JP5618289B2 - Gelling agent and gel - Google Patents

Gelling agent and gel Download PDF

Info

Publication number
JP5618289B2
JP5618289B2 JP2010154717A JP2010154717A JP5618289B2 JP 5618289 B2 JP5618289 B2 JP 5618289B2 JP 2010154717 A JP2010154717 A JP 2010154717A JP 2010154717 A JP2010154717 A JP 2010154717A JP 5618289 B2 JP5618289 B2 JP 5618289B2
Authority
JP
Japan
Prior art keywords
gel
gelling agent
room temperature
liquid
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010154717A
Other languages
Japanese (ja)
Other versions
JP2012017384A (en
Inventor
岡本 浩明
浩明 岡本
由紀 森田
由紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2010154717A priority Critical patent/JP5618289B2/en
Publication of JP2012017384A publication Critical patent/JP2012017384A/en
Application granted granted Critical
Publication of JP5618289B2 publication Critical patent/JP5618289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Description

本発明は有機化合物をゲル化又は増粘するためのゲル化剤及び該ゲル化剤を用いたゲルに関する。   The present invention relates to a gelling agent for gelling or thickening an organic compound and a gel using the gelling agent.

従来各種産業分野において、ゲル化剤は液体状物質を固化、すなわちゼリー状に固める目的、又は増粘する目的でゲル化剤が用いられている。例えば接着剤、塗料、印刷インキ、化粧品等の流動性の制御、チクソトロピー性の付与、海上への石油類の流出対策、家庭等における食用油の処分、その他食品製造業、医療分野等において使用されている。これらのゲル化剤としては、水分を固化させるもの、例えばコラーゲン、ゼラチン、寒天、アガー(カラギーナン)、ペクチン等があり、また有機物、特に炭化水素、アルコール類、ケトン類、エステル類その他の有機溶剤及びそれらを主として含む溶液等を固化させるゲル化剤がある。   Conventionally, in various industrial fields, a gelling agent is used for the purpose of solidifying a liquid substance, that is, for solidifying in a jelly form, or for the purpose of thickening. For example, it is used in fluidity control of adhesives, paints, printing inks, cosmetics, etc., imparting thixotropy, countermeasures for oil spills to the sea, disposal of cooking oil at home, etc., other food manufacturing industries, medical fields, etc. ing. These gelling agents include those that solidify moisture, such as collagen, gelatin, agar, agar (carrageenan), pectin, etc., and organic substances, especially hydrocarbons, alcohols, ketones, esters and other organic solvents. And a gelling agent that solidifies a solution mainly containing them.

これらのうち、有機溶液を固化させるためのゲル化剤としては、低分子量又は高分子量の有機化合物があり、高分子ゲル化剤としては、親油性を有する高分子ポリマーの絡み合った分子中に油類を取り込み膨潤はするが、固体状を保つものとして例えばポリビニルアルコール/ポリエチレン/各種エラストマーや、尿素樹脂、ポリオレフィン不織布などが知られている。また低分子量ゲル化剤としては、例えばアミノ基、イミド基、尿素基など水素結合性官能基を分子内に有する低分子量有機化合物群が知られている。   Among these, as the gelling agent for solidifying the organic solution, there are low molecular weight or high molecular weight organic compounds, and as the polymer gelling agent, there is an oil in the entangled molecule of the polymer polymer having lipophilicity. For example, polyvinyl alcohol / polyethylene / various elastomers, urea resins, polyolefin non-woven fabrics, and the like are known as those that retain a solid state but swell. Moreover, as a low molecular weight gelling agent, for example, a low molecular weight organic compound group having a hydrogen bonding functional group such as an amino group, an imide group or a urea group in the molecule is known.

これらの低分子量ゲル化剤は、溶媒に混入して、加熱溶解させ、冷却すると、水素結合のような非共有結合を生じ、会合して、三次元網目構造を形成し、その中に溶媒分子を取り込み、ゲル化する。しかし、再び加熱すると、非共有結合は、切れて、ゲルは溶液状のゾルに戻る。   When these low molecular weight gelling agents are mixed in a solvent, heated and dissolved, and cooled, they form non-covalent bonds such as hydrogen bonds and associate to form a three-dimensional network structure in which solvent molecules And gels. However, when heated again, the non-covalent bonds break and the gel returns to a solution-like sol.

本発明者らは、以上の如き低分子量ゲル化剤のうち、比較的少量の使用で多種多様な有機液体をゲル化することができ、しかも比較的高温下でもゲルの状態を保つことが可能なゲル化剤として、含フッ素系ゲル化剤を提供した(特許文献1〜3)。   The present inventors can gel various organic liquids by using a relatively small amount of the low molecular weight gelling agent as described above, and can maintain the gel state even at a relatively high temperature. Fluorine-containing gelling agents were provided as suitable gelling agents (Patent Documents 1 to 3).

