JP5617759B2 - Electromagnetic vacuum breaker - Google Patents

Electromagnetic vacuum breaker Download PDF

Info

Publication number
JP5617759B2
JP5617759B2 JP2011107348A JP2011107348A JP5617759B2 JP 5617759 B2 JP5617759 B2 JP 5617759B2 JP 2011107348 A JP2011107348 A JP 2011107348A JP 2011107348 A JP2011107348 A JP 2011107348A JP 5617759 B2 JP5617759 B2 JP 5617759B2
Authority
JP
Japan
Prior art keywords
circuit breaker
vacuum circuit
capacitor
damper
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011107348A
Other languages
Japanese (ja)
Other versions
JP2012238505A (en
Inventor
和希 高橋
和希 高橋
秀樹 宮武
秀樹 宮武
吉田 忠広
忠広 吉田
透 木村
透 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011107348A priority Critical patent/JP5617759B2/en
Publication of JP2012238505A publication Critical patent/JP2012238505A/en
Application granted granted Critical
Publication of JP5617759B2 publication Critical patent/JP5617759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

この発明は、投入動作時のチャタリングを低減させるダンパを備えた電磁操作式真空遮断器に関する。   The present invention relates to an electromagnetically operated vacuum circuit breaker provided with a damper that reduces chattering during a closing operation.

真空遮断器は、短絡事故などにより過電流が流れた場合、操作器により真空バルブの接点を開極して過電流を遮断する。この遮断性能に加え、真空遮断器には、サージの発生および接点の溶着を防ぐため、投入時のチャタリングを抑制する性能が求められる。チャタリングとは、投入動作時に可動接点が固定接点と接触する時に、可動接点がバウンスして両接点が離れてしまうことである。前記両接点の間に電圧が印加されていると、チャタリング時にアークが発生して接点が溶着する場合がある。そこで、従来の真空遮断器においては、一端に可動接点が固着された可動電極の投入終了直前に、油圧緩衝器(オイルダンパ)のピストンロッドが、内部に注入された油が細いオリフィスからレバーの押圧力によって流出するダッシュポット機構で駆動され、前記可動電極の投入終了時の加速度を低下させ、投入時に、一端に固定接点が固着された固定電極との間に発生するチャタリングを防いでいる。(例えば、特許文献1参照)。   When an overcurrent flows due to a short circuit accident or the like, the vacuum circuit breaker opens the contact of the vacuum valve with an operating device to interrupt the overcurrent. In addition to this breaking performance, the vacuum circuit breaker is required to have the ability to suppress chattering when it is turned on in order to prevent the occurrence of surges and welding of contacts. Chattering means that when the movable contact comes into contact with the fixed contact during the closing operation, the movable contact bounces and the two contacts are separated. If a voltage is applied between the two contacts, an arc may occur during chattering and the contacts may be welded. Therefore, in the conventional vacuum circuit breaker, just before the end of the movable electrode with the movable contact fixed to one end, the piston rod of the hydraulic shock absorber (oil damper) is inserted into the lever from the small orifice to the lever. Driven by a dashpot mechanism that flows out by pressing force, the acceleration at the end of the insertion of the movable electrode is reduced, and chattering that occurs between the fixed electrode with a fixed contact fixed at one end is prevented at the time of application. (For example, refer to Patent Document 1).

また、遮断器の遮断または投入動作をするための操作器としての従来の電磁操作器においては、投入コイルを励磁することでプランジャ(可動子)が投入位置へと駆動される(例えば、特許文献2参照)。   Further, in a conventional electromagnetic operating device as an operating device for interrupting or closing the circuit breaker, a plunger (movable element) is driven to a closing position by exciting a closing coil (for example, Patent Documents). 2).

特開平11−203998JP-A-11-203998 特開2008−53387JP2008-53387

ダンパが吸収できる運動エネルギーは、オリフィス径の精度などの様々な製造時の要因でばらつきが生じ、個体差を持っている。従来の電磁操作式真空遮断器では、この個体差により吸収できる運動エネルギーが高いダンパが用いられると、接点の投入速度が遅くなり、交流の真空遮断器に求められる遮断性能、特に、投入直後に開極して3サイクル以内に遮断を完了する性能(例えば、JEC−2300規格に定められた定格遮断時間)の達成が困難となることがあるという問題があった。   The kinetic energy that can be absorbed by the damper varies depending on various manufacturing factors such as the accuracy of the orifice diameter, and has individual differences. In a conventional electromagnetically operated vacuum circuit breaker, when a damper with high kinetic energy that can be absorbed due to this individual difference is used, the contact closing speed becomes slow, and the breaking performance required for an AC vacuum circuit breaker, especially immediately after There is a problem that it may be difficult to achieve the performance (for example, the rated interruption time defined in the JEC-2300 standard) that completes the interruption within 3 cycles after opening the pole.

また、従来の電磁操作式真空遮断器では、逆に、前記個体差により吸収できる運動エネルギーが低いダンパが用いられると、接点の投入速度が速くなりチャタリングを抑制する性能を満たせなくなることがあるという問題があった。   On the other hand, in the conventional electromagnetically operated vacuum circuit breaker, conversely, if a damper with low kinetic energy that can be absorbed by the individual difference is used, the throwing speed of the contact may be increased and the performance of suppressing chattering may not be satisfied. There was a problem.

この発明は、上述のような問題を解決するためになされたもので、吸収できる運動エネルギーに個体差があるダンパを用いても、所定の遮断性能とチャタリングを抑制する性能とを両立できる電磁操作式真空遮断器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a damper having an individual difference in kinetic energy that can be absorbed is used, an electromagnetic operation capable of achieving both a predetermined cutoff performance and a performance for suppressing chattering. An object of the present invention is to provide a vacuum circuit breaker.

この発明に係る電磁操作式真空遮断器においては、真空容器内に一対の接点を有する真空バルブと、駆動用コイルおよび可動子を有し、前記一対の接点の一方の接点を他方の接点へと駆動させて前記一対の接点を当接させる電磁操作装置と、前記当接の時の運動エネルギーを吸収するダンパと、該ダンパの吸収できる運動エネルギーの個体差に基づいて、前記一対の接点が当接する直前の運動エネルギーが遮断性能とチャタリングを抑制する性能とを両立する範囲となる値に、前記駆動用コイル発生させる磁束密度を調整する磁束密度調整部とを備えたものである。 The electromagnetically operated vacuum circuit breaker according to the present invention includes a vacuum valve having a pair of contacts in a vacuum vessel, a driving coil and a mover, and one contact of the pair of contacts to the other contact. an electromagnetic operating device to abut the pair of contacts so driven, and a damper to absorb the kinetic energy when the abutment, on the basis of the individual difference of kinetic energy that can be absorbed in the damper, the pair of contacts are brought to a value just before the kinetic energy is in a range to achieve both suppressing performance interruption performance and chattering in contact, in which a magnetic flux density adjusting unit to adjust the magnetic flux density Ru is generated in the driving coil.

この発明は、吸収できる運動エネルギーに個体差があるダンパを用いても、所定の遮断性能とチャタリングを抑制する性能とを両立できる電磁操作式真空遮断器を提供することができる。   The present invention can provide an electromagnetically operated vacuum circuit breaker that can achieve both a predetermined breaking performance and a performance for suppressing chattering even when a damper having an individual difference in kinetic energy that can be absorbed is used.

この発明の実施の形態1に係る電磁操作式真空遮断器の開極状態を示す部分断面図である。It is a fragmentary sectional view which shows the opening state of the electromagnetically operated vacuum circuit breaker which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電磁操作式真空遮断器の電磁操作装置および磁束密度調整部の構成を示す構成図である。It is a block diagram which shows the structure of the electromagnetic operating apparatus and magnetic flux density adjustment part of the electromagnetically operated vacuum circuit breaker which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る電磁操作式真空遮断器の投入が完了した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which injection | throwing-in of the electromagnetically operated vacuum circuit breaker concerning Embodiment 1 of this invention was completed. この発明の実施の形態1に係る電磁操作式真空遮断器の投入動作時におけるダンパが動作を開始した時点の状態を示す部分断面図である。It is a fragmentary sectional view which shows the state at the time of the operation | movement of the damper starting at the time of the injection | throwing-in operation | movement of the electromagnetically operated vacuum circuit breaker concerning Embodiment 1 of this invention. この発明の実施の形態1に係る電磁操作式真空遮断器の投入動作時における可動電極が固定電極に当接した瞬間の状態を示す部分断面図である。It is a fragmentary sectional view which shows the state at the moment when the movable electrode contact | abutted at the time of the injection | throwing-in operation | movement of the electromagnetically operated vacuum circuit breaker concerning Embodiment 1 of this invention. この発明の実施の形態1に係る電磁操作式真空遮断器の投入用コンデンサの充電電圧を調整するためのフローチャートである。It is a flowchart for adjusting the charging voltage of the charging capacitor of the electromagnetically operated vacuum circuit breaker according to Embodiment 1 of the present invention. この発明の実施の形態2に係る電磁操作式真空遮断器の電磁操作装置および磁束密度調整部の構成を示す構成図である。It is a block diagram which shows the structure of the electromagnetic operating apparatus and magnetic flux density adjustment part of the electromagnetically operated vacuum circuit breaker which concern on Embodiment 2 of this invention. この発明の実施の形態2に係る電磁操作式真空遮断器の調整用抵抗装置の抵抗値を調整するためのフローチャートである。It is a flowchart for adjusting the resistance value of the resistance apparatus for adjustment of the electromagnetically operated vacuum circuit breaker according to Embodiment 2 of the present invention. この発明の実施の形態3に係る電磁操作式真空遮断器の電磁操作装置および磁束密度調整部の構成を示す構成図である。It is a block diagram which shows the structure of the electromagnetic operating apparatus and magnetic flux density adjustment part of the electromagnetically operated vacuum circuit breaker which concern on Embodiment 3 of this invention. この発明の実施の形態3に係る電磁操作式真空遮断器の容量調整用コンデンサの接続状態を変更するためのフローチャートである。It is a flowchart for changing the connection state of the capacity | capacitance adjustment capacitor | condenser of the electromagnetically operated vacuum circuit breaker which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る電磁操作式真空遮断器の電磁操作装置および磁束密度調整部の構成を示す構成図である。It is a block diagram which shows the structure of the electromagnetic operating apparatus and magnetic flux density adjustment part of the electromagnetically operated vacuum circuit breaker which concern on Embodiment 4 of this invention. この発明の実施の形態4に係る電磁操作式真空遮断器の複数の駆動用コイルの接続状態を変更するためのフローチャートである。It is a flowchart for changing the connection state of the several drive coil of the electromagnetically operated vacuum circuit breaker which concerns on Embodiment 4 of this invention.

