JP5621540B2 - Cage roll restraint method - Google Patents

Cage roll restraint method Download PDF

Info

Publication number
JP5621540B2
JP5621540B2 JP2010259217A JP2010259217A JP5621540B2 JP 5621540 B2 JP5621540 B2 JP 5621540B2 JP 2010259217 A JP2010259217 A JP 2010259217A JP 2010259217 A JP2010259217 A JP 2010259217A JP 5621540 B2 JP5621540 B2 JP 5621540B2
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
shape
load
restraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010259217A
Other languages
Japanese (ja)
Other versions
JP2012110901A (en
Inventor
康治 黒川
康治 黒川
公之 岡田
公之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010259217A priority Critical patent/JP5621540B2/en
Publication of JP2012110901A publication Critical patent/JP2012110901A/en
Application granted granted Critical
Publication of JP5621540B2 publication Critical patent/JP5621540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Description

本発明は、鋼板を「U」字状、次いで「O」字状にプレス成形した後、突合せ部をアーク溶接し、その後に内側から拡張(E)して所定の寸法に仕上げるUOE鋼管の製造過程において、プレス後の溶接鋼管原管の突合せ部を外面より仮付溶接する際に問題となる溶接部の負荷を低減するためのケージロール拘束方法に関するものである。   The present invention manufactures a UOE steel pipe in which a steel sheet is press-formed into a “U” shape and then into an “O” shape, and then the butt portion is arc welded and then expanded (E) from the inside to finish to a predetermined size. The present invention relates to a cage roll restraining method for reducing a load on a welded part which becomes a problem when the butt part of a welded steel pipe original pipe after pressing is tack-welded from the outer surface in the process.

プレス後の溶接鋼管の原管(パイプP)は、搬送ラインで仮付溶接機WRに送られて突合せ部を仮付溶接された後に、内外面溶接を施される。原管の仮付溶接においては、ケージロールCRによる拘束から解放された際に溶接部に負荷が生ずる。この負荷は原管のスプリングバックに起因するものであり、肉厚の大きい鋼管ほど大きい負荷が生ずる(図1参照)。   The original pipe (pipe P) of the welded steel pipe after pressing is sent to the temporary welding machine WR on the conveying line and the butt portion is temporarily welded, and then inner and outer surface welding is performed. In the temporary welding of the original pipe, a load is generated in the welded portion when released from the restraint by the cage roll CR. This load is caused by the springback of the original pipe, and the larger the thickness of the steel pipe, the larger the load is generated (see FIG. 1).

従来の技術では、プレス後の鋼管原管の突合せ部の段差を解消する拘束方法および装置が確立されている(例えば特許文献1参照)。しかしながら、ケージロール拘束から解放された際に管溶接部に生ずる負荷に対する対策は施されていない。   In the prior art, a restraining method and apparatus for eliminating the level difference in the butt portion of the steel pipe original pipe after pressing has been established (for example, see Patent Document 1). However, no measures are taken against the load generated in the pipe weld when released from the cage roll restraint.

実開平05−000211号公報Japanese Utility Model Publication No. 05-000211

現在生産している管よりも厚肉かつ高強度の管を生産する場合、仮溶接する際に溶接部に生ずる負荷はより大きなものになると予測される。しかしながら、従来の方法ではこの負荷に対処することができず、ケージロール拘束から解放された際に溶接部で溶接剥れが生ずる危険が伴う。   When producing a thicker and higher-strength pipe than that currently produced, it is predicted that the load generated in the welded part during temporary welding will be greater. However, the conventional method cannot cope with this load, and there is a risk of welding peeling at the weld when released from the cage roll restraint.

本発明は、前記課題を解決する高度な溶接部負荷低減方法を提供し、厚肉高強度管の生産を可能とすることを目的とするものである。   An object of the present invention is to provide an advanced welding portion load reducing method that solves the above-described problems, and enables production of a thick high-strength pipe.