これらのゲル化剤の一般的使用方法は、ゲル化すべき有機液体にゲル化剤を加え、これを加熱して均一な液体混合物のゾルとし、目的とする容器に注入し、これを放冷又は冷却してゲルを形成させるものであった。   The general method of using these gelling agents is to add the gelling agent to the organic liquid to be gelled and heat it to form a sol of a uniform liquid mixture, which is poured into the intended container and allowed to cool or The gel was formed by cooling.

しかるに、ゲル化しようとする有機液体又は、該液体中に溶解している物質が熱により変質する場合や、注入する鋳型となる容器がゲル化剤を含む有機液体ゾルの温度に十分に耐えられない場合等では、従来のゲル化手法は使用することができなかった。   However, when the organic liquid to be gelled or the substance dissolved in the liquid is altered by heat, the container used as a casting mold can sufficiently withstand the temperature of the organic liquid sol containing the gelling agent. In some cases, the conventional gelation method could not be used.

特開2007−191661号公報JP 2007-191661 A 特開2007−191627号公報JP 2007-191627 A 特開2007−191626号公報JP 2007-191626 A

本発明は室温又はそれ以下の温度下にゲル→ゾルの転移を生ぜしめることが可能なゲル化剤を提供することを目的とする。   It is an object of the present invention to provide a gelling agent capable of causing a gel → sol transition at room temperature or lower.

勿論、本発明のゲル化剤を用いた場合であっても、加熱によりゲルをゾルに転移させることは可能であり、従来の使用方法も採用可能なゲル化剤である。   Of course, even when the gelling agent of the present invention is used, it is possible to transfer the gel to a sol by heating, and it is a gelling agent that can adopt a conventional method of use.

本発明の第1の態様は、下記一般式(1)で表わされる化合物よりなるゲル化剤を提供するにある。   The first aspect of the present invention is to provide a gelling agent comprising a compound represented by the following general formula (1).

Figure 0005618289
(但し、nは2〜18の整数)
本発明の別の態様は前記一般式(1)で表わされるゲル化剤と、室温下に液状の有機物質を含むゲルを提供する。
Figure 0005618289
(Where n is an integer from 2 to 18)
Another aspect of the present invention provides a gel comprising a gelling agent represented by the general formula (1) and a liquid organic substance at room temperature.

更に本発明の別の態様は、前記一般式(1)で表わされるゲル化剤を分散した室温下に液状の有機物質に紫外線を照射することにより均質なゾルを得た後、放置することによりゲルとすることを特徴とするゲルの製造方法をも提供する。

Yet another aspect of the invention, after obtaining a homogeneous sol by irradiating ultraviolet rays at room temperature containing dispersed gelling agent to an organic material liquid represented by the general formula (1), by leaving Also provided is a method for producing a gel, characterized in that it is a gel.

本発明のゲル化剤は、室温(25℃)で液状である極めて多くの有機物質をゲル化し得る。一般に従来知られている低分子量ゲル化剤と同様に加熱により、ゾルとなり、冷却するとゲルとすることができるのは勿論であるが、本発明のゲル化剤を用いたゲルは、これに紫外線を照射することにより、何等熱を加えることなく、ゾルとすることができる。そして、紫外線照射を中止し、放置することにより、再びゲル化するのである。かかるゾル−ゲル転移機能を利用して、熱を加えることなく、ゾルとして鋳型に注入し、その後ゲル化させることが可能とする。   The gelling agent of the present invention can gel an extremely large number of organic substances that are liquid at room temperature (25 ° C.). In general, the gel using the gelling agent of the present invention can be converted into a sol by heating as in the case of a conventionally known low molecular weight gelling agent. Can be made into a sol without applying any heat. Then, it is gelled again by stopping and leaving the ultraviolet irradiation. By utilizing such a sol-gel transition function, it is possible to inject it into a mold as a sol without applying heat, and then to make it gel.

は、本発明のゲル化剤におけるゾル−ゲル転移温度とゲル化剤濃度の関係を示すグラフである。These are graphs showing the relationship between the sol-gel transition temperature and the gelling agent concentration in the gelling agent of the present invention. は、本発明のゲル化剤における一例のIRスペクトル図である。These are IR spectrum figures of an example in the gelatinizer of this invention. は、本発明のゲル化剤における図2と同じ化合物のNMRスペクトル図である。These are the NMR spectrum figures of the same compound as FIG. 2 in the gelatinizer of this invention. は、本発明のゲル化剤の別の例のIRスペクトル図である。FIG. 4 is an IR spectrum diagram of another example of the gelling agent of the present invention. は、本発明のゲル化剤における図4と同じ化合物のNMRスペクトル図である。These are the NMR spectrum figures of the same compound as FIG. 4 in the gelatinizer of this invention.

本発明の最大の特徴は、下記一般式で表わされる化合物よりなるゲル化剤である。   The greatest feature of the present invention is a gelling agent comprising a compound represented by the following general formula.