実施の形態1.
図1は、この発明の実施の形態1に係る電磁操作式真空遮断器1の開極状態を示す部分断面図である。電流を遮断する遮断部としての真空バルブ2は、真空容器中に、固定接点を有する固定電極3の端部と、該固定接点に接触、乖離する可動接点を有する可動電極4の端部とを収容している。可動電極4は、絶縁ロッド5、ばね受け6、接圧ばね7を介して電磁操作装置100の連結棒8に連結されている。電磁操作装置100は、連結棒8、駆動用コイル10、可動子11および固定子12にて構成される。磁束密度調整部200は、図2に示すように、操作基板9、投入用コンデンサ17および開極用コンデンサ18を有しており、投入指令もしくは開極指令に応じて電磁操作装置100の駆動用コイル10に電流を供給する。ダンパ13は、電磁操作装置100により、可動電極4が駆動されて固定電極3に衝突するときの衝撃を吸収する。このダンパ13は、ダンパ固定板14に固定されており、このダンパ固定板14は、真空バルブ2を収納するタンク15により保持されている。タンク15には、絶縁媒体、例えばSF6ガスまたは乾燥空気などが封入されており、気密を保った状態で投入動作および開極動作を行えるように、Oリング16が設けられている。
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional view showing an open state of an electromagnetically operated vacuum circuit breaker 1 according to Embodiment 1 of the present invention. The vacuum valve 2 serving as a blocking portion for blocking current includes an end portion of a fixed electrode 3 having a fixed contact and an end portion of a movable electrode 4 having a movable contact contacting and separating from the fixed contact in a vacuum vessel. Contained. The movable electrode 4 is connected to the connecting rod 8 of the electromagnetic operating device 100 through the insulating rod 5, the spring receiver 6, and the contact pressure spring 7. The electromagnetic operating device 100 includes a connecting rod 8, a driving coil 10, a mover 11, and a stator 12. As shown in FIG. 2, the magnetic flux density adjusting unit 200 includes an operation board 9, a closing capacitor 17, and an opening capacitor 18. A current is supplied to the coil 10. The damper 13 absorbs an impact when the movable electrode 4 is driven by the electromagnetic operating device 100 to collide with the fixed electrode 3. The damper 13 is fixed to a damper fixing plate 14, and the damper fixing plate 14 is held by a tank 15 that houses the vacuum valve 2. The tank 15 is filled with an insulating medium such as SF6 gas or dry air, and an O-ring 16 is provided so that the closing operation and the opening operation can be performed in an airtight state.

なお、図1は単相分を示しているが、3相の電磁操作式真空遮断器の場合は、前記単相分を3組、所定の間隔を設けて並列に配列すればよい。また、1つの電磁操作装置100で、3相分の真空バルブ2を駆動させる構成としてもよい。   Although FIG. 1 shows a single-phase portion, in the case of a three-phase electromagnetically operated vacuum circuit breaker, three sets of the single-phase portions may be arranged in parallel at a predetermined interval. Moreover, it is good also as a structure which drives the vacuum valve 2 for 3 phases with one electromagnetic operating device 100. FIG.

投入動作および開極動作について、さらに詳細に説明する。電磁操作式真空遮断器1が開極状態にあるときに、磁束密度調整部200内の操作基板9に投入指令が入ると、操作基板9から駆動用コイル10に電流が供給され、駆動用コイル10によって、可動子11を固定子12の方向へ磁気吸引する磁束が発生する。可動子11は、この磁気吸引力により、軸方向(図1中、右方向)に力を受け、これに連結した連結棒8、接圧ばね7、ばね受け6、絶縁ロッド5および可動電極4が一体となって動き始め、可動電極4が固定電極3に当接する。この時点では、可動子11が固定子12に当接しないような構成となっている。さらに、投入動作が進んで、可動子11が接圧ばね7を圧縮して可動子11が固定子12に当接し、図3に示すように全体が静止した状態、つまり投入が完了した状態に至る。   The closing operation and the opening operation will be described in more detail. When the electromagnetic operation type vacuum circuit breaker 1 is in an open state, when an input command is input to the operation board 9 in the magnetic flux density adjusting unit 200, a current is supplied from the operation board 9 to the drive coil 10, and the drive coil 10 generates a magnetic flux that magnetically attracts the mover 11 toward the stator 12. The movable element 11 receives a force in the axial direction (rightward in FIG. 1) due to the magnetic attraction force, and is connected to the connecting rod 8, the contact pressure spring 7, the spring receiver 6, the insulating rod 5, and the movable electrode 4. Begins to move together, and the movable electrode 4 comes into contact with the fixed electrode 3. At this point, the movable element 11 is configured not to contact the stator 12. Further, the making operation proceeds, and the mover 11 compresses the contact pressure spring 7 so that the mover 11 comes into contact with the stator 12, and as shown in FIG. It reaches.

電磁操作装置100には、投入が完了した状態を保持するための磁束を発生する永久磁石(図示せず)が配置されている。投入動作のときには、可動子11と固定子12とが当接するそれぞれの面の間では、前記永久磁石が発生する磁束と駆動用コイル10が発生させる磁束とが同じ方向となるように、操作基板9から駆動用コイル10へ電流が供給される。また、投入が完了した状態では、操作基板9から駆動用コイル10へ電流を供給する必要はなく、前記永久磁石の磁束を用いて投入が完了した状態を保持する。   The electromagnetic operating device 100 is provided with a permanent magnet (not shown) that generates a magnetic flux for maintaining a state in which the charging is completed. In the closing operation, the operation board is arranged so that the magnetic flux generated by the permanent magnet and the magnetic flux generated by the driving coil 10 are in the same direction between the surfaces where the movable element 11 and the stator 12 abut. Current is supplied from 9 to the driving coil 10. In addition, in the state where the insertion is completed, it is not necessary to supply current from the operation board 9 to the driving coil 10, and the state where the insertion is completed is maintained using the magnetic flux of the permanent magnet.

続いて、図3に示す投入が完了した状態において操作基板9に開極指令が入ると、操作基板9から駆動用コイル10に電流が供給される。このとき、駆動用コイル10への供給される電流の極性は、上述の投入動作の時と逆とし、可動子11と固定子12とが当接している面において、前記永久磁石が発生する磁束と逆方向に駆動用コイル10による磁束を発生させる。これにより、前記永久磁石が可動子11を投入が完了した状態で保持する力が小さくなり、接圧ばね7の力が前記保持する力より大きくなると、可動子11がこれに連結した連結棒8とともに軸方向(図3中、左方向)に移動し、接圧ばね7が伸張を始める。接圧ばね7が、その構造上で規定された最大長(自由長ではない)まで伸張すると、可動電極4、絶縁ロッド5およびばね受け6が、可動子11、連結棒8および接圧ばね7と一体となって移動する。その後、可動子11が固定板(図示せず)に当接して静止することで、開極が完了した状態に至る。   Subsequently, when a contact opening command is input to the operation board 9 in the state where the insertion shown in FIG. 3 is completed, a current is supplied from the operation board 9 to the driving coil 10. At this time, the polarity of the current supplied to the driving coil 10 is opposite to that in the above-described closing operation, and the magnetic flux generated by the permanent magnet on the surface where the movable element 11 and the stator 12 are in contact with each other. The magnetic flux by the drive coil 10 is generated in the opposite direction. As a result, the force with which the permanent magnet holds the movable element 11 in the state where the insertion of the movable element 11 is completed becomes small, and when the force of the contact pressure spring 7 becomes larger than the retained force, the connecting rod 8 connected to the movable element 11. At the same time, it moves in the axial direction (leftward in FIG. 3), and the contact pressure spring 7 begins to expand. When the contact pressure spring 7 extends to the maximum length (not a free length) defined by its structure, the movable electrode 4, the insulating rod 5 and the spring receiver 6 are moved to the movable element 11, the connecting rod 8, and the contact pressure spring 7. And move together. Thereafter, the movable element 11 comes into contact with a stationary plate (not shown) and stops, thereby reaching a state where the opening is completed.

なお、接圧ばね7および電磁操作装置100の開極のための駆動エネルギーだけでは真空遮断器に求められる開極速度を満たせない場合は、例えば、図3中、可動子11の左側に、別途、開放ばね(引きばね)を配置してもよい。   In addition, when only the driving energy for opening the contact pressure spring 7 and the electromagnetic operating device 100 cannot satisfy the opening speed required for the vacuum circuit breaker, for example, on the left side of the mover 11 in FIG. An open spring (pull spring) may be arranged.

図2に示すように、磁束密度調整部200は、駆動用コイル10に通電するための電荷を蓄積するコンデンサとしての投入用コンデンサ17および開極用コンデンサ18を有している。投入用コンデンサ17および開極用コンデンサ18は、操作基板9内に設けた充電電圧制御回路9aによって一定の電圧に充電されるようになっている。この充電電圧制御回路9aは、外部電源によって動作する。また、操作基板9が外部から投入指令を受けると、投入用コンデンサ17から駆動用コイル10へと電流が供給され、操作基板9が外部から開極指令を受けると、開極用コンデンサ18から駆動用コイル10へと電流が供給される。投入用コンデンサ17または開極用コンデンサ18から供給された電流値とコイル巻数との積が起磁力となり、起磁力の大小で、投入または開極動作時の可動子11の運動エネルギーが変化する。   As shown in FIG. 2, the magnetic flux density adjusting unit 200 includes a closing capacitor 17 and a opening capacitor 18 as capacitors for storing electric charges for energizing the driving coil 10. The charging capacitor 17 and the opening capacitor 18 are charged to a constant voltage by a charging voltage control circuit 9 a provided in the operation board 9. The charging voltage control circuit 9a is operated by an external power source. When the operation board 9 receives a closing command from the outside, a current is supplied from the charging capacitor 17 to the driving coil 10. When the operation board 9 receives a opening command from the outside, the operation board 9 is driven from the opening capacitor 18. Current is supplied to the working coil 10. The product of the current value supplied from the charging capacitor 17 or the opening capacitor 18 and the number of coil turns becomes a magnetomotive force, and the kinetic energy of the mover 11 during the closing or opening operation changes depending on the magnitude of the magnetomotive force.

図4は、投入動作時において、可動電極4が固定電極3に当接する直前のダンパ13がショックアブソーバーとしての作用を開始する時点の状態を示す図である。図5は、投入動作時において、可動電極4が固定電極3に当接した瞬間の状態を示す図であり、可動電極4と固定電極3とが電気的に直接接触する瞬間を示している。この実施の形態では、図4から図5の状態にかけて、つまり可動電極4が固定電極3に当接する直前の所定の期間、言い換えれば、所定の位置範囲だけ、ダンパ13を作用させて可動電極4の運動エネルギーを吸収させ、その後、可動電極4と固定電極3とが当接するように構成している。   FIG. 4 is a diagram showing a state at the time when the damper 13 immediately before the movable electrode 4 comes into contact with the fixed electrode 3 starts to act as a shock absorber during the closing operation. FIG. 5 is a diagram showing a state at the moment when the movable electrode 4 comes into contact with the fixed electrode 3 during the closing operation, and shows a moment when the movable electrode 4 and the fixed electrode 3 are in direct electrical contact. In this embodiment, the movable electrode 4 is operated by operating the damper 13 in the state shown in FIGS. 4 to 5, that is, for a predetermined period immediately before the movable electrode 4 contacts the fixed electrode 3, in other words, for a predetermined position range. Then, the movable electrode 4 and the fixed electrode 3 come into contact with each other.

仮にダンパ13が配置されていないとすると、可動電極4と固定電極3が当接した後に可動電極4が跳ね返り、可動電極4と固定電極3とが乖離するので、所望のチャタリングを防止する性能が得られなくなることがある。チャタリング発生時に可動電極4と固定電極3との間に電圧が印加されていると、この両電極の当接面となる可動接点と固定接点の間にアークが発生し、電圧の位相によっては接点が溶着することがある。このような不具合が発生しないようにダンパ13が吸収すべき運動エネルギーは、真空遮断器などの定格によって様々であるが、ダンパ13の個数、作用させる距離およびダンパ13内のオリフィスの形状などを適切に設定することで、所望の性能を実現できる。   If the damper 13 is not disposed, the movable electrode 4 rebounds after the movable electrode 4 and the fixed electrode 3 come into contact with each other, and the movable electrode 4 and the fixed electrode 3 are separated from each other. It may not be obtained. If a voltage is applied between the movable electrode 4 and the fixed electrode 3 when chattering occurs, an arc is generated between the movable contact and the fixed contact that are the contact surfaces of both electrodes, and depending on the phase of the voltage, the contact May weld. The kinetic energy to be absorbed by the damper 13 varies depending on the rating of the vacuum circuit breaker or the like so that such a problem does not occur, but the number of dampers 13, the distance to be operated, the shape of the orifice in the damper 13, etc. By setting to, desired performance can be realized.

電磁操作式真空遮断器1では、駆動用コイル10に通電する電流値によって駆動用コイル10が発生する磁束密度を変化させ、投入速度を変えることができる。これを利用すれば、ダンパ13の個体差により、適用したダンパ13の吸収できる運動エネルギーが設計値から外れていても、可動電極4の可動電極4と固定電極5とが接触する直前の運動エネルギーを一定にすることができる。   In the electromagnetically operated vacuum circuit breaker 1, the density of magnetic flux generated by the driving coil 10 can be changed according to the value of the current supplied to the driving coil 10, and the closing speed can be changed. If this is used, even if the kinetic energy that can be absorbed by the applied damper 13 deviates from the design value due to individual differences of the damper 13, the kinetic energy immediately before the movable electrode 4 and the fixed electrode 5 of the movable electrode 4 come into contact with each other. Can be made constant.

電磁操作式真空遮断器1を生産するときには、設計中心値から所定の許容範囲の運動エネルギー吸収特性を持つダンパ13を想定して、遮断性能およびチャタリング性能などの真空遮断器に要求される性能を満たせるように生産する。然しながら、例えば、実際に適用したダンパ13が吸収できる運動エネルギーが、ダンパ13の個体差により前記許容範囲より小さいと、可動電極4が固定電極3に当接する瞬間の運動エネルギーが前記許容範囲内のダンパ13に比べ大きくなり、チャタリング時間が長くなり真空遮断器として求められる耐久性、耐溶着性などの性能を満たせなくなる。   When producing the electromagnetically operated vacuum circuit breaker 1, assuming the damper 13 having a kinetic energy absorption characteristic within a predetermined allowable range from the design center value, the performance required for the vacuum circuit breaker such as the breaking performance and the chattering performance is obtained. Produce to meet. However, for example, if the kinetic energy that can be absorbed by the damper 13 actually applied is smaller than the allowable range due to individual differences of the dampers 13, the kinetic energy at the moment when the movable electrode 4 contacts the fixed electrode 3 is within the allowable range. It becomes larger than the damper 13 and the chattering time becomes longer, so that it is not possible to satisfy performances such as durability and welding resistance required as a vacuum circuit breaker.

逆に、個体差により吸収できる運動エネルギーが前記許容範囲より大きいダンパが適用されると、固定電極3に当接する瞬間の運動エネルギーが前記許容範囲内のダンパ13に比べ小さくなり、所望のチャタリングに関連した性能は満たせるが、可動電極4と固定電極5とが当接する直前の速度が低くなる。このように、可動電極4と固定接点電極3とが当接する直前の速度が低くなると、可動電極3と固定電極4とが当接するまでに時間がかかり過ぎてしまうため、投入直後に開極して3サイクル以内に遮断を完了する性能(例えば、JEC−2300規格に定められた定格遮断時間)の達成が困難となることがある。   Conversely, when a damper whose kinetic energy that can be absorbed due to individual differences is larger than the allowable range is applied, the kinetic energy at the moment of contact with the fixed electrode 3 becomes smaller than that of the damper 13 within the allowable range, and desired chattering is achieved. Although the related performance can be satisfied, the speed immediately before the movable electrode 4 and the fixed electrode 5 come into contact with each other is reduced. As described above, if the speed immediately before the movable electrode 4 and the fixed contact electrode 3 contact each other becomes low, it takes too much time for the movable electrode 3 and the fixed electrode 4 to contact each other. In some cases, it is difficult to achieve the performance (for example, the rated interruption time defined in the JEC-2300 standard) for completing the interruption within 3 cycles.

そこで、駆動用コイル10に流れる電流を、適用するダンパ13に合わせて設定することで、投入動作において可動電極4が固定電極3に当接する直前の可動電極4の運動エネルギーが、個々のダンパの特性バラツキによって変わらないようにすることができる。なお、個々のダンパ13の吸収できる運動エネルギーを、電磁操作式真空遮断器1に組み込む前または製造工程での最終調整前に事前測定して把握しておくと、調整が容易となる。また、事前に個々のダンパ13の特性を測定せずとも、ダンパ13の製造公差の最大および最小値を把握することで、その特性の範囲を推定しておいてもよい。   Therefore, by setting the current flowing in the driving coil 10 according to the damper 13 to be applied, the kinetic energy of the movable electrode 4 immediately before the movable electrode 4 comes into contact with the fixed electrode 3 in the closing operation is changed. It can be prevented from changing due to characteristic variations. If the kinetic energy that can be absorbed by each damper 13 is preliminarily measured and grasped before being incorporated into the electromagnetically operated vacuum circuit breaker 1 or before the final adjustment in the manufacturing process, the adjustment becomes easy. Further, without measuring the characteristics of the individual dampers 13 in advance, the range of the characteristics may be estimated by grasping the maximum and minimum manufacturing tolerances of the dampers 13.

次に、この実施の形態において、駆動用コイル10に通電する電流値によって所望の可動電極4が固定電極3に当接する直前の可動電極4の運動エネルギー、言い換えれば、所望の投入速度を得るための方法について説明する。   Next, in this embodiment, to obtain the kinetic energy of the movable electrode 4 immediately before the desired movable electrode 4 abuts against the fixed electrode 3 according to the current value supplied to the driving coil 10, in other words, the desired input speed. The method will be described.

駆動用コイル10に通電する電流値を調整するには、投入用コンデンサ17の充電電圧を調整すればよい。図6に、充電電圧を調整するためのフローチャートを示す。まず、ステップS001において、ダンパ13が吸収できる運動エネルギーに関するデータ、例えば、採用したダンパ13のカタログ値、事前に測定した特性および実際に電磁操作式真空遮断器に組み込んで得られたチャタリングに関する測定データなどから、適用しようとしているダンパ13の吸収できる運動エネルギーを推定し、この推定した値が、設計で想定した許容範囲に対して大きい場合はステップS002へ、前記許容範囲内の場合はステップS003へ、前記許容範囲より小さい場合はステップS004へ、それぞれ進む。この推定は、電磁操作式真空遮断器1の試験、評価装置に組み込まれたコンピュータを用いておこなってもよい。   In order to adjust the current value to be supplied to the driving coil 10, the charging voltage of the charging capacitor 17 may be adjusted. FIG. 6 shows a flowchart for adjusting the charging voltage. First, in step S001, data relating to kinetic energy that can be absorbed by the damper 13, for example, catalog values of the adopted damper 13, characteristics measured in advance, and measurement data relating to chattering actually obtained by being incorporated in an electromagnetically operated vacuum circuit breaker. From the above, the kinetic energy that can be absorbed by the damper 13 to be applied is estimated, and if the estimated value is larger than the allowable range assumed in the design, go to step S002, and if it is within the allowable range, go to step S003. If it is smaller than the allowable range, the process proceeds to step S004. This estimation may be performed using a computer incorporated in the test and evaluation apparatus for the electromagnetically operated vacuum circuit breaker 1.

ステップS002〜S004では、操作基板9の充電電圧制御回路9aの充電電圧設定値を変更して投入用コンデンサ17を充電する。具体的には、それぞれ、ステップS002では前記充電電圧設定値を上げ、ステップS003では前記充電電圧設定値を維持し、ステップS004では前記充電電圧設定値を下げる。ステップS002およびS004での前記充電電圧設定値の変更幅は、前記許容範囲からの差分の値に基づいて推測した値であっても、固定値であってもよい。また、予め、ダンパ13の個体差に応じた適切な前記充電電圧設定値を求めておけば、投入用コンデンサ17の充電電圧設定値の変更のための時間を短縮することができる。   In steps S002 to S004, the charging capacitor 17 is charged by changing the charging voltage setting value of the charging voltage control circuit 9a of the operation board 9. Specifically, in step S002, the charging voltage setting value is increased, in step S003, the charging voltage setting value is maintained, and in step S004, the charging voltage setting value is decreased. The change range of the charging voltage setting value in steps S002 and S004 may be a value estimated based on a difference value from the allowable range or a fixed value. If an appropriate charging voltage setting value corresponding to the individual difference of the damper 13 is obtained in advance, the time for changing the charging voltage setting value of the charging capacitor 17 can be shortened.

投入用コンデンサ17の充電が完了したら、ステップS005に進み、操作基板9に投入指令をあたえ、操作基板9内の投入用コンデンサ17の放電スイッチ(図示せず)に放電指令を出し、電磁操作式真空遮断器1に投入動作を実行させる。   When the charging of the charging capacitor 17 is completed, the process proceeds to step S005, where a charging command is given to the operation board 9, a discharging command (not shown) of the charging capacitor 17 in the operating board 9 is issued, and the electromagnetic operation type The vacuum circuit breaker 1 is caused to perform a closing operation.

次に、ステップS006で、この投入動作時のチャタリングの発生状況を測定し、ステップS007で、この測定結果を評価し、許容範囲の場合は、充電電圧設定を操作基板9内の記憶装置(図示せず)に保存して終了する。また、前記許容範囲外である場合は、前記測定結果を、ステップS001へもどし、適用しようとしているダンパ13の吸収できる運動エネルギーの推定を再度行う。   Next, in step S006, the occurrence state of chattering at the time of the closing operation is measured. In step S007, the measurement result is evaluated. If it is within the allowable range, the charging voltage setting is stored in the storage device (see FIG. Save to (not shown) and exit. If it is outside the allowable range, the measurement result is returned to step S001, and the kinetic energy that can be absorbed by the damper 13 to be applied is estimated again.

このように、磁束密度調整部200によって駆動用コイル10に通電する電流値を調整して駆動用コイル10が発生する磁束密度を調整すれば、適用したダンパ13の特性に合った適切な投入速度とすることができる。つまり、投入動作時に、可動電極4と固定電極5とが当接する直前にダンパ13によって減速された可動電極4の運動エネルギー(投入速度)を、所定の範囲とすることができる。   In this way, if the magnetic flux density generated by the driving coil 10 is adjusted by adjusting the current value supplied to the driving coil 10 by the magnetic flux density adjusting unit 200, an appropriate input speed that matches the characteristics of the applied damper 13. It can be. That is, the kinetic energy (dosing speed) of the movable electrode 4 decelerated by the damper 13 immediately before the movable electrode 4 and the fixed electrode 5 abut during the making operation can be set within a predetermined range.

また、投入用コンデンサ17の充電電圧設定値の変更のみで前記磁束密度の調整ができるので、生産時のみならず、製品出荷後に、電磁操作装置100およびダンパ13に経年劣化や接点消耗に伴う特性の変動が生じても、同様の方法で調整することができる。   Further, since the magnetic flux density can be adjusted only by changing the charging voltage setting value of the charging capacitor 17, not only during production but also after the product is shipped, the electromagnetic operating device 100 and the damper 13 are characterized by aging and contact wear. Even if fluctuations occur, it can be adjusted by the same method.

また、可動子11の運動エネルギーは、駆動用コイル10の電流ピーク値に大きく依存しているため、この電流ピーク値との関連が大きな投入用コンデンサ17の充電電圧値を用いて調整することで、調整可能範囲を広くすることでできる。   In addition, since the kinetic energy of the mover 11 greatly depends on the current peak value of the driving coil 10, the kinetic energy is adjusted by using the charging voltage value of the input capacitor 17 having a large relationship with the current peak value. This can be done by widening the adjustable range.

また、従来の電磁操作式真空遮断器でも設けられている、操作基板9および投入用コンデンサ17を、流用、必要に応じて改良して調整を行うことができるため、新たに部材を追加する必要がなく、ダンパ13の個体差に応じた調整を低コストで実現できる。   In addition, since the operation board 9 and the charging capacitor 17 provided in the conventional electromagnetically operated vacuum circuit breaker can be diverted and adjusted as necessary, it is necessary to add a new member. Therefore, adjustment according to the individual difference of the damper 13 can be realized at low cost.

なお、以上の例では、投入用コンデンサ17を充電電圧設定値に充電する機能を操作基板9にもたせているが、操作基板9以外に同様な機能を持たせてもよい。   In the above example, the operation board 9 is provided with a function of charging the charging capacitor 17 to the charging voltage set value. However, a function other than the operation board 9 may be provided.

以上より、この発明に係る電磁操作式真空遮断器1においては、真空容器内に一対の接点を有する真空バルブ2と、駆動用コイル10および可動子11を有し、前記一対の接点の一方の接点が固着された可動電極4を他方の接点が固着された固定電極3へと駆動させて前記一対の接点を当接させる電磁操作装置100と、前記当接の時の運動エネルギーを吸収するダンパ13と、該ダンパ13の吸収できる運動エネルギーの個体差に基づいて、前記駆動用コイル10が発生する磁束密度を所定の値に調整する磁束密度調整部200とを備えたので、吸収できる運動エネルギーに個体差があるダンパ13を用いても、所定の遮断性能とチャタリングを抑制する性能とを両立できる電磁操作式真空遮断器1を提供することができる。   As described above, the electromagnetically operated vacuum circuit breaker 1 according to the present invention has the vacuum valve 2 having a pair of contacts in the vacuum vessel, the driving coil 10 and the mover 11, and one of the pair of contacts. An electromagnetic operating device 100 that drives the movable electrode 4 to which the contact is fixed to the fixed electrode 3 to which the other contact is fixed to bring the pair of contacts into contact with each other, and a damper that absorbs kinetic energy at the time of the contact 13 and a magnetic flux density adjusting unit 200 that adjusts the magnetic flux density generated by the driving coil 10 to a predetermined value based on individual differences in kinetic energy that can be absorbed by the damper 13. Even if the damper 13 having individual differences is used, it is possible to provide the electromagnetically operated vacuum circuit breaker 1 that can achieve both a predetermined breaking performance and a performance for suppressing chattering.

実施の形態2.
実施の形態1では、投入用コンデンサ17の充電電圧を変更することで駆動用コイル10に供給する電流を調整する構成および方法を示したが、この実施の形態2では、調整用抵抗装置19を用いて前記電流を調整する。
Embodiment 2. FIG.
In the first embodiment, the configuration and method for adjusting the current supplied to the driving coil 10 by changing the charging voltage of the charging capacitor 17 have been described. However, in the second embodiment, the adjustment resistor device 19 is provided. To adjust the current.

図7に示すように、この実施の形態の磁束密度調整部200は、操作基板9と駆動用コイル10との間に直列接続された調整用抵抗装置19を有している。この調整用抵抗装置19は、可変抵抗、取替え可能な抵抗が装着された抵抗用のフォルダ、または複数の抵抗体の接続を切り替える装置などであってもよい。これ以外の構成は、実施の形態1と同様なので説明を省略する。   As shown in FIG. 7, the magnetic flux density adjusting unit 200 of this embodiment includes an adjusting resistor device 19 connected in series between the operation board 9 and the driving coil 10. The adjusting resistor device 19 may be a variable resistor, a resistor folder with a replaceable resistor, or a device that switches connection of a plurality of resistors. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

図8に、調整用抵抗装置19を用いて前記電流を調整するためのフローチャートを示す。まず、ステップS001において、ダンパ13が吸収できる運動エネルギーに関するデータ、例えば、採用したダンパ13のカタログ値、事前に測定した特性および実際に電磁操作式真空遮断器に組み込んで得られたチャタリングに関する測定データなどから、適用しようとしているダンパ13の吸収できる運動エネルギーを推定し、この推定した値が、設計で想定した許容範囲に対して大きい場合はステップS102へ、前記許容範囲内の場合はステップS103へ、前記許容範囲より小さい場合はステップS104へ、それぞれ進む。   FIG. 8 shows a flowchart for adjusting the current using the adjusting resistance device 19. First, in step S001, data relating to kinetic energy that can be absorbed by the damper 13, for example, catalog values of the adopted damper 13, characteristics measured in advance, and measurement data relating to chattering actually obtained by being incorporated in an electromagnetically operated vacuum circuit breaker. From the above, the kinetic energy that can be absorbed by the damper 13 to be applied is estimated, and if this estimated value is larger than the allowable range assumed in the design, go to step S102, and if it is within the allowable range, go to step S103. If it is smaller than the allowable range, the process proceeds to step S104.

ステップS102〜S104では、操作基板9の充電電圧制御回路9a(図示せず)を用いて投入用コンデンサ17を充電すると共に、調整用抵抗装置19の抵抗値を適切な値に変更する。具体的には、それぞれ、ステップS102では前記抵抗値を下げ、ステップS103では前記抵抗値を維持し、ステップS104では前記抵抗値を上げる。ステップS102およびS104での前記抵抗値の変更幅は、前記許容範囲からの差分の値に基づいて推測した値であっても、固定値であってもよい。また、予め、ダンパ13の個体差に応じた適切な抵抗値を求めておけば、調整用抵抗装置19の抵抗値の変更のための時間を短縮することができる。なお、ステップS005以降は、実施の形態1と同様なので説明を省略する。   In steps S102 to S104, the charging capacitor 17 is charged using the charging voltage control circuit 9a (not shown) of the operation board 9, and the resistance value of the adjusting resistor device 19 is changed to an appropriate value. Specifically, the resistance value is decreased in step S102, the resistance value is maintained in step S103, and the resistance value is increased in step S104. The change range of the resistance value in steps S102 and S104 may be a value estimated based on a difference value from the allowable range or may be a fixed value. If an appropriate resistance value corresponding to the individual difference of the damper 13 is obtained in advance, the time for changing the resistance value of the adjusting resistor device 19 can be shortened. Since step S005 and subsequent steps are the same as in the first embodiment, description thereof is omitted.

このように、調整用抵抗装置19を用いて、その抵抗値によって投入速度を容易に調整することができるので、生産時のみならず、製品出荷後に、電磁操作装置100およびダンパ13の経年劣化や接点消耗に伴う特性の変動が生じても、同様の方法で調整することができる。   As described above, since the adjusting speed can be easily adjusted by the resistance value using the adjusting resistance device 19, not only during production but also after the product shipment, the electromagnetic operating device 100 and the damper 13 may deteriorate over time. Even if characteristics change due to contact wear, adjustment can be made in the same manner.

また、可動子11の運動エネルギーは、駆動用コイル10の電流ピーク値に大きく依存しているため、この電流ピーク値との関連が大きな調整用抵抗装置19の抵抗値を用いて調整することで、調整可能範囲を広くすることでできる。   In addition, since the kinetic energy of the mover 11 greatly depends on the current peak value of the driving coil 10, it is adjusted by using the resistance value of the adjusting resistor device 19 that has a large relationship with the current peak value. This can be done by widening the adjustable range.

また、単に、操作基板9と駆動用コイル10の間に調整用抵抗装置19を接続するだけでよいので、簡素な構成となり、ダンパ13の個体差に応じた調整を低コストで実現できる。   Further, since it is only necessary to connect the adjusting resistor device 19 between the operation board 9 and the driving coil 10, the configuration is simple, and the adjustment according to the individual difference of the damper 13 can be realized at low cost.

なお、以上では、調整用抵抗装置19の抵抗値を変更することで投入速度を調整したが、投入用コンデンサ17の充電電圧と調整用抵抗装置19の抵抗値の両方の値を変更して調整してもよい。   In the above, the input speed is adjusted by changing the resistance value of the adjustment resistor device 19, but the adjustment is performed by changing both the charging voltage of the input capacitor 17 and the resistance value of the adjustment resistor device 19. May be.

実施の形態3.
実施の形態1では、投入用コンデンサ17の充電電圧を変更することで駆動用コイル10に供給する電流を調整する構成および方法を示したが、この実施の形態3では、容量調整用コンデンサ20を用いて前記電流を調整する。
Embodiment 3 FIG.
In the first embodiment, the configuration and method for adjusting the current supplied to the driving coil 10 by changing the charging voltage of the input capacitor 17 have been described. In the third embodiment, the capacitance adjusting capacitor 20 is To adjust the current.

図9に示すように、この実施の形態の磁束密度調整部200は、図2に示した磁束密度調整部200に加えて、容量調整用コンデンサ20とコンデンサ接続切り替え部21とを有している。コンデンサ接続切り替え部21は、操作基板9と投入用コンデンサ17および容量調整用コンデンサ20との間に接続され、操作基板9と投入用コンデンサ17および容量調整用コンデンサ20の接続状態を切り替える。これ以外の構成は、実施の形態1と同様なので説明を省略する。   As shown in FIG. 9, the magnetic flux density adjusting unit 200 of this embodiment includes a capacitance adjusting capacitor 20 and a capacitor connection switching unit 21 in addition to the magnetic flux density adjusting unit 200 shown in FIG. 2. . The capacitor connection switching unit 21 is connected between the operation board 9 and the input capacitor 17 and the capacity adjustment capacitor 20, and switches the connection state between the operation board 9, the input capacitor 17 and the capacity adjustment capacitor 20. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

図10に、容量調整用コンデンサ20とコンデンサ接続切り替え部21とを用いて前記電流を調整するためのフローチャートを示す。まず、ステップS001において、ダンパ13が吸収できる運動エネルギーに関するデータ、例えば、採用したダンパ13のカタログ値、事前に測定した特性および実際に電磁操作式真空遮断器に組み込んで得られたチャタリングに関する測定データなどから、適用しようとしているダンパ13の吸収できる運動エネルギーを推定し、この推定した値が、設計で想定した許容範囲に対して大きい場合はステップS202へ、前記許容範囲内の場合はステップS203へ、前記許容範囲より小さい場合はステップS204へ、それぞれ進む。   FIG. 10 shows a flowchart for adjusting the current using the capacitor 20 for capacitance adjustment and the capacitor connection switching unit 21. First, in step S001, data relating to kinetic energy that can be absorbed by the damper 13, for example, catalog values of the adopted damper 13, characteristics measured in advance, and measurement data relating to chattering actually obtained by being incorporated in an electromagnetically operated vacuum circuit breaker. From the above, the kinetic energy that can be absorbed by the damper 13 to be applied is estimated, and if the estimated value is larger than the allowable range assumed in the design, go to step S202, and if it is within the allowable range, go to step S203. If it is smaller than the allowable range, the process proceeds to step S204.

ステップS202〜S204では、操作基板9の充電電圧制御回路9a(図示せず)を用いて投入用コンデンサ17および容量調整用コンデンサ20を充電すると共に、コンデンサ接続切り替え部21を用いて投入用コンデンサ17と容量調整用コンデンサ20との接続状態を変更する。具体的には、それぞれ、ステップS202では投入用コンデンサ17と容量調整用コンデンサ20とを直列接続し、ステップS203では容量調整用コンデンサ20を接続せず、ステップS204では投入用コンデンサ17と容量調整用コンデンサ20とを並列接続する。なお、ステップS005、S006は、実施の形態1と同様なので説明を省略する。   In steps S202 to S204, the charging capacitor 17 and the capacity adjusting capacitor 20 are charged using the charging voltage control circuit 9a (not shown) of the operation board 9, and the charging capacitor 17 is switched using the capacitor connection switching unit 21. And the connection state of the capacitor 20 for adjusting the capacitance are changed. Specifically, the input capacitor 17 and the capacitance adjusting capacitor 20 are connected in series in step S202, the capacitance adjusting capacitor 20 is not connected in step S203, and the input capacitor 17 and the capacitance adjusting capacitor in step S204. A capacitor 20 is connected in parallel. Since steps S005 and S006 are the same as those in the first embodiment, the description thereof is omitted.

ステップS007では、ステップS006で得た測定結果を評価し、許容範囲の場合は、充電電圧設定を操作基板9内の記憶装置(図示せず)に保存して終了する。また、前記許容範囲外である場合は、ステップS208に進み、前記測定の結果および前記評価の結果に基づいて、既存の容量調整用コンデンサ20と静電容量の異なる新たな容量調整用コンデンサ20を選定して、前記既存の容量調整用コンデンサ20と取り替える。この取替え作業は自動または手動のいずれでもよい。続いて、前記新たな容量調整用コンデンサ20を用いて、再度、ステップS001から調整を行う。   In step S007, the measurement result obtained in step S006 is evaluated. If the measurement result is within the allowable range, the charging voltage setting is stored in a storage device (not shown) in the operation board 9 and the process ends. On the other hand, if it is out of the allowable range, the process proceeds to step S208, and a new capacitance adjusting capacitor 20 having a capacitance different from that of the existing capacitance adjusting capacitor 20 is obtained based on the measurement result and the evaluation result. Select and replace the existing capacitance adjusting capacitor 20. This replacement operation may be either automatic or manual. Subsequently, using the new capacitance adjusting capacitor 20, the adjustment is performed again from step S001.

このように、容量調整用コンデンサ20を用いて、その静電容量によって投入速度を容易に調整することができるので、生産時のみならず、製品出荷後に、電磁操作装置100およびダンパ13の経年劣化や接点消耗に伴う特性の変動が生じても、同様の方法で調整することができる。   As described above, since the charging speed can be easily adjusted by using the capacitance adjusting capacitor 20, the aging of the electromagnetic operating device 100 and the damper 13 not only during production but also after product shipment. Even if characteristics change due to contact wear, the adjustment can be made in the same manner.

なお、上述の調整作業の前に、予め、ダンパ13の個体差に応じた投入動作に用いる適切なコンデンサ容量を調査しておき、前記適切なコンデンサ容量を、投入用コンデンサ17との組み合わせで実現できる容量調整用コンデンサ20を用意しておくことで、前記調整を短縮することができる。   Prior to the adjustment operation described above, an appropriate capacitor capacity used for the charging operation according to the individual difference of the damper 13 is investigated in advance, and the appropriate capacitor capacity is realized in combination with the charging capacitor 17. The adjustment can be shortened by preparing a capacitor 20 for adjusting the capacity.

また、上述のように、吸収できる運動エネルギーが大きいダンパ13を用いると投入速度が低くなり、投入直後に開極して3サイクル以内に遮断を完了するという遮断性能の達成が難しくなるが、この実施の形態のように、投入動作に用いるコンデンサの静電容量を増加させる方法を用いることで、投入用コンデンサ17および容量調整用コンデンサ20から駆動コイル10に供給される電流の波形が幅広になり、ダンパ13が作用する可動電極4が固定電極3に当接する直前での電磁力が増加するので、前記遮断性能を達成しやすくなる。   Further, as described above, when the damper 13 having a large kinetic energy that can be absorbed is used, the charging speed becomes low, and it becomes difficult to achieve the breaking performance of opening the electrode immediately after loading and completing the breaking within 3 cycles. By using the method of increasing the capacitance of the capacitor used for the charging operation as in the embodiment, the waveform of the current supplied from the charging capacitor 17 and the capacitance adjusting capacitor 20 to the drive coil 10 becomes wider. Since the electromagnetic force immediately before the movable electrode 4 on which the damper 13 acts contacts the fixed electrode 3 increases, it becomes easy to achieve the blocking performance.

また、コンデンサは温度により静電容量などの特性が変動するので、温度センサを用いて投入用コンデンサ17の温度を測定し、この温度に基づいて接続する容量調整用コンデンサ20を選択することで、周囲温度などにより動作特性変化が生じない電磁操作式真空遮断器1を得ることもできる。   Further, since the characteristics of the capacitor, such as capacitance, vary depending on the temperature, the temperature of the input capacitor 17 is measured using a temperature sensor, and the capacitance adjusting capacitor 20 to be connected is selected based on this temperature. It is also possible to obtain an electromagnetically operated vacuum circuit breaker 1 that does not change its operating characteristics due to ambient temperature or the like.

なお、以上の説明では、容量調整用コンデンサ20を異なる静電容量のものに取り替える方法を示したが、同じ静電容量の容量調整用コンデンサ20を追加接続することで、投入速度を調整してもよい。   In the above description, the method of replacing the capacitance adjusting capacitor 20 with a capacitor having a different capacitance has been shown. However, the charging speed can be adjusted by additionally connecting the capacitance adjusting capacitor 20 having the same capacitance. Also good.

また、以上では、投入に用いるコンデンサの静電容量を変更することで投入速度を調整したが、投入用コンデンサ17および容量調整用コンデンサ20の充電電圧の変更と、容量調整用コンデンサ20の接続状態の変更との両方で調整してもよい。   In the above description, the charging speed is adjusted by changing the capacitance of the capacitor used for charging. However, the charging voltage of the charging capacitor 17 and the capacitance adjusting capacitor 20 is changed, and the connection state of the capacitance adjusting capacitor 20 is changed. You may adjust both by changing.

実施の形態4.
実施の形態1では、投入用コンデンサ17の充電電圧を変更することで駆動用コイル10に供給する電流を調整する構成および方法を示したが、この実施の形態4では、投入に用いる駆動用コイル10の巻き数を変更して、可動子11を投入方向へ駆動させる磁束密度を調整する。
Embodiment 4 FIG.
In the first embodiment, the configuration and the method for adjusting the current supplied to the driving coil 10 by changing the charging voltage of the charging capacitor 17 have been described. In the fourth embodiment, the driving coil used for charging is described. The number of turns of 10 is changed to adjust the magnetic flux density that drives the mover 11 in the closing direction.

図11に示すように、この実施の形態の磁束密度調整部200は、図2に示した磁束密度調整部200に加えて、同軸の複数の投入用コイル10a、10b、10c、および、これらと操作基板9との接続を切り替える駆動用コイル接続切り替え部22とを有している。これ以外の構成は、実施の形態1と同様なので説明を省略する。   As shown in FIG. 11, in addition to the magnetic flux density adjusting unit 200 shown in FIG. 2, the magnetic flux density adjusting unit 200 of this embodiment includes a plurality of coaxial input coils 10a, 10b, 10c, and A drive coil connection switching unit 22 that switches connection with the operation board 9 is provided. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

図12に、複数の投入用コイル10a、10b、10cおよび駆動用コイル接続切り替え部22を用いて前記磁束密度を調整するためのフローチャートを示す。まず、ステップS001において、ダンパ13が吸収できる運動エネルギーに関するデータ、例えば、採用したダンパ13のカタログ値、事前に測定した特性および実際に電磁操作式真空遮断器に組み込んで得られたチャタリングに関する測定データなどから、適用しようとしているダンパ13の吸収できる運動エネルギーを推定し、この推定した値が、設計で想定した許容範囲に対して大きい場合はステップS302へ、前記許容範囲内の場合はステップS303へ、前記許容範囲より小さい場合はステップS304へ、それぞれ進む。   FIG. 12 shows a flowchart for adjusting the magnetic flux density using the plurality of making coils 10a, 10b, 10c and the driving coil connection switching unit 22. First, in step S001, data relating to kinetic energy that can be absorbed by the damper 13, for example, catalog values of the adopted damper 13, characteristics measured in advance, and measurement data relating to chattering actually obtained by being incorporated in an electromagnetically operated vacuum circuit breaker. From the above, the kinetic energy that can be absorbed by the damper 13 to be applied is estimated, and if this estimated value is larger than the allowable range assumed in the design, go to step S302, and if it is within the allowable range, go to step S303. If it is smaller than the allowable range, the process proceeds to step S304.

ステップS302〜S304では、操作基板9の充電電圧制御回路9a(図示せず)を用いて投入用コンデンサ17を充電すると共に、複数の駆動用コイル10a、10b、10cの内、適切な駆動用コイルを駆動用コイル接続切り替え部22により操作基板9に接続することで、駆動用コイルが発生する磁束の密度を調整する。具体的には、それぞれ、ステップS302では駆動用コイル10a、10bおよび10cの全てを直列に操作基板9に接続し、ステップS303では駆動用コイル10aおよび10bを直列に操作基板9に接続し、ステップS304では駆動用コイル10bを操作基板9に接続する。なお、駆動用コイル10aおよび10bを直列に接続した場合の合計のコイル巻き数は、設計中心値に対応したコイル巻き数となるように構成している。また、ステップS005およびS006は、実施の形態1と同様なので説明を省略する。   In steps S302 to S304, the charging capacitor 17 is charged using a charging voltage control circuit 9a (not shown) of the operation board 9, and an appropriate driving coil among the plurality of driving coils 10a, 10b, and 10c is used. Is connected to the operation board 9 by the drive coil connection switching unit 22 to adjust the density of the magnetic flux generated by the drive coil. Specifically, in step S302, all of the drive coils 10a, 10b, and 10c are connected in series to the operation board 9, and in step S303, the drive coils 10a and 10b are connected in series to the operation board 9. In S304, the driving coil 10b is connected to the operation board 9. Note that the total number of coil turns when the drive coils 10a and 10b are connected in series is configured to be the number of coil turns corresponding to the design center value. Steps S005 and S006 are the same as those in the first embodiment, and thus the description thereof is omitted.

ステップS007では、ステップS006で得た測定結果を評価し、許容範囲の場合は、充電電圧設定を操作基板9内の記憶装置(図示せず)に保存して終了する。また、前記許容範囲外である場合は、ステップS308に進み、前記測定の結果および前記評価の結果に基づいて巻き数の異なる同軸の新たな駆動用コイル10を選定して、既存の駆動用コイル10a、10b、10cのいずれかと取り替え、新たに取り付けられた駆動用コイル10に関して、再度、ステップS001から調整を行う。   In step S007, the measurement result obtained in step S006 is evaluated. If the measurement result is within the allowable range, the charging voltage setting is stored in a storage device (not shown) in the operation board 9 and the process ends. If it is out of the allowable range, the process proceeds to step S308, where a new coaxial driving coil 10 having a different number of turns is selected based on the measurement result and the evaluation result, and the existing driving coil is selected. Replacement with any of 10a, 10b, and 10c is performed, and the adjustment of the newly attached drive coil 10 is performed again from step S001.

このように、複数の投入用コイル10a、10b、10cおよび駆動用コイル接続切り替え部22を用いて、ダンパ13の個体差により吸収できる運動エネルギーが小さい場合は駆動用コイル10の巻き数を少なくして可動子11の運動エネルギーを小さくし、また、ダンパ13の個体差により吸収できる運動エネルギーが大きい場合は駆動用コイル10の巻き数を多くして可動子11の運動エネルギーを大きくすることができる。このように、接続する駆動用コイル10a、10b、10cの切り替によって投入速度を容易に調整することができるので、生産時のみならず、製品出荷後に、電磁操作装置100およびダンパ13の経年劣化や接点消耗に伴う特性の変動が生じても、同様の方法で調整することができる。   In this way, when the kinetic energy that can be absorbed due to individual differences of the damper 13 is small, the number of turns of the driving coil 10 is reduced by using the plurality of input coils 10a, 10b, and 10c and the driving coil connection switching unit 22. Thus, the kinetic energy of the mover 11 can be increased by decreasing the kinetic energy of the mover 11 and increasing the number of turns of the driving coil 10 when the kinetic energy that can be absorbed by the individual differences of the dampers 13 is large. . In this way, since the input speed can be easily adjusted by switching the driving coils 10a, 10b, and 10c to be connected, not only during production but also after the product shipment, the electromagnetic operating device 100 and the damper 13 may deteriorate over time. Even if characteristics change due to contact wear, adjustment can be made in the same manner.

なお、上述の調整作業の前に、予め、ダンパ13の個体差に応じた適切な駆動用コイル10の巻き数を調査しておき、巻き数の異なる駆動用コイル10を複数用意しておくことで、前記調整を短縮することができる。   Prior to the adjustment operation described above, the appropriate number of turns of the drive coil 10 according to the individual difference of the damper 13 is investigated in advance, and a plurality of drive coils 10 having different numbers of turns are prepared. Thus, the adjustment can be shortened.

また、上述のように、吸収できる運動エネルギーが大きいダンパ13を用いると投入速度が低くなり、投入直後に開極して3サイクル以内に遮断を完了するという遮断性能の達成が難しくなるが、この実施の形態のように、駆動用コイル10の巻き数を増加させることで、駆動用コイル10のインダクタンスが増加して、投入用コンデンサから放電されて駆動コイル10に供給される電流の波形が幅広になり、ダンパ13が作用する可動電極4が固定電極3に当接する直前での電磁力が増加するので、前記遮断性能を達成しやすくなる。   Further, as described above, when the damper 13 having a large kinetic energy that can be absorbed is used, the charging speed becomes low, and it becomes difficult to achieve the breaking performance of opening the electrode immediately after loading and completing the breaking within 3 cycles. As in the embodiment, by increasing the number of turns of the drive coil 10, the inductance of the drive coil 10 increases, and the waveform of the current discharged from the input capacitor and supplied to the drive coil 10 is wide. Thus, since the electromagnetic force immediately before the movable electrode 4 on which the damper 13 acts contacts the fixed electrode 3 increases, it is easy to achieve the blocking performance.

なお、以上の説明では、複数の駆動用コイル10が3個の場合を示したが、3つ以上であってもよい。   In the above description, the case where the plurality of driving coils 10 are three is shown, but three or more may be used.

また、以上では、投入動作に用いる駆動用コイル10の巻き数を変更することで投入速度を調整したが、投入用コンデンサ17の充電電圧の変更と、駆動用コイル10の巻き数の変更との両方で調整してもよい。   In the above, the closing speed is adjusted by changing the number of turns of the driving coil 10 used for the closing operation. However, the change of the charging voltage of the charging capacitor 17 and the number of turns of the driving coil 10 are changed. You may adjust in both.

さらに、これらに加えて、投入に用いるコンデンサ容量の変更、および調整用抵抗装置19の併用など、適切に上述の調整手段を組み合わせて調整を行ってもよい。   Further, in addition to these, adjustment may be performed by appropriately combining the above-described adjusting means such as changing the capacitance of the capacitor used for charging and using the adjusting resistance device 19 together.

1 電磁操作式真空遮断器、2 真空バルブ、3 固定電極、4 可動電極、5 絶縁ロッド、6 ばね受け、7 接圧ばね、8 連結棒、9 操作基板、9a 充電電圧制御回路、10、10a、10、10b、10c 駆動用コイル、11 可動子、12 固定子、13 ダンパ、14 ダンパ固定板、15 タンク、16 Oリング、17 投入用コンデンサ、18 開極用コンデンサ、19 調整用抵抗装置、20 容量調整用コンデンサ、21 コンデンサ接続切り替え部、22 駆動用コイル接続切り替え部、100 電磁操作装置、200 磁束密度調整部。   DESCRIPTION OF SYMBOLS 1 Electromagnetic operation type circuit breaker, 2 Vacuum valve, 3 Fixed electrode, 4 Movable electrode, 5 Insulating rod, 6 Spring support, 7 Contact pressure spring, 8 Connecting rod, 9 Operation board, 9a Charging voltage control circuit, 10, 10a 10, 10b, 10c Driving coil, 11 Movable element, 12 Stator, 13 Damper, 14 Damper fixing plate, 15 Tank, 16 O-ring, 17 Capacitor for input, 18 Capacitor for opening, 19 Resistance device for adjustment, 20 Capacitance adjustment capacitor, 21 Capacitor connection switching unit, 22 Driving coil connection switching unit, 100 Electromagnetic operation device, 200 Magnetic flux density adjustment unit.

Claims (7)

真空容器内に一対の接点を有する真空バルブと、
駆動用コイルおよび可動子を有し、前記一対の接点の一方の接点を他方の接点へと駆動させて前記一対の接点を当接させる電磁操作装置と、
前記当接の時の運動エネルギーを吸収するダンパと、
該ダンパの吸収できる運動エネルギーの個体差に基づいて、前記一対の接点が当接する直前の運動エネルギーが遮断性能とチャタリングを抑制する性能とを両立する範囲となる値に、前記駆動用コイル発生させる磁束密度を調整する磁束密度調整部と
を備えた電磁操作式真空遮断器。
A vacuum valve having a pair of contacts in the vacuum vessel;
An electromagnetic operating device having a drive coil and a mover, and driving one contact of the pair of contacts to the other contact to contact the pair of contacts;
A damper that absorbs kinetic energy at the time of the contact;
Based on the individual difference in kinetic energy that can be absorbed by the damper, the kinetic energy immediately before the pair of contacts abuts is generated in the drive coil to a value that satisfies both the cutoff performance and the performance to suppress chattering. solenoid-operated vacuum circuit breaker having a magnetic flux density adjusting unit to adjust the magnetic flux density Ru is.
請求項1記載の電磁操作式真空遮断器であって、
前記一方の接点は、可動電極の一端に固着されており、
前記可動電極の他端は、絶縁ロッドおよび接圧ばねを介して前記可動子に接続されており、
前記磁束密度調整部は、前記駆動用コイルに通電する電流を調整して前記磁束密度を調整する
電磁操作式真空遮断器。
An electromagnetically operated vacuum circuit breaker according to claim 1,
The one contact is fixed to one end of the movable electrode,
The other end of the movable electrode is connected to the movable element via an insulating rod and a contact pressure spring,
The magnetic flux density adjustment unit, solenoid-operated vacuum circuit breaker to adjust the magnetic flux density by adjusting the current supplied to the driving coil.
請求項1または2記載の電磁操作式真空遮断器であって、
前記磁束密度調整部は、前記駆動用コイルに電流を供給する投入用コンデンサと、前記ダンパの吸収できる運動エネルギーの個体差に基づいて、前記投入用コンデンサの充電電圧を調整する充電電圧制御回路とを有する
電磁操作式真空遮断器。
The electromagnetically operated vacuum circuit breaker according to claim 1 or 2,
The magnetic flux density adjustment unit includes a charging capacitor that supplies current to the driving coil, and a charging voltage control circuit that adjusts a charging voltage of the charging capacitor based on individual differences in kinetic energy that can be absorbed by the damper. An electromagnetically operated vacuum circuit breaker.
請求項1または2記載の電磁操作式真空遮断器であって、
前記磁束密度調整部は、前記駆動用コイルに電流を供給する投入用コンデンサと、該投入用コンデンサと前記駆動用コイルとの間に接続可能な抵抗値が可変な調整用抵抗装置とを有し、
該調整用抵抗装置の抵抗値は、前記ダンパの吸収できる運動エネルギーの個体差に基づいて調整できる
電磁操作式真空遮断器。
The electromagnetically operated vacuum circuit breaker according to claim 1 or 2,
The magnetic flux density adjusting unit includes a charging capacitor for supplying a current to the driving coil, and an adjusting resistor device having a variable resistance value connectable between the charging capacitor and the driving coil. ,
An electromagnetically operated vacuum circuit breaker in which the resistance value of the adjusting resistance device can be adjusted based on individual differences in kinetic energy that can be absorbed by the damper.
請求項1または2記載の電磁操作式真空遮断器であって、
前記磁束密度調整部は、前記駆動用コイルに電流を供給する投入用コンデンサと、該投入用コンデンサに直列または並列接続可能な容量調整用コンデンサと、前記ダンパの吸収できる運動エネルギーの個体差に基づいて、前記容量調整用コンデンサを前記投入用コンデンサに接続するか接続しないかを切り替えることができる投入用コンデンサ接続切り替え部とを有する
電磁操作式真空遮断器。
The electromagnetically operated vacuum circuit breaker according to claim 1 or 2,
The magnetic flux density adjusting unit is based on an input capacitor for supplying current to the driving coil, a capacity adjusting capacitor that can be connected in series or in parallel to the input capacitor, and an individual difference in kinetic energy that can be absorbed by the damper. An electromagnetically operated vacuum circuit breaker having a charging capacitor connection switching unit that can switch whether the capacitance adjusting capacitor is connected to the charging capacitor or not.
請求項1または2記載の電磁操作式真空遮断器であって、
前記磁束密度調整部は、前記ダンパの吸収できる運動エネルギーの個体差に基づいて、前記駆動用コイルの通電される巻数を変化させて、前記駆動用コイルが発生する磁束の磁束密度を調整する駆動用コイル接続切り替え部を有する
電磁操作式真空遮断器。
The electromagnetically operated vacuum circuit breaker according to claim 1 or 2,
The magnetic flux density adjusting unit adjusts the magnetic flux density of the magnetic flux generated by the driving coil by changing the number of turns to be energized of the driving coil based on the individual difference of kinetic energy that can be absorbed by the damper. Electromagnetically operated vacuum circuit breaker having a coil connection switching part.
請求項3記載の電磁操作式真空遮断器であって、  An electromagnetically operated vacuum circuit breaker according to claim 3,
前記充電電圧制御回路は、前記投入用コンデンサの温度に基づいて前記投入用コンデンサの充電電圧を調整するThe charging voltage control circuit adjusts the charging voltage of the charging capacitor based on the temperature of the charging capacitor.
電磁操作式真空遮断器。Electromagnetically operated vacuum circuit breaker.
JP2011107348A 2011-05-12 2011-05-12 Electromagnetic vacuum breaker Active JP5617759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107348A JP5617759B2 (en) 2011-05-12 2011-05-12 Electromagnetic vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107348A JP5617759B2 (en) 2011-05-12 2011-05-12 Electromagnetic vacuum breaker

Publications (2)

Publication Number Publication Date
JP2012238505A JP2012238505A (en) 2012-12-06
JP5617759B2 true JP5617759B2 (en) 2014-11-05

Family

ID=47461234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107348A Active JP5617759B2 (en) 2011-05-12 2011-05-12 Electromagnetic vacuum breaker

Country Status (1)

Country Link
JP (1) JP5617759B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009233B (en) 2013-03-13 2017-07-25 三菱电机株式会社 electromagnetic operating device
JP6235830B2 (en) * 2013-08-22 2017-11-22 株式会社日立産機システム Voltage detector and switchgear provided with the same
JP2018147642A (en) * 2017-03-03 2018-09-20 株式会社日立産機システム Electromagnetic operating device and electromagnetically operated switching device
CN109360766B8 (en) * 2018-11-16 2020-11-13 西一电气有限公司 Circuit breaker
CN109545617B (en) * 2018-12-18 2020-05-08 中国电建集团河南省电力勘测设计院有限公司 Automatic compensation device for residual magnetism in arc area of longitudinal magnetic vacuum arc extinguish chamber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827829U (en) * 1981-08-19 1983-02-23 東京電力株式会社 Switchgear contact shock absorber
SE9403138L (en) * 1994-09-20 1996-03-21 Asea Brown Boveri Switch for actuator
JP2002140966A (en) * 1997-03-25 2002-05-17 Toshiba Corp Switching device
JPH11203998A (en) * 1998-01-20 1999-07-30 Toshiba Corp Vacuum circuit-breaker
JP4859575B2 (en) * 2006-07-21 2012-01-25 三菱電機株式会社 Breaker
JP4770640B2 (en) * 2006-08-23 2011-09-14 日新電機株式会社 Electromagnetic actuator
CN101523535B (en) * 2006-09-28 2012-07-11 三菱电机株式会社 Solenoid controlled opening/closing apparatus
JP4934065B2 (en) * 2008-01-23 2012-05-16 三菱電機株式会社 Electromagnetic switchgear

Also Published As

Publication number Publication date
JP2012238505A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4745398B2 (en) Electromagnetic switchgear
JP5617759B2 (en) Electromagnetic vacuum breaker
JP5178644B2 (en) Gas circuit breaker with input resistance contact and its input / output method
CN105655088B (en) Valve equipment with the valve based on electric actuator and the method for controlling the valve
JP5284882B2 (en) Electromagnetic relay
JP5295858B2 (en) Electromagnetic actuator, electromagnetically operated switchgear using the same, and control method thereof
CN102687225A (en) Bistable magnetic actuator for a medium voltage circuit breaker
WO2018010372A1 (en) Intelligent circuit breaker for shunt capacitor bank switching based on flexible opening and closing technology
US7706118B2 (en) Operative control circuit of multiple electromagnetic actuating devices in series and parallel connection
WO2014017241A1 (en) Switch
JP6214675B2 (en) Switchgear
JP4934065B2 (en) Electromagnetic switchgear
US20090140188A1 (en) Energy efficient solenoid for mechanically actuating a movable member
JP2007311345A (en) Electronic controller for electromagnetic device and electric switch unit
JP2000299041A (en) Vacuum circuit-breaker
EP1934997A1 (en) An electromagnetic drive unit and an electromechanical switching device
JP5445435B2 (en) Electromagnetic vacuum breaker
CN105047480A (en) Magnetic latching relay with asymmetric magnetic circuit
JP6643456B2 (en) Magnet armature, contactor with magnet armature, and method for switching contactor
CN204834510U (en) Magnetic latching relay of asymmetric formula magnetic circuit
US20090260944A1 (en) Electromagnetic actuating device with driving and holding tapped coil
US20090262480A1 (en) Electromagnetic actuating device with coils capable of holding electrification in series connection after being actuated in parallel connection
JP6698450B2 (en) Switchgear
CN109887811B (en) High-speed repulsion device suitable for mechanical high-voltage direct-current circuit breaker
CN116569288A (en) Trigger device for circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131016

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R151 Written notification of patent or utility model registration

Ref document number: 5617759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250