JP5619050B2 - Biological information detection device - Google Patents

Biological information detection device Download PDF

Info

Publication number
JP5619050B2
JP5619050B2 JP2012043282A JP2012043282A JP5619050B2 JP 5619050 B2 JP5619050 B2 JP 5619050B2 JP 2012043282 A JP2012043282 A JP 2012043282A JP 2012043282 A JP2012043282 A JP 2012043282A JP 5619050 B2 JP5619050 B2 JP 5619050B2
Authority
JP
Japan
Prior art keywords
light
optical member
light receiving
living body
body part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043282A
Other languages
Japanese (ja)
Other versions
JP2013176518A (en
Inventor
裕 千明
裕 千明
篤彦 前田
篤彦 前田
小林 稔
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012043282A priority Critical patent/JP5619050B2/en
Publication of JP2013176518A publication Critical patent/JP2013176518A/en
Application granted granted Critical
Publication of JP5619050B2 publication Critical patent/JP5619050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Description

この発明は、例えばユーザの健康状態の診断やユーザ本人の属性判定のために、当該ユーザの生体情報を検出する生体情報検出装置に関する。   The present invention relates to a biological information detection apparatus that detects biological information of a user, for example, for diagnosis of a user's health condition and attribute determination of the user.

生体情報には脈拍、脈波、血流、血圧等があるが、このうち末梢動脈の容積変化を示す波形である容積脈波が注目されている。容積脈波は、人間に関する様々な有益な情報が得られる可能性があることから、動脈の硬化度合や精神的ストレスの検出等といった医学診断分野に留まらず、それ以外にも種々の分野への適用が検討されている。   Biological information includes a pulse, a pulse wave, a blood flow, a blood pressure, and the like. Among these, a volume pulse wave, which is a waveform indicating a volume change of a peripheral artery, has attracted attention. Since plethysmogram may provide various useful information about human beings, it is not limited to medical diagnostic fields such as arteriosclerosis and detection of mental stress. Application is under consideration.

例えば、テレビジョン装置やビデオ機器、STB(Set Top Box)のリモートコントローラに代表される操作端末をユーザが操作した際に、当該ユーザの容積脈波からユーザの属性を判定し、その判定結果に基づいて当該ユーザに適したコンテンツ等を選択し配信するシステムが提案されている。   For example, when a user operates an operation terminal typified by a television device, a video device, or a remote controller of an STB (Set Top Box), the user attribute is determined from the volume pulse wave of the user, and the determination result is Based on this, a system for selecting and distributing content suitable for the user has been proposed.

容積脈波を取得するための手法としては、指先や耳朶といった末梢動脈が存在する生体部位の近辺に受光素子を配置し、自然光や発光素子により生体部位に照射した光のうち、生体部位内部の末梢動脈中に存在するヘモグロビンに吸収されず生体部位外に散乱する光量の変化を受光素子により計測することにより、末梢動脈中の容積変化を計測する手法が一般的である(例えば、特許文献1を参照。)。
ところが、このような特許文献1に記載された手法では、受光素子の設置位置に指先等の生体部位を意識的に置くというような明示的な位置合わせを行う必要があるため、ユーザの本来の行動を妨げてしまうことになり、操作上のユーザビリティを低下させ好ましくない。
As a method for acquiring the volume pulse wave, a light receiving element is arranged in the vicinity of a living body part where a peripheral artery such as a fingertip or an earlobe exists, and among natural light or light emitted to the living body part by a light emitting element, A technique for measuring a volume change in a peripheral artery by measuring a change in the amount of light that is not absorbed by hemoglobin present in the peripheral artery but scattered outside the living body by a light receiving element is common (for example, Patent Document 1). See).
However, in the method described in Patent Document 1, it is necessary to perform explicit alignment such as placing a biological part such as a fingertip consciously at the installation position of the light receiving element. The action will be hindered, and the usability in operation is lowered, which is not preferable.

一方、このような明示的な位置合わせの必要性を緩和するための手法も提案されている。この手法は、例えば発光素子と受光素子を使用する従来の一般的な末梢動脈中の容積変化計測装置に発光板と受光板という2枚の光学部材を追加することで、生体部位が接触する位置に依らない赤外光の照射と散乱光の受光を実現している(例えば、非特許文献1を参照。)。   On the other hand, a method for alleviating the need for such explicit alignment has also been proposed. In this method, for example, by adding two optical members, a light emitting plate and a light receiving plate, to a conventional volume change measuring device in a peripheral artery using a light emitting device and a light receiving device, a position where a living body part contacts Irradiation of infrared light and reception of scattered light are realized without depending on (for example, see Non-Patent Document 1).

特開2007−259912号公報JP 2007-259912 A

千明裕、前田篤彦、小林稔:“脈波を取得可能な面センシング技術の実装と評価”、情報処理学会 インタラクション2011、2011/03/03Chiaki Hiroshi, Maeda Atshiko, Kobayashi Satoshi: “Implementation and Evaluation of Surface Sensing Technology that Can Acquire Pulse Waves”, Information Processing Society of Japan Interaction 2011, 2011/03/03

ところが、非特許文献1に記載された手法には大きく三つの解決すべき課題がある。
すなわち、一つ目の課題は受光素子の飽和である。この手法は、発光板と受光板とを上下に重ねた構成となっているため、発光板から面発光された光のうち、受光板を透過して生体部位に照射される光以外に、受光板内部で内部全反射を繰り返してそのまま受光素子で受光される直接光が発生する。このような直接光の光量が大きい場合には、受光素子を飽和させてしまう。
However, the method described in Non-Patent Document 1 has three major problems to be solved.
That is, the first problem is saturation of the light receiving element. Since this method has a configuration in which a light emitting plate and a light receiving plate are stacked one above the other, light other than the light emitted from the light emitting plate through the light receiving plate and irradiated on the living body part is received. Direct light that is received by the light receiving element as it is is generated by repeating total internal reflection inside the plate. When the amount of such direct light is large, the light receiving element is saturated.

二つ目の課題は、発光板と受光板を上下に重ねることによる厚みの増加である。発光板及び受光板の厚みは一般的に普及している発光素子及び受光素子のサイズに合わせて設計する必要がある。例えば、発光素子及び受光素子のサイズが1〜2mmであったとすれば、発光板及び受光板の厚みはこの値を2倍した2〜4mm程度となるように設計される。この発光板及び受光板の厚みは、STBのリモートコントローラ等のような小型電子機器にその構成を大きく変えることなく搭載しようとした場合に、当該小型電子機器の大型化を招く。   The second problem is an increase in thickness by stacking the light emitting plate and the light receiving plate vertically. The thickness of the light emitting plate and the light receiving plate needs to be designed according to the size of the light emitting element and the light receiving element which are generally spread. For example, if the size of the light emitting element and the light receiving element is 1 to 2 mm, the thickness of the light emitting plate and the light receiving plate is designed to be about 2 to 4 mm, which is twice this value. The thickness of the light emitting plate and the light receiving plate causes an increase in the size of the small electronic device when it is intended to be mounted on a small electronic device such as an STB remote controller without greatly changing its configuration.

