in a solvent may be applied to the mold 61 before the application liquid 62 is applied. At this time, the solvent contained in the solution applied to the mold 61 may be removed as necessary.

また、型61の塗布液62が塗布された面に、熱伝導性材料を散布してもよいし、熱伝導性材料を溶媒中に分散させた分散液を塗布してもよい。このとき、必要に応じて、型61に塗布された分散液に含まれる溶媒を除去してもよい。   Further, the heat conductive material may be sprayed on the surface of the mold 61 on which the coating liquid 62 is applied, or a dispersion liquid in which the heat conductive material is dispersed in a solvent may be applied. At this time, the solvent contained in the dispersion applied to the mold 61 may be removed as necessary.

さらに、微細な溝状部61aの代わりに、微細な円柱状の孔状部等の微細な凹凸が形成されているフィルム状の型を用いてもよいし、微細な溝状部61aが形成されていないフィルム状の支持体を用いてもよい。   Further, instead of the fine groove-like portion 61a, a film-like mold in which fine irregularities such as fine cylindrical hole-like portions are formed may be used, or the fine groove-like portion 61a is formed. An unsupported film-like support may be used.

参考例1]
特開2007−98930号公報の光ファイバープレートの製造方法の実施例1に準拠して、ゼラチン製の型51'(図6参照)を作製した。型51'は、直径が1.2mm、深さが3.0mmの円柱状の孔状部51a'が2mm間隔でヘキサゴナル状に形成されていた。
[ Reference Example 1]
A gelatin mold 51 ′ (see FIG. 6) was produced in accordance with Example 1 of the method for producing an optical fiber plate disclosed in Japanese Patent Application Laid-Open No. 2007-98930. In the mold 51 ′, cylindrical hole portions 51a ′ having a diameter of 1.2 mm and a depth of 3.0 mm were formed in a hexagonal shape at intervals of 2 mm.

型51'に、酸化カルシウム粒子を水中に分散させた塗布液52を、スキージ53を用いて塗布し、孔状部51a'内に塗布液52を充填した後、塗布液52に含まれる水をある程度除去した。次に、型51'の塗布液52が塗布された面を容器12の内面に接触させた。さらに、乾燥機により塗布液52に含まれる水を除去した後、型51'を焼成により除去する。これにより、容器12の内面に、円柱状の凸状部11a'が表面に形成されている熱交換構造体11'が形成されている熱交換型反応器の本体10'(図7参照)を得た。   A coating liquid 52 in which calcium oxide particles are dispersed in water is applied to the mold 51 ′ using a squeegee 53, and the hole 52 a ′ is filled with the coating liquid 52, and then water contained in the coating liquid 52 is added. Removed to some extent. Next, the surface of the mold 51 ′ on which the coating liquid 52 was applied was brought into contact with the inner surface of the container 12. Furthermore, after removing the water contained in the coating liquid 52 with a dryer, the mold 51 ′ is removed by baking. As a result, the main body 10 ′ (see FIG. 7) of the heat exchange reactor in which the heat exchange structure 11 ′ having the columnar convex portion 11a ′ formed on the inner surface of the container 12 is formed. Obtained.

参考例2]
表面に微細な溝状部61aが形成されていないゼラチン製のフィルム状の型(図8参照)に、酸化カルシウムを水中に分散させた塗布液62を、スキージ63を用いて、厚さが4mmとなるように塗布した後、塗布液62に含まれる水をある程度除去した。次に、型61の塗布液62が塗布された面に、酸化カルシウム粒子及びスレンレス鋼粒子を水中に分散させた分散液を、スキージを用いて、厚さが1mmとなるように塗布した後、分散液に含まれる水をある程度除去した。さらに、分散液が塗布された型61を襞状に変形させた後、型61の分散液が塗布された面を容器12の内面に接触させた。このとき、高さが60mmの山が40mm間隔で形成されるように、襞状に変形させた。次に、乾燥機により塗布液62及び分散液に含まれる水を除去した後、型61を焼成により除去する。これにより、容器12の内面に、長手方向に延在している凸状部11aが表面に形成されている熱交換構造体11が形成されている熱交換型反応器の本体10を得た。
[ Reference Example 2]
Using a squeegee 63, a coating solution 62 in which calcium oxide is dispersed in water is applied to a gelatinous film-like mold (see FIG. 8) on which no fine groove 61a is formed. Then, water contained in the coating liquid 62 was removed to some extent. Next, after applying a dispersion liquid in which calcium oxide particles and stainless steel particles are dispersed in water on the surface of the mold 61 on which the coating liquid 62 is applied, using a squeegee, the thickness becomes 1 mm. Some water in the dispersion was removed. Furthermore, after the mold 61 coated with the dispersion liquid was deformed into a bowl shape, the surface of the mold 61 coated with the dispersion liquid was brought into contact with the inner surface of the container 12. At this time, it was deformed into a bowl shape so that peaks with a height of 60 mm were formed at intervals of 40 mm. Next, after removing water contained in the coating liquid 62 and the dispersion liquid with a dryer, the mold 61 is removed by baking. Thereby, the main body 10 of the heat exchange type | mold reactor in which the heat exchange structure 11 in which the convex-shaped part 11a extended in the longitudinal direction is formed in the surface is formed in the inner surface of the container 12 was obtained.

[実施例3]
特開2007−98930号公報の光ファイバープレートの製造方法の実施例1に準拠して、ゼラチン製のフィルム状の型51'(図6参照)を作製した。型51'は、直径が0.8mm、深さが1.5mmの円柱状の孔状部が2mm毎にヘキサゴナル状に形成されていた。
[Example 3]
A gelatinous film mold 51 ′ (see FIG. 6) was produced in accordance with Example 1 of the method for producing an optical fiber plate disclosed in Japanese Patent Application Laid-Open No. 2007-98930. In the mold 51 ′, a cylindrical hole portion having a diameter of 0.8 mm and a depth of 1.5 mm was formed in a hexagonal shape every 2 mm.

型51'に、塩化リチウムを水中に溶解させた溶液を、スプレー塗布機を用いて、厚さがおよそ1〜2mmとなるように塗布した後、溶液に含まれる水をある程度除去した。次に、酸化カルシウム粒子を水中に分散させた塗布液62を、スキージ63を用いて、厚さが10mmとなるように塗布した後、塗布液62に含まれる水をある程度除去した。さらに、型61の塗布液62が塗布された面に、酸化カルシウム粒子及びステンレス鋼粒子を水中に分散させた塗布液を、スキージを用いて、厚さが5mmとなるように塗布した後、塗布液に含まれる水をある程度除去した。次に、塗布液が塗布された型61を襞状に変形させた後、型61の塗布液が塗布された面を容器12の内面に接触させた。このとき、高さが60mmの山が40mm間隔で形成されるように、襞状に変形させた。次に、乾燥機により塗布液に含まれる水分を除去した後、型61を焼成により除去する。これにより、容器12の内面に、長手方向に延在している凸状部11aが表面に形成されていると共に、微細な円柱状の凸部が表面に形成されている熱交換構造体11が形成されている熱交換型反応器の本体10を得た。   A solution in which lithium chloride was dissolved in water was applied to the mold 51 ′ using a spray coater so as to have a thickness of approximately 1 to 2 mm, and then water contained in the solution was removed to some extent. Next, a coating liquid 62 in which calcium oxide particles were dispersed in water was applied using a squeegee 63 so as to have a thickness of 10 mm, and then water contained in the coating liquid 62 was removed to some extent. Further, a coating liquid in which calcium oxide particles and stainless steel particles are dispersed in water is applied to the surface of the mold 61 on which the coating liquid 62 is applied using a squeegee so that the thickness becomes 5 mm. Some water in the liquid was removed. Next, after the mold 61 coated with the coating liquid was deformed into a bowl shape, the surface of the mold 61 coated with the coating liquid was brought into contact with the inner surface of the container 12. At this time, it was deformed into a bowl shape so that peaks with a height of 60 mm were formed at intervals of 40 mm. Next, after the moisture contained in the coating liquid is removed by a dryer, the mold 61 is removed by baking. Thereby, the heat exchange structure 11 in which the convex part 11a extended in the longitudinal direction is formed on the surface on the inner surface of the container 12 and the minute cylindrical convex part is formed on the surface. The main body 10 of the formed heat exchange reactor was obtained.

[比較例1]
型51'の代わりに、孔状部51a'が形成されていないゼラチン製の型を用いた以外は、参考例1と同様にして、熱交換型反応器の本体を得た。
[Comparative Example 1]
A main body of a heat exchange reactor was obtained in the same manner as in Reference Example 1 except that a gelatin mold in which the hole 51a 'was not formed was used instead of the mold 51'.

[評価結果]
表1に、参考例1、2、実施例及び比較例の熱交換構造体の表面積を示す。
[Evaluation results]
Table 1 shows the surface areas of the heat exchange structures of Reference Examples 1 and 2, Example 3, and Comparative Example 1 .

Figure 0005622147
なお、比較例1の熱交換構造体の表面積を100とした。
Figure 0005622147
The surface area of the heat exchange structure of Comparative Example 1 was set to 100.

参考例1の熱交換構造体11'は、比較例1の熱交換構造体と比較して、表面積が4倍であるため、酸化カルシウムと水蒸気の可逆反応を促進することができる。このとき、型51'の孔状部51a'のパラメータを変更することにより、熱交換構造体の表面積を比較例1の熱交換構造体の表面積の10倍以上にすることができる。 Since the heat exchange structure 11 ′ of Reference Example 1 has a surface area that is four times that of the heat exchange structure of Comparative Example 1, it can promote a reversible reaction between calcium oxide and water vapor. At this time, the surface area of the heat exchange structure can be made 10 times or more the surface area of the heat exchange structure of Comparative Example 1 by changing the parameters of the hole 51a ′ of the mold 51 ′.

また、参考例1の熱交換構造体11'は、円柱状の凸状部11a'が表面に形成されているため、熱交換型反応器の本体10'内に水蒸気が供給される際に圧力損失が生じにくく、熱交換型反応器の本体10'の奥部に水蒸気が供給されやすくなる。 In addition, the heat exchange structure 11 ′ of Reference Example 1 has a columnar convex portion 11a ′ formed on the surface thereof, so that when water vapor is supplied into the main body 10 ′ of the heat exchange reactor, the pressure is increased. Loss is unlikely to occur, and water vapor is easily supplied to the back of the main body 10 ′ of the heat exchange reactor.

さらに、容器12の内面に熱交換構造体11'が形成されているため、熱交換型反応器の本体10'は伝熱効率に優れる。   Furthermore, since the heat exchange structure 11 ′ is formed on the inner surface of the container 12, the main body 10 ′ of the heat exchange reactor is excellent in heat transfer efficiency.

参考例2の熱交換構造体11は、比較例1の熱交換構造体と比較して、表面積が3倍であるため、酸化カルシウムと水蒸気の可逆反応を促進することができる。 Since the heat exchange structure 11 of Reference Example 2 has a surface area three times that of the heat exchange structure of Comparative Example 1, it can promote a reversible reaction between calcium oxide and water vapor.

また、参考例2の熱交換構造体11は、長手方向に延在している凸状部11aが表面に形成されているため、熱交換型反応器の本体10内に水蒸気が供給される際に圧力損失が生じにくく、熱交換型反応器の本体10の奥部に水蒸気が供給されやすくなる。
Moreover, since the convex part 11a extended in the longitudinal direction is formed in the surface, the heat exchange structure 11 of the reference example 2 is when water vapor | steam is supplied in the main body 10 of a heat exchange reactor. It is difficult for pressure loss to occur, and water vapor is easily supplied to the back of the main body 10 of the heat exchange reactor.

さらに、容器12の内面に熱交換構造体11が形成されていることに加え、酸化カルシウム及びスレンレス鋼を含む層が形成されているため、熱交換型反応器の本体10は伝熱効率に優れる。   Furthermore, since the heat exchange structure 11 is formed on the inner surface of the container 12 and a layer containing calcium oxide and stainless steel is formed, the main body 10 of the heat exchange reactor is excellent in heat transfer efficiency.

実施例3の熱交換構造体11は、比較例1の熱交換構造体と比較して、表面積が6倍であるため、酸化カルシウムと水蒸気の可逆反応を促進することができる。また、塩化リチウムを含む層が形成されているため、酸化カルシウムと水蒸気の反応速度を上昇させると共に、酸化カルシウムが反応することにより生成した水酸化カルシウムを加熱して水蒸気を発生させる温度を低下させることができる。   Since the heat exchange structure 11 of Example 3 has a surface area of 6 times that of the heat exchange structure of Comparative Example 1, it can promote the reversible reaction between calcium oxide and water vapor. In addition, since a layer containing lithium chloride is formed, the reaction rate of calcium oxide and water vapor is increased, and the calcium hydroxide generated by the reaction of calcium oxide is heated to lower the temperature at which water vapor is generated. be able to.

また、実施例3の熱交換構造体11は、長手方向に延在している凸状部11aが表面に形成されていると共に、微細な円柱状の凸部が表面に形成されているため、熱交換型反応器の本体10内に水蒸気が供給される際に圧力損失が生じにくく、熱交換型反応器の本体10の奥部に水蒸気が供給されやすくなる。   Moreover, since the heat exchange structure 11 of Example 3 has the convex part 11a extended in the longitudinal direction formed on the surface and the minute cylindrical convex part is formed on the surface, When steam is supplied into the main body 10 of the heat exchange reactor, pressure loss is unlikely to occur, and steam is easily supplied to the inner part of the main body 10 of the heat exchange reactor.

さらに、容器12の内面に熱交換構造体11が形成されていることに加え、酸化カルシウム及びスレンレス鋼を含む層が形成されているため、熱交換型反応器の本体10は伝熱効率に優れる。   Furthermore, since the heat exchange structure 11 is formed on the inner surface of the container 12 and a layer containing calcium oxide and stainless steel is formed, the main body 10 of the heat exchange reactor is excellent in heat transfer efficiency.

10、10' 熱交換型反応器の本体
11、11' 熱交換構造体
11a、11a' 凸状部
11b 微細な溝状部
12 容器
20 配管
30、40 ヒーター
51、51'、61 型
51a、61a 溝状部
51a' 孔状部
52、62 塗布液
53、63 スキージ
100 ケミカルヒートポンプ
110 熱交換型反応器
120 蒸発凝縮器
130 開閉弁
140 配管
10, 10 'Heat exchange reactor body 11, 11' Heat exchange structure 11a, 11a 'Convex part 11b Fine groove part 12 Container 20 Piping 30, 40 Heater 51, 51', 61 Type 51a, 61a Groove 51a 'Hole 52, 62 Coating Solution 53, 63 Squeegee 100 Chemical Heat Pump 110 Heat Exchange Reactor 120 Evaporative Condenser 130 Open / Close Valve 140 Piping

特開2007−247928号公報JP 2007-247928 A

Claims (4)

可とう性を有するに、気体と可逆的に反応することが可能な物質を溶媒中に溶解又は分散させた塗布液を塗布する工程と、
該塗布液が塗布されたを襞状に変形させる工程と、
該襞状に変形したの前記塗布液が塗布された面を容器の内面に接触させる工程と
該容器の内面に接触した前記襞状に変形した型を焼成することにより前記を除去する工程を有し、
前記型は、前記塗布液が塗布される側の表面に、円柱状の孔状部又は長手方向に延在している溝状部が形成されていることを特徴とする熱交換型反応器の製造方法。
Applying a coating solution in which a substance capable of reacting reversibly with a gas is dissolved or dispersed in a solvent in a mold having flexibility;
A step of deforming the mold coated with the coating solution into a bowl shape;
Contacting the inner surface of the container with the surface coated with the coating liquid of the mold deformed into a bowl shape ;
Have a step of removing the mold by firing the mold deformed in the pleated in contact with the inner surface of the container,
The mold has a cylindrical hole-like portion or a groove-like portion extending in the longitudinal direction formed on the surface on which the coating liquid is applied . Production method.
前記気体は、水蒸気であることを特徴とする請求項に記載の熱交換型反応器の製造方法。 The method for producing a heat exchange reactor according to claim 1 , wherein the gas is water vapor. 前記に潮解性物質を溶媒中に溶解させた溶液を塗布する工程をさらに有し、
の該溶液が塗布された面に前記塗布液を塗布することを特徴とする請求項に記載の熱交換型反応器の製造方法。
Further comprising the step of applying a solution of deliquescent material dissolved in a solvent in the mold,
Method of manufacturing a heat exchange reactor according to claim 2, characterized in that the solution of the type of applying the coating solution to the coated surface.
前記の前記塗布液が塗布された面に、熱伝導性材料を散布する、又は、熱伝導性材料を溶媒中に分散させた分散液を塗布する工程をさらに有し、
該熱伝導性材料が散布された、又は、該分散液が塗布されたを前記襞状に変形させることを特徴とする請求項1乃至3のいずれか一項に記載の熱交換型反応器の製造方法。
The method further comprises the step of spraying a heat conductive material on the surface on which the coating liquid of the mold is applied, or applying a dispersion in which the heat conductive material is dispersed in a solvent,
The heat exchange type reactor according to any one of claims 1 to 3, wherein the mold coated with the heat conductive material or deformed with the dispersion is deformed into the bowl shape. Manufacturing method.
JP2010280213A 2010-12-16 2010-12-16 Method for producing heat exchange reactor Expired - Fee Related JP5622147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280213A JP5622147B2 (en) 2010-12-16 2010-12-16 Method for producing heat exchange reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280213A JP5622147B2 (en) 2010-12-16 2010-12-16 Method for producing heat exchange reactor

Publications (2)

Publication Number Publication Date
JP2012127588A JP2012127588A (en) 2012-07-05
JP5622147B2 true JP5622147B2 (en) 2014-11-12

Family

ID=46644835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280213A Expired - Fee Related JP5622147B2 (en) 2010-12-16 2010-12-16 Method for producing heat exchange reactor

Country Status (1)

Country Link
JP (1) JP5622147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313258B2 (en) 2015-03-31 2018-04-18 日本ペイントホールディングス株式会社 Chemical heat storage material and chemical heat storage material forming composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273967A (en) * 1988-04-26 1989-11-01 Matsushita Electric Ind Co Ltd Reversible cold heat generator device
JP2009097733A (en) * 2007-10-12 2009-05-07 Denso Corp Adsorption heat exchanger and its manufacturing method
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
JP5177386B2 (en) * 2008-02-07 2013-04-03 国立大学法人東京工業大学 Chemical heat pump

Also Published As

Publication number Publication date
JP2012127588A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
Nguyen et al. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger
Xing et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection
Orejon et al. Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces
Wang et al. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation
Lu et al. Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting
US8865297B2 (en) Heterogeneous surfaces
US20170333941A1 (en) High energy efficiency phase change device using convex surface features
JP6538651B2 (en) Functional coatings to improve condenser performance
CN108431542B (en) It is a kind of for improving the alternately arranged heterogeneous wetting surface of condensed water capture rate
US10688553B2 (en) Solid sorption refrigeration
JP5622147B2 (en) Method for producing heat exchange reactor
Wang et al. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling
US20190033007A1 (en) Carbon nanotube and graphene aerogel heat pipe wick
Liu et al. Dropwise condensation by nanoengineered surfaces: design, mechanism, and enhancing strategies
US10921072B2 (en) Functional coatings enhancing condenser performance
JP2018516726A (en) Clothes dryer and control method thereof
Li et al. Effective solar-driven interfacial water evaporation-assisted adsorption of organic pollutants by a activated porous carbon material
Wan et al. Rapid water harvesting and nonthermal drying in humid air by N-doped graphene micropads
JP6792774B2 (en) Composites for chemical heat pumps and their manufacturing methods
JP2013253212A (en) Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
CN208990266U (en) A kind of MVR falling film evaporation device
Hoque et al. Defect-Density-Controlled Phase-Change Phenomena
CN102325923A (en) Have raising adhering nanoparticle deposition thing method of manufacture and be used to implement the device of this method
Yılmaz et al. Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting
CN215354486U (en) Super-hydrophobic surface structure for inhibiting frost and defrosting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5622147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees