JP5617970B2 - Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents - Google Patents

Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents Download PDF

Info

Publication number
JP5617970B2
JP5617970B2 JP2013152452A JP2013152452A JP5617970B2 JP 5617970 B2 JP5617970 B2 JP 5617970B2 JP 2013152452 A JP2013152452 A JP 2013152452A JP 2013152452 A JP2013152452 A JP 2013152452A JP 5617970 B2 JP5617970 B2 JP 5617970B2
Authority
JP
Japan
Prior art keywords
general formula
compound
represented
compound represented
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013152452A
Other languages
Japanese (ja)
Other versions
JP2013231078A (en
Inventor
明彦 上田
明彦 上田
惇 朝永
惇 朝永
加藤 忠弘
忠弘 加藤
南部弘文
弘文 南部
紀行 塩原
紀行 塩原
俊二 成戸
俊二 成戸
孝 段
孝 段
秀幸 後藤
秀幸 後藤
久美子 藤田
久美子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2009/052837 external-priority patent/WO2010095227A1/en
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013152452A priority Critical patent/JP5617970B2/en
Publication of JP2013231078A publication Critical patent/JP2013231078A/en
Application granted granted Critical
Publication of JP5617970B2 publication Critical patent/JP5617970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/49Cinchonan derivatives, e.g. quinine

Landscapes

  • Health & Medical Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Description

本発明は、新規化合物、並びに、前記新規化合物を含有するIgEとIgEレセプターとの結合阻害剤、前記結合阻害剤を含有する抗アレルギー剤、抗喘息剤、及び抗炎症剤に関する。   The present invention relates to a novel compound, an inhibitor of binding between IgE and IgE receptor containing the novel compound, an antiallergic agent, an antiasthma agent, and an antiinflammatory agent containing the binding inhibitor.

花粉症や気管支喘息に代表されるI型アレルギー反応は、花粉、ダニなどに含まれる抗原(アレルゲン)がヒトの体内に侵入すると、ヒトIgE抗体が産生され、前記ヒトIgE抗体が、血液、粘膜に多く存在する塩基球、肥満細胞などの表面に存在する高親和性IgEレセプター(FcεRI)と結合し、感作状態となる。
前記抗原(アレルゲン)が、再びヒトの体内に侵入し、前記感作状態であるIgEレセプター(FcεRI)と結合したヒトIgE抗体と結合すると、前記結合が引き金となり、肥満細胞などから炎症性サイトカインや、ヒスタミン、ロイコトリエンなどの化学伝達物質が遊離し、アレルギー症状を引き起こす。
Type I allergic reaction, represented by hay fever and bronchial asthma, is the production of human IgE antibodies when antigens (allergens) contained in pollen, ticks, etc. enter the human body. It binds to the high affinity IgE receptor (FcεRI) present on the surface of basophils and mast cells, which are present in large amounts in the sensitized state.
When the antigen (allergen) re-enters the human body and binds to the human IgE antibody bound to the sensitized IgE receptor (FcεRI), the binding is triggered, and mast cells and the like produce inflammatory cytokines and , Chemical mediators such as histamine and leukotriene are released, causing allergic symptoms.

このようなアレルギー症状に対して、従来から、抗アレルギー作用を有する薬剤として、抗ヒスタミン剤、抗アレルギー剤などが用いられてきた。
前記抗ヒスタミン剤は、アレルギー症状を誘発するヒスタミンに対抗することで効果を発揮し、湿疹などのかゆみ、蕁麻疹、アレルギー性鼻炎などに有効である。しかしながら、副作用として、痰が絡む、鼻が詰まるなどの症状を伴う抗コリン作用を有する点や、中枢神経に作用して眠気を誘発する点が問題であった。
前記抗アレルギー剤はヒスタミン以外の化学伝達物質も抑えることができ、抗コリン作用が比較的弱いため、喘息にも適用できる。しかしながら、一般に遅行性であり、症状によっては投与後、十分な効果が現れるまで時間がかかる点が問題であった。
For such allergic symptoms, antihistamines, antiallergic agents and the like have been conventionally used as drugs having antiallergic action.
The antihistamine is effective against histamine that induces allergic symptoms, and is effective for itching such as eczema, hives and allergic rhinitis. However, as side effects, there are problems in that it has an anticholinergic action accompanied by symptoms such as wrinkles and clogging of the nose, and that it acts on the central nerve to induce sleepiness.
The antiallergic agent can also suppress chemical mediators other than histamine and can be applied to asthma because of its relatively weak anticholinergic action. However, it is generally delayed, and depending on the symptom, it takes time until a sufficient effect appears after administration.

また、従来の薬剤とは異なる作用機序を有する薬剤として、抗IgE抗体製剤ゾレア(一般名:オマリズマブ(ノバルティス ファーマ))が知られている。前記抗IgE抗体製剤ゾレアは、IgEに結合することで、I型アレルギーの根底にあるIgEとIgEレセプター(FcεRI)との結合を阻害するため、従来の薬剤と比較して抗アレルギー作用が強い。しかしながら、タンパク製剤であり、かつ月に1回〜2回の注射が必要なことから、高薬価であることが問題であった。更に、注射による投薬は、利便性が悪いことが問題であった。   Further, an anti-IgE antibody preparation Zolea (generic name: omalizumab (Novartis Pharma)) is known as a drug having a mechanism of action different from that of conventional drugs. Since the anti-IgE antibody preparation Zolea binds to IgE and inhibits the binding between IgE and IgE receptor (FcεRI), which are the basis of type I allergy, it has a stronger antiallergic effect than conventional drugs. However, since it is a protein preparation and requires injection once or twice a month, a high drug price has been a problem. Furthermore, the administration by injection is problematic because it is not convenient.

また、ゼータ・ペプチド(zeta−peptide)は、IgEレセプター(FcεRI)に結合することで、IgEとIgEレセプター(FcεRI)との結合を阻害することが報告(非特許文献1参照)されている。しかしながら、一般にペプチドは抗原性を有するため、安全性の面が問題であり、臨床開発には至っていない。
これに対し、一般に非タンパク性低分子化合物は、そのまま単独では抗原性を有さない(非特許文献2参照)ため、免疫応答を引き起こすことがないことから、安全性が高いことが知られているが、非タンパク性低分子化合物を利用した抗アレルギー作用を有する薬剤は知られていない。
Further, it has been reported that zeta-peptide (zeta-peptide) inhibits the binding between IgE and IgE receptor (FcεRI) by binding to IgE receptor (FcεRI) (see Non-Patent Document 1). However, since peptides generally have antigenicity, safety is a problem, and clinical development has not been achieved.
In contrast, non-protein low molecular weight compounds generally have no antigenicity as they are (see Non-Patent Document 2), and thus are known to have high safety because they do not cause an immune response. However, there is no known drug having an antiallergic action using a non-protein low molecular weight compound.

以上より、これらの従来の薬剤とは異なる化学構造を有し、投薬が安価かつ容易であり、IgEとIgEレセプター(FcεRI)との結合を阻害することができる、新たな非タンパク性低分子化合物、並びに、優れた抗アレルギー剤、抗喘息剤、及び抗炎症剤の開発が望まれているのが現状である。   As described above, a novel non-proteinaceous low molecular weight compound having a chemical structure different from those of these conventional drugs, being inexpensive and easy to administer, and capable of inhibiting the binding between IgE and IgE receptor (FcεRI) In addition, the development of excellent antiallergic agents, antiasthma agents, and antiinflammatory agents is desired at present.

Nakamura GR et al., PNAS, vol.99, no.3, 2002, p.1303−1308Nakamura GR et al. , PNAS, vol. 99, no. 3, 2002, p. 1303-1308 Ueda H, YAKUGAKU ZASSHI, 127, 2007, p.71−80Ueda H, YAKUGAKU ZASSHI, 127, 2007, p. 71-80

本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、IgEとIgEレセプター(FcεRI)との結合に対し、優れた結合阻害活性を有する新規化合物、並びに、IgEとIgEレセプター(FcεRI)との結合阻害剤、アレルギー作用、喘息作用、炎症作用に対し、安全性が高く、投薬が安価かつ容易である、優れた抗アレルギー剤、抗喘息剤、及び抗炎症剤を提供することを目的とする。   An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention provides a novel compound having an excellent binding inhibitory activity for binding between IgE and IgE receptor (FcεRI), an inhibitor of binding between IgE and IgE receptor (FcεRI), allergic action, asthma action, An object of the present invention is to provide an excellent antiallergic agent, antiasthma agent, and antiinflammatory agent that have high safety against inflammatory action and are inexpensive and easy to administer.

前記課題を解決するための手段としては、以下の通りである。
即ち、本発明の1つは、下記一般式(1)で表される化合物である。
前記一般式(1)中、Zは炭素、窒素、酸素、硫黄のいずれかの原子を表す。該Zは2個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Zは側鎖(Zを有していてもよい。Zは、炭素、窒素、酸素、硫黄、水素のいずれかを表し、kは0〜2の整数を表す。該kが0ではない整数を表す場合、該Zと該Zは、互いに同一であってもよいし、異なっていてもよい。
Eは下記一般式(2A)で表される2つの6員環が縮合した芳香環を表す。Fは下記一般式(3)で表される芳香族6員環を表す。
前記一般式(2A)中、aは0〜4の整数を表し、bは0〜3の整数を表す。該a、及び該bが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(2A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
前記一般式(3)中、dは0〜5の整数を表す。該dが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(3)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
Means for solving the problems are as follows.
That is, one of the present invention is a compound represented by the following general formula (1).
In the general formula (1), Z represents an atom of carbon, nitrogen, oxygen, or sulfur. Two Z's are bonded in a straight chain and may be the same or different. The Z may have a side chain (Z 1 ) k . Z 1 represents any of carbon, nitrogen, oxygen, sulfur, and hydrogen, and k represents an integer of 0 to 2. When k represents an integer other than 0, Z and Z 1 may be the same as or different from each other.
E represents an aromatic ring in which two 6-membered rings represented by the following general formula (2A) are condensed. F represents an aromatic 6-membered ring represented by the following general formula (3).
In the general formula (2A), a represents an integer of 0 to 4, and b represents an integer of 0 to 3. When a and b represent an integer other than 0, R 1 and R 2 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 1 and R 2 may be the same as or different from each other.
The compound represented by the general formula (2A) has one bond represented by “*”, and the bond represents a bond with Z.
In the general formula (3), d represents an integer of 0 to 5. When the d represents an integer other than 0, R 3 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (3) has one bond represented by “*”, and the bond represents a bond with Z.

本発明の1つは、下記一般式(5)で表される化合物である。
前記一般式(5)中、V、W、及びXはそれぞれ炭素、窒素、酸素、硫黄のいずれかの原子を表す。該Vは3個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Vは側鎖(Vを、該Wは側鎖(Wを、該Xは側鎖(Xを有していてもよい。該V、該W、及び該Xは、それぞれ炭素、窒素、酸素、硫黄、水素のいずれかを表し、g、h、及びiは、それぞれ独立に0〜2の整数を表す。該g、該h、及び該iが0ではない整数を表す場合、該Vと該V、該Wと該W、及び該Xと該Xは、互いに同一であってもよいし、異なっていてもよい。
Aは下記一般式(6A)で表される5員環、及び6員環の少なくともいずれかと、6員環との縮合した芳香環、及び下記一般式(6B)で表される芳香族6員環のいずれかを表す。Bは下記一般式(7)で表される飽和6員環を表す。Cは下記一般式(8A)で表される5員環と、6員環との縮合した芳香環、及び下記一般式(8B)で表される芳香族5員環のいずれかを表す。Dは下記一般式(9A)で表される芳香族6員環を表す。
前記一般式(6A)中、Gは、6員環、及び5員環の少なくともいずれかを表す。eは0〜4の整数を表し、fは0〜3の整数を表す。該e、及び該fが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(6A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(6B)中、mは0〜5の整数を表す。該mが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(6B)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(7)中、nは0〜4の整数を表す。該nが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(7)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はVとの結合手を表し、他の一方はWとの結合手を表す。
前記一般式(8A)中、oは0〜1の整数を表し、pは0〜4の整数を表す。該o、及び該pが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(8A)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(8B)中、qは0〜3の整数を表す。該qが0ではない整数を表す場合、R10は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(8B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(9A)中、rは0〜5の整数を表す。該rが0ではない整数を表す場合、R11は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、メチレンカルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(9A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はXとの結合手を表す。
One of the present invention is a compound represented by the following general formula (5).
In the general formula (5), V, W, and X each represent an atom of carbon, nitrogen, oxygen, or sulfur. The Vs are bonded in a straight chain and may be the same or different. The V may have a side chain (V 1 ) g , the W may have a side chain (W 1 ) h , and the X may have a side chain (X 1 ) i . V 1 , W 1 , and X 1 each represent carbon, nitrogen, oxygen, sulfur, or hydrogen, and g, h, and i each independently represent an integer of 0 to 2. When g, h, and i represent an integer other than 0, the V and the V 1 , the W and the W 1 , and the X and the X 1 may be the same as each other; May be different.
A is a 5-membered ring represented by the following general formula (6A), an aromatic ring condensed with at least one of the 6-membered ring and the 6-membered ring, and an aromatic 6-membered represented by the following general formula (6B) Represents one of the rings. B represents a saturated 6-membered ring represented by the following general formula (7). C represents either a 5-membered ring represented by the following general formula (8A) and an aromatic ring condensed with a 6-membered ring, or an aromatic 5-membered ring represented by the following general formula (8B). D represents an aromatic 6-membered ring represented by the following general formula (9A).
In the general formula (6A), G 1 represents at least one of a 6-membered ring and a 5-membered ring. e represents an integer of 0 to 4, and f represents an integer of 0 to 3. When e and f represent an integer other than 0, R 4 and R 5 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 4 and R 5 may be the same as or different from each other.
The compound represented by the general formula (6A) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (6B), m represents an integer of 0 to 5. When m represents an integer other than 0, R 6 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (6B) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (7), n represents an integer of 0 to 4. When n represents an integer other than 0, R 7 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (7) has two bonds represented by “*”, one of the bonds represents a bond with V, and the other represents a bond with W. Represents.
In the general formula (8A), o represents an integer of 0 to 1, and p represents an integer of 0 to 4. When o and p represent an integer other than 0, R 8 and R 9 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 8 and R 9 may be the same as or different from each other.
The compound represented by the general formula (8A) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (8B), q represents an integer of 0 to 3. When q represents an integer other than 0, R 10 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (8B) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (9A), r represents an integer of 0 to 5. When r represents an integer other than 0, R 11 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, a methylene carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (9A) has one bond represented by “*”, and the bond represents a bond with X.

本発明の1つは、下記一般式(11)で表される化合物である。

前記一般式(11)中、V、W、X、Y、及びZはそれぞれ炭素、窒素、酸素、硫黄のいずれかの原子を表す。該V、及び該Yは3個直鎖状に結合し、それぞれ互いに同一であってもよいし、異なっていてもよい。該Zは2個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Vは側鎖(Vを、該Wは側鎖(Wを、該Xは側鎖(Xを、該Yは側鎖(Yを、該Zは側鎖(Zを有していてもよい。該V、該W、該X、該Y、及び該Zは、それぞれ炭素、窒素、酸素、硫黄、水素のいずれかを表し、g、h、i、j、及びkは、それぞれ独立に0〜2の整数を表す。該g、該h、該i、該j、及び該kが0ではない整数を表す場合、該Vと該V、該Wと該W、該Xと該X、該Yと該Y、及び該Zと該Zは、互いに同一であってもよいし、異なっていてもよい。
Aは下記一般式(6A)で表される5員環、及び6員環の少なくともいずれかと、6員環との縮合した芳香環、及び下記一般式(6B)で表される芳香族6員環を表す。Bは下記一般式(7)で表される飽和6員環を表す。Cは下記一般式(8A)で表される5員環と、6員環との縮合した芳香環、及び下記一般式(8B)で表される芳香族5員環のいずれかを表す。Dは下記一般式(9B)で表される芳香族6員環を表す。Eは下記一般式(2B)で表される2つの6員環が縮合した芳香環を表す。Fは下記一般式(3)で表される芳香族6員環を表す。

前記一般式(6A)中、Gは、6員環、及び5員環の少なくともいずれかを表す。eは0〜4の整数を表し、fは0〜3の整数を表す。該e、及び該fが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(6A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(6B)中、mは0〜5の整数を表す。該mが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(6B)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。

前記一般式(7)中、nは0〜4の整数を表す。該nが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(7)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はVとの結合手を表し、他の一方はWとの結合手を表す。
前記一般式(8A)中、oは0〜1の整数を表し、pは0〜4の整数を表す。該o、及び該pが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(8A)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。

前記一般式(8B)中、qは0〜3の整数を表す。該qが0ではない整数を表す場合、R10は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(8B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(9B)中、rは0〜4の整数を表す。該rが0ではない整数を表す場合、R11は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(9B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はXとの結合手を表し、他の一方はYとの結合手を表す。

前記一般式(2B)中、a、及びbは、それぞれ独立に0〜3の整数を表す。該a、及び該bが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(2B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はYとの結合手を表し、他の一方はZとの結合手を表す。
前記一般式(3)中、dは0〜5の整数を表す。該dが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。
前記一般式(3)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
One aspect of the present invention is a compound represented by the following general formula (11).

In the general formula (11), V, W, X, Y, and Z each represent an atom of carbon, nitrogen, oxygen, or sulfur. The V and Y may be bonded in a straight chain and may be the same or different from each other. Two Z's are bonded in a straight chain and may be the same or different. The V represents a side chain (V 1 ) g , the W represents a side chain (W 1 ) h , the X represents a side chain (X 1 ) i , the Y represents a side chain (Y 1 ) j , the Z May have a side chain (Z 1 ) k . V 1 , W 1 , X 1 , Y 1 , and Z 1 each represent carbon, nitrogen, oxygen, sulfur, or hydrogen, and g, h, i, j, and k are Each represents an integer of 0 to 2 independently. When the g, the h, the i, the j, and the k represent non-zero integers, the V and the V 1 , the W and the W 1 , the X and the X 1 , the Y and the Y 1 , and Z and Z 1 may be the same as or different from each other.
A is a 5-membered ring represented by the following general formula (6A), an aromatic ring condensed with at least one of the 6-membered ring and the 6-membered ring, and an aromatic 6-membered represented by the following general formula (6B) Represents a ring. B represents a saturated 6-membered ring represented by the following general formula (7). C represents either a 5-membered ring represented by the following general formula (8A) and an aromatic ring condensed with a 6-membered ring, or an aromatic 5-membered ring represented by the following general formula (8B). D represents an aromatic 6-membered ring represented by the following general formula (9B). E represents an aromatic ring in which two 6-membered rings represented by the following general formula (2B) are condensed. F represents an aromatic 6-membered ring represented by the following general formula (3).

In the general formula (6A), G 1 represents at least one of a 6-membered ring and a 5-membered ring. e represents an integer of 0 to 4, and f represents an integer of 0 to 3. When e and f represent an integer other than 0, R 4 and R 5 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 4 and R 5 may be the same as or different from each other.
The compound represented by the general formula (6A) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (6B), m represents an integer of 0 to 5. When m represents an integer other than 0, R 6 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (6B) has one bond represented by “*”, and the bond represents a bond with V.

In the general formula (7), n represents an integer of 0 to 4. When n represents an integer other than 0, R 7 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (7) has two bonds represented by “*”, one of the bonds represents a bond with V, and the other represents a bond with W. Represents.
In the general formula (8A), o represents an integer of 0 to 1, and p represents an integer of 0 to 4. When o and p represent an integer other than 0, R 8 and R 9 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 8 and R 9 may be the same as or different from each other.
The compound represented by the general formula (8A) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.

In the general formula (8B), q represents an integer of 0 to 3. When q represents an integer other than 0, R 10 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (8B) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (9B), r represents an integer of 0 to 4. When r represents an integer other than 0, R 11 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (9B) has two bonds represented by “*”, one of the bonds represents a bond with X, and the other represents a bond with Y. Represents.

In the general formula (2B), a and b each independently represent an integer of 0 to 3. When a and b represent an integer other than 0, R 1 and R 2 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. R 1 and R 2 may be the same as or different from each other.
The compound represented by the general formula (2B) has two bonds represented by “*”, one of the bonds represents a bond with Y, and the other represents a bond with Z. Represents.
In the general formula (3), d represents an integer of 0 to 5. When the d represents an integer other than 0, R 3 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom.
The compound represented by the general formula (3) has one bond represented by “*”, and the bond represents a bond with Z.

本発明の1つは、前記一般式(1)で表される化合物、前記一般式(5)で表される化合物、及び前記一般式(11)で表される化合物の少なくとも1種を含有してなり、IgEとIgEレセプターとの結合を阻害する結合阻害剤である。   One of the present invention contains at least one of a compound represented by the general formula (1), a compound represented by the general formula (5), and a compound represented by the general formula (11). It is a binding inhibitor that inhibits the binding between IgE and IgE receptor.

本発明の1つは、前記結合阻害剤を含有する抗アレルギー剤、抗喘息剤、抗炎症剤である。   One of the present invention is an antiallergic agent, antiasthma agent and antiinflammatory agent containing the binding inhibitor.

本発明によれば、従来における諸問題を解決し、前記目的を達成することができ、IgEとIgEレセプター(FcεRI)との結合に対し、優れた結合阻害活性を有する新規化合物、並びに、IgEとIgEレセプター(FcεRI)との結合阻害剤、アレルギー作用、喘息作用、炎症作用に対し、安全性が高く、投薬が安価かつ容易である、優れた抗アレルギー剤、抗喘息剤、及び抗炎症剤を提供することができる。   According to the present invention, various problems in the prior art can be solved and the above-mentioned object can be achieved, and a novel compound having excellent binding inhibitory activity for binding between IgE and IgE receptor (FcεRI), and IgE An anti-allergic agent, anti-asthma agent, and anti-inflammatory agent that are highly safe, inexpensive and easy to administer to inhibitors of binding to IgE receptor (FcεRI), allergic action, asthma action, and inflammatory action Can be provided.

図1は、一般式(1)で表される化合物の好ましい一例である構造式(1)で表される化合物のNMRスペクトルである。FIG. 1 is an NMR spectrum of the compound represented by Structural Formula (1), which is a preferred example of the compound represented by General Formula (1). 図2Aは、一般式(1)で表される化合物の好ましい一例である構造式(1)で表される化合物のLC−MS分析におけるLC(液体クロマトグラフィー)(上段)、及びMS(質量分析)(下段)のクロマトグラム像である。FIG. 2A shows LC (liquid chromatography) (upper stage) and MS (mass spectrometry) in LC-MS analysis of the compound represented by Structural Formula (1), which is a preferred example of the compound represented by General Formula (1). ) (Bottom) chromatogram image. 図2Bは、一般式(1)で表される化合物の好ましい一例である構造式(1)で表される化合物のLC−MS分析におけるリテンションタイム1.296のピーク成分の質量分析の結果を示した図である。FIG. 2B shows the results of mass spectrometry of the peak component having a retention time of 1.296 in LC-MS analysis of the compound represented by Structural Formula (1), which is a preferred example of the compound represented by General Formula (1). It is a figure. 図3は、一般式(5)で表される化合物の好ましい一例である構造式(2)で表される化合物のNMRスペクトルである。FIG. 3 is an NMR spectrum of the compound represented by Structural Formula (2), which is a preferred example of the compound represented by General Formula (5). 図4Aは、一般式(5)で表される化合物の好ましい一例である構造式(2)で表される化合物のLC−MS分析におけるLC(液体クロマトグラフィー)(上段)、及びMS(質量分析)(下段)のクロマトグラム像である。FIG. 4A shows LC (liquid chromatography) (upper) and MS (mass spectrometry) in LC-MS analysis of the compound represented by Structural Formula (2), which is a preferred example of the compound represented by General Formula (5). ) (Bottom) chromatogram image. 図4Bは、一般式(5)で表される化合物の好ましい一例である構造式(2)で表される化合物のLC−MS分析におけるリテンションタイム1.613のピーク成分の質量分析の結果を示した図である。FIG. 4B shows the results of mass spectrometry of the peak component having a retention time of 1.613 in LC-MS analysis of the compound represented by Structural Formula (2), which is a preferred example of the compound represented by General Formula (5). It is a figure. 図5は、一般式(11)で表される化合物の好ましい一例である構造式(3)で表される化合物のNMRスペクトルである。FIG. 5 is an NMR spectrum of the compound represented by Structural Formula (3), which is a preferred example of the compound represented by General Formula (11). 図6Aは、一般式(11)で表される化合物の好ましい一例である構造式(3)で表される化合物のLC−MS分析におけるLC(液体クロマトグラフィー)(上段)、及びMS(質量分析)(下段)のクロマトグラム像である。FIG. 6A shows LC (liquid chromatography) (upper) and MS (mass spectrometry) in LC-MS analysis of the compound represented by Structural Formula (3), which is a preferred example of the compound represented by General Formula (11). ) (Bottom) chromatogram image. 図6Bは、一般式(11)で表される化合物の好ましい一例である構造式(3)で表される化合物のLC−MS分析におけるリテンションタイム1.796のピーク成分の質量分析の結果を示した図である。FIG. 6B shows the results of mass spectrometry of the peak component having a retention time of 1.796 in LC-MS analysis of the compound represented by Structural Formula (3), which is a preferred example of the compound represented by General Formula (11). It is a figure. 図7は、試験例2において、IgEレセプター(FcεRI)をセンサーチップに固定化したセンサーグラムを示す図である。縦軸は、センサーチップ表面での質量変化(RU)を表し、横軸は、時間(秒間)を表わす。FIG. 7 is a diagram showing a sensorgram in which IgE receptor (FcεRI) is immobilized on a sensor chip in Test Example 2. The vertical axis represents mass change (RU) on the sensor chip surface, and the horizontal axis represents time (seconds).

(新規化合物)
<一般式(1)で表される化合物>
本発明の第1の新規化合物は、下記一般式(1)で表されることを特徴とする。
前記一般式(1)中、Zは炭素、窒素、酸素、硫黄のいずれかの原子を表す。該Zは2個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Zは側鎖(Zを有していてもよい。Zは、炭素、窒素、酸素、硫黄、水素のいずれかを表し、kは0〜2の整数を表す。該kが0ではない整数を表す場合、該Zと該Zは、互いに同一であってもよいし、異なっていてもよい。
Eは下記一般式(2A)で表される2つの6員環が縮合した芳香環を表す。Fは下記一般式(3)で表される芳香族6員環を表す。
前記一般式(2A)中、aは0〜4の整数を表し、bは0〜3の整数を表す。該a、及び該bが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(2A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
前記一般式(3)中、dは0〜5の整数を表す。該dが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(3)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
(New compound)
<Compound represented by the general formula (1)>
The first novel compound of the present invention is represented by the following general formula (1).
In the general formula (1), Z represents an atom of carbon, nitrogen, oxygen, or sulfur. Two Z's are bonded in a straight chain and may be the same or different. The Z may have a side chain (Z 1 ) k . Z 1 represents any of carbon, nitrogen, oxygen, sulfur, and hydrogen, and k represents an integer of 0 to 2. When k represents an integer other than 0, Z and Z 1 may be the same as or different from each other.
E represents an aromatic ring in which two 6-membered rings represented by the following general formula (2A) are condensed. F represents an aromatic 6-membered ring represented by the following general formula (3).
In the general formula (2A), a represents an integer of 0 to 4, and b represents an integer of 0 to 3. When a and b represent an integer other than 0, R 1 and R 2 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 1 and R 2 may be the same as or different from each other.
The compound represented by the general formula (2A) has one bond represented by “*”, and the bond represents a bond with Z.
In the general formula (3), d represents an integer of 0 to 5. When the d represents an integer other than 0, R 3 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (3) has one bond represented by “*”, and the bond represents a bond with Z.

前記一般式(1)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(4)で表される化合物が好ましく、下記構造式(1)で表される化合物がより好ましい。
前記一般式(4)中、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
There is no restriction | limiting in particular as a compound represented by the said General formula (1), Although it can select suitably according to the objective, The compound represented by the following general formula (4) is preferable, and following Structural formula (1) ) Is more preferable.
In the general formula (4), R 1 and R 3 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 1 and R 3 may be the same as or different from each other.


−物理化学的性状−
前記一般式(1)で表される化合物のうち、前記構造式(1)で表される化合物の物理化学的性状は、
(1) 分子式は、C1815NOで表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド(DMSO−d6)中で25℃にて測定した。プロトンNMRスペクトルとしては、図1に示す通りである。
(3) マススペクトル(LC−MS:正イオンモード)による、実験値は、m/z293.9(M+H)であり、Mの計算値は、m/z293.1(C1815NO)である。図2Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。図2Bに、リテンションタイム1.296のピーク成分の質量分析の結果を示す。
-Physicochemical properties-
Among the compounds represented by the general formula (1), the physicochemical properties of the compound represented by the structural formula (1) are:
(1) The molecular formula is represented by C 18 H 15 NO 3 .
(2) The proton nuclear magnetic resonance spectrum was measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz. The proton NMR spectrum is as shown in FIG.
(3) The experimental value by mass spectrum (LC-MS: positive ion mode) is m / z 293.9 (M + H) + , and the calculated value of M is m / z 293.1 (C 18 H 15 NO 3 ). The upper part of FIG. 2A shows a chromatographic image of LC (liquid chromatography), and the lower part shows a chromatographic image of MS (mass spectrometry). FIG. 2B shows the mass analysis result of the peak component with a retention time of 1.296.

前記新規化合物が、前記一般式(1)で表される構造を有するか否かは、適宜選択した各種の分析方法により確認することができ、例えば、前記プロトン核磁気共鳴スペクトル、前記マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの分析を行うことにより確認できる。   Whether or not the novel compound has the structure represented by the general formula (1) can be confirmed by various analysis methods selected as appropriate. For example, the proton nuclear magnetic resonance spectrum, the mass spectrum, This can be confirmed by analyzing carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high performance liquid chromatography and the like.

なお、本願発明においては、前記一般式(1)で表される化合物は互変異性体を含むものとする。   In the present invention, the compound represented by the general formula (1) includes a tautomer.

−製造方法−
前記一般式(1)で表される化合物の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などを用いることができる。
以下に、前記構造式(1)で表される化合物を例に挙げ、前記一般式(1)で表される化合物の製造方法の一例を説明する。
-Manufacturing method-
There is no restriction | limiting in particular as a manufacturing method of the compound represented by the said General formula (1), According to the objective, it can select suitably, For example, the method by chemical synthesis etc. can be used.
Hereinafter, taking the compound represented by the structural formula (1) as an example, an example of a method for producing the compound represented by the general formula (1) will be described.

前記構造式(1)で表される化合物を化学合成により得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、出発物質として下記6−ブロモ−ナフタレン−2−オールを用い、中間体を経て、前記構造式(1)で表される化合物を製造することができる。
前記出発物質6−ブロモ−ナフタレン−2−オールを用いて、前記構造式(1)で表される化合物を製造する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、中間体を4つ経る方法などが挙げられる。
前記中間体としては、例えば、第1に、下記化合物11(以下、「中間体1」と称することがある。)、第2に、下記6−ベンジルオキシ−ナフタレン−2−イルアミン(以下、「中間体2」と称することがある。)、第3に、下記6−アミノ−ナフタレン−2−オール(以下、「中間体3」と称することがある。)、及び第4に、下記セグメントC(以下、「中間体4」と称することがある。)が挙げられる。
前記中間体1〜4を得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などが挙げられる。また、化学合成によらず、市販品を用いることもできる。
A method for obtaining the compound represented by the structural formula (1) by chemical synthesis is not particularly limited and may be appropriately selected depending on the intended purpose. For example, as a starting material, the following 6-bromo-naphthalene-2- Using all, the compound represented by the structural formula (1) can be produced through an intermediate.
The method for producing the compound represented by the structural formula (1) using the starting material 6-bromo-naphthalen-2-ol is not particularly limited and may be appropriately selected depending on the purpose. For example, a method of passing through four intermediates can be mentioned.
Examples of the intermediate include, firstly, the following compound 11 (hereinafter sometimes referred to as “intermediate 1”), and secondly, the following 6-benzyloxy-naphthalen-2-ylamine (hereinafter referred to as “intermediate 1”). 3) the following 6-amino-naphthalen-2-ol (hereinafter sometimes referred to as “intermediate 3”), and fourth, the following segment C (Hereinafter sometimes referred to as “intermediate 4”).
There is no restriction | limiting in particular as a method of obtaining the said intermediates 1-4, According to the objective, it can select suitably, For example, the method by chemical synthesis etc. are mentioned. Moreover, a commercial item can also be used irrespective of chemical synthesis.

前記化学合成の反応温度、反応時間、合成方法、及び化合物の使用量としては、特に制限はなく、目的とする中間体に応じて適宜選択することができる。
前記化学合成に用いる化合物の状態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、液体の状態、固体の状態、乾燥した状態、油状物の状態、再結晶化した状態などが挙げられる。
前記中間体を確認する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロトン核磁気共鳴スペクトル、マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの方法を用いることができる。
The reaction temperature, reaction time, synthesis method, and amount of the compound used in the chemical synthesis are not particularly limited and may be appropriately selected depending on the target intermediate.
The state of the compound used for the chemical synthesis is not particularly limited and can be appropriately selected depending on the purpose. For example, the liquid state, the solid state, the dried state, the oily state, the recrystallized state The state etc. are mentioned.
The method for confirming the intermediate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, proton nuclear magnetic resonance spectrum, mass spectrum, carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high-speed A method such as liquid chromatography can be used.

また、前記化学合成により得た生成物は、必要に応じて精製することができる。
前記精製の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、順層系又は逆層系充填剤を使用したカラム、prep−TLC、prep−HPLCなどの方法を用いることができる。
The product obtained by the chemical synthesis can be purified as necessary.
The purification method is not particularly limited and may be appropriately selected depending on the intended purpose. Can be used.

<一般式(5)で表される化合物>
本発明の第2の新規化合物は、下記一般式(5)で表されることを特徴とする。
前記一般式(5)中、V、W、及びXはそれぞれ炭素、窒素、酸素、硫黄のいずれかの原子を表す。該Vは3個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Vは側鎖(Vを、該Wは側鎖(Wを、該Xは側鎖(Xを有していてもよい。該V、該W、及び該Xは、それぞれ炭素、窒素、酸素、硫黄、水素のいずれかを表し、g、h、及びiは、それぞれ独立に0〜2の整数を表す。該g、該h、及び該iが0ではない整数を表す場合、該Vと該V、該Wと該W、及び該Xと該Xは、互いに同一であってもよいし、異なっていてもよい。
Aは下記一般式(6A)で表される5員環、及び6員環の少なくともいずれかと、6員環との縮合した芳香環、及び下記一般式(6B)で表される芳香族6員環のいずれかを表す。Bは下記一般式(7)で表される飽和6員環を表す。Cは下記一般式(8A)で表される5員環と、6員環との縮合した芳香環、及び下記一般式(8B)で表される芳香族5員環のいずれかを表す。Dは下記一般式(9A)で表される芳香族6員環を表す。
前記一般式(6A)中、Gは、6員環、及び5員環の少なくともいずれかを表す。eは0〜4の整数を表し、fは0〜3の整数を表す。該e、及び該fが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(6A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(6B)中、mは0〜5の整数を表す。該mが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(6B)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(7)中、nは0〜4の整数を表す。該nが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(7)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はVとの結合手を表し、他の一方はWとの結合手を表す。
前記一般式(8A)中、oは0〜1の整数を表し、pは0〜4の整数を表す。該o、及び該pが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(8A)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(8B)中、qは0〜3の整数を表す。該qが0ではない整数を表す場合、R10は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(8B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(9A)中、rは0〜5の整数を表す。該rが0ではない整数を表す場合、R11は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、メチレンカルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(9A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はXとの結合手を表す。
<Compound represented by formula (5)>
The second novel compound of the present invention is represented by the following general formula (5).
In the general formula (5), V, W, and X each represent an atom of carbon, nitrogen, oxygen, or sulfur. The Vs are bonded in a straight chain and may be the same or different. The V may have a side chain (V 1 ) g , the W may have a side chain (W 1 ) h , and the X may have a side chain (X 1 ) i . V 1 , W 1 , and X 1 each represent carbon, nitrogen, oxygen, sulfur, or hydrogen, and g, h, and i each independently represent an integer of 0 to 2. When g, h, and i represent an integer other than 0, the V and the V 1 , the W and the W 1 , and the X and the X 1 may be the same as each other; May be different.
A is a 5-membered ring represented by the following general formula (6A), an aromatic ring condensed with at least one of the 6-membered ring and the 6-membered ring, and an aromatic 6-membered represented by the following general formula (6B) Represents one of the rings. B represents a saturated 6-membered ring represented by the following general formula (7). C represents either a 5-membered ring represented by the following general formula (8A) and an aromatic ring condensed with a 6-membered ring, or an aromatic 5-membered ring represented by the following general formula (8B). D represents an aromatic 6-membered ring represented by the following general formula (9A).
In the general formula (6A), G 1 represents at least one of a 6-membered ring and a 5-membered ring. e represents an integer of 0 to 4, and f represents an integer of 0 to 3. When e and f represent an integer other than 0, R 4 and R 5 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 4 and R 5 may be the same as or different from each other.
The compound represented by the general formula (6A) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (6B), m represents an integer of 0 to 5. When m represents an integer other than 0, R 6 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (6B) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (7), n represents an integer of 0 to 4. When n represents an integer other than 0, R 7 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (7) has two bonds represented by “*”, one of the bonds represents a bond with V, and the other represents a bond with W. Represents.
In the general formula (8A), o represents an integer of 0 to 1, and p represents an integer of 0 to 4. When o and p represent an integer other than 0, R 8 and R 9 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 8 and R 9 may be the same as or different from each other.
The compound represented by the general formula (8A) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (8B), q represents an integer of 0 to 3. When q represents an integer other than 0, R 10 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (8B) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (9A), r represents an integer of 0 to 5. When r represents an integer other than 0, R 11 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, a methylene carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (9A) has one bond represented by “*”, and the bond represents a bond with X.

前記一般式(5)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(10)で表される化合物が好ましく、下記構造式(2)で表される化合物がより好ましい。

前記一般式(10)中、V、及びWは、炭素、窒素、酸素、硫黄のいずれかを表し、該V、及び該Wは、互いに同一であってもよいし、異なっていてもよい。R11は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、メチレンカルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
There is no restriction | limiting in particular as a compound represented by the said General formula (5), Although it can select suitably according to the objective, The compound represented by the following general formula (10) is preferable, and following Structural formula (2) ) Is more preferable.

In the general formula (10), V 1 and W 1 represent any of carbon, nitrogen, oxygen and sulfur, and the V 1 and W 1 may be the same as or different from each other. May be. R 11 represents any one of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, a methylene carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.

−物理化学的性状−
前記一般式(5)で表される化合物のうち、前記構造式(2)で表される化合物の物理化学的性状は、
(1) 分子式は、C3432で表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド(DMSO−d6)中で25℃にて測定した。プロトンNMRスペクトルとしては、図3に示す通りである。
(3) マススペクトル(LC−MS:正イオンモード)による、実験値は、m/z561.1(M+H)であり、Mの計算値は、m/z560.24(C3432)である。図4Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。図4Bにリテンションタイム1.613のピーク成分の質量分析の結果を示す。
-Physicochemical properties-
Of the compounds represented by the general formula (5), the physicochemical properties of the compounds represented by the structural formula (2) are:
(1) The molecular formula is represented by C 34 H 32 N 4 O 4 .
(2) The proton nuclear magnetic resonance spectrum was measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz. The proton NMR spectrum is as shown in FIG.
(3) The experimental value by mass spectrum (LC-MS: positive ion mode) is m / z 561.1 (M + H) + , and the calculated value of M is m / z 560.24 (C 34 H 32 N 4 O 4 ). The upper part of FIG. 4A shows a chromatographic image of LC (liquid chromatography), and the lower part shows a chromatographic image of MS (mass spectrometry). FIG. 4B shows the result of mass spectrometry of the peak component with a retention time of 1.613.

前記新規化合物が、前記一般式(5)で表される構造を有するか否かは、適宜選択した各種の分析方法により確認することができ、例えば、前記プロトン核磁気共鳴スペクトル、前記マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの分析を行うことにより確認できる。   Whether or not the novel compound has the structure represented by the general formula (5) can be confirmed by various analysis methods selected as appropriate. For example, the proton nuclear magnetic resonance spectrum, the mass spectrum, This can be confirmed by analyzing carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high performance liquid chromatography and the like.

なお、本願発明においては、前記一般式(5)で表される化合物は互変異性体を含むものとする。   In the present invention, the compound represented by the general formula (5) includes a tautomer.

−製造方法−
前記一般式(5)で表される化合物の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などを用いることができる。
以下に、前記構造式(2)で表される化合物を例に挙げ、前記一般式(5)で表される化合物の製造方法の一例を説明する。
-Manufacturing method-
There is no restriction | limiting in particular as a manufacturing method of the compound represented by the said General formula (5), According to the objective, it can select suitably, For example, the method by chemical synthesis etc. can be used.
Hereinafter, an example of a method for producing the compound represented by the general formula (5) will be described by taking the compound represented by the structural formula (2) as an example.

前記構造式(2)で表される化合物を化学合成により得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、出発物質として下記化合物3を用い、中間体を経て、前記構造式(2)で表される化合物を製造することができる。
前記出発物質化合物3を用いて、前記構造式(2)で表される化合物を製造する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記に示すように、中間体を5つ経る方法などが挙げられる。
前記中間体としては、例えば、第1に、下記化合物4(以下、「中間体5」と称することがある。)、第2に、下記化合物5(以下、「中間体6」と称することがある。)、第3に、下記セグメントA(以下、「中間体7」と称することがある。)、第4に、下記化合物14(以下、「中間体8」と称することがある。)、及び第5に、下記化合物15(以下、「中間体9」と称することがある。)が挙げられる。
前記中間体5〜9を得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などが挙げられる。また、化学合成によらず、市販品を用いることもできる。
The method for obtaining the compound represented by the structural formula (2) by chemical synthesis is not particularly limited and may be appropriately selected depending on the intended purpose. For example, using the following compound 3 as a starting material, Then, the compound represented by the structural formula (2) can be produced.
There is no restriction | limiting in particular as a method of manufacturing the compound represented by the said Structural formula (2) using the said starting material compound 3, According to the objective, it can select suitably, For example, as shown below And a method using 5 intermediates.
Examples of the intermediate include, firstly, the following compound 4 (hereinafter sometimes referred to as “intermediate 5”), and secondly, the following compound 5 (hereinafter referred to as “intermediate 6”). Third, the following segment A (hereinafter sometimes referred to as “intermediate 7”), and fourthly, the following compound 14 (hereinafter sometimes referred to as “intermediate 8”), And fifthly, the following compound 15 (hereinafter sometimes referred to as “intermediate 9”) may be mentioned.
There is no restriction | limiting in particular as a method of obtaining the said intermediates 5-9, According to the objective, it can select suitably, For example, the method by chemical synthesis etc. are mentioned. Moreover, a commercial item can also be used irrespective of chemical synthesis.

前記化学合成の反応温度、反応時間、合成方法、及び化合物の使用量としては、特に制限はなく、目的とする中間体に応じて適宜選択することができる。
前記化学合成に用いる化合物の状態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、液体の状態、固体の状態、乾燥した状態、油状物の状態、再結晶化した状態などが挙げられる。
前記中間体を確認する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロトン核磁気共鳴スペクトル、マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの方法を用いることができる。
The reaction temperature, reaction time, synthesis method, and amount of the compound used in the chemical synthesis are not particularly limited and may be appropriately selected depending on the target intermediate.
The state of the compound used for the chemical synthesis is not particularly limited and can be appropriately selected depending on the purpose. For example, the liquid state, the solid state, the dried state, the oily state, the recrystallized state The state etc. are mentioned.
The method for confirming the intermediate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, proton nuclear magnetic resonance spectrum, mass spectrum, carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high-speed A method such as liquid chromatography can be used.

また、前記化学合成により得た生成物は、必要に応じて精製することができる。
前記精製の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、順層系又は逆層系充填剤を使用したカラム、prep−TLC、prep−HPLCなどの方法を用いることができる。
The product obtained by the chemical synthesis can be purified as necessary.
The purification method is not particularly limited and may be appropriately selected depending on the intended purpose. Can be used.

<一般式(11)で表される化合物>
本発明の第3の新規化合物は、下記一般式(11)で表されることを特徴とする。
前記一般式(11)中、V、W、X、Y、及びZはそれぞれ炭素、窒素、酸素、硫黄のいずれかの原子を表す。該V、及び該Yは3個直鎖状に結合し、それぞれ互いに同一であってもよいし、異なっていてもよい。該Zは2個直鎖状に結合し、互いに同一であってもよいし、異なっていてもよい。該Vは側鎖(Vを、該Wは側鎖(Wを、該Xは側鎖(Xを、該Yは側鎖(Yを、該Zは側鎖(Zを有していてもよい。該V、該W、該X、該Y、及び該Zは、それぞれ炭素、窒素、酸素、硫黄、水素のいずれかを表し、g、h、i、j、及びkは、それぞれ独立に0〜2の整数を表す。該g、該h、該i、該j、及び該kが0ではない整数を表す場合、該Vと該V、該Wと該W、該Xと該X、該Yと該Y、及び該Zと該Zは、互いに同一であってもよいし、異なっていてもよい。
Aは下記一般式(6A)で表される5員環、及び6員環の少なくともいずれかと、6員環との縮合した芳香環、及び下記一般式(6B)で表される芳香族6員環を表す。Bは下記一般式(7)で表される飽和6員環を表す。Cは下記一般式(8A)で表される5員環と、6員環との縮合した芳香環、及び下記一般式(8B)で表される芳香族5員環のいずれかを表す。Dは下記一般式(9B)で表される芳香族6員環を表す。Eは下記一般式(2B)で表される2つの6員環が縮合した芳香環を表す。Fは下記一般式(3)で表される芳香族6員環を表す。
前記一般式(6A)中、Gは、6員環、及び5員環の少なくともいずれかを表す。eは0〜4の整数を表し、fは0〜3の整数を表す。該e、及び該fが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(6A)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(6B)中、mは0〜5の整数を表す。該mが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(6B)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はVとの結合手を表す。
前記一般式(7)中、nは0〜4の整数を表す。該nが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(7)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はVとの結合手を表し、他の一方はWとの結合手を表す。

前記一般式(8A)中、oは0〜1の整数を表し、pは0〜4の整数を表す。該o、及び該pが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(8A)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(8B)中、qは0〜3の整数を表す。該qが0ではない整数を表す場合、R10は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(8B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はWとの結合手を表し、他の一方はXとの結合手を表す。
前記一般式(9B)中、rは0〜4の整数を表す。該rが0ではない整数を表す場合、R11は、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(9B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はXとの結合手を表し、他の一方はYとの結合手を表す。
前記一般式(2B)中、a、及びbは、それぞれ独立に0〜3の整数を表す。該a、及び該bが0ではない整数を表す場合、R、及びRは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。前記R、及び前記Rは、互いに同一であってもよいし、異なっていてもよい。
前記一般式(2B)で表される化合物は「*」で表される2つの結合手を有し、前記結合手の一方はYとの結合手を表し、他の一方はZとの結合手を表す。
前記一般式(3)中、dは0〜5の整数を表す。該dが0ではない整数を表す場合、Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
前記一般式(3)で表される化合物は「*」で表される1つの結合手を有し、前記結合手はZとの結合手を表す。
<Compound represented by formula (11)>
The third novel compound of the present invention is represented by the following general formula (11).
In the general formula (11), V, W, X, Y, and Z each represent an atom of carbon, nitrogen, oxygen, or sulfur. The V and Y may be bonded in a straight chain and may be the same or different from each other. Two Z's are bonded in a straight chain and may be the same or different. The V represents a side chain (V 1 ) g , the W represents a side chain (W 1 ) h , the X represents a side chain (X 1 ) i , the Y represents a side chain (Y 1 ) j , the Z May have a side chain (Z 1 ) k . V 1 , W 1 , X 1 , Y 1 , and Z 1 each represent carbon, nitrogen, oxygen, sulfur, or hydrogen, and g, h, i, j, and k are Each represents an integer of 0 to 2 independently. When the g, the h, the i, the j, and the k represent non-zero integers, the V and the V 1 , the W and the W 1 , the X and the X 1 , the Y and the Y 1 , and Z and Z 1 may be the same as or different from each other.
A is a 5-membered ring represented by the following general formula (6A), an aromatic ring condensed with at least one of the 6-membered ring and the 6-membered ring, and an aromatic 6-membered represented by the following general formula (6B) Represents a ring. B represents a saturated 6-membered ring represented by the following general formula (7). C represents either a 5-membered ring represented by the following general formula (8A) and an aromatic ring condensed with a 6-membered ring, or an aromatic 5-membered ring represented by the following general formula (8B). D represents an aromatic 6-membered ring represented by the following general formula (9B). E represents an aromatic ring in which two 6-membered rings represented by the following general formula (2B) are condensed. F represents an aromatic 6-membered ring represented by the following general formula (3).
In the general formula (6A), G 1 represents at least one of a 6-membered ring and a 5-membered ring. e represents an integer of 0 to 4, and f represents an integer of 0 to 3. When e and f represent an integer other than 0, R 4 and R 5 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 4 and R 5 may be the same as or different from each other.
The compound represented by the general formula (6A) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (6B), m represents an integer of 0 to 5. When m represents an integer other than 0, R 6 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (6B) has one bond represented by “*”, and the bond represents a bond with V.
In the general formula (7), n represents an integer of 0 to 4. When n represents an integer other than 0, R 7 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (7) has two bonds represented by “*”, one of the bonds represents a bond with V, and the other represents a bond with W. Represents.

In the general formula (8A), o represents an integer of 0 to 1, and p represents an integer of 0 to 4. When o and p represent an integer other than 0, R 8 and R 9 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 8 and R 9 may be the same as or different from each other.
The compound represented by the general formula (8A) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (8B), q represents an integer of 0 to 3. When q represents an integer other than 0, R 10 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (8B) has two bonds represented by “*”, one of the bonds represents a bond with W, and the other represents a bond with X. Represents.
In the general formula (9B), r represents an integer of 0 to 4. When r represents an integer other than 0, R 11 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (9B) has two bonds represented by “*”, one of the bonds represents a bond with X, and the other represents a bond with Y. Represents.
In the general formula (2B), a and b each independently represent an integer of 0 to 3. When a and b represent an integer other than 0, R 1 and R 2 represent any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine. R 1 and R 2 may be the same as or different from each other.
The compound represented by the general formula (2B) has two bonds represented by “*”, one of the bonds represents a bond with Y, and the other represents a bond with Z. Represents.
In the general formula (3), d represents an integer of 0 to 5. When the d represents an integer other than 0, R 3 represents any of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.
The compound represented by the general formula (3) has one bond represented by “*”, and the bond represents a bond with Z.

前記一般式(11)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(12)で表される化合物が好ましく、下記構造式(3)で表される化合物がより好ましい。

前記一般式(12)中、V、W、及びYは、炭素、窒素、酸素、硫黄のいずれかを表し、該V、該W、及び該Yは、互いに同一であってもよいし、異なっていてもよい。Rは、メチル基、エチル基、ヒドロキシ基、カルボキシル基、アミノ基、ハロゲン原子のいずれかを表す。前記ハロゲン原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられる。
There is no restriction | limiting in particular as a compound represented by the said General formula (11), Although it can select suitably according to the objective, The compound represented by the following general formula (12) is preferable, and following Structural formula (3) ) Is more preferable.

In the general formula (12), V 1 , W 1 , and Y 1 represent any one of carbon, nitrogen, oxygen, and sulfur, and the V 1 , W 1 , and Y 1 are the same as each other. It may be different or different. R 3 represents any one of a methyl group, an ethyl group, a hydroxy group, a carboxyl group, an amino group, and a halogen atom. The halogen atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorine, chlorine, bromine and iodine.

−物理化学的性状−
前記一般式(11)で表される化合物のうち、前記構造式(3)で表される化合物の物理化学的性状は、
(1) 分子式は、C5245で表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド(DMSO−d6)中で25℃にて測定した。プロトンNMRスペクトルとしては、図5に示す通りである。
(3) マススペクトル(LC−MS:正イオンモード)による、実験値は、m/z836.34(M+H)であり、Mの計算値は、m/z835.34(C5245)である。図6Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。図6Bにリテンションタイム1.796のピーク成分の質量分析の結果を示す。
-Physicochemical properties-
Among the compounds represented by the general formula (11), the physicochemical properties of the compound represented by the structural formula (3) are:
(1) The molecular formula is represented by C 52 H 45 N 5 O 6 .
(2) The proton nuclear magnetic resonance spectrum was measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz. The proton NMR spectrum is as shown in FIG.
(3) The experimental value by mass spectrum (LC-MS: positive ion mode) is m / z 836.34 (M + H) + , and the calculated value of M is m / z 835.34 (C 52 H 45 N 5 O 6 ). The upper part of FIG. 6A shows an LC (liquid chromatography) chromatographic image, and the lower part shows an MS (mass spectrometry) chromatographic image. FIG. 6B shows the mass analysis result of the peak component with a retention time of 1.796.

前記新規化合物が、前記一般式(11)で表される構造を有するか否かは、適宜選択した各種の分析方法により確認することができ、例えば、前記プロトン核磁気共鳴スペクトル、前記マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの分析を行うことにより確認できる。   Whether or not the novel compound has the structure represented by the general formula (11) can be confirmed by various analysis methods selected as appropriate. For example, the proton nuclear magnetic resonance spectrum, the mass spectrum, This can be confirmed by analyzing carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high performance liquid chromatography and the like.

なお、本願発明においては、前記一般式(11)で表される化合物は互変異性体を含むものとする。   In the present invention, the compound represented by the general formula (11) includes a tautomer.

−製造方法−
前記一般式(11)で表される化合物の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などを用いることができる。
以下に、前記構造式(3)で表される化合物を例に挙げ、前記一般式(11)で表される化合物の製造方法の一例を説明する。
-Manufacturing method-
There is no restriction | limiting in particular as a manufacturing method of the compound represented by the said General formula (11), According to the objective, it can select suitably, For example, the method by chemical synthesis etc. can be used.
Hereinafter, an example of a method for producing the compound represented by the general formula (11) will be described by taking the compound represented by the structural formula (3) as an example.

前記構造式(3)で表される化合物を化学合成により得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、出発物質として下記化合物3を用い、中間体を経て、前記構造式(3)で表される化合物を製造することができる。
前記出発物質化合物3を用いて、前記構造式(3)で表される化合物を製造する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記に示すように、中間体を7つ経る方法などが挙げられる。
前記中間体としては、例えば、第1に、下記化合物4(以下、「中間体5」と称することがある。)、第2に、下記化合物5(以下、「中間体6」と称することがある。)、第3に、下記セグメントA(以下、「中間体7」と称することがある。)、第4に、下記化合物14(以下、「中間体8」と称することがある。)、第5に、下記化合物15(以下、「中間体9」と称することがある。)、第6に、下記化合物16(以下、「中間体10」と称することがある。)、及び第7に、下記化合物17(以下、「中間体11」と称することがある。)を得ることができる。
前記中間体5〜11を得る方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学合成による方法などが挙げられる。また、化学合成によらず、市販品を用いることもできる。
The method for obtaining the compound represented by the structural formula (3) by chemical synthesis is not particularly limited and may be appropriately selected depending on the intended purpose. For example, using the following compound 3 as a starting material, Then, the compound represented by the structural formula (3) can be produced.
There is no restriction | limiting in particular as a method of manufacturing the compound represented by said Structural formula (3) using the said starting material compound 3, According to the objective, it can select suitably, For example, as shown below And a method of passing through 7 intermediates.
Examples of the intermediate include, firstly, the following compound 4 (hereinafter sometimes referred to as “intermediate 5”), and secondly, the following compound 5 (hereinafter referred to as “intermediate 6”). Third, the following segment A (hereinafter sometimes referred to as “intermediate 7”), and fourthly, the following compound 14 (hereinafter sometimes referred to as “intermediate 8”), Fifth, the following compound 15 (hereinafter sometimes referred to as “intermediate 9”), sixth, the following compound 16 (hereinafter sometimes referred to as “intermediate 10”), and seventh. The following compound 17 (hereinafter sometimes referred to as “intermediate 11”) can be obtained.
There is no restriction | limiting in particular as a method of obtaining the said intermediates 5-11, According to the objective, it can select suitably, For example, the method by chemical synthesis etc. are mentioned. Moreover, a commercial item can also be used irrespective of chemical synthesis.


前記化学合成の反応温度、反応時間、合成方法、及び化合物の使用量としては、特に制限はなく、目的とする中間体に応じて適宜選択することができる。
前記化学合成に用いる化合物の状態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、液体の状態、固体の状態、乾燥した状態、油状物の状態、再結晶化した状態などが挙げられる。
前記中間体を確認する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロトン核磁気共鳴スペクトル、マススペクトル、炭素13核磁気共鳴スペクトル、赤外部吸収スペクトル、高速液体クロマトグラフィーなどの方法を用いることができる。
The reaction temperature, reaction time, synthesis method, and amount of the compound used in the chemical synthesis are not particularly limited and may be appropriately selected depending on the target intermediate.
The state of the compound used for the chemical synthesis is not particularly limited and can be appropriately selected depending on the purpose. For example, the liquid state, the solid state, the dried state, the oily state, the recrystallized state The state etc. are mentioned.
The method for confirming the intermediate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, proton nuclear magnetic resonance spectrum, mass spectrum, carbon-13 nuclear magnetic resonance spectrum, infrared absorption spectrum, high-speed A method such as liquid chromatography can be used.

また、前記化学合成により得た生成物は、必要に応じて精製することができる。
前記精製の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、順層系又は逆層系充填剤を使用したカラム、prep−TLC、prep−HPLCなどの方法を用いることができる。
The product obtained by the chemical synthesis can be purified as necessary.
The purification method is not particularly limited and may be appropriately selected depending on the intended purpose. Can be used.

<IgEとIgEレセプター(FcεRI)との結合阻害活性>
前記一般式(1)、前記一般式(5)、及び前記一般式(11)で表される新規化合物は、IgEとIgEレセプター(FcεRI)との結合阻害活性を有する化合物である(後述する試験例1に記載する。)。
前記結合阻害活性を確認する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、免疫学的測定法により確認する方法などが挙げられる。
前記免疫学的測定法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、免疫染色法、免疫沈降法、ウエスタンブロット法、ELISA法などの測定方法が挙げられる。
<Binding inhibitory activity between IgE and IgE receptor (FcεRI)>
The novel compounds represented by the general formula (1), the general formula (5), and the general formula (11) are compounds having binding inhibitory activity between IgE and IgE receptor (FcεRI) (tests described later) Described in Example 1).
There is no restriction | limiting in particular as a method to confirm the said binding inhibitory activity, According to the objective, it can select suitably, For example, the method etc. which confirm by an immunological measuring method etc. are mentioned.
There is no restriction | limiting in particular as said immunological measuring method, According to the objective, it can select suitably, For example, measuring methods, such as an immuno-staining method, an immunoprecipitation method, a Western blot method, ELISA method, are mentioned.

<用途>
前記一般式(1)、前記一般式(5)、及び前記一般式(11)で表される新規化合物は、例えば、後述する本発明のIgEとIgEレセプター(FcεRI)との結合阻害剤や、抗アレルギー剤、抗喘息剤、及び抗炎症剤として、好適に利用可能である。
<Application>
The novel compounds represented by the general formula (1), the general formula (5), and the general formula (11) include, for example, a binding inhibitor between IgE and IgE receptor (FcεRI) of the present invention described later, It can be suitably used as an antiallergic agent, antiasthma agent, and anti-inflammatory agent.

(結合阻害剤、抗アレルギー剤、抗喘息剤、及び抗炎症剤)
<結合阻害剤>
本発明のIgEとIgEレセプター(FcεRI)との結合阻害剤(以下、「結合阻害剤」と称することがある。)は、上述した本発明の前記一般式(1)、前記一般式(5)、及び前記一般式(11)で表される新規化合物の少なくとも1種を含み、更に、必要に応じて適宜選択したその他の成分を含む。
(Binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents)
<Binding inhibitor>
The binding inhibitor between IgE and IgE receptor (FcεRI) of the present invention (hereinafter sometimes referred to as “binding inhibitor”) is the general formula (1) or general formula (5) of the present invention described above. And at least one of the novel compounds represented by the general formula (11), and further contains other components appropriately selected as necessary.

前記結合阻害剤中に含まれる前記新規化合物は、塩の状態であってもよい。前記塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボン酸塩、無機酸塩、アミノ酸塩、スルホン酸塩などが挙げられる。
前記カルボン酸塩としては、例えば、トリフルオロ酢酸塩、酢酸塩、トリクロロ酢酸塩、ヒドロキシ酢酸塩、乳酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、安息香酸塩、酪酸塩、マレイン酸塩、プロピオン酸塩、蟻酸塩、リンゴ酸塩などが挙げられる。
前記無機酸塩としては、例えば、ハロゲン化水素酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩などが挙げられる。
前記アミノ酸塩としては、例えば、アルギニン酸塩、アスパラギン酸塩、グルタミン酸塩などが挙げられる。
前記スルホン酸塩としては、例えば、メタンスルホン酸塩、p−トルエンスルホン酸塩などが挙げられる。
The novel compound contained in the binding inhibitor may be in a salt state. There is no restriction | limiting in particular as said salt, According to the objective, it can select suitably, For example, carboxylate, an inorganic acid salt, an amino acid salt, a sulfonate, etc. are mentioned.
Examples of the carboxylate include trifluoroacetate, acetate, trichloroacetate, hydroxyacetate, lactate, citrate, tartrate, oxalate, benzoate, butyrate, maleate, Examples include propionate, formate and malate.
Examples of the inorganic acid salt include hydrohalide, sulfate, nitrate, phosphate, carbonate, and the like.
Examples of the amino acid salt include arginate, aspartate, glutamate and the like.
Examples of the sulfonate include methanesulfonate and p-toluenesulfonate.

前記結合阻害剤中に含まれる、前記新規化合物乃至その塩の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記結合阻害剤は、前記新規化合物乃至その塩そのものであってもよい。   There is no restriction | limiting in particular as content of the said novel compound thru | or its salt contained in the said binding inhibitor, According to the objective, it can select suitably. The binding inhibitor may be the novel compound or a salt thereof.

前記その他の成分としては、特に制限はなく、薬理学的に許容される担体の中から目的に応じて適宜選択することができ、例えば、エタノール、水、デンプンなどが挙げられる。
前記結合阻害剤中の、その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably from the carriers accept | permitted pharmacologically, For example, ethanol, water, starch, etc. are mentioned.
There is no restriction | limiting in particular as content of the other component in the said binding inhibitor, According to the objective, it can select suitably.

<抗アレルギー剤、抗喘息剤、及び抗炎症剤>
本発明の抗アレルギー剤、抗喘息剤、及び抗炎症剤は、上述した結合阻害剤を含有し、必要に応じて適宜その他の成分を含む。
<Anti-allergic agent, anti-asthma agent, and anti-inflammatory agent>
The anti-allergic agent, anti-asthma agent, and anti-inflammatory agent of the present invention contain the above-described binding inhibitor and optionally contain other components as necessary.

前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤中の、前記結合阻害剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤は、前記結合阻害剤そのものであってもよい。   There is no restriction | limiting in particular as content of the said binding inhibitor in the said antiallergic agent, the said antiasthma agent, and the said anti-inflammatory agent, According to the objective, it can select suitably. Further, the anti-allergic agent, the anti-asthma agent, and the anti-inflammatory agent may be the binding inhibitor itself.

前記その他の成分としては、特に制限はなく、薬理学的に許容される担体の中から目的に応じて適宜選択することができ、例えば、エタノール、水、デンプンなどが挙げられる。
前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤中の、その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably from the carriers accept | permitted pharmacologically, For example, ethanol, water, starch, etc. are mentioned.
There is no restriction | limiting in particular as content of the other component in the said anti-allergic agent, the said anti-asthma agent, and the said anti-inflammatory agent, According to the objective, it can select suitably.

<使用>
前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤は、1種単独で使用されてもよいし、他の成分を有効成分とする医薬と併せて使用されてもよい。また、前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤は、他の成分を有効成分とする医薬中に、配合された状態で使用されてもよい。
<Use>
The binding inhibitor, the anti-allergic agent, the anti-asthma agent, and the anti-inflammatory agent may be used singly or may be used in combination with a medicine containing another component as an active ingredient. . Moreover, the said binding inhibitor, the said antiallergic agent, the said antiasthmatic agent, and the said anti-inflammatory agent may be used in the state mix | blended in the pharmaceutical which uses another component as an active ingredient.

<剤型>
前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤の剤型としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、経口固形剤、経口液剤、注射剤、吸入散剤などが挙げられる。
<Dosage form>
The dosage form of the binding inhibitor, the anti-allergic agent, the anti-asthma agent, and the anti-inflammatory agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, oral solid preparations, oral liquid preparations Injections, inhalation powders, and the like.

−経口固形剤−
前記経口固形剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤などが挙げられる。
前記経口固形剤の製造方法としては、特に制限はなく、常法を使用することができ、例えば、前記新規化合物に、賦形剤、及び必要に応じて各種添加剤を加えることにより、製造することができる。ここで、前記賦形剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、乳糖、白糖、塩化ナトリウム、ブドウ糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、珪酸などが挙げられる。また、前記添加剤としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、結合剤、崩壊剤、滑沢剤、着色剤、矯味/矯臭剤などが挙げられる。
前記結合剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドンなどが挙げられる。
前記崩壊剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、乾燥デンプン、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖などが挙げられる。
前記滑沢剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコールなどが挙げられる。
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化チタン、酸化鉄などが挙げられる。
前記矯味/矯臭剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、白糖、橙皮、クエン酸、酒石酸などが挙げられる。
-Oral solid agent-
There is no restriction | limiting in particular as said oral solid agent, According to the objective, it can select suitably, For example, a tablet, a coated tablet, a granule, a powder, a capsule etc. are mentioned.
There is no restriction | limiting in particular as a manufacturing method of the said oral solid preparation, A conventional method can be used, for example, it manufactures by adding an excipient | filler and various additives as needed to the said novel compound. be able to. Here, the excipient is not particularly limited and may be appropriately selected depending on the intended purpose. For example, lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid, etc. Is mentioned. Moreover, there is no restriction | limiting in particular also as said additive, According to the objective, it can select suitably, For example, a binder, a disintegrating agent, a lubricant, a coloring agent, a flavoring / flavoring agent etc. are mentioned.
The binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxy Examples include propyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate, and polyvinyl pyrrolidone.
The disintegrant is not particularly limited and may be appropriately selected depending on the intended purpose. Is mentioned.
The lubricant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include purified talc, stearate, borax, and polyethylene glycol.
The colorant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include titanium oxide and iron oxide.
The flavoring / flavoring agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include sucrose, orange peel, citric acid, and tartaric acid.

−経口液剤−
前記経口液剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、内服液剤、シロップ剤、エリキシル剤などが挙げられる。
前記経口液剤の製造方法としては、特に制限はなく、常法を使用することができ、例えば、前記新規化合物に添加剤を加えることにより、製造することができる。ここで、前記添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、矯味/矯臭剤、緩衝剤、安定化剤などが挙げられる。
前記矯味/矯臭剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、白糖、橙皮、クエン酸、酒石酸などが挙げられる。
前記緩衝剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クエン酸ナトリウムなどが挙げられる。
前記安定化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トラガント、アラビアゴム、ゼラチンなどが挙げられる。
-Oral solution-
There is no restriction | limiting in particular as said oral liquid agent, According to the objective, it can select suitably, For example, an internal use liquid agent, a syrup agent, an elixir etc. are mentioned.
There is no restriction | limiting in particular as a manufacturing method of the said oral liquid preparation, A normal method can be used, For example, it can manufacture by adding an additive to the said novel compound. Here, there is no restriction | limiting in particular as said additive, According to the objective, it can select suitably, For example, a flavoring / flavoring agent, a buffering agent, a stabilizer, etc. are mentioned.
The flavoring / flavoring agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include sucrose, orange peel, citric acid, and tartaric acid.
There is no restriction | limiting in particular as said buffering agent, According to the objective, it can select suitably, For example, sodium citrate etc. are mentioned.
There is no restriction | limiting in particular as said stabilizer, According to the objective, it can select suitably, For example, tragacanth, gum arabic, gelatin, etc. are mentioned.

−注射剤−
前記注射剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、溶液、懸濁液、用事溶解用固形剤などが挙げられる。
前記注射剤の製造方法としては、特に制限はなく、常法を使用することができ、例えば、前記新規化合物に、pH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤などを添加することにより、製造することができる。ここで、前記pH調節剤及び前記緩衝剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウムなどが挙げられる。また、前記安定化剤としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸などが挙げられる。前記等張化剤としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩化ナトリウム、ブドウ糖などが挙げられる。前記局所麻酔剤としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩酸プロカイン、塩酸リドカインなどが挙げられる。
-Injection-
There is no restriction | limiting in particular as said injection, According to the objective, it can select suitably, For example, a solution, a suspension, the solid agent for use, etc. are mentioned.
The method for producing the injection is not particularly limited, and a conventional method can be used. For example, the novel compound includes a pH adjuster, buffer, stabilizer, isotonic agent, local anesthetic, etc. It can manufacture by adding. Here, there is no restriction | limiting in particular as said pH regulator and said buffer, According to the objective, it can select suitably, For example, sodium citrate, sodium acetate, sodium phosphate etc. are mentioned. Moreover, there is no restriction | limiting in particular as said stabilizer, According to the objective, it can select suitably, For example, sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid etc. are mentioned. The tonicity agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include sodium chloride and glucose. The local anesthetic agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include procaine hydrochloride and lidocaine hydrochloride.

<投与>
前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤の投与方法、投与量、投与時期、及び投与対象としては、特に制限はなく、目的に応じて適宜選択することができる。
前記投与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、経口投与法、注射による方法、吸入による方法などが挙げられる。これらの中でも経口投与法が好ましい。前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤中に含まれる、本発明の新規化合物は、非タンパク性低分子化合物であることから、経口投与法を用いても抗原性を有さない点で有利である。
前記投与量としては、特に制限はなく、投与対象個体の年齢、体重、体質、症状、他の成分を有効成分とする医薬の投与の有無など、様々な要因を考慮して適宜選択することができる。
前記投与対象となる動物種としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒト、サル、ブタ、ウシ、ヒツジ、ヤギ、イヌ、ネコ、マウス、ラット、トリなどが挙げられるが、中でもヒトに好適に用いられる。
<Administration>
There are no particular restrictions on the administration method, dose, administration time, and administration target of the binding inhibitor, the anti-allergic agent, the anti-asthma agent, and the anti-inflammatory agent, and may be appropriately selected according to the purpose. it can.
There is no restriction | limiting in particular as said administration method, According to the objective, it can select suitably, For example, the method of oral administration, the method by injection, the method by inhalation, etc. are mentioned. Among these, the oral administration method is preferable. Since the novel compound of the present invention contained in the binding inhibitor, the anti-allergic agent, the anti-asthma agent, and the anti-inflammatory agent is a non-protein low molecular weight compound, the oral administration method can be used. This is advantageous in that it has no antigenicity.
The dosage is not particularly limited and may be appropriately selected in consideration of various factors such as the age, weight, constitution, symptom, and presence / absence of administration of a drug containing other ingredients as active ingredients. it can.
The animal species to be administered is not particularly limited and can be appropriately selected according to the purpose. For example, human, monkey, pig, cow, sheep, goat, dog, cat, mouse, rat, bird, etc. Among them, it is preferably used for humans.

また、前記結合阻害剤、前記抗アレルギー剤、前記抗喘息剤、及び前記抗炎症剤は、医薬品の成分のみならず、化粧品、食品、浴用剤などにも好適に用いることができ、前記化粧品などに抗アレルギー作用、抗喘息作用、及び抗炎症作用を付加することが可能である点で有利である。   The binding inhibitor, the antiallergic agent, the antiasthma agent, and the anti-inflammatory agent can be suitably used not only for pharmaceutical ingredients but also for cosmetics, foods, bathing agents, etc. It is advantageous in that it can be added with antiallergic action, antiasthmatic action, and antiinflammatory action.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら制限されるものではない。また、以下の製造例1〜3中、化合物の収率「%」は、特に明記のない限り、「モル%」を表す。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In the following Production Examples 1 to 3, the yield “%” of the compound represents “mol%” unless otherwise specified.

(製造例1:構造式(1)で表される化合物の製造)
<合成方法>
−化合物11の合成−
下記反応式に示すようにして、6−ブロモ−ナフタレン−2−オール(アルドリッチ社製)(20g)を乾燥N,N−ジメチルホルムアミド(乾燥DMF)(150mL)に溶解後、0℃にて、この溶液に水素化ナトリウム(NaH)(4.0g)を少量ずつ添加し、1時間攪拌した。次いで、臭化ベンジル(PhCHBr)(16.0g)を添加し、反応混合物を常温にて一晩攪拌した。得られた反応混合溶液に水(100mL)を加え、常温にて1時間攪拌した。次いで、この溶液を濾過し、得られた濾過ケーキをメタノールで洗浄した。前記濾過ケーキを回収し、乾燥させ、下記化合物11を28g得た。前記化合物11の収率は100%であった。
(Production Example 1: Production of compound represented by structural formula (1))
<Synthesis method>
-Synthesis of Compound 11-
As shown in the following reaction formula, 6-bromo-naphthalen-2-ol (manufactured by Aldrich) (20 g) was dissolved in dry N, N-dimethylformamide (dry DMF) (150 mL), and then at 0 ° C. To this solution, sodium hydride (NaH) (4.0 g) was added in small portions and stirred for 1 hour. Then benzyl bromide (PhCH 2 Br) (16.0 g) was added and the reaction mixture was stirred overnight at ambient temperature. Water (100 mL) was added to the obtained reaction mixture solution, and the mixture was stirred at room temperature for 1 hour. The solution was then filtered and the resulting filter cake was washed with methanol. The filter cake was collected and dried to obtain 28 g of the following compound 11. The yield of the compound 11 was 100%.

−化合物12の合成−
窒素雰囲気下、−78℃にて、ヘキサメチルジシラザン((CHSiNH)(11.17g)を乾燥テトラヒドロフラン(乾燥THF)(180mL)に溶解後、2.5M n−ブチルリチウム(27.7mL)を滴下し、−78℃にて1時間攪拌することにより、リチウムヘキサメチルジシラザン(LiHMDS)を得た。この溶液を室温に戻し、次いで、下記反応式に示すようにして、前記化合物11(18g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))(0.28g)、及びビフェニル−2−イルジシクロヘキシルホスフィン(0.32g)を添加した。この混合物を65℃にて一晩攪拌し、常温に戻した後、得られた反応混合物を1N塩酸水溶液(100mL)と共に数分間攪拌し、酢酸エチルで洗浄した。水層を水酸化ナトリウムで中和し、pHを9とした後、ジクロロメタン(DCM)で抽出した。次いで、有機層を食塩水で洗浄し、乾燥させ、濃縮することにより、下記化合物12を10.1g得た。前記化合物12の収率は68%であった。

-Synthesis of Compound 12-
Hexamethyldisilazane ((CH 3 ) 6 Si 2 NH) (11.17 g) was dissolved in dry tetrahydrofuran (dry THF) (180 mL) at −78 ° C. in a nitrogen atmosphere, and then 2.5 M n-butyllithium. (27.7 mL) was added dropwise, and the mixture was stirred at -78 ° C for 1 hour to obtain lithium hexamethyldisilazane (LiHMDS). The solution was returned to room temperature, then, as shown in the following reaction formula, the compound 11 (18 g), tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba) 3 ) (0.28 g), And biphenyl-2-yldicyclohexylphosphine (0.32 g) was added. The mixture was stirred at 65 ° C. overnight and returned to room temperature, and the resulting reaction mixture was stirred with 1N aqueous hydrochloric acid (100 mL) for several minutes and washed with ethyl acetate. The aqueous layer was neutralized with sodium hydroxide to adjust the pH to 9, and then extracted with dichloromethane (DCM). Next, the organic layer was washed with brine, dried and concentrated to obtain 10.1 g of the following compound 12. The yield of Compound 12 was 68%.

−化合物13の合成−
下記反応式に示すようにして、前記化合物12(6−ベンジルオキシ−ナフタレン−2−イルアミン)(9.8g)をエタノール(100mL)に溶解後、パラジウム/炭素(Pd/C)(3g)を添加した。次いで、水素(H)雰囲気下、混合物を室温にて一晩攪拌した。得られた混合物を濾過し、濃縮することにより、下記化合物13を5.0g得た。前記化合物13の収率は80%であった。
-Synthesis of Compound 13-
As shown in the following reaction formula, the compound 12 (6-benzyloxy-naphthalen-2-ylamine) (9.8 g) was dissolved in ethanol (100 mL), and then palladium / carbon (Pd / C) (3 g) was dissolved. Added. The mixture was then stirred overnight at room temperature under a hydrogen (H 2 ) atmosphere. The obtained mixture was filtered and concentrated to obtain 5.0 g of the following compound 13. The yield of the compound 13 was 80%.

−セグメントCの合成−
下記反応式に示すようにして、前記化合物13(6−アミノ−ナフタレン−2−オール)(500mg)をDMF(15mL)に溶解後、常温にて水素化ナトリウム(125mg)を添加し、得られた溶液を室温にて45分間攪拌した。次いで、3−ブロモメチル−安息香酸メチルエステル(720mg)をDMF(10mL)に溶解した溶液を、この溶液に滴下した。続いて、この混合溶液を室温にて3時間攪拌後、得られた溶液に水を添加し、酢酸エチルで抽出した。この抽出液を食塩水で数回洗浄し、有機層を乾燥させ、濃縮した。残渣をシリカゲルクロマトグラフィー(メルク社製)(溶離液:石油エーテル:酢酸エチル=10:1〜5:1(V/V))で2回精製することにより、下記セグメントCを150mg得た。前記セグメントCの収率は16%であった。
-Synthesis of segment C-
As shown in the following reaction formula, the compound 13 (6-amino-naphthalen-2-ol) (500 mg) was dissolved in DMF (15 mL), and then sodium hydride (125 mg) was added at room temperature. The solution was stirred at room temperature for 45 minutes. A solution of 3-bromomethyl-benzoic acid methyl ester (720 mg) in DMF (10 mL) was then added dropwise to the solution. Subsequently, the mixed solution was stirred at room temperature for 3 hours, water was added to the obtained solution, and the mixture was extracted with ethyl acetate. The extract was washed several times with brine and the organic layer was dried and concentrated. The residue was purified twice by silica gel chromatography (manufactured by Merck) (eluent: petroleum ether: ethyl acetate = 10: 1 to 5: 1 (V / V)) to obtain 150 mg of the following segment C. The yield of segment C was 16%.

−構造式(1)で表される化合物の合成−
下記反応式に示すようにして、メチルエステル化している前記セグメントC(157mg、0.51mmol)を、THFと2M水酸化リチウム水(LiOH)(1:1(V/V))混合溶液物(20mL)に懸濁し、25℃にて一晩攪拌した。次いで、10質量%硫酸水素カリウム(KHSO)水溶液(30mL)を添加し、酸性に調整した。混合物を酢酸エチル(50mL)で抽出し、食塩水で洗浄後、乾燥させ、濃縮することにより、下記構造式(1)で表される化合物を100mg得た。前記構造式(1)で表される化合物の収率は67%であった。
-Synthesis of the compound represented by the structural formula (1)-
As shown in the following reaction formula, methyl esterified segment C (157 mg, 0.51 mmol) was mixed with THF and 2M lithium hydroxide (LiOH) (1: 1 (V / V)) mixed solution ( 20 mL) and stirred at 25 ° C. overnight. Then added 10% potassium hydrogen sulfate (KHSO 4) aqueous solution (30 mL), and adjusted to acidic. The mixture was extracted with ethyl acetate (50 mL), washed with brine, dried and concentrated to obtain 100 mg of a compound represented by the following structural formula (1). The yield of the compound represented by the structural formula (1) was 67%.

<物理化学的性状>
前記化学反応で得られた構造式(1)で表される化合物について、マススペクトル、及びプロトン核磁気共鳴スペクトルを用いて、分子量、及び構造を確認した。これらの結果を以下に示す。
(1) 分子式は、C1815NOで表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド(DMSO−d6)中で25℃にて測定したところ、以下の通りであった。
図1に、プロトンNMRスペクトルのチャートを示す。
δ8.00(1H,s),7.84(1H,d,7.6Hz),7.69(1H,dd,2.8,8.8Hz),7.49−7.40(2H,m),7.33(1H,t,7.2Hz),7.16(1H,bs),7.01(1H,d,9.2Hz),6.86(1H,8.8Hz),6.76(1H,bs),5.11(2H,s),5.10(2H,bs).
(3) マススペクトル(LC−MS:Shim−pack ODS 内径3.0×30mm(島津製作所社製)、正イオンモード)による、実験値は、m/z293.9(M+H)であり、Mの計算値は、m/z293.1(C1815NO)であった。
図2Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。
図2Bに、リテンションタイム1.296のピーク成分の質量分析の結果を示す。
<Physical and chemical properties>
About the compound represented by Structural formula (1) obtained by the said chemical reaction, the molecular weight and the structure were confirmed using the mass spectrum and the proton nuclear magnetic resonance spectrum. These results are shown below.
(1) The molecular formula is represented by C 18 H 15 NO 3 .
(2) The proton nuclear magnetic resonance spectrum was measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz and was as follows.
FIG. 1 shows a proton NMR spectrum chart.
δ8.00 (1H, s), 7.84 (1H, d, 7.6 Hz), 7.69 (1H, dd, 2.8, 8.8 Hz), 7.49-7.40 (2H, m ), 7.33 (1 H, t, 7.2 Hz), 7.16 (1 H, bs), 7.01 (1 H, d, 9.2 Hz), 6.86 (1 H, 8.8 Hz), 6. 76 (1H, bs), 5.11 (2H, s), 5.10 (2H, bs).
(3) The experimental value by mass spectrum (LC-MS: Shim-pack ODS inner diameter 3.0 × 30 mm (manufactured by Shimadzu Corporation), positive ion mode) is m / z 293.9 (M + H) + , M The calculated value of was m / z 293.1 (C 18 H 15 NO 3 ).
The upper part of FIG. 2A shows a chromatographic image of LC (liquid chromatography), and the lower part shows a chromatographic image of MS (mass spectrometry).
FIG. 2B shows the mass analysis result of the peak component with a retention time of 1.296.

(製造例2:構造式(2)で表される化合物の製造)
<合成方法>
−化合物1、及び化合物2の合成−
下記反応式に示すようにして、2−メチルフェニル酢酸(Princeton社製)(9.3g、62mmol)と炭酸カリウム(21.4g、155mmol)をDMF(75mL)に加えた後、混合物にヨウ化メチル(MeI)(17.6g、124mmol)を滴下した。その後、得られた混合物を室温にて一晩攪拌した。次いで、ジクロロメタン(DCM)(150mL)で希釈し、水(70mL、3回)、及び食塩水(70mL)で洗浄し、硫酸ナトリウムを用いて乾燥させ、濃縮することにより、褐色液体として下記化合物1の粗生成物10.1gを得た。前記化合物1の収率は98%であった。前記化合物1は、精製は行わずに次段階に用いた。
下記反応式に示すようにして、前記化合物1(10.9g、66.5mmol)、アゾビスイソブチロニトリル(AIBN)(2.3g、13mmol)、及びN−ブロモスクシンイミド(NBS)(11.8g、67mmol)を四塩化炭素(CCl)(100mL)に溶解し、混合物を3時間還流した。得られた反応混合物を濾過し、濾液を水、及び食塩水で洗浄し、硫酸ナトリウムを用いて乾燥させ、濃縮することにより、褐色液体として下記化合物2の粗生成物14.2gを得た。前記化合物2の収率は88%であった。前記化合物2の精製は行わずに次段階に用いた。
(Production Example 2: Production of compound represented by structural formula (2))
<Synthesis method>
-Synthesis of Compound 1 and Compound 2-
2-Methylphenylacetic acid (Princeton) (9.3 g, 62 mmol) and potassium carbonate (21.4 g, 155 mmol) were added to DMF (75 mL) as shown in the following reaction formula, and then the mixture was iodinated. Methyl (MeI) (17.6 g, 124 mmol) was added dropwise. The resulting mixture was then stirred overnight at room temperature. It was then diluted with dichloromethane (DCM) (150 mL), washed with water (70 mL, 3 times), and brine (70 mL), dried over sodium sulfate, and concentrated to give the following compound 1 as a brown liquid. 10.1 g of a crude product was obtained. The yield of Compound 1 was 98%. Compound 1 was used in the next step without purification.
As shown in the following reaction formula, the compound 1 (10.9 g, 66.5 mmol), azobisisobutyronitrile (AIBN) (2.3 g, 13 mmol), and N-bromosuccinimide (NBS) (11. 8 g, 67 mmol) was dissolved in carbon tetrachloride (CCl 4 ) (100 mL) and the mixture was refluxed for 3 hours. The obtained reaction mixture was filtered, and the filtrate was washed with water and brine, dried using sodium sulfate, and concentrated to obtain 14.2 g of a crude product of the following compound 2 as a brown liquid. The yield of Compound 2 was 88%. The compound 2 was used in the next step without purification.

−化合物4の合成−
化合物3(アルドリッチ社製)(100mg、0.62mmol)をトルエン(1mL)に溶解し、窒素雰囲気下、トリフルオロ酢酸無水物((CFCO)O)(157mg、0.73mmol)を滴下した。得られた混合物を、室温にて、反応物が赤変するまで、3時間攪拌した。下記反応式に示すようにして、ベンジルアルコール(BnOH)(80mg、0.7mmol)を添加し、反応混合物を、更に2時間攪拌した。この混合物を酢酸エチル(2mL)で希釈し、2M水酸化ナトリウム水(1mL、2回)、及び食塩水(1mL)で洗浄し、硫酸ナトリウムを用いて乾燥させ、濃縮し、prep−TLC(メルク社製)で精製することにより、白色固体として下記化合物4を64mg得た。前記化合物4の収率は43%であった。
-Synthesis of Compound 4-
Compound 3 (manufactured by Aldrich) (100 mg, 0.62 mmol) was dissolved in toluene (1 mL), and trifluoroacetic anhydride ((CF 3 CO) 2 O) (157 mg, 0.73 mmol) was added dropwise under a nitrogen atmosphere. did. The resulting mixture was stirred at room temperature for 3 hours until the reaction turned red. As shown in the following reaction formula, benzyl alcohol (BnOH) (80 mg, 0.7 mmol) was added and the reaction mixture was stirred for another 2 hours. The mixture was diluted with ethyl acetate (2 mL), washed with 2M aqueous sodium hydroxide (1 mL, 2 ×), and brine (1 mL), dried over sodium sulfate, concentrated, and prep-TLC (Merck To obtain 64 mg of the following compound 4 as a white solid. The yield of Compound 4 was 43%.

−化合物5の合成−
下記反応式に示すようにして、水冷浴中にて、前記化合物4(8.27g、33mmol)をDMF(80mL)に溶解し、水素化ナトリウム(1.98g、50mmol)を少量ずつ添加した。添加後、得られた混合物を3時間攪拌した後、前記化合物2(12g、50mmol)を添加した。次いで、この混合物を室温にて一晩攪拌した。この反応混合物を酢酸エチル(200mL)で希釈し、水(70mL、3回)、及び食塩水(70mL)で洗浄し、硫酸ナトリウムで乾燥させ、濃縮し、シリカゲルカラム(メルク社製)(溶離液:石油エーテル:酢酸エチル=20:1〜15:1(V/V))で精製することにより、赤色油状物として、下記化合物5を4.3g得た。前記化合物5の収率は33%であった。
-Synthesis of Compound 5-
As shown in the following reaction formula, the compound 4 (8.27 g, 33 mmol) was dissolved in DMF (80 mL) in a water-cooled bath, and sodium hydride (1.98 g, 50 mmol) was added little by little. After the addition, the resulting mixture was stirred for 3 hours, and then the compound 2 (12 g, 50 mmol) was added. The mixture was then stirred overnight at room temperature. The reaction mixture is diluted with ethyl acetate (200 mL), washed with water (70 mL, 3 times), and brine (70 mL), dried over sodium sulfate, concentrated, and silica gel column (Merck) (eluent). : Petroleum ether: ethyl acetate = 20: 1 to 15: 1 (V / V)) to obtain 4.3 g of the following compound 5 as a red oily substance. The yield of Compound 5 was 33%.

−セグメントAの合成−
下記反応式に示すようにして、前記化合物5(2.5g、6mmol)、及びパラジウム/炭素(Pd/C)(250mg)を酢酸エチル(20mL)に加え、水素(H)雰囲気下、室温にて一晩攪拌した。Pd/Cを濾去し、濾液を濃縮した。残渣を、酢酸エチル/石油エーテル(2:1(V/V))を用いて再結晶することにより、灰色固体として、下記セグメントAを1.5g得た。前記セグメントAの収率は77%であった。
-Synthesis of segment A-
As shown in the following reaction formula, the compound 5 (2.5 g, 6 mmol) and palladium / carbon (Pd / C) (250 mg) were added to ethyl acetate (20 mL), and a hydrogen (H 2 ) atmosphere at room temperature was added. Stir overnight. Pd / C was removed by filtration, and the filtrate was concentrated. The residue was recrystallized using ethyl acetate / petroleum ether (2: 1 (V / V)) to obtain 1.5 g of the following segment A as a gray solid. The yield of segment A was 77%.

−化合物8の合成−
下記反応式に示すようにして、化合物7(アルドリッチ社製)(21.4g、89mmol)、及びトリエチルアミン(TEA)(22mL、159mmol)をトルエン(200mL)に溶解し、80℃にて化合物6(アルドリッチ社製)(15.0g、63.4mmol)を滴下した。この混合物を80℃にて3時間攪拌した。この反応混合物を濾過し、エーテルで洗浄した。濾液を炭酸水素ナトリウム水、及び食塩水で洗浄し、乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラム(メルク社製)で精製することにより、下記化合物8を15.0g得た。前記化合物8の収率は82%であった。
-Synthesis of Compound 8-
As shown in the following reaction formula, compound 7 (manufactured by Aldrich) (21.4 g, 89 mmol) and triethylamine (TEA) (22 mL, 159 mmol) were dissolved in toluene (200 mL), and compound 6 ( Aldrich) (15.0 g, 63.4 mmol) was added dropwise. The mixture was stirred at 80 ° C. for 3 hours. The reaction mixture was filtered and washed with ether. The filtrate was washed with aqueous sodium bicarbonate and brine, dried and concentrated. The obtained crude product was purified with a silica gel column (Merck) to obtain 15.0 g of the following compound 8. The yield of Compound 8 was 82%.

−化合物9の合成−
下記反応式に示すようにして、水素化アルミニウムリチウム(LiAlH)(2.7g、71mmol)をTHF(150mL)に懸濁した。この溶液に、前記化合物8(7.0g、24mmol)をTHF(50mL)に溶解した溶液を、0℃にて滴下した。得られた混合物を25℃にて一晩攪拌した。10質量%水酸化ナトリウム水(2.7mL)を滴下した後、水(2.7mL)を添加した。該混合物を濾過し、濾液を濃縮することにより、無色油状物として下記化合物9を6.0g得た。前記化合物9の収率は85%であった。前記化合物9は、精製は行わずに次段階に用いた。
-Synthesis of Compound 9-
As shown in the following reaction formula, lithium aluminum hydride (LiAlH 4 ) (2.7 g, 71 mmol) was suspended in THF (150 mL). To this solution, a solution of the compound 8 (7.0 g, 24 mmol) dissolved in THF (50 mL) was added dropwise at 0 ° C. The resulting mixture was stirred at 25 ° C. overnight. After 10% by mass aqueous sodium hydroxide (2.7 mL) was added dropwise, water (2.7 mL) was added. The mixture was filtered, and the filtrate was concentrated to obtain 6.0 g of the following compound 9 as a colorless oil. The yield of Compound 9 was 85%. Compound 9 was used in the next step without purification.

−化合物10の合成−
前記化合物9(3.0g、10mmol)、2−ナフタレンカルボン酸(2.1g、12.2mmol)、1−ヒドロキシベンゾトリアゾール(HOBt)(2.1g、15.5mmol)、及びN−メチルモルホリン(NMM)(3.1g、31mmol)をDMF/THF(1:1(V/V))混合溶媒(80mL)に溶解し、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDCl)(3.5g、18.3mmol)を添加し、得られた混合物を、25℃にて一晩攪拌した。次いで、水(100mL)を添加し、酢酸エチル(50mL、3回)にて抽出した。合わせた有機相を、飽和炭酸水素ナトリウム水、及び食塩水で洗浄し、乾燥させ、濃縮した。得られた粗生成物を酢酸エチルから析出させることにより、白色固体として、下記化合物10を3.5g得た。前記化合物10の収率は66%であった。
-Synthesis of Compound 10-
Compound 9 (3.0 g, 10 mmol), 2-naphthalenecarboxylic acid (2.1 g, 12.2 mmol), 1-hydroxybenzotriazole (HOBt) (2.1 g, 15.5 mmol), and N-methylmorpholine ( NMM) (3.1 g, 31 mmol) was dissolved in a mixed solvent (80 mL) of DMF / THF (1: 1 (V / V)), and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCl ) (3.5 g, 18.3 mmol) was added and the resulting mixture was stirred at 25 ° C. overnight. Then water (100 mL) was added and extracted with ethyl acetate (50 mL, 3 times). The combined organic phases were washed with saturated aqueous sodium bicarbonate and brine, dried and concentrated. The obtained crude product was precipitated from ethyl acetate to obtain 3.5 g of the following compound 10 as a white solid. The yield of Compound 10 was 66%.

−セグメントBの合成−
下記反応式に示すようにして、前記化合物10(1.0g、2.2mmol)をメタノール(25mL)に溶解させ、濃塩酸(1mL)を添加した後、10質量%ウェットPd/C(100mg)を添加し、得られた混合物を50℃、50psiの圧力下にて一晩水素化した。この混合物を濾過し、濃縮することにより、白色固体として、下記セグメントBを約800mg得た。前記セグメントBは、精製は行わずに次段階に用いた。
なお、前記セグメントBの粗生成物は過還元された副生成物を含有していた(LC−MSによれば、ベンジル基の約10質量%がシクロヘキサニル基に還元されていた。)。前記副生成物はprep−HPLC(メルク社製)で精製した。
-Synthesis of segment B-
As shown in the following reaction formula, the compound 10 (1.0 g, 2.2 mmol) was dissolved in methanol (25 mL), concentrated hydrochloric acid (1 mL) was added, and then 10% by mass wet Pd / C (100 mg). Was added and the resulting mixture was hydrogenated at 50 ° C. under a pressure of 50 psi overnight. The mixture was filtered and concentrated to obtain about 800 mg of the following segment B as a white solid. The segment B was used in the next step without purification.
In addition, the crude product of the segment B contained a by-product which was overreduced (according to LC-MS, about 10% by mass of the benzyl group was reduced to a cyclohexanyl group). The by-product was purified by prep-HPLC (manufactured by Merck).

−化合物14の合成−
前記セグメントA(200mg、0.62mmol)の無水トルエン(5mL)懸濁液に塩化チオニル(SOCl)(0.8mL)を添加し、得られた混合物を25℃にて4時間攪拌した。その後、濃縮し、残渣を無水THF(15mL)に溶解させた。
この溶液を、前記セグメントB(390mg、1.14mmol)のトリエチルアミン(TEA)(0.5g、4.9mmol)溶液に、0℃にて、ゆっくり滴下し、得られた混合物を25℃にて一晩攪拌した。次いで、飽和炭酸水素ナトリウム水(30mL)を添加し、酢酸エチル(100mL)で抽出し、乾燥させ、濃縮した。
残渣を、ジクロロメタン(DCM)(15mL)、及び二炭酸ジ−t−ブチル((Boc)O)(500mg、2.29mmol)の混合溶液に溶解させた後、トリエチルアミン(TEA)(0.5g、2.29mmol)を添加し、得られた混合物を25℃にて一晩攪拌した。
この混合物をジクロロメタン(DCM)(50mL)で希釈し、食塩水で洗浄後、乾燥させ、濃縮した。得られた粗生成物を、トリフルオロ酢酸(TFA)を添加した溶媒にてprep−HPLC(メルク社製)で分取し、下記化合物14を含むフラクションを飽和炭酸水素ナトリウムで塩基性とし、酢酸エチルにて抽出した。抽出液の乾燥、濃縮を行うことにより、下記化合物14を340mg得た。前記化合物14の収率はセグメントAを基準として82%であった。
-Synthesis of Compound 14-
To a suspension of segment A (200 mg, 0.62 mmol) in anhydrous toluene (5 mL) was added thionyl chloride (SOCl 2 ) (0.8 mL), and the resulting mixture was stirred at 25 ° C. for 4 hours. After that, it was concentrated and the residue was dissolved in anhydrous THF (15 mL).
This solution was slowly added dropwise to a solution of segment B (390 mg, 1.14 mmol) in triethylamine (TEA) (0.5 g, 4.9 mmol) at 0 ° C., and the resulting mixture was mixed at 25 ° C. Stir overnight. Then saturated aqueous sodium bicarbonate (30 mL) was added, extracted with ethyl acetate (100 mL), dried and concentrated.
The residue was dissolved in a mixed solution of dichloromethane (DCM) (15 mL) and di-t-butyl dicarbonate ((Boc) 2 O) (500 mg, 2.29 mmol), and then triethylamine (TEA) (0.5 g , 2.29 mmol) was added and the resulting mixture was stirred at 25 ° C. overnight.
The mixture was diluted with dichloromethane (DCM) (50 mL), washed with brine, dried and concentrated. The obtained crude product was fractionated by prep-HPLC (manufactured by Merck) in a solvent to which trifluoroacetic acid (TFA) was added, and a fraction containing the following compound 14 was basified with saturated sodium bicarbonate, and acetic acid was added. Extracted with ethyl. 340 mg of the following compound 14 was obtained by drying and concentrating the extract. The yield of Compound 14 was 82% based on Segment A.

−化合物15の合成−
下記反応式に示すようにして、前記化合物14(340mg、0.51mmol)を、2M水酸化リチウム(LiOH)水溶液(10mL)をTHF(10mL)に加えて調整した混合溶液(20mL)に懸濁し、この混合物を25℃にて一晩攪拌した。10質量%硫酸水素カリウム水(30mL)を添加した後、混合物を酢酸エチル(50mL)で抽出し、食塩水で洗浄後、乾燥させ、濃縮することにより、オフホワイトの固体として下記化合物15を230mg得た。前記化合物の収率は69%であった。前記化合物15は、精製は行わずに次段階に用いた。
-Synthesis of Compound 15-
As shown in the following reaction formula, the compound 14 (340 mg, 0.51 mmol) was suspended in a mixed solution (20 mL) prepared by adding 2 M lithium hydroxide (LiOH) aqueous solution (10 mL) to THF (10 mL). The mixture was stirred at 25 ° C. overnight. After adding 10% by mass aqueous potassium hydrogen sulfate (30 mL), the mixture was extracted with ethyl acetate (50 mL), washed with brine, dried and concentrated to obtain 230 mg of the following compound 15 as an off-white solid. Obtained. The yield of the compound was 69%. Compound 15 was used in the next step without purification.

−構造式(2)で表される化合物の合成−
前記化合物15(66mg、0.1mmol)をジクロロメタン(DCM)(5mL)に懸濁し、この混合物に塩酸/エーテル(EtO)(約5M、2mL)を添加し、25℃にて一晩攪拌後、混合物を濃縮した。残渣をアセトニトリル(2mL)に懸濁し、粗生成物をprep−HPLC(メルク社製)で精製することにより、下記構造式(2)で表される化合物の純物質を30mg得た。前記構造式(2)で表される化合物の収率は54%であった。
-Synthesis of the compound represented by the structural formula (2)-
The compound 15 (66 mg, 0.1 mmol) was suspended in dichloromethane (DCM) (5 mL), hydrochloric acid / ether (Et 2 O) (about 5 M, 2 mL) was added to the mixture, and the mixture was stirred at 25 ° C. overnight. After that, the mixture was concentrated. The residue was suspended in acetonitrile (2 mL), and the crude product was purified by prep-HPLC (manufactured by Merck) to obtain 30 mg of a pure substance of the compound represented by the following structural formula (2). The yield of the compound represented by the structural formula (2) was 54%.

<物理化学的性状>
前記化学反応で得られた構造式(2)で表される化合物について、マススペクトル、及びプロトン核磁気共鳴スペクトルを用いて、分子量、及び構造を確認した。これらの結果を以下に示す。
(1) 分子式は、C3432で表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド(DMSO−d6)中で25℃にて測定したところ、以下の通りであった。図3に、プロトンNMRスペクトルのチャートを示す。
δ12.53(1H,bs),9.37(1H,bs),9.15(1H,bs),8.96(1H,bs),8.46(1H,s),8.01−7.90(4H,m),7.76(1H,d,7.2Hz),7.65−7.58(2H,m),7.30−7.26(2H,m),7.20−7.04(4H,m),6.44(1H,d,7.2Hz),5.47(2H,s),4.50(1H,d,13.6Hz),4.32(1H,d,10Hz),3.78(2H,s),3.69−3.56(3H,m),3.45(2H,m),3.23−3.14(2H,m).
(3) マススペクトル(LC−MS:Shim−pack XR−ODS 内径3.0×30mm(島津製作所社製)、正イオンモード)による、実験値は、m/z561.1(M+H)であり、Mの計算値は、m/z560.24(C3432)であった。
図4Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。
図4Bに、リテンションタイム1.613のピーク成分の質量分析の結果を示す。
<Physical and chemical properties>
About the compound represented by Structural formula (2) obtained by the said chemical reaction, the molecular weight and the structure were confirmed using the mass spectrum and the proton nuclear magnetic resonance spectrum. These results are shown below.
(1) The molecular formula is represented by C 34 H 32 N 4 O 4 .
(2) The proton nuclear magnetic resonance spectrum was measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz and was as follows. FIG. 3 shows a proton NMR spectrum chart.
δ12.53 (1H, bs), 9.37 (1H, bs), 9.15 (1H, bs), 8.96 (1H, bs), 8.46 (1H, s), 8.01-7 .90 (4H, m), 7.76 (1H, d, 7.2 Hz), 7.65-7.58 (2H, m), 7.30-7.26 (2H, m), 7.20 −7.04 (4H, m), 6.44 (1H, d, 7.2 Hz), 5.47 (2H, s), 4.50 (1H, d, 13.6 Hz), 4.32 (1H) , D, 10 Hz), 3.78 (2H, s), 3.69-3.56 (3H, m), 3.45 (2H, m), 3.23-3.14 (2H, m).
(3) The experimental value by mass spectrum (LC-MS: Shim-pack XR-ODS inner diameter 3.0 × 30 mm (manufactured by Shimadzu Corporation), positive ion mode) is m / z 561.1 (M + H) + , M was m / z 560.24 (C 34 H 32 N 4 O 4 ).
The upper part of FIG. 4A shows a chromatographic image of LC (liquid chromatography), and the lower part shows a chromatographic image of MS (mass spectrometry).
FIG. 4B shows the mass analysis result of the peak component with the retention time of 1.613.

(製造例3:構造式(3)で表される化合物の製造)
<合成方法>
−化合物16の合成−
下記反応式に示すようにして、前記化合物15(193mg、0.29mmol)、N,N−ジイソプロピルエチルアミン(DIPEA)(188mg、1.5mmol)、及び前記セグメントC(90mg、0.29mmol)をジクロロメタン(DCM)(5mL)に溶解し、この溶液にO−ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラメチルウロニウム ヘキサフルオロフォスフェート(HBTU)(133mg、0.35mmol)を添加後、得られた混合物を25℃にて一晩攪拌した。この混合物をジクロロメタン(DCM)(25mL)で希釈し、食塩水で洗浄後、乾燥させ、濃縮することにより、灰色固体の粗生成物として、下記化合物16を300mg得た。前記化合物16は、精製は行わずに次段階に用いた。
(Production Example 3: Production of the compound represented by the structural formula (3))
<Synthesis method>
-Synthesis of Compound 16-
The compound 15 (193 mg, 0.29 mmol), N, N-diisopropylethylamine (DIPEA) (188 mg, 1.5 mmol), and the segment C (90 mg, 0.29 mmol) were mixed with dichloromethane as shown in the following reaction formula. (DCM) (5 mL) was dissolved in this solution and O-benzotriazol-1-yl-N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HBTU) (133 mg, 0.35 mmol) was added to this solution. The resulting mixture was stirred at 25 ° C. overnight. The mixture was diluted with dichloromethane (DCM) (25 mL), washed with brine, dried and concentrated to obtain 300 mg of the following compound 16 as a gray solid crude product. Compound 16 was used in the next step without purification.

−化合物17の合成−
下記反応式に示すようにして、前記化合物16(300mg、0.315mmol)を、THF/2M水酸化リチウム水(LiOH)(1:1(V/V))混合溶液(20mL)に懸濁し、25℃にて一晩攪拌した後、40℃にて2時間攪拌した。pHが3〜4になるまで10質量%硫酸水素カリウム水を添加し、この混合物を酢酸エチル(50mL)で抽出し、食塩水で洗浄後、乾燥させ、濃縮した。残渣をprep−HPLC(メルク社製)(中性)で精製することにより、桃色固体として、下記化合物17を100mg得た。前記化合物17の収率は化合物15を基準として36.6%であった。
-Synthesis of Compound 17-
As shown in the following reaction formula, the compound 16 (300 mg, 0.315 mmol) was suspended in a THF / 2M lithium hydroxide aqueous solution (LiOH) (1: 1 (V / V)) mixed solution (20 mL), After stirring overnight at 25 ° C., the mixture was stirred at 40 ° C. for 2 hours. 10 mass% potassium hydrogen sulfate aqueous solution was added until pH became 3-4, and this mixture was extracted with ethyl acetate (50 mL), washed with brine, dried and concentrated. The residue was purified by prep-HPLC (manufactured by Merck) (neutral) to obtain 100 mg of the following compound 17 as a pink solid. The yield of Compound 17 was 36.6% based on Compound 15.

−構造式(3)で表される化合物の合成−
下記反応式に示すようにして、前記化合物17(45mg、0.048mmol)をジクロロエタン(DCE)(5mL)に溶解させ、塩酸/エーテル(HCl/EtO)(約5M、2mL)を添加し、この混合物を25℃にて一晩攪拌した後、濃縮した。アセトニトリル(2mL)を添加し、残渣を溶解させ、真空下濃縮することにより、下記構造式(3)で表される化合物を35mg得た。前記構造式(3)で表される化合物の収率は87%であった。

-Synthesis of the compound represented by the structural formula (3)-
As shown in the following reaction formula, the compound 17 (45 mg, 0.048 mmol) was dissolved in dichloroethane (DCE) (5 mL), and hydrochloric acid / ether (HCl / Et 2 O) (about 5 M, 2 mL) was added. The mixture was stirred at 25 ° C. overnight and then concentrated. Acetonitrile (2 mL) was added, the residue was dissolved, and concentrated under vacuum to obtain 35 mg of a compound represented by the following structural formula (3). The yield of the compound represented by the structural formula (3) was 87%.

<物理化学的性状>
前記化学反応で得られた構造式(3)で表される化合物について、マススペクトル、及びプロトン核磁気共鳴スペクトルを用いて、分子量、及び構造を確認した。これらの結果を以下に示す。
(1) 分子式は、C5245で表される。
(2) プロトン核磁気共鳴スペクトルとしては、400MHzにおいて6重水素化ジメチルスルホキシド中(DMSO−d6)で25℃にて測定したところ、以下の通りであった。図5に、プロトンNMRスペクトルのチャートを示す。
δ9.70(1H,bs),8.50(1H,s),8.24(1H,s),8.06(1H,s),7.99−7.93(5H,m),7.90(1H,d,7.6Hz),7.73−7.74(4H,m),7.64(1H,d,8.4Hz),7.61−7.51(3H,m),7.42(1H,d,7Hz),7.38−7.34(2H,m),7.22−7.00(6H,m),6.47(1H,d,8Hz),5.64(2H,s),5.26(2H,s),4.48(1H,bd,12.8Hz),4.30(1H,bd,16.8Hz),3.94(2H,s),3.72−3.50(5H,m),3.15−3.12(2H,m).
(3) マススペクトル(LC−MS:Shim−pack XR−ODS 内径3.0×30mm(島津製作所社製)、正イオンモード)による、実験値は、m/z836.34(M+H)であり、Mの計算値は、m/z835.34(C5245)である。
図6Aの上段に、LC(液体クロマトグラフィー)のクロマトグラフ像、及び下段に、MS(質量分析)のクロマトグラフ像を示す。
図6Bに、リテンションタイム1.796のピーク成分の質量分析の結果を示す。
<Physical and chemical properties>
About the compound represented by Structural formula (3) obtained by the said chemical reaction, the molecular weight and the structure were confirmed using the mass spectrum and the proton nuclear magnetic resonance spectrum. These results are shown below.
(1) The molecular formula is represented by C 52 H 45 N 5 O 6 .
(2) The proton nuclear magnetic resonance spectrum was as follows when measured at 25 ° C. in 6 deuterated dimethyl sulfoxide (DMSO-d6) at 400 MHz. FIG. 5 shows a proton NMR spectrum chart.
δ 9.70 (1H, bs), 8.50 (1H, s), 8.24 (1H, s), 8.06 (1H, s), 7.9-7.93 (5H, m), 7 .90 (1 H, d, 7.6 Hz), 7.73-7.74 (4 H, m), 7.64 (1 H, d, 8.4 Hz), 7.61-7.51 (3 H, m) 7.42 (1 H, d, 7 Hz), 7.38-7.34 (2 H, m), 7.22-7.00 (6 H, m), 6.47 (1 H, d, 8 Hz), 5 .64 (2H, s), 5.26 (2H, s), 4.48 (1H, bd, 12.8 Hz), 4.30 (1 H, bd, 16.8 Hz), 3.94 (2H, s) ), 3.72-3.50 (5H, m), 3.15-3.12 (2H, m).
(3) The experimental value by mass spectrum (LC-MS: Shim-pack XR-ODS inner diameter 3.0 × 30 mm (manufactured by Shimadzu Corporation), positive ion mode) is m / z 836.34 (M + H) + , the calculated value of M is m / z835.34 (C 52 H 45 N 5 O 6).
The upper part of FIG. 6A shows an LC (liquid chromatography) chromatographic image, and the lower part shows an MS (mass spectrometry) chromatographic image.
FIG. 6B shows the mass analysis result of the peak component with the retention time of 1.796.

(試験例1:IgEとIgEレセプター(FcεRI)との結合阻害活性の測定)
前記製造例1で合成した構造式(1)で表される化合物、前記製造例2で合成した構造式(2)で表される化合物、及び前記製造例3で合成した構造式(3)で表される化合物の、IgEとIgEレセプター(FcεRI)との結合阻害活性を、以下の方法を用いて確認した。
(Test Example 1: Measurement of binding inhibitory activity between IgE and IgE receptor (FcεRI))
The compound represented by Structural Formula (1) synthesized in Production Example 1, the compound represented by Structural Formula (2) synthesized in Production Example 2, and the structural formula (3) synthesized in Production Example 3 The binding inhibition activity of IgE and IgE receptor (FcεRI) of the represented compounds was confirmed using the following method.

<組換えヒトIgEレセプター(FcεRI)の作製>
−ヒトIgEレセプター(FcεRI)DNAのクローニング−
ヒトIgEレセプター(FcεRI)のDNA(NCBI Nucleotide:ACCESSION L14075、全長7,659bp)中、77bp〜603bpの遺伝子領域を、PCRにより増幅し、pAB−Beeベクター(AB Vector LLC社製)の制限酵素NotI−EcoRI部位に、クローニングした。
<Preparation of recombinant human IgE receptor (FcεRI)>
-Cloning of human IgE receptor (FcεRI) DNA-
In the human IgE receptor (FcεRI) DNA (NCBI Nucleotide: ACCESSION L14075, total length 7,659 bp), a 77 bp to 603 bp gene region was amplified by PCR, and the restriction enzyme NotI of the pAB-Bee vector (manufactured by AB Vector LLC). -Cloned into the EcoRI site.

−トランスフェクション、及びウイルスの増幅−
Sf9細胞(Invitrogen社製)をSf−900 II(Invitrogen社製)無血清培地で維持した。前記Sf9細胞は、BacPAK Baculovirus Expression System試薬(Clontech社製)を用いて行い、取扱説明書に記載の通り0.45μgの前記pAB−Beeベクターを、各ウエルについて使用した。ウイルスの産生、及び増幅を行うため、前記Sf9細胞を前記pAB−Beeベクターと共に、96時間インキュベーションし、ウイルスを含む上清(P0)を回収した。次いで、5質量%FCS(Calf Serum)を含有するSf−900 II(Invitrogen社製)培地を使用し、前記P0を更にSf9細胞に再感染させることを繰り返し、ウイルスを増幅させた(P1、P2、P3、P4)。
-Transfection and virus amplification-
Sf9 cells (Invitrogen) were maintained in Sf-900 II (Invitrogen) serum-free medium. The Sf9 cells were prepared using BacPAK Baculovirus Expression System reagent (Clontech), and 0.45 μg of the pAB-Bee vector was used for each well as described in the instruction manual. In order to perform virus production and amplification, the Sf9 cells were incubated with the pAB-Bee vector for 96 hours, and the virus-containing supernatant (P0) was collected. Subsequently, Sf-900 II (manufactured by Invitrogen) medium containing 5 mass% FCS (Calf Serum) was used, and reinfection of the P0 with Sf9 cells was repeated to amplify the virus (P1, P2). , P3, P4).

−組換えヒトIgEレセプター(FcεRI)タンパク質の産生−
HighFive細胞(Invitrogen社製)をExpress Five SFM培地で維持した。前記HighFive細胞をフラスコに播種し、前記ウイルス(P4)を含む上清を添加することにより感染させた。前記ウイルスに感染させたHighFive細胞を4日間培養することにより、組換えヒトIgEレセプター(FcεRI)タンパク質を産生させた。
-Production of recombinant human IgE receptor (FcεRI) protein-
High Five cells (Invitrogen) were maintained in Express Five SFM medium. The HighFive cells were seeded in a flask and infected by adding a supernatant containing the virus (P4). HighFive cells infected with the virus were cultured for 4 days to produce recombinant human IgE receptor (FcεRI) protein.

−組換えヒトIgEレセプター(FcεRI)タンパク質の精製−
前記4日間培養後のHighFive細胞の上清を回収し、前記上清と等量のPhosphate Buffered Saline(PBS) Dulbecco’s Formula(w/o カルシウム、マグネシウム)(DSファーマバイオメディカル株式会社製)で希釈した。前記希釈した上清を、Ni−NAT agarose(QIAGEN社製)を用いて精製し、組換えヒトIgEレセプター(FcεRI)のタンパク質(26AA−201AA)を得た。
-Purification of recombinant human IgE receptor (FcεRI) protein-
The supernatant of the HighFive cells after the culture for 4 days was collected, and the same amount of Phosphate Buffered Saline (PBS) Dulbecco's Formula (w / o calcium, magnesium) (manufactured by DS Pharma Biomedical Co., Ltd.) was used. Diluted. The diluted supernatant was purified using Ni-NAT agarose (manufactured by QIAGEN) to obtain a recombinant human IgE receptor (FcεRI) protein (26AA-201AA).

<ELISA法による測定>
前記精製した組換えヒトIgEレセプター(FcεRI)1.3ngをコーティングバッファー(0.1M炭酸ナトリウム)に懸濁し、96ウエルプレートに添加した。4℃でインキューベートすることにより、前記組換えヒトIgEレセプターを前記プレートに固着させた。
前記組換えヒトIgEレセプターを固着させたプレートに添加するサンプルは、下記表1のように調整した。
<Measurement by ELISA method>
1.3 ng of the purified recombinant human IgE receptor (FcεRI) was suspended in a coating buffer (0.1 M sodium carbonate) and added to a 96-well plate. The recombinant human IgE receptor was affixed to the plate by incubation at 4 ° C.
The sample added to the plate to which the recombinant human IgE receptor was fixed was prepared as shown in Table 1 below.

表1のNo.1は、ヒトIgE抗体、及びサンプルのいずれも添加していない溶液(20mM HEPES(pH7.4)、140mM塩化ナトリウム)のみのものである。表1のNo.2〜6において、ヒトIgE抗体(SCIPAC社製)は、前記20mM HEPES(pH7.4)、140mM塩化ナトリウムに懸濁することにより、0.3nMに調製した。表1のNo.3〜5は、前記ヒトIgE抗体を調製した溶液に、製造例1で合成した構造式(1)で表される化合物、製造例2で合成した構造式(2)で表される化合物、及び製造例3で合成した構造式(3)で表される化合物を、それぞれ最終濃度が0.1μM〜200μMとなるように添加した。表1のNo.6は、前記ヒトIgE抗体溶液に、zeta−peptide(e131)を、最終濃度が0.078μM〜200μMとなるように添加した。
なお、zeta−peptide(e131)は、IgEとIgEレセプター(FcεRI)との結合を阻害することが知られている既知のペプチドであり、Nakamura GR et al., PNAS, vol.99, no.3, 2002, p.1303−1308に基づいて固相合成、及び精製を行った。
No. in Table 1 Reference numeral 1 denotes only a human IgE antibody and a solution to which neither of the samples is added (20 mM HEPES (pH 7.4), 140 mM sodium chloride). No. in Table 1 2-6, human IgE antibody (manufactured by SCIPAC) was prepared to 0.3 nM by suspending in 20 mM HEPES (pH 7.4), 140 mM sodium chloride. No. in Table 1 3 to 5 are compounds represented by Structural Formula (1) synthesized in Production Example 1, compounds represented by Structural Formula (2) synthesized in Production Example 2, and solutions containing the above human IgE antibodies; The compound represented by Structural Formula (3) synthesized in Production Example 3 was added so that the final concentration was 0.1 μM to 200 μM, respectively. No. in Table 1 In No. 6, zeta-peptide (e131) was added to the human IgE antibody solution so that the final concentration was 0.078 μM to 200 μM.
In addition, zeta-peptide (e131) is a known peptide known to inhibit the binding between IgE and IgE receptor (FcεRI), and Nakamura GR et al. , PNAS, vol. 99, no. 3, 2002, p. Solid phase synthesis and purification were performed based on 1303-1308.

前記表1のNo.1〜6を、それぞれ前記ヒトIgEレセプター(FcεRI)を固着させたプレートの各ウエルに添加し、25℃にて2時間インキュベーションした後、前記No.1〜6を含む溶液を除去した。次いで、洗浄バッファー(PBS/0.05質量% Tween20)を用いて洗浄することにより、遊離の前記表1の各サンプル、及び前記ヒトIgE抗体を除去した。
次に、西洋ワサビペルオキシダーゼ(HRP)を結合した抗ヒトIgE抗体(Southern Biotech社製)を10% Blocking one(ナカライテスク社製)に懸濁し、濃度が0.4μg/mLとなるように、前記各ウエルへ添加し、25℃にて2時間インキュベーションした後、前記HRPを結合した抗ヒトIgE抗体を含む溶液を除去した。次いで、前記洗浄バッファーを用いて洗浄することにより、遊離の前記HRPを結合した抗ヒトIgE抗体を除去した。
次に、HRPの基質としてTMB(SIGMA社製)を前記各ウエルに添加し、前記HRPと反応させた後、反応停止液として塩酸を添加し、反応を停止した。
No. in Table 1 above. 1-6 were added to each well of the plate to which the human IgE receptor (FcεRI) was fixed, respectively, and incubated at 25 ° C. for 2 hours. The solution containing 1-6 was removed. Subsequently, each sample in Table 1 and the human IgE antibody were removed by washing with a washing buffer (PBS / 0.05% by mass Tween 20).
Next, anti-human IgE antibody (manufactured by Southern Biotech) conjugated with horseradish peroxidase (HRP) is suspended in 10% Blocking one (manufactured by Nacalai Tesque) and the concentration is adjusted to 0.4 μg / mL. After adding to each well and incubating at 25 ° C. for 2 hours, the solution containing the anti-human IgE antibody bound to the HRP was removed. Subsequently, the anti-human IgE antibody bound to the free HRP was removed by washing with the washing buffer.
Next, TMB (manufactured by SIGMA) as a substrate for HRP was added to each well and reacted with the HRP, and then hydrochloric acid was added as a reaction stop solution to stop the reaction.

前記反応後の各ウエルの450nmにおける吸光度を、プレートリーダー(Wallac 1420 ARVO sx マルチラベルカウンター:パーキンエルマー社製)を用いて測定し、得られた吸光度の値に基づいて、前記ヒトIgE抗体と前記組換えヒトIgEレセプター(FcεRI)との結合阻害活性を算出した。結果を表2に示す。
なお、前記結合阻害活性の算出方法としては、前記ヒトIgE抗体を添加しなかった場合(表1、No.1)の吸光度を発色率0%、前記ヒトIgE抗体のみを添加し、前記各サンプルを加えなかった場合(表1、No.2)の吸光度を発色率100%とし、前記各サンプル(表1、No.3〜6)の各濃度における吸光度より発色率を算出し、前記発色率を100%から差し引いた値を、前記組換えヒトIgEレセプター(FcεRI)の結合阻害活性(%)とした。前記結合阻害活性(%)のデータを基に、前記各化合物のIC50(μM)を算出した。
ここで、前記IC50(μM)とは、前記ヒトIgE抗体と前記組換えヒトIgEレセプター(FcεRI)との結合を50%阻害したときの活性とする。前記IC50(μM)の値が低いほど、結合阻害活性が高いことを示す。
The absorbance at 450 nm of each well after the reaction was measured using a plate reader (Wallac 1420 ARVO sx multilabel counter: manufactured by Perkin Elmer), and based on the obtained absorbance value, the human IgE antibody and the above-mentioned The binding inhibitory activity with the recombinant human IgE receptor (FcεRI) was calculated. The results are shown in Table 2.
As the method for calculating the binding inhibitory activity, the absorbance in the case where the human IgE antibody was not added (Table 1, No. 1) was added with a coloring rate of 0%, and only the human IgE antibody was added. The color development rate was calculated from the absorbance at each concentration of each of the samples (Table 1, No. 3 to 6), and the color development rate was calculated. The value obtained by subtracting from 100% was defined as the binding inhibitory activity (%) of the recombinant human IgE receptor (FcεRI). Based on the data on the binding inhibitory activity (%), IC 50 (μM) of each compound was calculated.
Here, the IC 50 (μM) is defined as the activity when 50% of the binding between the human IgE antibody and the recombinant human IgE receptor (FcεRI) is inhibited. A lower IC 50 (μM) value indicates higher binding inhibitory activity.


(試験例2:IgEレセプター(FcεRI)との解離定数の分析)
前記製造例1で合成した構造式(1)で表される化合物、前記製造例2で合成した構造式(2)で表される化合物、前記製造例3で合成した構造式(3)で表される化合物、及びzeta−peptide(e131)の、IgEレセプター(FcεRI)との解離定数を、表面プラズモン共鳴測定装置(製品名:Biacore T100、GEヘルスケアバイオサイエンス社製)を用いて以下の方法で分析した。
(Test Example 2: Analysis of dissociation constant with IgE receptor (FcεRI))
The compound represented by Structural Formula (1) synthesized in Production Example 1, the compound represented by Structural Formula (2) synthesized in Production Example 2, and the structural formula (3) synthesized in Production Example 3 And the dissociation constant of zeta-peptide (e131) with IgE receptor (FcεRI) using a surface plasmon resonance measuring apparatus (product name: Biacore T100, manufactured by GE Healthcare Biosciences) Analyzed with

<IgEレセプター(FcεRI)のセンサーチップへの固定化>
Hisタグ融合IgEレセプター(FcεRI)(WuXi App Tec, Co.,Ltd.製)を、センサーチップ(製品名:Series S Sensor Chip CM5、製品番号:BR−1006−68、GEヘルスケアバイオサイエンス株式会社製)に対して、後述するアミンカップリング法により固定化した。ランニング緩衝液として、20mM 4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルフォン酸(HEPES)、140mM 塩化ナトリウム、0.005質量% ポリオキシエチレンソルビタン非イオン性界面活性剤(製品名:Surfactant P20、製品番号:BR−1000−54、GEヘルスケアバイオサイエンス株式会社製(ポリオキシエチレンソルビタン非イオン性界面活性剤の10質量%水溶液)を0.05質量%使用した。)、pH7.4を用い、流速10μL/分間、25℃でフローセル2に固定化を行った。
<Immobilization of IgE receptor (FcεRI) to sensor chip>
A His-tagged IgE receptor (FcεRI) (WuXi App Tec, Co., Ltd.) is used as a sensor chip (product name: Series S Sensor Chip CM5, product number: BR-1006-68, GE Healthcare Biosciences, Inc.). The product was immobilized by the amine coupling method described later. As a running buffer, 20 mM 4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES), 140 mM sodium chloride, 0.005 mass% polyoxyethylene sorbitan nonionic surfactant (product name: Surfactant P20 , Product number: BR-1000-54, 0.05% by mass of GE Healthcare Bioscience Co., Ltd. (10% by mass aqueous solution of polyoxyethylene sorbitan nonionic surfactant) was used.), PH 7.4 Used, the flow cell 2 was immobilized at 25 ° C. with a flow rate of 10 μL / min.

アミンカップリングは、アミンカップリングキット(製品番号:BR−1000−50、GEヘルスケアバイオサイエンス株式会社製)を用いた。アミンカップリング法は、前記アミンカップリングキット含まれる400mM 1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)と、100mM N−ヒドロキシこはく酸イミド(NHS)とを等量混合した混合液をフローセル2に7分間添加(図7のaからb)した後、10mM 酢酸ナトリウム緩衝液(pH4.5、製品番号:BR−1003−50、GEヘルスケアバイオサイエンス株式会社製)で、10μg/mLになるように希釈した前記Hisタグ融合IgEレセプター(FcεRI)を10分間添加(図7のcからd)した。残存している活性エステルについては、1M エタノールアミン・塩酸溶液(pH8.5)を7分間添加(図7のeからf)して不活性化した。   For amine coupling, an amine coupling kit (product number: BR-1000-50, manufactured by GE Healthcare Bioscience Co., Ltd.) was used. In the amine coupling method, equal amounts of 400 mM 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 100 mM N-hydroxysuccinimide (NHS) contained in the amine coupling kit are mixed. After adding the mixed solution to the flow cell 2 for 7 minutes (from a to b in FIG. 7), a 10 mM sodium acetate buffer (pH 4.5, product number: BR-1003-50, manufactured by GE Healthcare Bioscience Co., Ltd.) The His tag fusion IgE receptor (FcεRI) diluted to 10 μg / mL was added for 10 minutes (c to d in FIG. 7). The remaining active ester was inactivated by adding 1M ethanolamine / hydrochloric acid solution (pH 8.5) for 7 minutes (from e to f in FIG. 7).

上記操作は2回行い、再現性を確認した。図7に1回目のセンサーグラムを示す。図7において、縦軸はセンサーチップ表面における質量変化を表す。縦軸の単位である「RU」は、レゾナンスユニットであり、1RU=1pg/mmに相当する。ここでは、1,000RU以上を固定化量の目的量とした。
固定化量は、図7において、hで表される固定化後のRUの値と、gで表される固定化前のRUの値とから、次式により算出される。
固定化量(RU)=h−g
この結果、前記Hisタグ融合IgEレセプター(FcεRI)は、1回目は3,407.8RU、2回目;2,773.0RU固定化することができた。
The above operation was performed twice to confirm reproducibility. FIG. 7 shows the first sensorgram. In FIG. 7, the vertical axis represents the mass change on the sensor chip surface. “RU”, which is a unit of the vertical axis, is a resonance unit and corresponds to 1RU = 1 pg / mm 2 . Here, 1,000 RU or more was set as the target amount of the immobilization amount.
In FIG. 7, the amount of immobilization is calculated by the following equation from the value of RU after immobilization represented by h and the value of RU before immobilization represented by g.
Immobilization amount (RU) = h−g
As a result, the His tag-fused IgE receptor (FcεRI) was immobilized at 3,407.8 RU for the first time, second time for 2,773.0 RU.

<IgEレセプター(FcεRI)とzeta−peptide(e131)との解離定数の分析>
前記方法によりセンサーチップに前記Hisタグ融合IgEレセプター(FcεRI)を固定化した表面(フローセル2)と、リファレンスとなる、センサーチップに何も固定化していない表面(フローセル1)とを用いて、IgEレセプター(FcεRI)と、zeta−peptide(e131)との特異的結合をマルチサイクル法で測定した。
ランニング緩衝液として20mM HEPES、140mM 塩化ナトリウム、1質量% ジメチルスルホキシド(DMSO)、0.005質量% ポリオキシエチレンソルビタン非イオン性界面活性剤(製品名:Surfactant P20、製品番号:BR−1000−54、GEヘルスケアバイオサイエンス株式会社製、を0.05質量%使用した。)、pH7.4を用い、流速30μL/分間、25℃で測定を行った。
zeta−peptide(e131)の濃度は、2倍希釈系列で5段階濃度(100nM、50nM、25nM、12.5nM、及び6.25nM)となるように、前記ランニング緩衝液により希釈した。
各濃度の試料を2分間添加し、解離を5分間観察した。5分間の解離で、結合したzeta−peptide(e131)が全て自然解離したため、再生は実施しなかった。
得られたセンサーグラムから、専用の解析ソフトウェアBiacoreT100 Evaluation Software version 2.0(GEヘルスケアバイオサイエンス株式会社製)を用いて解離定数(KD)を平衡値解析で算出した。
<Analysis of dissociation constant between IgE receptor (FcεRI) and zeta-peptide (e131)>
Using the surface (flow cell 2) on which the His tag-fused IgE receptor (FcεRI) is immobilized on the sensor chip by the above method and the surface (flow cell 1) on which nothing is immobilized on the sensor chip as a reference, IgE Specific binding between the receptor (FcεRI) and zeta-peptide (e131) was measured by a multicycle method.
20 mM HEPES, 140 mM sodium chloride, 1% by weight dimethyl sulfoxide (DMSO), 0.005% by weight as a running buffer Polyoxyethylene sorbitan nonionic surfactant (product name: Surfactant P20, product number: BR-1000-54) , GE Healthcare Bioscience Co., Ltd. was used at 0.05% by mass.
The concentration of zeta-peptide (e131) was diluted with the running buffer so as to be a 5-step concentration (100 nM, 50 nM, 25 nM, 12.5 nM, and 6.25 nM) in a 2-fold dilution series.
Samples of each concentration were added for 2 minutes and dissociation was observed for 5 minutes. Since all bound zeta-peptide (e131) spontaneously dissociated after 5 minutes of dissociation, no regeneration was performed.
From the obtained sensorgram, the dissociation constant (KD) was calculated by equilibrium value analysis using dedicated analysis software Biacore T100 Evaluation Software version 2.0 (manufactured by GE Healthcare Biosciences).

zeta−peptide(e131)の濃度に依存したセンサーグラムが得られた。なお、リファレンスセルへの非特異的結合はなく、5分間の解離で結合した全てのzeta−peptide(e131)が解離した。
得られたセンサーグラムの平衡値解析より、IgEレセプター(FcεRI)と、zeta−peptide(e131)との解離定数(KD)は、下記表3に示すとおりであった。
A sensorgram depending on the concentration of zeta-peptide (e131) was obtained. There was no non-specific binding to the reference cell, and all zeta-peptide (e131) bound by dissociation for 5 minutes was dissociated.
From the equilibrium value analysis of the obtained sensorgram, the dissociation constant (KD) between IgE receptor (FcεRI) and zeta-peptide (e131) was as shown in Table 3 below.

<IgEレセプター(FcεRI)と構造式(1)〜(3)で表される化合物との解離定数の分析>
前記方法によりセンサーチップに前記Hisタグ融合IgEレセプター(FcεRI)を固定化した表面(フローセル2)と、リファレンスとなる、センサーチップに何も固定化していない表面(フローセル1)とを用いて、IgEレセプター(FcεRI)と、構造式(1)〜(3)で表される化合物との特異的結合をマルチサイクル法で測定した。
ランニング緩衝液として20mM HEPES、140mM 塩化ナトリウム、1質量% DMSO、0.005質量% ポリオキシエチレンソルビタン非イオン性界面活性剤(製品名:Surfactant P20、製品番号:BR−1000−54、GEヘルスケアバイオサイエンス株式会社製、を0.05質量%使用した。)、pH7.4を用い、流速30μL/分間、25℃で測定を行った。
構造式(1)〜(3)で表される化合物の濃度は、2倍希釈系列で5段階濃度(100nM、50nM、25nM、12.5nM、及び6.25nM)となるように、前記ランニング緩衝液により希釈した。
構造式(1)で表される化合物及び構造式(2)で表される化合物は、20mMの100質量% DMSOストック溶液において沈殿が確認されたため、化合物調製時には、分取直前に充分ボルテックスを行い溶液が均一になるよう懸濁を行った。
各濃度の試料を2分間添加し、解離を5分間観察した。得られたセンサーグラムから、専用の解析ソフトウェアBiacoreT100 Evaluation Software version 2.0(GEヘルスケアバイオサイエンス株式会社製)を用いて解離定数(KD)を平衡値解析で算出した。
<Analysis of dissociation constant between IgE receptor (FcεRI) and compounds represented by structural formulas (1) to (3)>
Using the surface (flow cell 2) on which the His tag-fused IgE receptor (FcεRI) is immobilized on the sensor chip by the above method and the surface (flow cell 1) on which nothing is immobilized on the sensor chip as a reference, IgE Specific binding between the receptor (FcεRI) and the compounds represented by structural formulas (1) to (3) was measured by a multicycle method.
20 mM HEPES, 140 mM sodium chloride, 1% by weight DMSO, 0.005% by weight as a running buffer Polyoxyethylene sorbitan nonionic surfactant (product name: Surfactant P20, product number: BR-1000-54, GE Healthcare Biomass, Inc., 0.05% by mass was used.), PH 7.4 was used, and measurement was performed at a flow rate of 30 μL / min and 25 ° C.
The concentration of the compound represented by the structural formulas (1) to (3) is adjusted so that the running buffer has a five-level concentration (100 nM, 50 nM, 25 nM, 12.5 nM, and 6.25 nM) in a 2-fold dilution series. Diluted with liquid.
Precipitation of the compound represented by Structural Formula (1) and the compound represented by Structural Formula (2) was confirmed in a 20 mM 100% by mass DMSO stock solution. Suspension was performed so that the solution was uniform.
Samples of each concentration were added for 2 minutes and dissociation was observed for 5 minutes. From the obtained sensorgram, the dissociation constant (KD) was calculated by equilibrium value analysis using dedicated analysis software Biacore T100 Evaluation Software version 2.0 (manufactured by GE Healthcare Biosciences).

構造式(1)〜(3)で表される化合物の濃度に依存したセンサーグラムが得られた。なお、リファレンスセルへの非特異的結合はなく、5分間の解離で結合した全ての構造式(1)〜(3)で表される化合物が解離した。
得られたセンサーグラムの平衡値解析より、IgEレセプター(FcεRI)と、構造式(1)〜(2)との解離定数(KD)は、下記表3に示すとおりであった。
Sensorgrams depending on the concentrations of the compounds represented by structural formulas (1) to (3) were obtained. There was no non-specific binding to the reference cell, and all the compounds represented by structural formulas (1) to (3) bound by dissociation for 5 minutes were dissociated.
From the equilibrium value analysis of the obtained sensorgram, the dissociation constant (KD) between the IgE receptor (FcεRI) and the structural formulas (1) to (2) was as shown in Table 3 below.


試験例1の表2より、製造例1〜3(No.3〜5)で得られた構造式(1)で表される化合物、構造式(2)で表される化合物、及び構造式(3)で表される化合物は、IgEとIgEレセプター(FcεRI)との結合阻害活性を有することが確認された。
また、試験例2の表3より、構造式(1)〜(3)で表される化合物は、IgEレセプター(FcεRI)に結合することが確認された。
zeta−peptide(e131)は、IC50(μM)の値が低いことから、前記阻害活性は高いものの、ペプチドであるため、抗原性を有する。一方、構造式(1)で表される化合物、構造式(2)で表される化合物、及び構造式(3)で表される化合物(No.3〜5)は、抗原性を有さない非タンパク性低分子化合物であるため、抗アレルギー剤、抗喘息剤、及び抗炎症剤として、好適に利用可能である。
From Table 2 of Test Example 1, the compound represented by Structural Formula (1) obtained in Production Examples 1 to 3 (No. 3 to 5), the compound represented by Structural Formula (2), and the structural formula ( It was confirmed that the compound represented by 3) has an inhibitory activity on binding between IgE and IgE receptor (FcεRI).
From Table 3 of Test Example 2, it was confirmed that the compounds represented by the structural formulas (1) to (3) bind to the IgE receptor (FcεRI).
zeta-peptide (e131) has a low IC 50 (μM) value, and thus has a high inhibitory activity, but is a peptide and thus has antigenicity. On the other hand, the compound represented by Structural Formula (1), the compound represented by Structural Formula (2), and the compound represented by Structural Formula (3) (No. 3 to 5) do not have antigenicity. Since it is a non-protein low molecular weight compound, it can be suitably used as an antiallergic agent, antiasthma agent, and antiinflammatory agent.

本発明の新規化合物はIgEとIgEレセプター(FcεRI)との結合に対し、優れた結合阻害活性を有することから、IgEとIgEレセプター(FcεRI)との結合を阻害する、結合阻害剤として好適に利用できる。また、前記結合阻害剤は、抗アレルギー剤、抗喘息剤、及び抗炎症剤として有用である。   Since the novel compound of the present invention has an excellent binding inhibitory activity for binding between IgE and IgE receptor (FcεRI), it is preferably used as a binding inhibitor that inhibits binding between IgE and IgE receptor (FcεRI). it can. The binding inhibitor is useful as an antiallergic agent, antiasthma agent, and antiinflammatory agent.

Claims (3)

下記構造式(3)で表されることを特徴とする化合物。A compound represented by the following structural formula (3):
請求項1に記載の化合物を含有してなり、IgEとIgEレセプターとの結合を阻害することを特徴とする結合阻害剤。A binding inhibitor comprising the compound according to claim 1 and inhibiting binding between IgE and an IgE receptor. 請求項2に記載の結合阻害剤を含有することを特徴とする抗アレルギー剤、抗喘息剤、抗炎症剤。An antiallergic agent, an antiasthma agent, and an antiinflammatory agent, comprising the binding inhibitor according to claim 2.
JP2013152452A 2009-02-19 2013-07-23 Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents Active JP5617970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152452A JP5617970B2 (en) 2009-02-19 2013-07-23 Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/052837 2009-02-19
PCT/JP2009/052837 WO2010095227A1 (en) 2009-02-19 2009-02-19 Novel compound, and binding inhibitor, anti-allergic agent, anti-asthma agent and anti-inflammatory agent
JP2013152452A JP5617970B2 (en) 2009-02-19 2013-07-23 Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011500660A Division JP5370472B2 (en) 2009-02-19 2010-02-19 Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents

Publications (2)

Publication Number Publication Date
JP2013231078A JP2013231078A (en) 2013-11-14
JP5617970B2 true JP5617970B2 (en) 2014-11-05

Family

ID=49677829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152452A Active JP5617970B2 (en) 2009-02-19 2013-07-23 Novel compounds and binding inhibitors, antiallergic agents, antiasthmatic agents, and antiinflammatory agents

Country Status (1)

Country Link
JP (1) JP5617970B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN156065B (en) * 1982-07-12 1985-05-04 Janssen Pharmaceutica Nv
JPH09124609A (en) * 1995-11-07 1997-05-13 Nissan Chem Ind Ltd Benzimidazole derivative
JPH11269192A (en) * 1998-03-24 1999-10-05 The Nikka Wisky Distilling Co Ltd Flavone glycoside
JP2001294572A (en) * 2000-02-09 2001-10-23 Dai Ichi Seiyaku Co Ltd Novel sulfonyl derivative

Also Published As

Publication number Publication date
JP2013231078A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
TWI247745B (en) Amide derivatives, process for preparing same and pharmaceutical composition comprising same
JP6035259B2 (en) Heteroaryl derivatives as CFTR modifiers
TWI473800B (en) New ccr2 receptor antagonists and uses thereof
TW515796B (en) Therapeutic benzamide derivatves
KR101447758B1 (en) Substituted arylsulfonamides as antiviral agents
CN101715450A (en) Azaindole derivatives as cftr modulators
JP2010504287A (en) Certain substituted amides, methods of making and using the same
JPH06506450A (en) Heterocyclic amines useful in treating asthma and respiratory inflammation
CA2681118A1 (en) Amide derivatives as calcium channel blockers
CN103097382A (en) 2-(arylamino)-3H-imidazo[4,5-b]pyridine-6-carboxamide derivatives and their use as MPGES-1 inhibitors
KR20090042239A (en) N-(aminoheteroaryl)-1h-indole-2-carboxamide derivatives, preparation thereof and therapeutic use thereof
JP6458168B2 (en) Ghrelin O-acyltransferase inhibitor
TW200417546A (en) New compounds
JP5721242B2 (en) Novel CCR2 antagonist
CN113748109B (en) Lanthionine C-like protein 2 ligands, cells prepared with said ligands and therapies using said ligands
AU2017214589A1 (en) Sulfonamide derivative and pharmaceutical composition containing same
JP2010521513A (en) Aza-pyridopyrimidinone derivatives
JPWO2008123207A1 (en) Ornithine derivatives
CA2722706A1 (en) Di-t-butylphenyl piperazines as calcium channel blockers
JPWO2016063990A1 (en) KCNQ2-5 channel activator
EP2272509A1 (en) New Uses of metabotropic glutamate receptors
TW201704230A (en) Chemical compound
JP2020505414A (en) N-{[2- (Piperidin-1-yl) phenyl] (phenyl) methyl} -2- (3-oxo-3,4-dihydro-2H-1 as a ROR gamma modulator for treating autoimmune diseases , 4-benzoxazin-7-yl) acetamide derivatives and related compounds
TW201038565A (en) Substituted 2-mercapto-3-aminopyridines as KCNQ2/3 modulators
TW200946118A (en) Soluble epoxide hydrolase inhibitors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150