三つ目の問題としては、発光板から面発光された光が受光板を透過する際に生じる減衰である。この減衰は、例えばアクリル樹脂では透過率が90%であるため10%にもなる。生体部位中の血流量を安定的に計測するためには十分な光量が必要である。したがって、減衰分の光量を補うためには発光素子に対してより大きな電流を流す必要があり、その結果消費電力の増加を招く。   The third problem is attenuation that occurs when light emitted from the light emitting plate is transmitted through the light receiving plate. This attenuation is as high as 10% because, for example, acrylic resin has a transmittance of 90%. A sufficient amount of light is required to stably measure the blood flow in the body part. Therefore, in order to compensate for the amount of attenuation, it is necessary to flow a larger current to the light emitting element, resulting in an increase in power consumption.

この発明は上記事情に着目してなされたもので、その目的とするところは、測定位置への生体部位の位置合わせの制約を大幅に軽減してユーザの操作上の負担を減らし、しかも生体部位に対し十分なセンサ光量を照射できるようにすると共に、受光素子の飽和を防止し、さらに構成の小型化を可能にした生体情報検出装置を提供することにある。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to greatly reduce the restriction on the alignment of the living body part to the measurement position, thereby reducing the burden on the user's operation, and the living body part. It is an object of the present invention to provide a living body information detecting apparatus that can irradiate a sufficient amount of sensor light, prevents saturation of a light receiving element, and further enables downsizing of the configuration.

上記目的を達成するためにこの発明の1つの観点は、生体部位から容積脈波に関する情報を検出する生体情報検出装置において、第1及び第2の光学部材と、受光素子と、信号処理部とを具備する。第1及び第2の光学部材は何れも板状又は柱状をなし、このうち第1の光学部材はその側端面から入射した光を上面から面発光させる。第2の光学部材は、上記第1の光学部材の側面に隣接しかつ受光用の上面が第1の光学部材の面発光用の上面とほぼ同一平面を形成するように配置される。そして、第1及び第2の光学部材の上面に生体部位が接触したとき、第1の光学部材の上面から面発光された光の上記生体部位による乱反射光を、上記受光用の上面から取り込んで側端面に導き出射する。受光素子は、上記第2の光学部材の側端面から出射された光を受光し、その受光量に応じた受光信号を出力する。信号処理部は、上記受光素子から出力された受光信号をもとに、上記第1及び第2の光学部材の上面に生体部位が接触したときに発生する上記受光量の変化を検出し、この検出された受光量の変化を表す情報を上記生体部位の容積脈波を表す情報として出力する。   In order to achieve the above object, according to one aspect of the present invention, there is provided a biological information detecting apparatus for detecting information related to a volume pulse wave from a biological part, wherein the first and second optical members, a light receiving element, a signal processing unit, It comprises. Each of the first and second optical members has a plate shape or a column shape, and among these, the first optical member emits light incident from the side end surface thereof from the upper surface. The second optical member is disposed adjacent to the side surface of the first optical member so that the light receiving upper surface is substantially flush with the surface emitting upper surface of the first optical member. Then, when the living body part contacts the upper surfaces of the first and second optical members, the irregularly reflected light from the living body part of the light emitted from the upper surface of the first optical member is taken from the upper surface for light reception. The light is guided to the side end face and emitted. The light receiving element receives light emitted from the side end face of the second optical member and outputs a light reception signal corresponding to the amount of light received. The signal processing unit detects a change in the amount of received light that occurs when a living body part contacts the upper surfaces of the first and second optical members based on the light reception signal output from the light receiving element. Information representing the detected change in the amount of received light is output as information representing the volume pulse wave of the living body part.

したがって、この発明の1つの観点によれば次のような効果が奏せられる。
すなわち、第1及び第2の光学部材は横方向に並べて配置される。このため、第1の光学部材の上面から面発光された光が第2の光学部材に直接入射されて受光素子に導かれることはなくなり、これにより受光素子が飽和する不具合を防止することができる。また、第1及び第2の光学部材は上下に重ねて配置されないので、光学部材の厚みが増加することもない。さらに、生体部位は第1の光学部材の上面に直接接触する。このため、第1の光学部材の上面から面発光された光は減衰することなく生体部位に直接照射されることになる。したがって、発光素子の駆動電流を増加させることなく生体部位に対し血流量を安定的に計測する上で十分な光量を照射することが可能となり、これにより計測精度を高めることが可能となる。
Therefore, according to one aspect of the present invention, the following effects can be obtained.
That is, the first and second optical members are arranged side by side in the horizontal direction. For this reason, the light surface-emitted from the upper surface of the first optical member is not directly incident on the second optical member and guided to the light receiving element, thereby preventing the light receiving element from being saturated. . Further, since the first and second optical members are not arranged one above the other, the thickness of the optical member does not increase. Furthermore, the living body part is in direct contact with the upper surface of the first optical member. For this reason, the light emitted from the upper surface of the first optical member is directly irradiated to the living body part without being attenuated. Therefore, it is possible to irradiate the living body part with a sufficient amount of light for stably measuring the blood flow without increasing the drive current of the light emitting element, thereby increasing the measurement accuracy.

この発明の1つの観点は以下のような種々態様を備えることも特徴とする。
第1の態様は、上記第1の光学部材内にその側端面から光を入射する発光素子をさらに具備するようにしたものである。このようにすると、自然光や室内光では十分な受光量が得られない場合でも、常に高精度で安定した測定を行うことができる。
One aspect of the present invention is also characterized by comprising the following various aspects.
In the first aspect, the first optical member is further provided with a light emitting element that makes light incident from the side end face thereof. In this way, even when natural light or room light cannot provide a sufficient amount of received light, it is possible to always perform highly accurate and stable measurement.

第2の態様は、第2の光学部材の側端面と受光素子との間に集光光学系を配置し、第2の光学部材の側端面から出射する光を集光光学系により集光して受光素子に受光させるようにしたものである。このようにすると、第2の光学部材から出射される光を効率良く受光することができ、これにより測定精度を高めることが可能となる。   In the second aspect, a condensing optical system is disposed between the side end face of the second optical member and the light receiving element, and the light emitted from the side end face of the second optical member is condensed by the condensing optical system. The light receiving element receives light. If it does in this way, the light radiate | emitted from a 2nd optical member can be received efficiently, and it will become possible to improve a measurement precision by this.

すなわちこの発明の1つの観点によれば、測定位置への生体部位の位置合わせの制約を大幅に軽減してユーザの操作上の負担を減らし、しかも生体部位に対し十分なセンサ光量を照射できるようにすると共に、受光素子の飽和を防止し、さらに構成の小型化を可能にした生体情報検出装置を提供することができる。   That is, according to one aspect of the present invention, it is possible to significantly reduce the restriction on the alignment of the living body part to the measurement position to reduce the burden on the user's operation and to irradiate the living body part with a sufficient amount of sensor light. In addition, it is possible to provide a biological information detection apparatus that prevents saturation of the light receiving element and further enables downsizing of the configuration.

この発明の第1の実施形態に係わる生体情報検出装置の構成を示す図。The figure which shows the structure of the biometric information detection apparatus concerning 1st Embodiment of this invention. 図1に示した生体情報検出装置で使用される光検出ユニットの平面図。The top view of the photon detection unit used with the biological information detection apparatus shown in FIG. 図1に示した生体情報検出装置で使用される光検出ユニットの発光板の動作説明に使用するための図。The figure for using it for operation | movement description of the light emission plate of the photon detection unit used with the biological information detection apparatus shown in FIG. 図1に示した生体情報検出装置で使用される光検出ユニットの受光板の動作説明に使用するための図。The figure for using it for operation | movement description of the light-receiving plate of the photon detection unit used with the biological information detection apparatus shown in FIG. この発明の第2の実施形態に係わる生体情報検出装置で使用される光検出ユニットの構成を示す図。The figure which shows the structure of the photon detection unit used with the biometric information detection apparatus concerning 2nd Embodiment of this invention. この発明の第3の実施形態に係わる生体情報検出装置で使用される光検出ユニットの構成を示す図。The figure which shows the structure of the photon detection unit used with the biological information detection apparatus concerning the 3rd Embodiment of this invention. この発明の第4の実施形態に係わる生体情報検出装置で使用される光検出ユニットの構成を示す図。The figure which shows the structure of the photon detection unit used with the biometric information detection apparatus concerning 4th Embodiment of this invention. この発明の第5の実施形態に係わる生体情報検出装置で使用される光検出ユニットの構成を示す図。The figure which shows the structure of the photon detection unit used with the biological information detection apparatus concerning the 5th Embodiment of this invention. この発明の第6の実施形態に係わる生体情報検出装置で使用される光検出ユニットの構成を示す図。The figure which shows the structure of the photon detection unit used with the biometric information detection apparatus concerning 6th Embodiment of this invention. この発明の第7の実施形態に係わる生体情報検出装置で使用される光検出ユニットの要部構成を示す図。The figure which shows the principal part structure of the photon detection unit used with the biometric information detection apparatus concerning 7th Embodiment of this invention.

以下、図面を参照してこの発明に係わる種々実施形態を説明する。
[第1の実施形態]
図1は、この発明の第1の実施形態に係わる生体情報検出装置の構成を示す図である。この生体情報検出装置は、光検出ユニット100と、信号処理ユニット200とから構成される。
Hereinafter, various embodiments according to the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram showing a configuration of a biological information detection apparatus according to the first embodiment of the present invention. This biological information detection apparatus includes a light detection unit 100 and a signal processing unit 200.

光検出ユニット100は、短冊状をなす長方形に成形された発光板1と、同様に短冊状をなす長方形に成形された例えばプリズムからなる受光板2とを備える。これらの発光板1及び受光板2は、その一方の側面同士が接触しかつ上面1b,2bが同一面を形成するように配置される。すなわち、水平方向に並べられた状態で配置される。発光板1及び受光板2の各上面1b,2bは、測定対象物である生体部位7を接触させるセンサ面として機能する。   The light detection unit 100 includes a light emitting plate 1 formed into a rectangular shape having a strip shape, and a light receiving plate 2 made of, for example, a prism, similarly formed into a rectangular shape having a strip shape. The light emitting plate 1 and the light receiving plate 2 are arranged such that one side surfaces thereof are in contact with each other and the upper surfaces 1b and 2b form the same surface. That is, it arrange | positions in the state arranged in the horizontal direction. Each upper surface 1b, 2b of the light-emitting plate 1 and the light-receiving plate 2 functions as a sensor surface that makes the living body part 7 that is a measurement object contact.

発光板1及び受光板2は、後述する発光素子3から発光されるセンサ光5に対して透明で、空気よりも高い屈折率を持つことが望ましく、一例としてはアクリル樹脂(屈折率1.49)を素材とするものが用いられる。なお、発光板1及び受光板2の側面同士は必ずしも接触させる必要はなく、一定間隔を隔てて離間させるようにしてもよい。また、素材及び屈折率についても、上記した素材及び値に限定されるものではない。   The light-emitting plate 1 and the light-receiving plate 2 are preferably transparent to sensor light 5 emitted from a light-emitting element 3 to be described later, and preferably have a refractive index higher than that of air. As an example, acrylic resin (refractive index 1.49) is used. ) Is used. Note that the side surfaces of the light-emitting plate 1 and the light-receiving plate 2 do not necessarily have to be in contact with each other, and may be separated at a predetermined interval. Further, the material and the refractive index are not limited to the above materials and values.

上記発光板1の入射面として機能する第1の側端面1aには、発光素子3が対向配置されている。発光素子3は、例えばLED(Light Emitting Diode)からなり、上記発光板1内に上記入射面1aからセンサ光5を入射する。センサ光5としては、例えば0.7〜2.5μmの波長を持つ近赤外光が用いられる。その理由は、血液中のヘモグロビンが特にこの波長を持つ近赤外光を吸収する特性があるためである。しかし、センサ光5としては必ずしもこの波長に限定されるものではなく、他の波長であってもよい。   The light emitting element 3 is disposed opposite to the first side end face 1 a that functions as the incident surface of the light emitting plate 1. The light emitting element 3 is composed of, for example, an LED (Light Emitting Diode), and the sensor light 5 is incident on the light emitting plate 1 from the incident surface 1a. As the sensor light 5, for example, near infrared light having a wavelength of 0.7 to 2.5 μm is used. This is because hemoglobin in blood has a characteristic of absorbing near infrared light having this wavelength. However, the sensor light 5 is not necessarily limited to this wavelength, and may be another wavelength.

発光板1は、第1の側端面1aから入射したセンサ光5を上面(照射面)1bから面発光させる。例えば、発光板1内の底面(下面)部には例えば図3に示すように多数の拡散ドットパターン1cが散設されており、上記入射面1aから発光板1内に入射したセンサ光5をこれらの拡散ドットパターン1cにより拡散させて、当該発光板1の上面1b全面から図1の5aに示すように面発光させる。なお、発光板1の構造は上記構造に限定されるものではなく、例えば液晶ディスプレイのバックライト等で用いられている公知の技術を採用することにより他にも種々の構造を適用できる。   The light emitting plate 1 causes the sensor light 5 incident from the first side end surface 1a to emit light from the upper surface (irradiation surface) 1b. For example, as shown in FIG. 3, for example, a large number of diffusing dot patterns 1c are scattered on the bottom surface (lower surface) of the light emitting plate 1, and the sensor light 5 incident on the light emitting plate 1 from the incident surface 1a. The light is diffused by these diffusing dot patterns 1c, and surface light is emitted from the entire upper surface 1b of the light emitting plate 1 as shown in 5a of FIG. In addition, the structure of the light-emitting plate 1 is not limited to the above structure, and various other structures can be applied by adopting a known technique used in, for example, a backlight of a liquid crystal display.

一方、受光板2の出射面として機能する第1の側端面2aには、受光素子4が対向配置されている。受光素子4は、フォトダイオードやフォトトランジスタ、CCD(Charge Coupled Device)又はCMOS(Complementary MOS)といった、光量を検出可能なセンサからなり、上記受光板2の出射面2aから出射された散乱光成分6aを受光してその受光信号を信号処理ユニット200に入力する。   On the other hand, the light receiving element 4 is disposed opposite to the first side end face 2 a that functions as the light exit surface of the light receiving plate 2. The light receiving element 4 includes a sensor capable of detecting the amount of light, such as a photodiode, a phototransistor, a CCD (Charge Coupled Device), or a CMOS (Complementary MOS), and the scattered light component 6a emitted from the emission surface 2a of the light receiving plate 2. Is received, and the received light signal is input to the signal processing unit 200.

信号処理ユニット200は、増幅部21と、アナログ/ディジタル変換部(A/D変換部)22と、波形処理・出力部23を備えている。増幅部21は、上記受光素子3から入力されたアナログの受光信号を、いわゆるオペアンプ等を用いた公知の増幅回路により増幅して出力する。A/D変換部22は、上記増幅部21から出力されたアナログの受光信号をディジタル信号に変換して出力する。   The signal processing unit 200 includes an amplification unit 21, an analog / digital conversion unit (A / D conversion unit) 22, and a waveform processing / output unit 23. The amplifying unit 21 amplifies the analog light reception signal input from the light receiving element 3 by a known amplifier circuit using a so-called operational amplifier or the like and outputs the amplified signal. The A / D conversion unit 22 converts the analog light reception signal output from the amplification unit 21 into a digital signal and outputs the digital signal.

波形処理・出力部23は、A/D変換器から出力されたディジタルの受光信号を取り込み、容積脈波の波形解析を行う。解析処理の内容としては、ディジタル受光信号の時間変化を時系列データとして取得し、この取得された時系列データを平滑化してノイズ成分を除去する処理と、このノイズ成分が除去された時系列データを2階微分することで容積脈波の波形の詳細な変化を検出する処理と、この検出された容積脈波の波形の変化に基づいて容積脈波の特徴を検出する処理がある。   The waveform processing / output unit 23 takes in the digital received light signal output from the A / D converter and performs waveform analysis of the volume pulse wave. The contents of the analysis process include acquiring the time change of the digital light reception signal as time-series data, smoothing the acquired time-series data to remove the noise component, and time-series data from which the noise component has been removed. There are a process for detecting a detailed change in the waveform of the volume pulse wave by second-order differentiation and a process for detecting the feature of the volume pulse wave based on the detected change in the waveform of the volume pulse wave.

なお、容積脈波の特徴を検出する処理としては、例えば医学診断分野であれば生体の血管の硬化度合いを検出することや、時系列データのピークを検出してこの検出されたピークの間隔から脈拍間隔を検出すること、時系列データの周期性を検出してこの検出された周期性から生体が安静状態であるかどうかを判定すること等が考えられる。また、テレビジョン装置等のリモートコントローラを使用した情報入力の技術分野であれば、容積脈波の波形データから特徴量ベクトルを抽出し、この抽出した特徴量ベクトルが確率分布に従うものとしてとらえてクラスタリング処理を行う。そして、このクラスタリング処理の結果をもとにユーザを認識する処理等が考えられる。なお、容積脈波の特徴を検出する処理の用途は、これらのみに限定されるものでなくその他の用途でもよい。   For example, in the medical diagnostic field, the processing for detecting the feature of the volume pulse wave is to detect the degree of hardening of the blood vessel of the living body, or to detect the peak of the time series data and detect the interval between the detected peaks. It is conceivable to detect the pulse interval, to detect the periodicity of the time series data, and to determine whether or not the living body is in a resting state from the detected periodicity. Also, in the technical field of information input using a remote controller such as a television device, a feature vector is extracted from volume pulse wave waveform data, and the extracted feature vector is regarded as following a probability distribution and clustering is performed. Process. A process for recognizing a user based on the result of the clustering process can be considered. In addition, the use of the process which detects the characteristic of a volume pulse wave is not limited only to these, Other uses may be sufficient.

次に、以上のように構成された生体情報検出装置の動作を説明する。
発光板1の入射面1aから発光板1内に入射された発光素子3のセンサ光5は、例えば図3に示すように発光板1内でその底面に散設された拡散ドットパターン1cにより拡散され、発光板1の上面1b全面から図3中の5aに示すように面発光される。
Next, the operation of the biological information detection apparatus configured as described above will be described.
The sensor light 5 of the light emitting element 3 incident on the light emitting plate 1 from the incident surface 1a of the light emitting plate 1 is diffused by a diffusion dot pattern 1c scattered on the bottom surface of the light emitting plate 1 as shown in FIG. 3, for example. Then, surface light is emitted from the entire upper surface 1b of the light emitting plate 1 as shown by 5a in FIG.

この状態で、ユーザが生体部位7としての例えば指先の腹の部分を、図2に示すように上記発光板1及び受光板2の上面1b,2bに同時に接触させたとする。そうすると、発光板1の上面1bから面発光されたセンサ光5aが生体部位7に照射されて散乱光6となる。散乱光6の光量は、血液中のヘモグロビン量に応じて変化する。これは、血液中のヘモグロビンは赤外光を吸収する性質があるため、生体部位7の内部に存在する末梢血管の容積変化に応じて、生体部位7の外部へ散乱する光量と、吸収される光量の割合が変化するためである。   In this state, it is assumed that the user simultaneously touches the upper surface 1b, 2b of the light emitting plate 1 and the light receiving plate 2 as shown in FIG. Then, the sensor light 5 a surface-emitted from the upper surface 1 b of the light emitting plate 1 is irradiated to the living body part 7 to become scattered light 6. The amount of scattered light 6 changes according to the amount of hemoglobin in the blood. This is because hemoglobin in blood has the property of absorbing infrared light, so that the amount of light scattered outside the living body part 7 is absorbed in accordance with the volume change of peripheral blood vessels existing inside the living body part 7. This is because the ratio of the amount of light changes.

散乱光6のうちの一部の散乱光成分6aは、図4に示すように受光板2のセンサ面2bから内部へ入射し、受光板2により導かれて出射面2aより出射する。このとき、受光板2のセンサ面2bから受光板2内に入射し、出射面2aより出射する散乱光成分6aとは、例えば図4に示すように受光板2のセンサ面2bに対してその臨界角θよりも大きな入射角をもつ成分である。   As shown in FIG. 4, a part of the scattered light component 6 a of the scattered light 6 enters the sensor surface 2 b of the light receiving plate 2, is guided by the light receiving plate 2, and exits from the output surface 2 a. At this time, the scattered light component 6a that enters the light receiving plate 2 from the sensor surface 2b of the light receiving plate 2 and exits from the output surface 2a is, for example, as shown in FIG. 4 with respect to the sensor surface 2b of the light receiving plate 2 This component has an incident angle larger than the critical angle θ.

ここで、臨界角θは受光板2の屈折率をn1、空気の屈折率をn2とすると、反射の法則を用いて以下の式で計算される。
θ=arcsin(n2/n1) …(1)
例えば、受光板2として先に述べた屈折率n1=1.49のアクリル樹脂を用いたとすると、空気の屈折率n2=1であるから、臨界角θは上記(1)によりθ=42.155°と算出される。
Here, when the refractive index of the light receiving plate 2 is n1 and the refractive index of air is n2, the critical angle θ is calculated by the following formula using the law of reflection.
θ = arcsin (n2 / n1) (1)
For example, if the acrylic resin having the refractive index n1 = 1.49 described above is used as the light receiving plate 2, since the refractive index n2 of air is 1, the critical angle θ is θ = 42.155 according to the above (1). Calculated as °.

すなわち、散乱光6のうちこの臨界角θ=42.155°より大きい角度を有する散乱光成分6aは、受光板2内にそのセンサ面2bから入射すると、受光板2のセンサ面2bと底面との間で全反射を繰り返して第1の側端面(出射面)2aに導かれ、当該出射面2aから出射されて受光素子4で受光される。   That is, when the scattered light component 6a having an angle larger than the critical angle θ = 42.155 ° in the scattered light 6 enters the light receiving plate 2 from the sensor surface 2b, the sensor surface 2b and the bottom surface of the light receiving plate 2 Between the first and second side end faces (outgoing face) 2 a, and is emitted from the outgoing face 2 a and received by the light receiving element 4.

この受光素子4で受光された散乱光成分6aは、増幅部21で所定の信号レベルに増幅されたのち、A/D変換部22によりディジタル信号に変換され、波形処理・出力部23に取り込まれる。波形処理・出力部23では、先ず上記取り込まれたディジタル受光信号の時間変化が時系列データとして抽出され、この抽出された時系列データが平滑化されてノイズ成分が除去される。次に、このノイズ成分が除去された時系列データが2階微分され、容積脈波の波形の詳細な変化が検出される。そして、この検出された容積脈波の波形の変化に基づいて生体部位7の種々の特徴を抽出することができる。   The scattered light component 6 a received by the light receiving element 4 is amplified to a predetermined signal level by the amplification unit 21, converted into a digital signal by the A / D conversion unit 22, and taken into the waveform processing / output unit 23. . In the waveform processing / output unit 23, first, the time change of the captured digital received light signal is extracted as time series data, and the extracted time series data is smoothed to remove noise components. Next, the time-series data from which the noise component has been removed is subjected to second-order differentiation, and a detailed change in the waveform of the volume pulse wave is detected. Various features of the living body part 7 can be extracted based on the detected change in the waveform of the volume pulse wave.

すなわち、受光素子3から出力される受光信号の信号レベルは、生体部位7内における末梢血管の血液容積の変化が反映された値となる。ここで、生体部位7内の末梢血管の血液容積は心臓の拍動によって時間的に変化する。このため、上記受光信号の信号レベルの時間変化は容積脈波の波形を表すものとなり、この波形から生体部位7の末梢血管の硬化度合いや脈拍間隔、その周期性等を判定することが可能となり、また容積脈波の波形データの特徴からユーザを認識することが可能になる。   That is, the signal level of the light reception signal output from the light receiving element 3 is a value reflecting the change in the blood volume of the peripheral blood vessel in the living body part 7. Here, the blood volume of the peripheral blood vessels in the living body part 7 changes with time due to the pulsation of the heart. For this reason, the time change of the signal level of the light receiving signal represents the waveform of the volume pulse wave, and from this waveform, it is possible to determine the degree of hardening of the peripheral blood vessel, the pulse interval, the periodicity, etc. of the living body part 7. In addition, the user can be recognized from the characteristics of the waveform data of the volume pulse wave.

以上詳述したように第1の実施形態では、発光板1及び受光板2を、その一方の側面同士が接触しかつ上面1b,2bが同一面を形成するように水平方向に並べて配置し、発光素子3のセンサ光5を発光板1に対しその第1の側端面1aから入射して上面1bから面発光させる。そして、上記発光板1及び受光板2の上面1b,2bに生体部位7を接触させたとき、上記発光板1から面発光されたセンサ光5aの照射により当該生体部位7において発生した散乱光6のうち受光板2にそのセンサ面2bから入射した散乱光成分6aを受光板2の出射面2bから出射させて受光素子4で受光させる。そして、この受光素子4で受光された散乱光成分6aの受光信号を信号処理ユニット200に入力し、生体部位7の容積脈波の波形の変化を検出して生体部位7の特徴を抽出するようにしている。   As described in detail above, in the first embodiment, the light-emitting plate 1 and the light-receiving plate 2 are arranged side by side in the horizontal direction so that one side surfaces thereof are in contact with each other and the upper surfaces 1b and 2b form the same surface, The sensor light 5 of the light-emitting element 3 is incident on the light-emitting plate 1 from the first side end face 1a to emit light from the upper surface 1b. Then, when the living body part 7 is brought into contact with the upper surfaces 1b and 2b of the light emitting plate 1 and the light receiving plate 2, the scattered light 6 generated in the living body part 7 due to the irradiation of the sensor light 5a emitted from the light emitting plate 1 is emitted. Among them, the scattered light component 6 a incident on the light receiving plate 2 from the sensor surface 2 b is emitted from the emission surface 2 b of the light receiving plate 2 and received by the light receiving element 4. Then, the received light signal of the scattered light component 6a received by the light receiving element 4 is input to the signal processing unit 200, and the change in the volume pulse wave waveform of the living body part 7 is detected to extract the characteristics of the living body part 7. I have to.

したがって第1の実施形態によれば、以下のような効果が奏せられる。
すなわち、発光板1及び受光板2は水平方向に並べて配置されるため、発光板1の上面1bから面発光されたセンサ光5aが受光板2に直接入射して受光素子4に導かれることはなくなり、これにより受光素子4が飽和する不具合を防止することができる。また、上記したように発光板1及び受光板2は水平方向に並べて配置されるので、上下に重ねて配置する場合に比べて光検出ユニット100の厚みを小さくすることができる。この結果、光検出ユニット100をリモートコントローラ等の小型電子機器に組み込んだ場合に、その厚み方向のサイズの増加を防止することができる。さらに、生体部位7は発光板1の上面1bに直接接触する。このため、発光板1の上面1bから面発光された光は減衰することなく生体部位7に直接照射されることになり、これにより発光素子3の駆動電流を増加させることなく生体部位7に対し血流量を安定的に計測する上で十分な光量を照射することが可能となって、計測精度を高めることが可能となる。
Therefore, according to the first embodiment, the following effects can be obtained.
In other words, since the light emitting plate 1 and the light receiving plate 2 are arranged side by side in the horizontal direction, the sensor light 5a surface-emitted from the upper surface 1b of the light emitting plate 1 is directly incident on the light receiving plate 2 and guided to the light receiving element 4. As a result, it is possible to prevent the light receiving element 4 from being saturated. Moreover, since the light-emitting plate 1 and the light-receiving plate 2 are arranged side by side in the horizontal direction as described above, the thickness of the light detection unit 100 can be reduced as compared with the case where they are arranged one above the other. As a result, when the light detection unit 100 is incorporated into a small electronic device such as a remote controller, an increase in the size in the thickness direction can be prevented. Further, the living body part 7 is in direct contact with the upper surface 1 b of the light emitting plate 1. For this reason, the light emitted from the upper surface 1b of the light emitting plate 1 is directly radiated to the living body part 7 without being attenuated, and thereby the living body part 7 is not increased without increasing the driving current of the light emitting element 3. It is possible to irradiate with a sufficient amount of light to stably measure the blood flow, and to improve the measurement accuracy.

[第2の実施形態]
図5は、この発明の第2の実施形態に係わる生体情報検出装置の光検出ユニットの構成を示す斜視図であり、図中110が光検出ユニットを示している。なお、同図において前記図1と同一部分には同一符号を付して詳しい説明は省略する。
[Second Embodiment]
FIG. 5 is a perspective view showing the configuration of the light detection unit of the biological information detection apparatus according to the second embodiment of the present invention, in which 110 indicates the light detection unit. In the figure, the same parts as those in FIG.

発光板1及び受光板2は、その一方の側面同士が接触しかつ上面1b,2bが同一面を形成するように、水平方向に並べられた状態で配置されている。発光板1の第2の側端面1a′には発光素子3が対向配置され、また受光板2の第1の側端面2aには受光素子4が対向配置されている。すなわち、発光素子3及び受光素子4が発光板1及び受光板2の互いに反対側となる側端面1a′,2aに対向配置された構成となっている。   The light emitting plate 1 and the light receiving plate 2 are arranged in a state of being arranged in a horizontal direction so that one side surfaces thereof are in contact with each other and the upper surfaces 1b and 2b form the same surface. The light emitting element 3 is disposed opposite to the second side end face 1 a ′ of the light emitting plate 1, and the light receiving element 4 is disposed opposite to the first side end face 2 a of the light receiving plate 2. That is, the light emitting element 3 and the light receiving element 4 are arranged to face the side end faces 1a ′ and 2a opposite to each other of the light emitting plate 1 and the light receiving plate 2.

このように構成すると、例えばリモートコントローラ等の小型電子機器に光検出ユニット110を実装する際に、発光板1及び受光板2の同一の側端面1a,2aに発光素子3及び受光素子4を並べて配置する実装スペースを確保できない場合でも、光検出ユニット110の性能を維持したまま実装が可能となる。   With this configuration, for example, when the light detection unit 110 is mounted on a small electronic device such as a remote controller, the light emitting element 3 and the light receiving element 4 are arranged on the same side end surfaces 1a and 2a of the light emitting plate 1 and the light receiving plate 2. Even when the mounting space to be arranged cannot be secured, mounting is possible while maintaining the performance of the light detection unit 110.

[第3の実施形態]
図6は、この発明の第3の実施形態に係わる生体情報検出装置の光検出ユニットの構成を示す斜視図であり、図中120が光検出ユニットを示している。なお、同図においても前記図1と同一部分には同一符号を付して詳しい説明は省略する。
[Third Embodiment]
FIG. 6 is a perspective view showing the configuration of the light detection unit of the biological information detection apparatus according to the third embodiment of the present invention, in which 120 denotes the light detection unit. In the figure, the same parts as those in FIG.

前記第1及び第2の実施形態と同様に、発光板1及び受光板2はその一方の側面同士が接触しかつ上面1b,2bが同一面を形成するように、水平方向に並べられた状態で配置される。発光板1の第1及び第2の側端面1a,1a′にはそれぞれ発光素子31,32が対向配置され、また受光板2の第1及び第2の側端面2a,2a′にはそれぞれ受光素子41,42が対向配置されている。すなわち、発光板1及び受光板2の両方の側端面にそれぞれ発光素子31,32及び受光素子41,42が対向配置された構成となっている。上記受光素子41,42の受光信号は合成されたのち信号処理ユニット200に入力される。   As in the first and second embodiments, the light-emitting plate 1 and the light-receiving plate 2 are arranged in a horizontal direction so that one side surfaces thereof are in contact with each other and the upper surfaces 1b and 2b form the same surface. It is arranged with. Light-emitting elements 31 and 32 are arranged opposite to the first and second side end faces 1a and 1a 'of the light-emitting plate 1, respectively, and light-receiving elements are received on the first and second side end faces 2a and 2a' of the light-receiving plate 2, respectively. Elements 41 and 42 are arranged to face each other. That is, the light emitting elements 31 and 32 and the light receiving elements 41 and 42 are arranged to face each other on both side end surfaces of the light emitting plate 1 and the light receiving plate 2. The received light signals of the light receiving elements 41 and 42 are combined and then input to the signal processing unit 200.

このように構成すると、発光板1にはその両方の側端面1a,1a′から発光素子31,32によるセンサ光51,52が入射することになり、これにより発光板1の上面1bから面発光されるセンサ光5aの光量の発光位置によるばらつきを低減して、発光板1の上面1bの発光位置に依らず光量をより均一にすることができる。また、受光板2においても、その両方の側端面2a,2a′から出射される散乱光成分6a,6a′がそれぞれ受光素子41,42で受光される。このため、受光板2の上面2bのどの位置に生体部位7が接触しても、常にS/Nの高い受光信号を信号処理ユニット200に入力することができ、この結果より安定性の高い検出を行うことが可能となる。   If comprised in this way, the sensor light 51 and 52 by the light emitting elements 31 and 32 will inject into the light-emitting plate 1 from both the side end surfaces 1a and 1a ', and, thereby, surface light emission from the upper surface 1b of the light-emitting plate 1 is carried out. The variation in the light amount of the sensor light 5a to be performed due to the light emission position can be reduced, and the light amount can be made more uniform regardless of the light emission position of the upper surface 1b of the light emitting plate 1. Also in the light receiving plate 2, scattered light components 6a and 6a 'emitted from both side end faces 2a and 2a' are received by the light receiving elements 41 and 42, respectively. For this reason, a light reception signal having a high S / N can always be input to the signal processing unit 200 no matter which position on the upper surface 2b of the light receiving plate 2 is in contact with the living body part 7. Can be performed.

[第4の実施形態]
図7は、この発明の第4の実施形態に係わる生体情報検出装置の光検出ユニットの構成を示す斜視図であり、図中130が光検出ユニットを示している。なお、同図において前記図6と同一部分には同一符号を付して詳しい説明は省略する。
[Fourth Embodiment]
FIG. 7 is a perspective view showing the configuration of the light detection unit of the biological information detection apparatus according to the fourth embodiment of the present invention, in which 130 indicates the light detection unit. In the figure, the same parts as those in FIG.

第4の実施形態における光検出ユニット130は、第3の実施形態で述べたように両方の側端部に発光素子31,32を対向配置した発光板1と、両方の側端部に受光素子41,42を対向配置した受光板2を複数個並べて配置した構成となっている。
このような構成であるから、接触位置による検出精度のばらつきを低く抑えた上で広いセンサ面を形成することができる。
As described in the third embodiment, the light detection unit 130 according to the fourth embodiment includes the light-emitting plate 1 in which the light-emitting elements 31 and 32 are opposed to each other at both side ends, and the light-receiving element at both side ends. In this configuration, a plurality of light receiving plates 2 having 41 and 42 facing each other are arranged side by side.
With such a configuration, it is possible to form a wide sensor surface while suppressing variations in detection accuracy due to the contact position.

[第5の実施形態]
図8は、この発明の第5の実施形態に係わる生体情報検出装置の光検出ユニットの構成を示す斜視図であり、図中140が光検出ユニットを示している。なお、同図において前記図5と同一部分には同一符号を付して詳しい説明は省略する。
[Fifth Embodiment]
FIG. 8 is a perspective view showing the configuration of the light detection unit of the biological information detection apparatus according to the fifth embodiment of the present invention. In the figure, reference numeral 140 indicates the light detection unit. In the figure, the same parts as those in FIG.

第5の実施形態における光検出ユニット140は、櫛歯状に形成された発光板11と、同じく櫛歯状に形成された受光板21を備え、これらの発光板11及び受光板21をその突出片111,112と突出片211,212,213とが交互にかみ合うように配置したものとなっている。また、上記発光板11の基端辺部には複数個の発光素子3が一定の間隔を隔てて配置され、これらの発光素子3により上記発行板11内にその基端辺部からセンサ光を入射して上記突出片111,112の上面から面発光させている。さらに、受光板21の基端辺部には複数個の受光素子4が一定の間隔を隔てて配置されている。これらの受光素子4は、上記突出片211,212,213の基端辺部から出射される散乱光成分をそれぞれ受光して信号処理ユニット200に入力する。
このような構成であるから、光検出ユニット140を簡単かつ高精度に組み立てることが可能となり、また構造的により安定したセンサ面を形成することが可能となる。
The light detection unit 140 according to the fifth embodiment includes a light-emitting plate 11 formed in a comb-teeth shape and a light-receiving plate 21 similarly formed in a comb-teeth shape, and the light-emitting plate 11 and the light-receiving plate 21 protrude from the light-emission plate 11. The pieces 111 and 112 and the protruding pieces 211, 212, and 213 are arranged so as to alternately engage with each other. In addition, a plurality of light emitting elements 3 are arranged at a certain interval on the base end side portion of the light emitting plate 11, and sensor light is emitted from the base end side portion into the issuing plate 11 by these light emitting elements 3. Incident light is emitted from the upper surfaces of the protruding pieces 111 and 112. Further, a plurality of light receiving elements 4 are arranged at a certain interval on the base end side portion of the light receiving plate 21. These light receiving elements 4 receive the scattered light components emitted from the base end sides of the projecting pieces 211, 212, and 213 and input them to the signal processing unit 200.
With this configuration, the light detection unit 140 can be assembled easily and with high accuracy, and a more stable sensor surface can be formed structurally.

[第6の実施形態]
図9は、この発明の第6の実施形態に係わる生体情報検出装置の光検出ユニットの構成を示す斜視図であり、図中150が光検出ユニットを示している。なお、同図において前記図5と同一部分には同一符号を付して詳しい説明は省略する。
[Sixth Embodiment]
FIG. 9 is a perspective view showing the configuration of the light detection unit of the biological information detection apparatus according to the sixth embodiment of the present invention, in which 150 indicates the light detection unit. In the figure, the same parts as those in FIG.

第6の実施形態における光検出ユニット150は、発光板12及び受光板22をその厚み方向に湾曲形成し、これらの発光板12及び受光板22の互いに反対側となる側端面にそれぞれ発光素子3及び受光素子4を対向配置したものである。
このように構成すると、例えば生体部位7の形状に応じて最適な形状のセンサ面を形成することができ、これによりセンサ面に対する生体部位7の接触面積を増やして容積脈波の検出精度を高めることができる。また、それだけでなく、光検出ユニット150はリモートコントローラや携帯端末、自動車のハンドルなど、光検出ユニット150が搭載される対象となる機器が曲面形状をもっていたとしても、それら機器の形状に合わせて設計し、設置することが可能になる。
In the light detection unit 150 in the sixth embodiment, the light-emitting plate 12 and the light-receiving plate 22 are curved in the thickness direction, and the light-emitting elements 3 are respectively formed on the side end surfaces of the light-emitting plate 12 and the light-receiving plate 22 opposite to each other. And the light receiving element 4 are arranged to face each other.
If comprised in this way, the sensor surface of an optimal shape can be formed, for example according to the shape of the biological body part 7, and this increases the contact area of the biological body part 7 with respect to a sensor surface, and improves the detection accuracy of a volume pulse wave. be able to. In addition, even if the device on which the light detection unit 150 is mounted has a curved surface shape, such as a remote controller, a portable terminal, and a car handle, the light detection unit 150 is designed according to the shape of the device. And can be installed.

[第7の実施形態]
図10は、この発明の第7の実施形態に係る生体情報検出装置における光検出ユニットの要部構成を示すものである。この第7の実施形態における光検出ユニットは、受光板2の出射面2aと受光素子4との間に集光レンズ9を配置したものである。
このように構成すると、受光板2の出射面2aから出射された散乱光成分6aを集合レンズ9により集光して受光素子4に受光させることができ、これにより受光素子4の受光感度が低い場合でも高精度の検出を行うことができる。
[Seventh Embodiment]
FIG. 10 shows a main configuration of a light detection unit in a biological information detection apparatus according to the seventh embodiment of the present invention. In the light detection unit according to the seventh embodiment, a condensing lens 9 is disposed between the light emission surface 2 a of the light receiving plate 2 and the light receiving element 4.
If comprised in this way, the scattered light component 6a radiate | emitted from the output surface 2a of the light-receiving plate 2 can be condensed by the collective lens 9, and can be made to light-receive by the light receiving element 4, Thereby, the light reception sensitivity of the light receiving element 4 is low. Even in this case, highly accurate detection can be performed.

[その他の実施形態]
前記各実施形態では、発光素子3を設け、この発光素子3が発光したセンサ光5を発光板1に入射するようにした。しかし、十分な光量の自然光又は室内光が得られる環境下で使用する場合には、上記自然光又は室内光をセンサ光5として使用するようにしてもよい。このようにすると、発光素子3を不要にすることができ、その分部品点数を削減して装置の簡単小型化、低価格化及び消費電力の低減を図ることが可能となる。
[Other Embodiments]
In each of the embodiments, the light emitting element 3 is provided, and the sensor light 5 emitted from the light emitting element 3 is incident on the light emitting plate 1. However, when used in an environment where a sufficient amount of natural light or room light can be obtained, the natural light or room light may be used as the sensor light 5. In this way, the light emitting element 3 can be dispensed with, and the number of parts can be reduced correspondingly, thereby making it possible to reduce the size and cost of the apparatus and reduce power consumption.

また、前記各実施形態ではいずれも短冊状の長方形板からなる発光板1及び受光板2を用いた場合を例にとって説明したが、正方形、長方形、円形、楕円形又は多角形の柱状帯又は板状体からなる光学部材を使用してもよい。その他、第1及び第2の光学部材の形状や材料、信号処理ユニットの構成とその処理内容、容積脈波の検出情報の用途等についても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。   In each of the above embodiments, the case where the light-emitting plate 1 and the light-receiving plate 2 made of strip-shaped rectangular plates are used has been described as an example, but a square, rectangular, circular, elliptical, or polygonal columnar band or plate is used. You may use the optical member which consists of a shape. In addition, the shapes and materials of the first and second optical members, the configuration and processing contents of the signal processing unit, the use of detection information of the volume pulse wave, and the like can be variously modified without departing from the gist of the present invention. It can be implemented.

要するにこの発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1,11,12…発光板、2,21,22…受光板、1a…入射面、1b…発光面、1c…拡散ドットパターン、2a…出射面、2b…センサ面、3…発光素子、4…受光素子、5…センサ光、5a…面発光されたセンサ光、6…散乱光、6a…散乱光成分、7…生体部位、9…集光レンズ、21…増幅部、22…A/D変換部、23…波形処理・出力部、111,112…発光板の突出片、211,212,213…受光板の突出片、100,110,120,130,140,150…光検出ユニット、200…信号処理ユニット。   DESCRIPTION OF SYMBOLS 1,11,12 ... Light-emitting plate, 2, 21, 22 ... Light-receiving plate, 1a ... Incident surface, 1b ... Light-emitting surface, 1c ... Diffusion dot pattern, 2a ... Output surface, 2b ... Sensor surface, 3 ... Light-emitting element, 4 Light receiving element, 5 Sensor light, 5a Surface emitting sensor light, 6 Scattered light, 6a Scattered light component, 7 Living body part, 9 Condensing lens, 21 Amplifying unit, 22 A / D Conversion unit, 23 ... Waveform processing / output unit, 111, 112 ... Projection piece of light-emitting plate, 211, 212, 213 ... Projection piece of light-receiving plate, 100, 110, 120, 130, 140, 150 ... Photodetection unit, 200 ... Signal processing unit.

Claims (3)

生体部位から容積脈波に関する情報を検出する生体情報検出装置において、
板状又は柱状をなし、その側端面から入射した光を上面から面発光させる第1の光学部材と、
板状又は柱状をなし、前記第1の光学部材の側面に隣接しかつ受光用の上面が前記第1の光学部材の面発光用の上面とほぼ同一平面を形成する状態に配置され、前記第1及び第2の光学部材の上面に生体部位が接触したとき、第1の光学部材の上面から面発光された光の前記生体部位による乱反射光のうち前記受光用の上面から入射した光を側端面に導いて出射する第2の光学部材と、
前記第2の光学部材の側端面から出射された光を受光し、その受光量に応じた受光信号を出力する受光素子と、
前記受光素子から出力された受光信号をもとに、前記第1及び第2の光学部材の上面に生体部位が接触したときに発生する前記受光量の変化を検出し、この検出された受光量の変化を表す情報を前記生体部位の容積脈波を表す情報として出力する信号処理部と
を具備することを特徴とする生体情報検出装置。
In a biological information detection apparatus for detecting information related to volume pulse waves from a biological part,
A first optical member having a plate shape or a columnar shape and emitting light incident from the side end surface thereof from the upper surface;
It is plate-shaped or columnar, and is arranged in a state adjacent to the side surface of the first optical member and in which the upper surface for light reception forms substantially the same plane as the upper surface for surface light emission of the first optical member, When the living body part comes into contact with the upper surfaces of the first and second optical members, the light incident from the upper surface for light reception among the irregularly reflected light by the living body part of the light emitted from the upper surface of the first optical member is side A second optical member that guides to the end face and emits;
A light receiving element that receives light emitted from the side end face of the second optical member and outputs a light reception signal corresponding to the amount of light received;
Based on the light reception signal output from the light receiving element, a change in the amount of received light that occurs when a living body part contacts the upper surfaces of the first and second optical members is detected, and the detected amount of received light And a signal processing unit that outputs information representing changes in the volume as information representing volumetric pulse waves of the living body part.
前記第1の光学部材内にその側端面から光を入射する発光素子を、さらに具備することを特徴とする請求項1記載の生体情報検出装置。   The biological information detection apparatus according to claim 1, further comprising a light emitting element that makes light incident on the first optical member from a side end face thereof. 前記第2の光学部材の側端面と前記受光素子との間に配置され、前記第2の光学部材の側端面から出射する光を集光して前記受光素子に受光させる集光光学系を、さらに具備することを特徴とする請求項1又は2記載の生体情報検出装置。   A condensing optical system that is disposed between a side end surface of the second optical member and the light receiving element, collects light emitted from the side end surface of the second optical member, and causes the light receiving element to receive the light. The biological information detection apparatus according to claim 1, further comprising:
JP2012043282A 2012-02-29 2012-02-29 Biological information detection device Active JP5619050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043282A JP5619050B2 (en) 2012-02-29 2012-02-29 Biological information detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043282A JP5619050B2 (en) 2012-02-29 2012-02-29 Biological information detection device

Publications (2)

Publication Number Publication Date
JP2013176518A JP2013176518A (en) 2013-09-09
JP5619050B2 true JP5619050B2 (en) 2014-11-05

Family

ID=49268839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043282A Active JP5619050B2 (en) 2012-02-29 2012-02-29 Biological information detection device

Country Status (1)

Country Link
JP (1) JP5619050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808115A (en) * 2017-09-27 2018-03-16 联想(北京)有限公司 A kind of biopsy method, device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342337B1 (en) 2016-12-29 2020-11-04 Nokia Technologies Oy Sensor arrangement for a physiological measurement sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038963Y2 (en) * 1979-06-27 1985-11-21 持田製薬株式会社 Pulse wave detector
JPH05317276A (en) * 1992-05-25 1993-12-03 Mitsubishi Rayon Co Ltd Pulse sensor head
JPH07184883A (en) * 1993-12-27 1995-07-25 Satoshi Yoshida Apparatus for measuring surface of living body
JPH10179557A (en) * 1996-12-26 1998-07-07 Matsushita Electric Ind Co Ltd Bio measurement device and bio measurement method
JP2003159222A (en) * 2001-11-27 2003-06-03 Mitsuba Corp Object detection unit and unit for detecting living body information
JP2005192807A (en) * 2004-01-07 2005-07-21 Cyber Firm Inc Somatic condition regulating system
US7729748B2 (en) * 2004-02-17 2010-06-01 Joseph Florian Optical in-vivo monitoring systems
JP2007167339A (en) * 2005-12-21 2007-07-05 国立大学法人 東京医科歯科大学 Method and apparatus for measuring blood concentration and blood flow in dental pulp
KR100770833B1 (en) * 2006-03-09 2007-10-26 삼성전자주식회사 Optical sensor module
JP5056867B2 (en) * 2009-07-01 2012-10-24 カシオ計算機株式会社 Biological information detection apparatus and biological information detection method
JP2011092452A (en) * 2009-10-30 2011-05-12 Panasonic Corp Biological information detector
TWI434673B (en) * 2009-11-16 2014-04-21 Ind Tech Res Inst Physiology signal sensing module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808115A (en) * 2017-09-27 2018-03-16 联想(北京)有限公司 A kind of biopsy method, device and storage medium

Also Published As

Publication number Publication date
JP2013176518A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
KR102202342B1 (en) All-in-one light-emitting display and sensor to detect biological properties
JP5627116B2 (en) Biological information detection device
JP5692390B2 (en) Biosensor
KR20190025841A (en) Light emitters and sensors for detecting biological properties
US9808162B2 (en) Pulse wave sensor and semiconductor module
KR20180128492A (en) System and method for non-pulsatile blood volume measurement
US8591426B2 (en) Self-luminous sensor device
US10499821B2 (en) Optical heart rate sensor
JP6293927B2 (en) Sensor
JP2005270544A (en) Biological information measuring device
JP5970785B2 (en) Biological measuring device, biological measuring method, program, and recording medium
JP6431697B2 (en) Wrist-mounted pulse oximeter
JP5619050B2 (en) Biological information detection device
JP2013153845A (en) Pulse wave measuring device and detection device
AU2020367388A1 (en) Examination apparatus for medical examination of an animal
JP5798977B2 (en) Biological information detection device
JP2009106373A (en) Sensing apparatus for biological surface tissue
JP6603872B2 (en) Pulse wave sensor
WO2013073244A1 (en) Biometric device, biometric method, program, and recording medium
JP6502718B2 (en) Biometric information sensor
JP2011092452A (en) Biological information detector
US20240315612A1 (en) Measuring device
JP6530892B2 (en) Biological information display device
JP2023125159A (en) Detecting device and measuring device
JP2008204388A (en) Optical mouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5619050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150