本発明のケージロール拘束方法は前記課題を解決するために、ケージロールで拘束した際のパイプ(鋼管原管)の形状(以下、「拘束形状」という)が、ケージロールから解放後の溶接部の負荷が最小となる形状(以下、「理想形状」という)となるように、ケージロールによる鋼管原管の拘束位置を定めるものであり、具体的には、鋼管原管の外周面を取り巻くように各々所定拘束角度に配置された複数個のケージロールで前記鋼管原管を拘束しつつ荷重を加えて、前記鋼管原管の連続仮付け溶接が行われる突合せ部のギャップをなくすUOE鋼管のケージロール拘束方法において、ケージロール拘束から解放された際の鋼管仮付け溶接部に生ずる負荷が最小となるように前記複数個のケージロールの荷重および拘束角度を定めたことを特徴とするものである。この拘束の際、理想形状が具体的にどのような形状なのかを知らなければ、拘束をすることはできない。また、理想形状を知ったとしても、ケージロールの拘束力に対してパイプがどの程度変形するのかを知らなければ、拘束形状を理想形状に一致させることはできない。すなわち、理想形状と拘束形状とを予測する必要が生ずる。そこで本発明では、弾性法則を基本とし、パイプを「片持ち曲がり梁」とみなしてモデル化し、曲がり梁の荷重と撓みとの関係により、理想形状および拘束形状を理論的に求める技術を確立した。以下、理想形状および拘束形状の導出方法を記す。   In order to solve the above-mentioned problem, the cage roll restraining method of the present invention is such that the shape of the pipe (original steel pipe) when restrained by the cage roll (hereinafter referred to as “restraint shape”) is a welded portion after being released from the cage roll. The restraint position of the steel pipe original pipe by the cage roll is determined so that the shape of the steel pipe is minimized (hereinafter referred to as "ideal shape"). Specifically, the outer circumference of the steel pipe original pipe is surrounded. A cage of UOE steel pipe that eliminates a gap in a butt portion where continuous tack welding of the steel pipe original pipe is performed by applying a load while constraining the steel pipe original pipe with a plurality of cage rolls each arranged at a predetermined restraining angle In the roll restraint method, the loads and restraint angles of the plurality of cage rolls are determined so that the load generated in the steel pipe tack weld when released from the cage roll restraint is minimized. It is an. At the time of restraint, the restraint cannot be made unless the specific shape of the ideal shape is known. Even if the ideal shape is known, the constraint shape cannot be matched with the ideal shape without knowing how much the pipe is deformed with respect to the constraint force of the cage roll. That is, it is necessary to predict the ideal shape and the constraining shape. Therefore, in the present invention, based on the law of elasticity, the pipe is regarded as a “cantilever bending beam” and modeled, and a technology for theoretically obtaining the ideal shape and the constraining shape based on the relationship between the bending beam load and the bending is established. . Hereinafter, methods for deriving the ideal shape and the constraint shape will be described.

[理想形状の導出]
図2は、FEM(有限要素法)解析によって、管外径48in(1219.2mm)、肉厚40mm、シームギャップ150mmの鋼管に対し、解放後の溶接部に生ずる応力を調べたものである。case1は、上下左右のケージロールCRを用いてパイプPを真円形状に拘束し、case2は、左右のケージロールCRを用いてパイプPを縦長に拘束し、それぞれ解放後の溶接部応力を算出した(なお、case1は従来の拘束方法に相当する)。真円形状に拘束すると、溶接部には縦方向へ戻ろうとする曲げモーメントが働き、縦長に拘束すると、溶接部には横方向へ戻ろうとする曲げモーメントが働くことがわかる(この際の溶接部応力は1000MPaを超えており、溶接剥れが生ずる可能性がある)。case1とcase2とでは、曲げモーメントの方向が反対であることから、上下左右のケージロールCRで互いの曲げモーメントを打ち消しあうようパイプPを拘束することで、解放後の溶接部に生ずる応力を低減させることができると考えられる。
[Derivation of ideal shape]
FIG. 2 shows the stress generated in the welded portion after release for a steel pipe having a pipe outer diameter of 48 in (1219.2 mm), a wall thickness of 40 mm, and a seam gap of 150 mm by FEM (finite element method) analysis. In case 1, the pipe P is constrained in a perfect circle shape using the upper, lower, left, and right cage rolls CR, and in case 2, the pipe P is constrained in the vertical direction using the left and right cage rolls CR, and the stress of the welded portion after release is calculated. (Case 1 corresponds to the conventional restraint method). It can be seen that when constrained to a perfect circle shape, a bending moment is exerted on the welded part to return in the vertical direction, and when constrained longitudinally, a bending moment is exerted on the welded part to return to the lateral direction (the welded part in this case). The stress exceeds 1000 MPa, and there is a possibility of welding peeling). In case 1 and case 2, the direction of the bending moment is opposite, so by restraining the pipe P to cancel each other's bending moment with the upper, lower, left and right cage rolls CR, the stress generated in the weld after release is reduced. It is thought that it can be made.

case3においては、上述したように上下左右のケージロールCRで曲げモーメントを打ち消しあうような拘束力をパイプPに与えてFEM解析を行った。溶接部の応力は15MPaと大幅に低減されており、拘束方法を工夫することで溶接剥れの危険性を回避できるとの知見を得た。上記FEM解析の結果より、曲げモーメントが働かないように拘束することで溶接部応力を大幅に低減させることができることが分かった。従って、曲げモーメントが働かないように拘束された際のパイプ形状を理想形状とみなすことができる。   In case 3, as described above, the FEM analysis was performed by giving the pipe P a restraining force that cancels the bending moment with the upper, lower, left, and right cage rolls CR. The stress of the welded portion was greatly reduced to 15 MPa, and it was found that the risk of welding peeling could be avoided by devising a restraining method. From the results of the FEM analysis, it was found that the weld stress can be significantly reduced by restraining the bending moment from acting. Therefore, the pipe shape when restrained so that the bending moment does not work can be regarded as an ideal shape.