Figure 0005618289



ここで、nは2〜18の整数、好ましくは4〜18の整数であり、nが1の場合は、ゲル化能がほとんど見られず、4以上で優れたゲル化能を示す。
Figure 0005618289



Here, n is an integer of 2 to 18, preferably an integer of 4 to 18. When n is 1, almost no gelling ability is observed, and an excellent gelling ability is shown when 4 or more.

また、C2n+1で示される基は分枝を有してもよいアルキル基であり、炭素数は長い程一般にゲル化能は高いが、あまりに長い場合はゲル化させる有機液体の種類によっては、染まない場合があり、更に合成上も難しい場合もあるので、一般に炭素数は18以下とするのがよい。 Further, the group represented by C n H 2n + 1 is an alkyl group which may have a branch. Generally, the longer the number of carbons, the higher the gelation ability, but if it is too long, depending on the type of organic liquid to be gelled In general, the number of carbon atoms is preferably 18 or less because they may not be dyed and may be difficult to synthesize.

また本発明の化合物中の芳香族基はアルキル基やハロゲン原子等の置換基を有してもよい。   The aromatic group in the compound of the present invention may have a substituent such as an alkyl group or a halogen atom.

本発明のゲル化剤は、比較的少量の使用、例えば2重量%(ゲル全体を100%とした場合)程度の使用で室温液状の有機物質をゲル化することができる。しかも、ゲル化剤の使用量を増加させることにより一般にゾル−ゲル転移温度を高くすることができ、一般に10重量%以上でほぼ一定となる。   The gelling agent of the present invention can gel a liquid organic substance at room temperature by using a relatively small amount, for example, about 2% by weight (when the total gel is 100%). In addition, the sol-gel transition temperature can generally be increased by increasing the amount of gelling agent used, and generally becomes substantially constant at 10% by weight or more.

本発明のゲル化剤は極めて多種類の室温下に液状である有機物質をゲル化させることができる。   The gelling agent of the present invention can gel organic substances that are liquid at various room temperatures.

ここで、有機物質とは単一の有機化合物、有機化合物の混合物ばかりでなく、有機化合物に無機物やイオン又は、有機金属化合物等が溶解又は分散した室温下に液状の有機化合物等の混合物をも含む総称である。   Here, the organic substance includes not only a single organic compound and a mixture of organic compounds, but also a mixture of liquid organic compounds and the like at room temperature in which inorganic substances, ions, or organometallic compounds are dissolved or dispersed in the organic compounds. It is a generic name including.

これらの有機物質の代表例としては、ヘキサン、へプタン、ベンゼン、トルエン、キシレン、石油等の炭化水素類、メタノール、エタノール、イソプロピルアルコール(2−プロパノール)、オクタノール等のアルコール類、エチルエーテル、プロピルエーテル、プロピレンオキサイド、テトラヒドロフラン等のエーテル類、ジメチルケトン、ジエチルケトン、メチルエチルケトン等のケトン類、蟻酸、酢酸、フェノール類の有機酸類、ジメチルアセトアニリド、ジメチルホルムアミド等のアミド類、プロピレンカーボネート、メチルエチルカーボネート等のカーボネート類、アセトニドリル等のニトリル類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム等のイミダゾリウム類、テトラアルキルアンモニウム等アンモニウム類、アルキルピリジニウム、ジアルキルピリジニウム等のピリジニウム類(これら、イオン性の有機液体は、種々のカウンターイオンを含むことができる)、大豆油、オリーブ油、椿油、菜種油、ゴマ油等の油脂類、及びその廃油類、更にはこれらの室温化に液状の有機物に固体物質やガス等が溶解又は分散したものなどである。   Representative examples of these organic substances include hexane, heptane, benzene, toluene, xylene, petroleum and other hydrocarbons, methanol, ethanol, isopropyl alcohol (2-propanol), octanol and other alcohols, ethyl ether, propyl Ethers such as ether, propylene oxide and tetrahydrofuran, ketones such as dimethyl ketone, diethyl ketone and methyl ethyl ketone, organic acids such as formic acid, acetic acid and phenol, amides such as dimethylacetanilide and dimethylformamide, propylene carbonate, methyl ethyl carbonate, etc. Carbonates, nitriles such as acetonidyl, lactones such as γ-butyrolactone, γ-valerolactone, imidazoles such as dialkylimidazolium and trialkylimidazolium Ums, ammoniums such as tetraalkylammonium, pyridiniums such as alkylpyridinium and dialkylpyridinium (these ionic organic liquids can contain various counter ions), soybean oil, olive oil, coconut oil, rapeseed oil, sesame oil Such as oils and fats, waste oils thereof, and those obtained by dissolving or dispersing solid substances or gases in liquid organic substances at room temperature.

本発明のゲル化剤は従来公知の低分子量ゲル化剤と同様に室温下に液状の有様物中に加え、これを加熱して均一なゾルとした後、冷却してゲルを得ることもできるが、更にゲルは、紫外線(ピーク波長が400nm以下の電磁波)、特にUVA(400〜315nm)にピークを有する紫外線により効率よく、ゾル化することができる。   The gelling agent of the present invention may be added to a liquid-like material at room temperature in the same manner as a conventionally known low molecular weight gelling agent, heated to obtain a uniform sol, and then cooled to obtain a gel. In addition, the gel can be efficiently solated by ultraviolet rays (electromagnetic waves having a peak wavelength of 400 nm or less), particularly ultraviolet rays having a peak in UVA (400 to 315 nm).

かかる機能を生ずる理由は、本発明におけるクマリン基と芳香族基がアゾ基を介して結合していることに由来するものと思われる。   The reason for producing such a function is considered to be derived from the fact that the coumarin group and the aromatic group in the present invention are bonded via an azo group.

すなわち、これらの化合物は、一般にエネルギーレベルの低いトランス型の構造をとり安定化しているが、これに紫外線を照射することにより、活性化され、シス型構造となる。他方、室温下に液状である有機物をゲル化させるためには、或る程度の直線状の分子長が必要であり、これらが水素結合や、配位結合その他の分子間インタラクションにより、緩やかな結合作用を有し、該分子間に液状の有機物質を包含することが必要である。本発明のゲル化剤にあっては、芳香族基にエーテル結合を介して比較的長いアルキル鎖(少なくとも炭素数2以上)が結合しており、前記アゾ基がトランス型となっている場合は、ほぼ直線状にゲル化に必要な長さを示すが、紫外線の照射により、シス型となった場合には分子は縮まった型となり、液状の有機物質は、自由度を増し、ゾル化するものと思われる。   That is, these compounds generally have a trans structure having a low energy level and are stabilized, but are activated by irradiating them with ultraviolet rays to form a cis structure. On the other hand, in order to gel organic substances that are liquid at room temperature, a certain degree of linear molecular length is required, and these are loosely bonded by hydrogen bonds, coordination bonds, and other intermolecular interactions. It is necessary to include a liquid organic substance between the molecules. In the gelling agent of the present invention, when a relatively long alkyl chain (at least 2 carbon atoms or more) is bonded to an aromatic group via an ether bond, and the azo group is a trans type It shows the length necessary for gelation almost linearly, but when it becomes cis-type by irradiation with ultraviolet rays, the molecule will be shrunk, and the liquid organic substance will be more solated with increased flexibility. It seems to be.

そして、紫外線照射を停止し、放置するか又は熱を加えることにより、前記アゾ基は再び安定なトランス型に戻るのである。但し、熱を加える場合、逆にトランス型として分子間に形成させる分子間インタラクションも切断され、所謂ゾル−ゲル転移温度を越えることにより、ゲル化剤はトランス型でありながらも、ゾルの状態となるが、これを冷却するとゲルとなるのである。   Then, by stopping the ultraviolet irradiation and leaving it to stand or applying heat, the azo group returns to the stable trans form again. However, when heat is applied, the intermolecular interaction formed between the molecules in the trans form is also cut off, and the gelling agent is in the sol state while being in the trans form by exceeding the so-called sol-gel transition temperature. However, when this is cooled, it becomes a gel.

本発明は、前記一般式(1)で示す化合物よりなるゲル化剤に最大の特徴があり、その製法は何等限定されないが、これらを合成する一例を次のスキームに示す。
In the present invention, the gelling agent comprising the compound represented by the general formula (1) has the greatest feature and its production method is not limited in any way, but an example of synthesizing them is shown in the following scheme.

Figure 0005618289
以上の如き方法により合成することができる。
Figure 0005618289
It can be synthesized by the method as described above.

かくして得られた本発明のゲル化剤は、通常2重量%以上室温下に液状の有機物質中に混合することによってゲルを得ることができる。ゲル化の方法は従来知られている手段、例えば、単に混合し攪拌するだけでなく、好ましくは加熱下に行い、これを冷却することで達成される。   The gelling agent of the present invention thus obtained can obtain a gel by mixing in a liquid organic substance usually at 2% by weight or more at room temperature. The method of gelation is achieved by means known in the art, for example, not only by mixing and stirring, but preferably by heating and cooling.

更に一旦ゲル化した有機物質に対して、紫外線を照射することによってゾルとし、これを鋳型となる容器に注入し、これを放置又はゲル化を促進するため加熱してトランス型とした後、冷却するなどによって再びゲル化させることができる。   Furthermore, once the gelled organic substance is irradiated with ultraviolet rays, it is made into a sol, which is injected into a container as a mold, and left to stand or heated to promote gelation to form a transformer, and then cooled. It can be made to gel again.

以下に実施例を示すが、本発明のゲル化剤又は該ゲル化剤を用いたゲルはこれらの実施例に限定されるものではない。   Examples are shown below, but the gelling agent of the present invention or the gel using the gelling agent is not limited to these examples.

Figure 0005618289


300mLのナスフラスコにConc.HNO34.5mLとConc.HSO34.5mLの混合溶液を氷浴で冷却し、クマリン15.0gを溶液の温度が20℃を超えないように除々に加えた。全部加え終えたら氷浴を外し、室温で1時間攪拌した。反応物を水200mLに注ぎ、析出している固体を濾取し、トルエンで再結晶を行った。その結果、淡黄色の固体化合物(a)を得た。

目的物:13.1g
融点:188−189℃ <文献値 193−196℃>
収率:66%
IR(KBr)
νN−O=1350,1530cm−1
νC=O=1700cm−1

H NMR(DMSO−d6)
δ=6.69(1H,d,J=8.9Hz),7.62(1H,d,J=8.9Hz),8.23(1H,d,J=9.9Hz),8.41(1H,dd,J=9.9,2.6Hz),8.73(1H,d,J=2.6Hz)ppm

Figure 0005618289


Conc. In a 300 mL eggplant flask. HNO 3 34.5 mL and Conc. A mixed solution of 34.5 mL of H 2 SO 4 was cooled in an ice bath, and 15.0 g of coumarin was gradually added so that the temperature of the solution did not exceed 20 ° C. When the addition was complete, the ice bath was removed and the mixture was stirred at room temperature for 1 hour. The reaction product was poured into 200 mL of water, and the precipitated solid was collected by filtration and recrystallized with toluene. As a result, a pale yellow solid compound (a) was obtained.

Target: 13.1 g
Melting point: 188-189 ° C <literature value 193-196 ° C>
Yield: 66%
IR (KBr)
ν N-O = 1350, 1530 cm -1
ν C═O = 1700 cm −1

1 H NMR (DMSO-d6)
δ = 6.69 (1H, d, J = 8.9 Hz), 7.62 (1H, d, J = 8.9 Hz), 8.23 (1H, d, J = 9.9 Hz), 8.41 (1H, dd, J = 9.9, 2.6 Hz), 8.73 (1H, d, J = 2.6 Hz) ppm

Figure 0005618289



300mLのナスフラスコに化合物(a)5.02gをエタノール100mL、トルエン100mLの混合溶液に溶かして水素添加を行った。反応後、Pd/Cを濾取し、ろ液をエバポレーターで濃縮し析出した固体をトルエンで再結晶を行った。その結果、黄色固体化合物(b)を得た。

目的物:1.97g
融点:160−162℃ <文献値 145−147℃>

収率:78%

IR(KBr)
νC=O=1700cm−1
νN−H=3360,3470cm−1

H NMR(DMSO)
δ=5.24(2H,s),6.33(1H,d,J=9.6Hz),6.72(1H,d,J=2.6Hz),6.83(1H,dd,J=8.6,2.6Hz),7.09(1H,d,J=8.6Hz),7.87(1H,d,J=9.6Hz)ppm

Figure 0005618289



In a 300 mL eggplant flask, 5.02 g of compound (a) was dissolved in a mixed solution of 100 mL of ethanol and 100 mL of toluene, and hydrogenated. After the reaction, Pd / C was collected by filtration, the filtrate was concentrated with an evaporator, and the precipitated solid was recrystallized with toluene. As a result, a yellow solid compound (b) was obtained.

Target product: 1.97 g
Melting point: 160-162 ° C <literature value 145-147 ° C>

Yield: 78%

IR (KBr)
ν C═O = 1700 cm −1
ν N−H = 3360, 3470 cm −1

1 H NMR (DMSO)
δ = 5.24 (2H, s), 6.33 (1H, d, J = 9.6 Hz), 6.72 (1H, d, J = 2.6 Hz), 6.83 (1H, dd, J = 8.6, 2.6 Hz), 7.09 (1H, d, J = 8.6 Hz), 7.87 (1 H, d, J = 9.6 Hz) ppm

Figure 0005618289



300mLのナスフラスコに5℃氷冷下で12NHCl2.7mL、水14.4mLの水溶液を作り、それに化合物(b)を1.97g加え、NaNO1.13gを加えて20分間攪拌し、フェノール1.93g、NaOH0.96g、水14.7mLの混合溶液を加え攪拌し、析出した固体をトルエンで再結晶を行い、化合物(c)を得た。

目的物:2.69g
融点:250℃以上
収率:84%

IR(KBr)
νC=O=1680cm−1
νO−H=3200cm−1

H NMR(DMSO)
δ=4.24(1H,s)6.55(1H,d,J=9.6Hz),6.77(2H,d,J=8.9Hz),7.51(1H,d,J=8.9Hz),7.73(2H,d,J=8.9Hz),8.02(1H,dd,J=8.9,2.3Hz),8.15(1H,d,J=2.3Hz),8.20(1H,d,J=9.6Hz)ppm
Figure 0005618289



An aqueous solution of 2.7 mL of 12N HCl and 14.4 mL of water was prepared in a 300 mL eggplant flask under ice-cooling at 5 ° C., 1.97 g of compound (b) was added thereto, 1.13 g of NaNO 2 was added, and the mixture was stirred for 20 minutes. A mixed solution of .93 g, 0.96 g of NaOH and 14.7 mL of water was added and stirred, and the precipitated solid was recrystallized from toluene to obtain compound (c).

Target: 2.69g
Melting point: 250 ° C or higher Yield: 84%

IR (KBr)
ν C═O = 1680 cm −1
ν O—H = 3200 cm −1

1 H NMR (DMSO)
δ = 4.24 (1H, s) 6.55 (1H, d, J = 9.6 Hz), 6.77 (2H, d, J = 8.9 Hz), 7.51 (1H, d, J = 8.9 Hz), 7.73 (2H, d, J = 8.9 Hz), 8.02 (1H, dd, J = 8.9, 2.3 Hz), 8.15 (1H, d, J = 2) .3 Hz), 8.20 (1H, d, J = 9.6 Hz) ppm

Figure 0005618289



300mLのナスフラスコに化合物(c)2.03gを3−Pentanone150mLに溶解し、1−ブロモオクタン1.66g,炭酸カリウム1.07g加えて15時間還流を行った。得られた固体をトルエンで再結晶を行った後、カラムクロマトグラフィーで精製した。充填剤としてシリカゲル、展開溶媒としてクロロホルムをそれぞれ使用した。その結果、本発明の化合物(I)1.40gを得た。

目的物:1.40g
融点:136−138℃ (新規物質であり文献値なし)
収率:44%

IR(KBr)
νC=O=1720cm−1
νC−H=3070cm−1
赤外吸収スペクトル図を図2に示す。

H NMR(CDCl3
δ=0.89(3H,t,J=6.6Hz),1.27−1.58(10H,m),1.83(2H,q,J=6.6Hz),4.05(2H,q,J=6.6Hz),6.49(1H,d,J=9.6Hz),7.01(2H,d,J=8.9Hz),7.43(1H,d,J=8.6Hz),7.81(1H,d,J=9.6Hz),7.91(2H,d,J=8.9Hz),8.00(1H,d,J=2.3Hz),8.10(1H,dd,J=8.9,2.3Hz)ppm
NMRスペクトル図を図3に示す。

Figure 0005618289



In a 300 mL eggplant flask, 2.03 g of compound (c) was dissolved in 150 mL of 3-Pentanone, and 1.66 g of 1-bromooctane and 1.07 g of potassium carbonate were added and refluxed for 15 hours. The obtained solid was recrystallized from toluene and purified by column chromatography. Silica gel was used as a filler and chloroform was used as a developing solvent. As a result, 1.40 g of the compound (I) of the present invention was obtained.

Target: 1.40 g
Melting point: 136-138 ° C (new substance, no literature value)
Yield: 44%

IR (KBr)
ν C═O = 1720 cm −1
ν C−H = 3070 cm −1
An infrared absorption spectrum is shown in FIG.

1 H NMR (CDCl 3 )
δ = 0.89 (3H, t, J = 6.6 Hz), 1.27-1.58 (10H, m), 1.83 (2H, q, J = 6.6 Hz), 4.05 (2H , q, J = 6.6 Hz), 6.49 (1H, d, J = 9.6 Hz), 7.01 (2H, d, J = 8.9 Hz), 7.43 (1H, d, J = 8.6 Hz), 7.81 (1H, d, J = 9.6 Hz), 7.91 (2H, d, J = 8.9 Hz), 8.00 (1H, d, J = 2.3 Hz), 8.10 (1H, dd, J = 8.9, 2.3 Hz) ppm
An NMR spectrum is shown in FIG.

Figure 0005618289




300mLのナスフラスコに化合物(c)3.00gを3−Pentanone 150mLに溶解し、1−ブロモヘキサン1.99g、炭酸カリウム1.57g加えて15時間還流を行った。得られた固体をトルエンで再結晶を行った後、カラムクロマトグラフィーで精製した。充填剤としてシリカゲル、展開溶媒としてクロロホルムをそれぞれ使用した。その結果、本発明の化合物(II)1.00gを得た。

目的物:1.00g
融点:140−143℃ (新規化合物であり、文献値なし)
収率:43%

IR(KBr)
νC=O=1730cm−1
νN−H=2940cm−1

赤外吸収スペクトル図を図4に示す。


H NMR(CDCl
δ=0.92(3H,t,J=6.9Hz),1.33−1.57(6H,m),1.83(2H,quin.,J=6,6Hz),4.03(2H,q,J=6.6Hz),6.52(1H,d,J=9.5Hz),7.02 (2H,d,J=8.9Hz),7.46(1H,d,J=8.6Hz),7.80(1H,d,J=9.5Hz),7.92(2H,d,J=8.9Hz),8.00(1H,d,J=2.3Hz),8.09(1H,dd,J=8.6、2.3Hz)ppm

NMRスペクトル図を図5に示す。
Figure 0005618289




In a 300 mL eggplant flask, 3.00 g of compound (c) was dissolved in 150 mL of 3-Pentanone, and 1.99 g of 1-bromohexane and 1.57 g of potassium carbonate were added and refluxed for 15 hours. The obtained solid was recrystallized from toluene and purified by column chromatography. Silica gel was used as a filler and chloroform was used as a developing solvent. As a result, 1.00 g of the compound (II) of the present invention was obtained.

Target: 1.00g
Melting point: 140-143 ° C (new compound, no literature value)
Yield: 43%

IR (KBr)
ν C═O = 1730 cm −1
ν N−H = 2940 cm −1

An infrared absorption spectrum is shown in FIG.


1 H NMR (CDCl 3 )
δ = 0.92 (3H, t, J = 6.9 Hz), 1.33-1.57 (6H, m), 1.83 (2H, quin., J = 6, 6 Hz), 4.03 ( 2H, q, J = 6.6 Hz), 6.52 (1H, d, J = 9.5 Hz), 7.02 (2H, d, J = 8.9 Hz), 7.46 (1H, d, J = 8.6 Hz), 7.80 (1H, d, J = 9.5 Hz), 7.92 (2H, d, J = 8.9 Hz), 8.00 (1H, d, J = 2.3 Hz) , 8.09 (1H, dd, J = 8.6, 2.3 Hz) ppm

An NMR spectrum is shown in FIG.

<ゲル化試験>
10mmφのサンプル管に化合物(I)0.0039gをGBL(γ−butyrolactone) 0.0695gに加熱溶解して5.3重量%のゲルを作成した。これに18.4W、366nmの紫外線を2cmの距離から12時間室温で照射した。このゲルは一部がゾルに転移した。室温に放置すると再びゲルになった。このゲルを室温で一晩放置したが、ゲルのままでゾルにはならなかった。
<Gelification test>
In a 10 mmφ sample tube, 0.0039 g of Compound (I) was heated and dissolved in 0.0695 g of GBL (γ-butyrolactone) to prepare a 5.3 wt% gel. This was irradiated with ultraviolet light of 18.4 W and 366 nm from a distance of 2 cm for 12 hours at room temperature. This gel partially transferred to the sol. When it was left at room temperature, it became a gel again. The gel was left at room temperature overnight, but did not become a sol as it was.

<比較例>
比較例として、6−(4−メトキシ−フェニルアゾ)−クロメン−2−オン「英文名;6-(4-Methoxy-phenylazo)-chromen-2-one」(下記化合物(III):CAS No.372156−87−1)をエタノール、トルエン、1−オクタノール、PC(propylene carbonate)に対して5wt%になるように調整し、加熱溶解したところ、エタノール、トルエン、1−オクタノールにおいてはいずれも溶解せず、GBLにおいては5.3重量%程度溶けたが、ゲル化しなかった。

Figure 0005618289



<Comparative example>
As a comparative example, 6- (4-methoxy-phenylazo) -chromen-2-one “English name; 6- (4-Methoxy-phenylazo) -chromen-2-one” (the following compound (III): CAS No. 372156 -87-1) was adjusted to 5 wt% with respect to ethanol, toluene, 1-octanol and PC (propylene carbonate) and dissolved by heating. However, none of ethanol, toluene and 1-octanol was dissolved. In GBL, it was dissolved by about 5.3% by weight but did not gel.

Figure 0005618289



Claims (4)

下記一般式(1)で表わされる化合物よりなるゲル化剤
Figure 0005618289
(但し、nは2〜18の整数)
A gelling agent comprising a compound represented by the following general formula (1) .
Figure 0005618289
(Where n is an integer from 2 to 18)
前記請求項1記載の一般式(1)で表わされるゲル化剤2重量%以上を含む室温下に液体である有機物質のゲル。 The gel of the organic substance which is a liquid at room temperature containing the gelling agent 2weight% or more represented by General formula (1) of the said Claim 1 . 前記請求項1記載の一般式(1)で表わされるゲル化剤2〜10重量%と室温下に液体である有機物質98〜90重量%よりなる請求項2記載のゲル。 The gel according to claim 2, comprising 2 to 10% by weight of a gelling agent represented by the general formula (1) according to claim 1 and 98 to 90% by weight of an organic substance which is liquid at room temperature. 室温下に前記請求項1記載の一般式(1)で表わされるゲル化剤を分散した室温下に液状の有機物質に紫外線を照射することにより均質ゾルを得た後、放置することにより、ゲルとすることを特徴とする請求項2又は3記載のゲルの製造方法。 A homogeneous sol is obtained by irradiating ultraviolet light onto a liquid organic substance at room temperature in which the gelling agent represented by the general formula (1) according to claim 1 is dispersed at room temperature, and the gel is left to stand. The method for producing a gel according to claim 2 or 3, wherein:
JP2010154717A 2010-07-07 2010-07-07 Gelling agent and gel Active JP5618289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154717A JP5618289B2 (en) 2010-07-07 2010-07-07 Gelling agent and gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154717A JP5618289B2 (en) 2010-07-07 2010-07-07 Gelling agent and gel

Publications (2)

Publication Number Publication Date
JP2012017384A JP2012017384A (en) 2012-01-26
JP5618289B2 true JP5618289B2 (en) 2014-11-05

Family

ID=45602870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154717A Active JP5618289B2 (en) 2010-07-07 2010-07-07 Gelling agent and gel

Country Status (1)

Country Link
JP (1) JP5618289B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598850B2 (en) * 2010-08-17 2014-10-01 旭化成イーマテリアルズ株式会社 Electrolyte and lithium ion secondary battery
BR112015004279A2 (en) * 2012-08-31 2017-07-04 Univation Tech Llc polymerization processes using reactor components suspended in hydrocarbon gels
CN113773668B (en) * 2021-09-10 2023-06-16 大连工业大学 Coumarin dye containing amino group in supercritical CO 2 In (a) synthesis and dyeing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898897B2 (en) * 2001-02-23 2007-03-28 独立行政法人科学技術振興機構 Novel gelling agent comprising a sugar derivative
JP2003073374A (en) * 2001-08-31 2003-03-12 Kaken Pharmaceut Co Ltd Bicyclic aromatic amine derivative

Also Published As

Publication number Publication date
JP2012017384A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5376453B2 (en) Gelling agent containing fluoroalkyl group derivative
Mehdi et al. Imidazolium ionic liquids as solvents for cerium (IV)-mediated oxidation reactions
JP5618289B2 (en) Gelling agent and gel
Mohsenzadeh et al. Benign approaches for the microwave-assisted synthesis of quinoxalines
Shamsaddini et al. Synthesis of 3, 3-arylidene bis (4-hydroxycoumarin) catalyzed by p-dodecylbenzenesulfonic acid (DBSA) in aqueous media and microwave irradiation
Vaid et al. Silica-L-proline: An efficient and recyclable heterogeneous catalyst for the Knoevenagel condensation between aldehydes and malononitrile in liquid phase
Zarei et al. Microwave-assisted click chemistry synthesis of 1, 2, 3-triazoles from aryldiazonium silica sulfates in water
Huang et al. Reaction of allenyl esters with sodium azide: an efficient synthesis of E-vinyl azides and polysubstituted pyrroles
Kheirkhah et al. HAp‐encapsulated γ‐Fe2O3‐supported dual acidic heterogeneous catalyst for highly efficient one‐pot synthesis of benzoxanthenones and 3‐pyranylindoles
Keshavarz et al. A Sulfonated Phenanthrolinum Salt of Phosphotungstate as Novel Catalyst for the Efficient Synthesis of 3, 3′-Diaryloxindoles
JP6347948B2 (en) Method for producing 3,3&#39;-diallyl-4,4&#39;-dihydroxydiphenylsulfone
Shaabani et al. Synthesis of Functionalized Coumarins
JP2016030765A (en) Hydrogelling agent
CN109896918A (en) Beta-unsaturated carbonyl compounds and its preparation method and application
JP2010077037A (en) Urea compound, self aggregate of urea compound and organogel containing self aggregate and method for producing organogel
JP2013035837A (en) Method for asymmetrically adding hydrogen to 3-alkenylene-substituted indolone with kind of iridium chiral catalyst
CN109293700A (en) Chiral diphosphine ligand, preparation method, intermediate and application
Sayyed-Alangi et al. ZnO nanorods as an efficient catalyst for the green synthesis of indole derivatives using isatoic anhydride
CN104045592A (en) 5-fluoroindole-2-one preparation method
CN106995374A (en) A kind of method that dioxygen oxidation substitution alkyl nitro benzene prepares nitryl aromatic acid/nitro α aryl alcohols
CN103073467A (en) Preparation method of alpha-carbonyl sulfur ylide derivative
Rafiee et al. Coumarins: Facile and Expeditious Synthesis via Keggin‐Type Heteropolycompounds under Solvent‐Free Condition
JP5582495B2 (en) Gelling agent
CN106810537A (en) One kind is applied to water phase and an oil phase system chiral catalyst and its preparation and application
Aghapoor et al. Efficient and practical procedures for the synthesis of bis-benzimidazoles in dry media under various reaction conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5618289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250