理想形状を理論的に求めるために、「片持ち曲がり梁」によってパイプをモデル化した(図3参照)。パイプ円周上の中央の固定端を原点Oとするξη座標を定め、パイプ先端部の座標をQ(ξ,η)、パイプ円周上の任意の点の座標をR(ξ,η)とした。またパイプ中心を点Mとし、∠RMO=α、∠QMO=θとした。さらにパイプの弾性係数をE、断面二次モーメントをI、荷重を加えていない状態のパイプ半径をRとした。これにより、上部にシームギャップを持つパイプの片側を、曲がり梁により表現することができる。解放後のパイプは、先端部Qに曲げモーメントMおよび半径方向引張荷重Fを与えてシームギャップを閉じた状態とみなすことができる。case1〜case3に対して、先端部Qにそれぞれ曲げモーメントM1,M2,M3および半径方向引張荷重F1,F2,F3が与えられているとして梁の曲げモーメント分布を図示すれば、図4〜6に示すようになる(M1とM2の符号は逆になり、M3=0となる)。これにより、溶接部の応力が最小となる理想形状は、「先端部Qに半径方向引張荷重Fのみを加えてシームギャップが閉じたときの形状」とみなすことができる。 In order to obtain the ideal shape theoretically, the pipe was modeled by a “cantilever beam” (see FIG. 3). The ξη coordinate with the center fixed end on the pipe circumference as the origin O is defined, the coordinate of the pipe tip is Q (ξ 1 , η 1 ), and the coordinate of an arbitrary point on the pipe circumference is R (ξ 2 , η 2 ). The center of the pipe is a point M, and ∠RMO = α and ∠QMO = θ. Further E the modulus of elasticity of the pipe, the second moment I, the pipe radius state with no added weight was R m. Thereby, the one side of the pipe which has a seam gap in the upper part can be expressed by a curved beam. The released pipe can be regarded as a state where the seam gap is closed by applying a bending moment M and a radial tensile load F to the tip Q. If the bending moment distribution of the beam is illustrated on the assumption that the bending moments M1, M2, M3 and the radial tensile loads F1, F2, F3 are respectively applied to the tip portion Q with respect to case 1 to case 3, FIGS. (M1 and M2 have opposite signs and M3 = 0). Thereby, the ideal shape that minimizes the stress in the welded portion can be regarded as “a shape when the seam gap is closed by applying only the radial tensile load F to the tip portion Q”.

ここで、理想形状を数式で表現する。図7に示すように、荷重Fによりパイプ円周上の任意点R(ξ,η)が点R’(ξ’,η’)に移動したとする。また、変形前のパイプ中心を点M、変形後のパイプ中心を点M’とし、∠R’M’O=α’と定義する。但し、点M’は、点R’におけるパイプ形状を示す曲線の法線と、ξ軸との交点として定義する。荷重Fによって生じた任意の点Rの変化量をδR(δ,δ)とすれば、δ,δは下記の式1のように定義される。 Here, the ideal shape is expressed by a mathematical expression. As shown in FIG. 7, it is assumed that an arbitrary point R (ξ 2 , η 2 ) on the pipe circumference is moved to a point R ′ (ξ ′ 2 , η ′ 2 ) by the load F. Further, the pipe center before deformation is defined as point M, and the pipe center after deformation is defined as point M ′, which is defined as ∠R′M′O = α ′. However, the point M ′ is defined as the intersection of the normal line of the curve indicating the pipe shape at the point R ′ and the ξ axis. Assuming that the amount of change at an arbitrary point R caused by the load F is δR (δ h , δ v ), δ h and δ v are defined as in Equation 1 below.

Figure 0005621540
Figure 0005621540

角度変化量δαをδα=α’−αとして定義する。δ,δおよびδαを求めれば、先端荷重負荷時の曲がり梁形状を算出することができる。δ,δおよびδαは、弾性法則を基本とした「曲がり梁の荷重と撓みの関係式」より算出することができ、導出結果は下記の式2に示すようになる。但し、E,IおよびRはそれぞれ、パイプの弾性係数、断面二次モーメントおよび拘束前のパイプ半径である。 The angle variation [delta] alpha is defined as δ α = α'-α. If δ h , δ v and δ α are obtained, it is possible to calculate the bent beam shape when the tip load is applied. δ h , δ v and δ α can be calculated from a “relational expression of bending beam load and deflection” based on the law of elasticity, and the derivation result is as shown in Expression 2 below. However, E, respectively I and R m, the modulus of elasticity of the pipe, a second moment and before restraint pipe radius.

Figure 0005621540
Figure 0005621540

荷重Fの大きさは、シームギャップが閉じるまで変形させる程度であることを考慮すれば、下記の式3に示すようになる。   Considering that the magnitude of the load F is such that the seam gap is deformed until it closes, the following formula 3 is obtained.

Figure 0005621540
但し、Rはパイプを真円形状に拘束し、ギャップを閉じたときのパイプ半径である。これにより、任意のサイズ、材質、シームギャップのパイプに対して、理想形状を導出することができる。なお、RおよびRにおけるパイプ「半径」は、パイプ肉厚の中央での値すなわち(内径+外径)/4とする。
Figure 0005621540
However, R0 is a pipe radius when the pipe is constrained to a perfect circle shape and the gap is closed. Thereby, an ideal shape can be derived for a pipe having an arbitrary size, material, and seam gap. The pipe “radius” at R m and R 0 is a value at the center of the pipe thickness, that is, (inner diameter + outer diameter) / 4.

[拘束形状の導出]
ケージロール拘束時のパイプ形状を調べるために、図8に示すような曲がり梁を用いて拘束時のパイプを表現する。この図8は、4点の半径方向集中荷重によって曲がり梁が撓み、ギャップが閉じている状態を示している。n番目のケージロールの荷重Wを拘束角度θとして付加した際に生ずる任意の点Rの位置変化量をδR(h,v)、角度変化量をδαとすれば、h,vおよびδαは「曲がり梁の荷重と撓みの式」より、下記の式4のように導出される。
[Derivation of constraint shape]
In order to investigate the pipe shape when the cage roll is restrained, the pipe at the restraint is expressed using a bending beam as shown in FIG. FIG. 8 shows a state in which the bending beam is bent and the gap is closed by four concentrated loads in the radial direction. If the position change amount of an arbitrary point R generated when the load W n of the n-th cage roll is added as the constraint angle θ n is δR n (h n , v n ) and the angle change amount is δα n , h n, v n and δα n than the "expression of the deflection and the load of the curved beam", is derived as shown in equation 4 below.

Figure 0005621540
Figure 0005621540

4つのケージロール荷重によって生ずる点Rの位置変化量をδR(Δh,Δv)、角度変化量wをΔαとすれば、重ね合わせの原理により下記の式5が成り立つ。 Assuming that the position change amount of the point R caused by the four cage roll loads is δR k (Δh, Δv) and the angle change amount w is Δα, the following equation 5 is established according to the principle of superposition.

Figure 0005621540
Figure 0005621540

これにより、任意のサイズ、材質、シームギャップのパイプに対して、任意の荷重を与えた際の拘束形状を導出することができる。拘束形状が理想形状に一致するようにパイプを拘束することにより、拘束からの解放後の溶接部応力を最小とすることが可能となる。   Thereby, it is possible to derive a constraining shape when an arbitrary load is applied to a pipe having an arbitrary size, material, and seam gap. By constraining the pipe so that the constrained shape matches the ideal shape, it is possible to minimize the weld stress after release from the constrained state.

実際は、パイプ形状を完全に理想形状に一致させる必要はなく、先端部の角度変化量が一致すれば充分である。そこで、下記の式6が成り立つように荷重W、拘束角度θを調節して拘束し、これを「解放後の溶接部応力を最小とする拘束方法」とする。 Actually, it is not necessary to make the pipe shape completely coincide with the ideal shape, and it is sufficient if the angle change amounts of the tip portions coincide. Therefore, the load W n and the restraint angle θ n are adjusted and restrained so that the following expression 6 holds, and this is referred to as “a restraint method that minimizes the weld stress after release”.

Figure 0005621540
Figure 0005621540

各ケージロールの拘束力を調節し、式6が成り立つようΔαの値を定めることで、「解放後の溶接部応力を最小とする拘束」を実現できる。但し、上記のように拘束したとしても、溶接部の応力は0にはならない。上端部に円周方向引張荷重Fが作用するからである。従って、式3に示す荷重Fに耐えられるように溶接材質、溶接ノド厚を選択しなければならない。   By adjusting the restraining force of each cage roll and determining the value of Δα so that Equation 6 is satisfied, “restraint that minimizes the weld zone stress after release” can be realized. However, even if restrained as described above, the stress of the welded portion does not become zero. This is because a circumferential tensile load F acts on the upper end portion. Therefore, the welding material and the welding throat thickness must be selected so as to withstand the load F shown in Equation 3.

本発明によれば、仮溶接時の鋼管のケージロール拘束方法と、溶接部に生ずる負荷との関係が明らかとなったので、より肉厚の大きい鋼管において、溶接剥れをおこさずに仮溶接を行うことができる。   According to the present invention, since the relationship between the cage roll restraining method of the steel pipe at the time of temporary welding and the load generated in the welded portion has been clarified, it is possible to temporarily weld the steel pipe having a larger thickness without causing welding peeling. It can be performed.

ケージロール解放後にスプリングバックによって鋼管の溶接部に生ずる負荷を示す説明図である。It is explanatory drawing which shows the load which arises in the welding part of a steel pipe by springback after cage roll release. (a),(b),(c)は、case1(真円形状に拘束),case2(縦長形状に拘束),case3(応力を低減させる形状に拘束)のそれぞれについてケージロール解放後の溶接部に生ずる負荷を示す説明図である。(A), (b), (c) are welded parts after releasing the cage roll for case 1 (restrained to a perfect circle shape), case 2 (restrained to a vertically long shape), and case 3 (restrained to a shape that reduces stress) It is explanatory drawing which shows the load which arises. 無負荷状態の片持ち曲がり梁でモデル化したパイプを示す説明図である。It is explanatory drawing which shows the pipe modeled with the cantilever bending beam of the no-load state. case1(真円形状に拘束)においてパイプに働く曲げモーメントを示す説明図である。It is explanatory drawing which shows the bending moment which acts on a pipe in case1 (restraint to a perfect circle shape). case2(縦長形状に拘束)においてパイプに働く曲げモーメントを示す説明図である。It is explanatory drawing which shows the bending moment which acts on a pipe in case2 (restraint in a vertically long shape). case3(応力を低減させる形状に拘束)においてパイプに働く曲げモーメントを示す説明図である。It is explanatory drawing which shows the bending moment which acts on a pipe in case3 (restraint to the shape which reduces stress). (a),(b)は、無負荷状態の片持ち曲がり梁形状および円周方向引張り荷重による理想形状をそれぞれ示す説明図である。(A), (b) is explanatory drawing which shows the ideal shape by the cantilever beam shape and circumferential direction tensile load of a no-load state, respectively. 半径方向荷重負荷時の片持ち曲がり梁でモデル化したパイプを示す説明図である。It is explanatory drawing which shows the pipe modeled with the cantilever bend beam at the time of radial direction load load. パイプの溶接部を拡大して示す説明図である。It is explanatory drawing which expands and shows the welding part of a pipe. 先端部角度変化量の定義を示す説明図である。It is explanatory drawing which shows the definition of front-end | tip part angle variation | change_quantity.

本発明のケージロール拘束方法は、例えば図1の中央および図2の左端に示すように、略O字状に成形された鋼管原管Pの外周面を取り巻くような拘束角度に配置された複数個のケージロールCRでその鋼管原管Pを拘束しつつ、それらのケージロールCRに例えば油圧シリンダで圧力をかけることで鋼管原管Pに荷重を加えて、その鋼管原管Pの連続仮付け溶接が行われる突合せ部のギャップをなくす際に、前述の如く、解放したときに管断面形状が変化しないように荷重を加えて拘束するので、溶接部に曲げモーメントが作用しなくなり、溶接部に生ずる負荷を低減させることができる。   The cage roll restraining method of the present invention has a plurality of restraint angles arranged around the outer peripheral surface of the steel pipe original pipe P formed in a substantially O shape, for example, as shown in the center of FIG. 1 and the left end of FIG. While restraining the steel pipe original pipe P with the individual cage roll CR, a load is applied to the steel pipe original pipe P by applying pressure to the cage roll CR with, for example, a hydraulic cylinder, and the steel pipe original pipe P is continuously attached. When eliminating the gap at the butt portion where welding is performed, as described above, a load is applied and restrained so that the tube cross-sectional shape does not change when released, so the bending moment does not act on the weld and the weld The generated load can be reduced.

課題を解決するための手段で述べたように、応力を最小とするよう拘束するためには、式6が成立するよう拘束すればよい。すなわち、理想形状の接触部角度変化量δα|α=θと拘束形状の接触部角度変化量Δαとに大きな差があると、溶接剥れが発生し、差が小さければ溶接剥れは発生しないといえる。そこで、溶接剥れが発生しない範囲を以下に導く。 As described in the means for solving the problem, in order to constrain the stress to be minimized, it is sufficient to constrain Equation 6 to hold. That is, if there is a large difference between the ideal shape contact portion angle change amount δα | α = θ and the constrained shape contact portion angle change amount Δα, weld peeling occurs. If the difference is small, weld peeling does not occur. It can be said. Therefore, a range in which no welding peeling occurs is introduced below.

接触部の仮溶接は、図9に示すような形となっている。Δαがδα|α=θと大きく異なる場合、溶接部には大きな負荷が加わるが直ぐに溶接剥れが生ずることはなく、まず溶接材が伸び、理想形状の接触部角度変化量δα|α=θに近づこうとする。溶接材が伸びることによって生ずる角度の変化量をΔθとすれば、Δθは梁と撓みの関係により、図9に示す座標x,yを用いて下記の式7のように定義することができる。但し、t,aおよびεはそれぞれ溶接ノド厚、溶接幅および溶接材のひずみである。また、ρは任意点xにおける、撓みによって生ずる極率半径である。 The temporary welding of the contact part has a shape as shown in FIG. When Δα is greatly different from δα | α = θ , a large load is applied to the welded portion, but no welding peeling occurs immediately. First, the welded material is stretched, and the contact portion angle change amount δα | α = θ of the ideal shape Try to get closer to. If the amount of change in angle caused by the extension of the welding material is Δθ, Δθ can be defined as in the following Expression 7 using the coordinates x and y shown in FIG. However, t, a, and ε are the welding throat thickness, the welding width, and the distortion of the welding material, respectively. Further, ρ is a radius of curvature generated by bending at an arbitrary point x.

Figure 0005621540
Figure 0005621540

従って、Δθの最大値Δθは、上式7のひずみεに溶接材の伸びεを代入した下記の式8の値である。Δθよりも大きな角度変化が生じた場合、ひずみεが溶接材の伸びを上回り、溶接剥れが生ずる。 Accordingly, the maximum value Δθ m of Δθ is a value of the following equation 8 in which the elongation ε m of the welding material is substituted for the strain ε of the above equation 7. When an angle change larger than Δθ m occurs, the strain ε exceeds the elongation of the welding material, and welding peeling occurs.

Figure 0005621540
Figure 0005621540

よって、理想形状の接触部角度変化量δα|α=θと拘束形状の接触部角度変化量Δαとの差がΔθよりも小さければ溶接剥れは生じない。すなわち、下記の式9で示す範囲では曲げによる溶接剥れは生じない。 Therefore, if the difference between the ideal shape contact portion angle change amount δα | α = θ and the constrained shape contact portion angle change amount Δα is smaller than Δθ m , welding peeling does not occur. That is, welding peeling due to bending does not occur in the range represented by the following Expression 9.

Figure 0005621540
Figure 0005621540

但し、溶接部の溶接材は、溶接部の曲げモーメントだけでなく、管円周方向引張荷重Fによっても負荷を受ける。すなわち、パイプの管長をl、溶接材許容応力をσとすれば、下記の式10が成り立たねばならない。 However, the welding material of the welded portion is subjected not only to the bending moment of the welded portion but also to the pipe circumferential direction tensile load F. That is, if the pipe length of the pipe is l and the welding material allowable stress is σ y , the following equation 10 must be established.

Figure 0005621540
Figure 0005621540

上記の式10をノド厚tに対して解けば、下記の式11のようになる。但し、パイプの肉厚をtとしている。 Solving the above equation 10 with respect to the tread thickness t, the following equation 11 is obtained. However, the wall thickness of the pipe as a t p.

Figure 0005621540
Figure 0005621540

よって、これら式(9)および式(11)を満たす範囲で、拘束形状の接触部角度変化量Δαとノド厚tとを定めれば、仮溶接後の溶接剥れの発生を防止することができる。   Therefore, if the contact portion angle change amount Δα and the node thickness t of the constrained shape are determined within a range satisfying these equations (9) and (11), it is possible to prevent the occurrence of welding peeling after temporary welding. it can.

本発明の実施例として、下記の表1に示す二種類の条件のパイプに対し、溶接可能となる溶接ノド厚tと拘束形状の接触部角度変化量Δαの範囲とを示す。   As an embodiment of the present invention, the weld throat thickness t and the range of the contact portion angle variation Δα of the constrained shape are shown for the pipes of the two types of conditions shown in Table 1 below.

Figure 0005621540
Figure 0005621540

実施例1に対して式9および式11を適用すれば、下記の条件が得られる。
(式12)
t≧1.6[mm]
(式13)
1.8[°]≦Δα≦13.0[°]
When Expression 9 and Expression 11 are applied to Example 1, the following conditions are obtained.
(Formula 12)
t ≧ 1.6 [mm]
(Formula 13)
1.8 [°] ≦ Δα ≦ 13.0 [°]

溶接ノド厚は7mmであるので上記の式12に関する条件は満たしている。よって、式13を満たすように複数個のケージロールでパイプを拘束することで、仮溶接後の溶接剥れの発生を防止することができる。   Since the welding throat thickness is 7 mm, the condition related to the above equation 12 is satisfied. Therefore, by restraining the pipe with a plurality of cage rolls so as to satisfy Equation 13, it is possible to prevent the occurrence of weld peeling after temporary welding.

実施例2に対して式9および式11を適用すれば、下記の条件が得られる。
(式14)
t≧0.8[mm]
(式15)
0.9[°]≦Δα≦6.6[°]
When Expression 9 and Expression 11 are applied to Example 2, the following condition is obtained.
(Formula 14)
t ≧ 0.8 [mm]
(Formula 15)
0.9 [°] ≦ Δα ≦ 6.6 [°]

溶接ノド厚は7mmであるので上記の式14に関する条件は満たしている。よって、式15を満たすように複数個のケージロールでパイプを拘束することで、仮溶接後の溶接剥れの発生を防止することができる。   Since the welding throat thickness is 7 mm, the condition relating to the above-mentioned formula 14 is satisfied. Therefore, by restraining the pipe with a plurality of cage rolls so as to satisfy Formula 15, it is possible to prevent the occurrence of weld peeling after temporary welding.

以上、実施例に基づき説明したが、本発明は上述の例に限定されるものでなく、例えば鋼管原管に荷重を加えるためのケージロールの加圧を行うのは油圧シリンダに限られず、例えばモータでネジ軸またはそこに螺合するナットを回転させて推進力を得る電動駆動機構等でも良い。また、本発明によれば、他のサイズや材質のパイプに対しても、同様の手順により、溶接剥れの発生しない溶接ノド厚tと接触部角度変化量Δαとを求めることができる。   As mentioned above, although demonstrated based on the Example, this invention is not limited to the above-mentioned example, For example, it is not restricted to a hydraulic cylinder to pressurize the cage roll for applying a load to a steel pipe original pipe, for example, An electric drive mechanism or the like that obtains a propulsive force by rotating a screw shaft or a nut screwed therein by a motor may be used. Further, according to the present invention, it is possible to obtain the welding throat thickness t and the contact portion angle change amount Δα that do not cause welding peeling even for pipes of other sizes and materials by the same procedure.

かくして本発明のケージロール拘束方法によれば、仮溶接時の鋼管のケージロール拘束方法と、溶接部に生ずる負荷との関係が明らかとなったので、より肉厚の大きい鋼管において、溶接剥れをおこさずに仮溶接を行うことができる。   Thus, according to the cage roll restraining method of the present invention, the relationship between the cage roll restraining method of the steel pipe during temporary welding and the load generated in the welded portion has been clarified. Temporary welding can be performed without performing.

CR ケージロール
P パイプ
WM 溶接材
WR 仮付溶接機
CR Cage Roll P Pipe WM Welding Material WR Temporary Welding Machine

Claims (2)

鋼管原管の外周面を取り巻くように各々所定拘束角度に配置された複数個のケージロールで前記鋼管原管を拘束しつつ荷重を加えて、前記鋼管原管の連続仮付け溶接が行われる突合せ部のギャップをなくすUOE鋼管のケージロール拘束方法において、
鋼管仮付け溶接部に曲げモーメントが働かないように拘束された前記鋼管原管の形状を理想形状として計算で導出するとともに、前記複数個のケージロールで荷重を与えられた前記鋼管原管の形状を拘束形状として計算で導出し、
前記理想形状での前記鋼管原管の先端部の角度変化量と前記拘束形状での前記鋼管原管の先端部の角度変化量との差がΔθ よりも小さくなるように前記複数個のケージロールの荷重および拘束角度を定めることで、ケージロール拘束から解放された際の鋼管仮付け溶接部に生ずる負荷が最小となるように前記複数個のケージロールの荷重および拘束角度を定めたことを特徴とするUOE鋼管のケージロール拘束方法。
但し、
Figure 0005621540
ε :溶接材の伸び
a:溶接幅
t:溶接ノド厚
である。
A butt where continuous tack welding of the steel pipe original pipe is performed by applying a load while restraining the steel pipe original pipe with a plurality of cage rolls arranged at a predetermined restraining angle so as to surround the outer peripheral surface of the steel pipe original pipe. In the cage roll restraining method of UOE steel pipe that eliminates the gap of the part,
The shape of the steel pipe original pipe, which is derived by calculation as the ideal shape of the steel pipe original pipe constrained so that a bending moment does not act on the steel pipe tack welded portion, and is loaded with the plurality of cage rolls Is derived as a constraint shape by calculation,
The plurality of cages such that a difference between an angle change amount of the tip end portion of the steel pipe original pipe in the ideal shape and an angle change amount of the tip end portion of the steel pipe original pipe in the constrained shape is smaller than Δθ m. By determining the load and restraint angle of the roll, the load and restraint angle of the plurality of cage rolls are determined so that the load generated in the steel pipe tack weld when released from the cage roll restraint is minimized. A cage roll restraining method for a UOE steel pipe, which is characterized.
However,
Figure 0005621540
ε m : Elongation of welding material
a: welding width
t: welding throat thickness
It is.
前記鋼管原管の肉厚、管径、材質およびシームギャップをパラメータとして、以下の式9および式11により、鋼管仮付け溶接部の負荷を最小とするケージロール拘束位置を算出し、その算出した位置に従って前記複数個のケージロールの荷重および拘束角度を定めたことを特徴とする請求項1記載のUOE鋼管のケージロール拘束方法。
Figure 0005621540
Figure 0005621540
但し、
Δα:拘束形状の接触部角度変化量
θ:拘束前の鋼管原管の円周上の中央の固定端を点O、先端部を点Q、中心を点Mとしたときの∠QMO
E:鋼管原管の弾性係数
:拘束前の鋼管原管の半径
:鋼管原管を真円形状に拘束し、シームギャップを閉じたときの鋼管原管の半径
ε:溶接材の伸び
a:溶接幅
t:溶接ノド厚
σ:溶接材許容応力
:鋼管原管の肉厚
であり、RおよびRにおける「半径」は、(内径+外径)/4とする。
Using the thickness, pipe diameter, material, and seam gap of the steel pipe original pipe as parameters, a cage roll restraining position that minimizes the load on the steel pipe tack welded portion is calculated by the following formulas 9 and 11, and the calculation is performed. 2. The cage roll restraint method for a UOE steel pipe according to claim 1, wherein a load and a restraint angle of the plurality of cage rolls are determined according to positions.
Figure 0005621540
Figure 0005621540
However,
Δα: Contact portion angle change amount of constrained shape θ: ∠QMO when the center fixed end on the circumference of the steel pipe raw tube before restraint is point O, the tip is point Q, and the center is point M
E: Elastic modulus of the steel pipe original pipe R m : Radius of the steel pipe original pipe before restraint R 0 : Radius of the steel pipe original pipe when the steel pipe raw pipe is constrained in a perfect circle shape and the seam gap is closed ε m : Welding material Elongation a: Weld width t: Weld throat thickness σ y : Welding material allowable stress t p : Thickness of the steel pipe original pipe, and “radius” in R m and R 0 is (inner diameter + outer diameter) / 4 To do.
JP2010259217A 2010-11-19 2010-11-19 Cage roll restraint method Expired - Fee Related JP5621540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259217A JP5621540B2 (en) 2010-11-19 2010-11-19 Cage roll restraint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259217A JP5621540B2 (en) 2010-11-19 2010-11-19 Cage roll restraint method

Publications (2)

Publication Number Publication Date
JP2012110901A JP2012110901A (en) 2012-06-14
JP5621540B2 true JP5621540B2 (en) 2014-11-12

Family

ID=46495685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259217A Expired - Fee Related JP5621540B2 (en) 2010-11-19 2010-11-19 Cage roll restraint method

Country Status (1)

Country Link
JP (1) JP5621540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108672900A (en) * 2018-06-28 2018-10-19 中铁山桥集团有限公司 A kind of welding integrated welding method of U-shaped angle of rib weld seam group

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191516A (en) * 1983-04-14 1984-10-30 Sumitomo Metal Ind Ltd Production of thick walled large diameter steel pipe
JPS62197299A (en) * 1986-02-21 1987-08-31 Mitsubishi Heavy Ind Ltd Tack constraining device for steel pipe
JPH0712549B2 (en) * 1987-12-25 1995-02-15 川崎製鉄株式会社 ERW steel pipe manufacturing method

Also Published As

Publication number Publication date
JP2012110901A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
Shinkin Mathematical model of technological parameters’ calculation of flanging press and the formation criterion of corrugation defect of steel sheet’s edge
CN105930559B (en) A kind of method of determining tubing numerical-control bending springback angle
Shinkin Preliminary straightening of thick steel sheet in a seven-roller machine
Ahmed et al. Deep spinning of sheet metals
Wen et al. Bi-directional dieless incremental flanging of sheet metals using a bar tool with tapered shoulders
JP2012508651A5 (en)
Adamus et al. Forming of the titanium elements by bending
EP3260215A1 (en) Press forming method and press forming mold
Zheng et al. Effect of shape imperfection on the buckling of large-scale thin-walled ellipsoidal head in steel nuclear containment
Pater et al. Numerical analysis of a skew rolling process for producing a stepped hollow shaft made of titanium alloy Ti6Al4V
Wen On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition
Kyvelou et al. Residual stresses in steel I-sections strengthened by wire arc additive manufacturing
JP5621540B2 (en) Cage roll restraint method
Li et al. Research on a new counter-roller active spinning process for forming Al alloy thin-walled cylinders
Engel et al. Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes
JP2007167930A (en) Method for straightening shape steel
BRPI0612291B1 (en) PROCESS FOR PRODUCING A SEW-FREE STEEL BODY
Elyasi et al. Experimental investigation and numerical simulation of the effect of type of bending die on the quality of tube forming in rotary draw bending process
JP5857876B2 (en) Tube expansion machine for UOE steel pipe manufacturing
JP2008307594A (en) Uoe steel tube for line pipe excellent in deformability
Shinkin Influence of non-linearity of hardening curve on elasticoplastic bend of rectangular rod
JP2003340518A (en) Manufacturing method of uoe steel pipe having good crush strength
RU2347636C1 (en) Method for dressing of cylindrical billets
JP5966441B2 (en) Welded steel pipe excellent in pressure crushing performance and internal pressure fracture resistance and manufacturing method thereof
Anderson et al. Formability extension of aerospace alloys for tube hydroforming applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees