JP5616449B2 - Transgenic rice expressing nanoantibodies - Google Patents

Transgenic rice expressing nanoantibodies Download PDF

Info

Publication number
JP5616449B2
JP5616449B2 JP2012525370A JP2012525370A JP5616449B2 JP 5616449 B2 JP5616449 B2 JP 5616449B2 JP 2012525370 A JP2012525370 A JP 2012525370A JP 2012525370 A JP2012525370 A JP 2012525370A JP 5616449 B2 JP5616449 B2 JP 5616449B2
Authority
JP
Japan
Prior art keywords
rice
vhh1
mucorice
mtnfαvhh
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012525370A
Other languages
Japanese (ja)
Other versions
JPWO2012011396A1 (en
Inventor
義和 幸
義和 幸
大介 徳原
大介 徳原
宏 清野
宏 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2012525370A priority Critical patent/JP5616449B2/en
Publication of JPWO2012011396A1 publication Critical patent/JPWO2012011396A1/en
Application granted granted Critical
Publication of JP5616449B2 publication Critical patent/JP5616449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain

Description

本発明は、ナノ抗体を発現するトランスジェニックイネに関し、より詳しくは、ナノ抗体を水溶性の形態でコメに蓄積しているトランスジェニックイネに関する。   The present invention relates to transgenic rice expressing nanoantibodies, and more particularly to transgenic rice accumulating nanoantibodies in rice in a water-soluble form.

近年、抗体は、遺伝子組換え医薬品として広く用いられるようになってきたが、抗体医薬品の開発においては、その製造コストの低減や安定性の向上などが大きな課題となっている。このため、大量の抗体を安価かつ安定な形態で製造しうる方法の開発が期待されている。このような状況の下、イネ発現系が注目され、2本鎖抗体や1本鎖抗体(scFv)などの抗体やサイトカインなどの蛋白質をコメに大量かつ安定な形態で発現させようとする試みもなされてきた。   In recent years, antibodies have been widely used as gene recombinant drugs. However, in the development of antibody drugs, reduction of production costs and improvement of stability are major issues. Therefore, development of a method capable of producing a large amount of antibody in an inexpensive and stable form is expected. Under such circumstances, rice expression systems have attracted attention, and attempts have been made to express antibodies such as double-chain antibodies and single-chain antibodies (scFv) and proteins such as cytokines in a large amount and a stable form in rice. Has been made.

しかしながら、コメにおいて蛋白質を生産する場合、主として蛋白貯蔵体−Iに蓄積してしまい、蓄積させた蛋白質が難可溶性となってしまうという問題があった(非特許文献1、2)。   However, when protein is produced in rice, there is a problem that the protein is mainly accumulated in the protein reservoir-I, and the accumulated protein is hardly soluble (Non-patent Documents 1 and 2).

Yoshihiro F.et al.,Protein Expression and Purification 2010;72:125−130Yoshihiro F. et al. , Protein Expression and Purification 2010; 72: 125-130. Tomonori N,et al.,PNAS 2007;104:10986−10991Tomonori N, et al. , PNAS 2007; 104: 10986-10991. Hamers−Casterman C, et al.,Nature.1993;363:446−8.Hamers-Casterman C, et al. , Nature. 1993; 363: 446-8. van der Linden RH, et al.,Biochim Biophys Acta.1999;1431:37−46.van der Linden RH, et al. Biochim Biophys Acta. 1999; 1431: 37-46. Frenken LG, et al.,J Biotechnol.2000;78:11−21.Frenken LG, et al. , J Biotechnol. 2000; 78: 11-21.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、その目的は、コメにおいて抗体が水溶性の形態で蓄積しているトランスジェニックイネを提供することにある。さらなる本発明の目的は、このようなトランスジェニックイネを利用して効率的に抗体を製造する方法を提供することにある。   This invention is made | formed in view of the subject which the said prior art has, The objective is to provide the transgenic rice in which the antibody is accumulate | stored in the water-soluble form in the rice. A further object of the present invention is to provide a method for efficiently producing an antibody using such transgenic rice.

通常、ヒトの抗体は重鎖2本と軽鎖2本から構成されているが、ラマやラクダなどのラクダ科の動物には、重鎖と軽鎖からなる4本鎖抗体だけでなく、重鎖のみからなる2本鎖抗体が存在し、4本鎖抗体同様に標的抗原を認識・結合できることが1993年に報告された(非特許文献3)。さらに、この2本鎖抗体の可変領域のみ(variable domain of llama heavy−chain;VHH)を断片化して取り出したところ、正常な抗体同様の抗原への結合親和力を有していることも判明した。このVHHは、現在、抗原への結合親和力を持つ最小の抗体であることから、「ナノ抗体」と呼ばれている。ナノ抗体は、小型で、酸や熱に対して耐性で高い安定性を有しており(非特許文献4)、また、分子量が小さいことから様々な宿主において組換え蛋白質として生産されている(非特許文献5)。   Usually, human antibodies are composed of two heavy chains and two light chains, but for camelids such as llamas and camels, not only four-chain antibodies consisting of heavy and light chains, but also heavy chains. It was reported in 1993 that there is a double-chain antibody consisting only of a chain and the target antigen can be recognized and bound in the same manner as a 4-chain antibody (Non-patent Document 3). Furthermore, when only the variable region of this double-chain antibody (variable domain of llama heavy-chain; VHH) was fragmented and taken out, it was also found that it has a binding affinity to an antigen similar to that of a normal antibody. This VHH is currently called the “nanoantibody” because it is the smallest antibody with binding affinity for antigen. Nanoantibodies are small, resistant to acid and heat and highly stable (Non-patent Document 4), and are produced as recombinant proteins in various hosts because of their low molecular weight ( Non-patent document 5).

本発明者らは、これまで水溶性の形態で蛋白質をコメに蓄積させることに成功していないイネ発現系にナノ抗体を適用して発現させたところ、意外にも、ナノ抗体が、水溶性の形態でコメにおいて蓄積されることを見出した。ナノ抗体のコメにおける局在の解析により、この水溶性の特質においては、コメの蛋白質貯蔵体以外(細胞質)へのナノ抗体の局在が、主要な要因の一つとなっていると考えられた。さらに、本発明者らは、可溶化したナノ抗体が、その本来の性能である耐熱性と安定性を保持していることを見出した。また、ナノ抗体は単量体よりも多量体の方が抗原に対する中和効果が高いことも見出した。このように、本発明者らは、抗体をナノ抗体としてイネ発現系に適用することにより、抗体を水溶性の形態で、かつ、抗体の本来の特性を失わせることなく、コメに蓄積させることに世界で初めて成功し、本発明を完成するに至った。   The present inventors applied a nanoantibody to a rice expression system that has not succeeded in accumulating proteins in rice in a water-soluble form until now. Was found to be accumulated in rice in the form of Analysis of the localization of nanoantibodies in rice revealed that the localization of nanoantibodies other than the protein reservoir of rice (cytoplasm) is one of the main factors in this water-soluble property. . Furthermore, the present inventors have found that the solubilized nanoantibody retains its original performance of heat resistance and stability. In addition, the inventors have also found that the nanoantibody has a higher neutralizing effect on the antigen than the monomer. As described above, the present inventors apply the antibody as a nanoantibody to a rice expression system, thereby allowing the antibody to accumulate in rice in a water-soluble form and without losing the original characteristics of the antibody. It was the first time in the world that the present invention was completed.

本発明は、より詳しくは、以下の発明を提供するものである。
(1)ナノ抗体をコードするDNAが導入され、ナノ抗体がコメの胚乳細胞特異的に発現し、水溶性の形態で当該細胞の細胞質に蓄積しているトランスジェニックイネ
(2)(1)に記載のトランスジェニックイネから採取されたコメ。
)()に記載のコメの、ナノ抗体を含有する水溶性画分。
)()に記載のコメまたは()に記載の水溶性画分の、ナノ抗体を含有する加工物。
)()に記載のコメ、()に記載の水溶性画分、または()に記載の加工物を含有する、組成物。
)ナノ抗体の製造方法であって、
(a)ナノ抗体をコードするDNAをイネに導入し、ナノ抗体がコメの胚乳細胞特異的に発現し、水溶性の形態で当該細胞の細胞質に蓄積しているトランスジェニックイネを作出する工程、
(b)工程(a)で作出されたトランスジェニックイネのコメから水溶性画分を得る工程、
を含む方法。
More specifically, the present invention provides the following inventions.
(1) Transgenic rice in which DNA encoding a nanoantibody is introduced, the nanoantibody is specifically expressed in rice endosperm cells, and is accumulated in the cytoplasm of the cell in a water-soluble form .
(2) Rice harvested from the transgenic rice according to (1) .
( 3 ) A water-soluble fraction of the rice according to ( 2 ), containing a nanoantibody.
( 4 ) A processed product containing nanoantibodies of the rice according to ( 2 ) or the water-soluble fraction according to ( 3 ).
( 5 ) A composition containing the rice according to ( 2 ), the water-soluble fraction according to ( 3 ), or the processed product according to ( 4 ).
( 6 ) A method for producing a nanoantibody,
(A) introducing a DNA encoding a nanoantibody into rice, and producing a transgenic rice in which the nanoantibody is specifically expressed in rice endosperm cells and accumulated in the cytoplasm of the cell in a water-soluble form ;
(B) obtaining a water-soluble fraction from the rice of the transgenic rice produced in step (a),
Including methods.

本発明により、ナノ抗体を、その本来の特性を失わせることなく、水溶性の形態でコメに蓄積させることが可能となった。本発明によれば、大量のナノ抗体を安価かつ安定な形態で製造することができる。ナノ抗体を蓄積させたコメやその水溶性画分、あるいはそれらの加工物は、安全な組成物として、医薬や飲食品などに応用することができる。   The present invention makes it possible to accumulate nanoantibodies in rice in a water-soluble form without losing their original properties. According to the present invention, a large amount of nanoantibodies can be produced in an inexpensive and stable form. The rice in which nanoantibodies are accumulated, the water-soluble fraction thereof, or the processed product thereof can be applied as a safe composition to medicines, foods and drinks, and the like.

VHH1遺伝子の導入を行ったイネの種子(以下、「MucoRice−VHH1」と略す)におけるVHH1の発現を検出した結果を示す写真である。(a)は、SDS−PAGEおよびウェスタンブロットの写真であり、(b)は、開花後14日目の種子を免疫染色した写真である。It is a photograph which shows the result of having detected the expression of VHH1 in the seed of rice which introduce | transduced VHH1 gene (henceforth "MucoRice-VHH1"). (A) is a photograph of SDS-PAGE and Western blot, and (b) is a photograph of immunostaining seeds on the 14th day after flowering. 2種類の質量分析計(QSTAR EliteおよびLTQ Orbitrap)を用いて、MucoRice−VHH1のアミノ酸配列を分析した結果を示す図である。It is a figure which shows the result of having analyzed the amino acid sequence of MucoRice-VHH1 using two types of mass spectrometers (QSTAR Elite and LTQ Orbitrap). MucoRice−VHH1からのVHH1抽出条件を検討した結果を示す写真である。Lane 1:rVHH1,Lane 2:8M 尿素入りPBSを用いたMucoRice−VHH1からの抽出液,Lane 3:PBSを用いたMucoRice−VHH1からの抽出液。It is a photograph which shows the result of having examined the VHH1 extraction conditions from MucoRice-VHH1. Lane 1: rVHH1, Lane 2: Extract from MucoRice-VHH1 using 8M urea-containing PBS, Lane 3: Extract from MucoRice-VHH1 using PBS. MucoRice−scFvからのscFv抽出条件を検討した結果を示すSDS−PAGEおよびマウスM細胞に特異性をもつ抗体(NKM−16−2−4)を用いたウェスタンブロットの写真である。Lane 1:PBSを用いたMucoRice−scFvからの抽出液,Lane 2:MucoRice−scFvのPBS抽出処理における沈殿物からの尿素入りSDS溶液による抽出液,Lane 3:PBSを用いた野生株の種子からの抽出液,Lane 4:野生株種子のPBS抽出処理における沈殿物からの尿素入りSDS溶液による抽出液,Lane 5:NKM−16−2−4抗体,Lane 6:尿素入りSDS溶液によるMucoRice−scFvからの抽出液,Lane 7:尿素入りSDS溶液による野生株の種子からの抽出液。また、図4中の点線の矢印はscFv蛋白質のバンドを示す。It is the photograph of the Western blot using SDS-PAGE and the antibody (NKM-16-2-4) specific to mouse M cell which show the result of having examined the scFv extraction condition from MucoRice-scFv. Lane 1: extract from MucoRice-scFv using PBS, Lane 2: extract from urea-containing SDS solution from precipitate in PBS extraction of MucoRice-scFv, Lane 3: from wild seeds using PBS Extract 4: Lane 4: Extracted solution with urea-containing SDS solution from the precipitate in PBS extraction of wild-type seeds, Lane 5: NKM-16-2-4 antibody, Lane 6: MucoRice-scFv with urea-containing SDS solution Extract from lane 7, Lane 7: Extract from wild seeds with urea-containing SDS solution. Also, the dotted arrow in FIG. 4 indicates the scFv protein band. 免疫電顕により種子胚乳細胞内におけるVHH1の局在を分析した結果を示す写真である。It is a photograph which shows the result of having analyzed the localization of VHH1 in a seed endosperm cell by an immunoelectron microscope. ロタウィルスに対するMucoRice−VHH1の中和効果を評価した結果を示す写真(左)およびグラフ(右)である。It is the photograph (left) and graph (right) which show the result of having evaluated the neutralization effect of MucoRice-VHH1 with respect to rotavirus. 消化管内におけるMucoRice−VHH1の安定性・分布をウエスタンブロットで評価した結果を示す写真である。It is a photograph which shows the result of having evaluated the stability and distribution of MucoRice-VHH1 in a digestive tract by Western blotting. ロタウィルスを感染させたマウスにおけるMucoRice−VHH1の中和効果を評価した結果を示す写真である。It is a photograph which shows the result of having evaluated the neutralization effect of MucoRice-VHH1 in the mouse | mouth infected with rotavirus. ロタウィルスを感染させる前からMucoRice−VHH1の投与を開始したマウスにおける、MucoRice−VHH1の中和効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the neutralization effect of MucoRice-VHH1 in the mouse | mouth which started administration of MucoRice-VHH1 before infecting rotavirus. ロタウィルスを感染させた後にMucoRice−VHH1の投与を開始したマウスにおける、MucoRice−VHH1の中和効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the neutralization effect of MucoRice-VHH1 in the mouse | mouth which started administration of MucoRice-VHH1 after infecting rotavirus. 幼若マウスの小腸組織をヘマトキシリン/エオシン染色し、顕微鏡観察した結果を示す写真である。(I)は非感染の幼若マウスの小腸組織を示し、(II)はロタウィルスを感染させた幼若マウスの小腸組織を示し、(III)はロタウィルスを感染させ、MucoRice−VHH1を投与した幼若マウスの小腸組織を示し、(IV)はロタウィルスを感染させ、WT−Rice(日本晴れ)を投与した幼若マウスの小腸組織を示す。It is a photograph showing the results of microscopic observation of hematoxylin / eosin staining of the small intestine tissue of young mice. (I) shows the small intestine tissue of an uninfected young mouse, (II) shows the small intestine tissue of a young mouse infected with rotavirus, and (III) shows the infection with rotavirus and administered MucoRice-VHH1 (IV) indicates the small intestine tissue of a young mouse infected with rotavirus and administered with WT-Rice (Nihonbare). 幼若マウスの小腸組織におけるロタウィルス量をリアルタイムPCRにて評価した結果を示すグラフである。「コントロール」は非感染の幼若マウスの小腸組織におけるVP7 RNAコピー数を示し、「RRV感染のみ」はロタウィルスを感染させた幼若マウスの小腸組織におけるVP7 RNAコピー数を示し、「WTrice投与」はロタウィルスを感染させ、WT−Rice(日本晴れ)を投与した幼若マウスの小腸組織におけるVP7 RNAコピー数を示し、「MucoRiceVHH1投与」はMucoRice−VHH1を投与した幼若マウスの小腸組織におけるVP7 RNAコピー数を示す。It is a graph which shows the result of having evaluated the amount of rotavirus in the small intestine tissue of a young mouse by real-time PCR. “Control” indicates the VP7 RNA copy number in the small intestine tissue of an uninfected young mouse, “RRV infection alone” indicates the VP7 RNA copy number in the small intestine tissue of a young mouse infected with rotavirus, and “WTrice administration” "Indicates VP7 RNA copy number in the small intestine tissue of young mice infected with rotavirus and administered WT-Rice (Japan sunny)" "MucoRice VHH1 administration" indicates VP7 in the small intestine tissue of young mice administered MucoRice-VHH1. RNA copy number is indicated. ロタウィルスを感染させたSCIDマウスの下痢の状況(下痢スコア)に対する、MucoRice−VHH1投与による改善効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the improvement effect by MucoRice-VHH1 administration with respect to the diarrhea situation (diarrhea score) of the SCID mouse which infected rotavirus. ロタウィルスを感染させたSCIDマウスにおけるロタウィルスVP7 RNA量に対する、MucoRice−VHH1投与による影響を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the influence by mucoRice-VHH1 administration with respect to the amount of rotavirus VP7 RNA in the SCID mouse which infected rotavirus. MucoRice−mTNFαVHHのPBS抽出液及び沈殿物におけるmTNFαVHHの発現を、SDS−PAGE及びWestern blotにて分析した結果を示す写真である。一番左の写真はMucoRice−mTNFαVHHモノマーをSDS−PAGEにて分析した結果を示し、左から2番目の写真はMucoRice−mTNFαVHHモノマーを抗mTNFαVHHポリクローナル抗体を用いたWestern blotにて分析した結果を示し、左から3番目の写真はMucoRice−mTNFαVHHダイマーをSDS−PAGEにて分析した結果を示し、一番右の写真はMucoRice−mTNFαVHHダイマーを抗mTNFαVHHポリクローナル抗体を用いたWestern blotにて分析した結果を示す。また「Lane 1」はrmTNFαVHH(大腸菌由来のリコンビナントmTNFαVHH、陽性コントロール)の分析結果を示し、「Lane 2」はMucoRice−mTNFαVHHモノマーのPBS抽出液の分析結果を示し、「Lane 3」はMucoRice−mTNFαVHHモノマーのPBS抽出処理後の沈殿物の分析結果を示し、「Lane 4」はMucoRice−mTNFαVHHダイマーのPBS抽出液の分析結果を示し、「Lane 5」はMucoRice−mTNFαVHHダイマーのPBS抽出処理後の沈殿物の分析結果を示す。さらに図中、四角で囲んだバンドは、mTNFαVHHモノマー(13.8kDa)又はmTNFαVHHダイマー(28.4kDa)であることを示す。It is a photograph which shows the result of having analyzed the expression of mTNF (alpha) VHH in PBS extract of MucoRice-mTNF (alpha) VHH and a precipitate by SDS-PAGE and Western blot. The leftmost photo shows the result of analyzing MucoRice-mTNFαVHH monomer by SDS-PAGE, and the second photo from the left shows the result of analyzing MucoRice-mTNFαVHH monomer by Western blot using anti-mTNFαVHH polyclonal antibody. The third photograph from the left shows the result of analyzing MucoRice-mTNFαVHH dimer by SDS-PAGE, and the rightmost photograph shows the result of analyzing MucoRice-mTNFαVHH dimer by Western blot using anti-mTNFαVHH polyclonal antibody. Show. In addition, “Lane 1” indicates the analysis result of rmTNFαVHH (recombinant mTNFαVHH derived from E. coli, positive control), “Lane 2” indicates the analysis result of the PBS extract of MucoRice-mTNFαVHH monomer, and “Lane 3” indicates MucoRiceVmHNFα. The analysis result of the precipitate after the extraction of the monomer with PBS is shown, “Lane 4” shows the analysis result of the PBS extract of MucoRice-mTNFαVHH dimer, and “Lane 5” is the precipitate after the extraction of MucoRice-mTNFαVHH dimer with PBS. The analysis result of a thing is shown. Further, in the figure, the band surrounded by a square indicates mTNFαVHH monomer (13.8 kDa) or mTNFαVHH dimer (28.4 kDa). MucoRice−mTNFαVHHのPBS抽出液におけるmTNFαVHHの発現を、SDS−PAGE及びWestern blotにて分析した結果を示す写真である。左側の写真はMucoRice−mTNFαVHH等をSDS−PAGEにて分析した結果を示し、右側の写真はMucoRice−mTNFαVHH等をWestern blotにて分析した結果を示す。また図中、「rmTNFαVHH」はrmTNFαVHHを分析した結果を示し、「MucoRice−mTNFαVHH」はMucoRice−mTNFαVHHモノマーのPBS抽出液の分析結果を示し、「MucoRice−mTNFαVHH Dimmer」はMucoRice−mTNFαVHHダイマーのPBS抽出液の分析結果を示し、「WT−Rice」はWT−Rice(日本晴)のPBS抽出液の分析結果を示す。さらに図中、矢印で示したバンドは、mTNFαVHHモノマー(図中「VHH(13.8kDa)と表記)又はmTNFαVHHダイマー(図中「VHH Dimer(28.4kDa)と表記)であることを示す。It is a photograph which shows the result of having analyzed the expression of mTNF (alpha) VHH in PBS extract of MucoRice-mTNF (alpha) VHH by SDS-PAGE and Western blot. The photograph on the left shows the result of analyzing MucoRice-mTNFαVHH etc. by SDS-PAGE, and the photograph on the right shows the result of analyzing MucoRice-mTNFαVHH etc. in Western blot. In the figure, “rmTNFαVHH” indicates the result of analysis of rmTNFαVHH, “MucoRice-mTNFαVHH” indicates the analysis result of the PBS extract of MucoRice-mTNFαVHH monomer, and “MucoRice-mTNFαVHHDmFiMFVDHFD” The analysis result of a liquid is shown, "WT-Rice" shows the analysis result of the PBS extract of WT-Rice (Nipponbare). Further, in the figure, the band indicated by an arrow indicates mTNFαVHH monomer (denoted as “VHH (13.8 kDa) in the figure) or mTNFαVHH dimer (denoted as“ VHH Dimer (28.4 kDa) in the figure) ”. mTNFαに対するmTNFαVHHの阻害率を評価した結果を示すグラフである。なお図中、一番右側の折れ線(rVHH)はrmTNFαVHHの添加量とmTNFαに対する阻害率との関係を示し、真ん中の折れ線(モノマー)はMucoRice−mTNFαVHHモノマー由来PBS抽出液の添加量とrmTNFαVHHのmTNFαに対する阻害率との関係を示し、一番左側の折れ線「ダイマー」はMucoRice−mTNFαVHHダイマー由来PBS抽出液の添加量とrmTNFαVHHのmTNFαに対する阻害率との関係を示す。It is a graph which shows the result of having evaluated the inhibition rate of mTNF (alpha) VHH with respect to mTNF (alpha). In the figure, the rightmost line (rVHH) shows the relationship between the amount of rmTNFαVHH added and the inhibition rate against mTNFα, and the middle line (monomer) shows the amount of added muTRice-mTNFαVHH monomer-derived PBS extract and mTNFα of rmTNFαVHH. The leftmost broken line “dimer” shows the relationship between the added amount of MucoRice-mTNFαVHH dimer-derived PBS extract and the inhibition rate of rmTNFαVHH to mTNFα. mTNFαの添加量とWEHI164細胞(マウス線維芽細胞)の生存率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of mTNF (alpha), and the survival rate of WEHI164 cell (mouse fibroblast). コメ種子におけるmTNFαVHHモノマーの局在を免疫電顕法にて解析した結果を示す写真である。AはmTNFαVHH米(MucoRice−mTNFαVHHモノマー)におけるmTNFαVHHモノマーの局在(I型蛋白貯蔵体(PB−I)と細胞質)を抗mTNFαVHH抗体を用いて検出し、観察した結果を示し、BはmTNFαVHH米におけるmTNFαVHHモノマーの局在(II型蛋白貯蔵体(PB−II)、細胞質、澱粉(St:Starch)、細胞壁(CW:Cell Wall))を抗mTNFαVHH抗体を用いて検出し、観察した結果を示す。また、CはmTNFαVHH米を通常ウサギIgGと反応させて、PB−I、PB−IIおよび細胞質を観察した結果(「α−Rabbit IgG」、陰性コントロール)を示し、Dは日本晴米(WT−Rice)を抗mTNFαVHH抗体と反応させて、PB−I、PB−IIおよび細胞質を観察した結果(「WT日本晴」、陰性コントロール)を示す。It is a photograph which shows the result of having analyzed the localization of mTNF (alpha) VHH monomer in a rice seed by the immunoelectron microscope method. A shows mTNFαVHH rice (MucoRice-mTNFαVHH monomer) localization of mTNFαVHH monomer (type I protein reservoir (PB-I) and cytoplasm) detected with anti-mTNFαVHH antibody, and B shows mTNFαVHH rice. Shows the results of detecting and observing the localization of mTNFαVHH monomer (type II protein reservoir (PB-II), cytoplasm, starch (St: Starch), cell wall (CW: Cell Wall)) using anti-mTNFαVHH antibody . C shows the result of reacting mTNFαVHH rice with normal rabbit IgG and observing PB-I, PB-II and cytoplasm (“α-Rabbit IgG”, negative control), and D shows Nihonbare rice (WT-Rice). ) Was reacted with anti-mTNFαVHH antibody, and PB-I, PB-II and cytoplasm were observed (“WT Nipponbare”, negative control). コメ種子におけるmTNFαVHHダイマーの局在を免疫電顕法にて解析した結果を示す写真である。AはmTNFαVHHダイマー米(MucoRice−mTNFαVHHダイマー)におけるmTNFαVHHダイマーの局在(PB−I、PB−II、細胞質)を抗mTNFαVHH抗体を用いて検出し、観察した結果を示し、BはmTNFαVHHダイマー米におけるmTNFαVHHダイマーの局在(PB−I、PB−II、細胞質、細胞壁)を抗mTNFαVHH抗体を用いて検出し、観察した結果を示す。また、CはmTNFαVHHダイマー米を通常ウサギIgGと反応させて、PB−I、PB−II、Stおよび細胞質を観察した結果を示し、Dは日本晴米(WT−Rice)を抗mTNFαVHH抗体と反応させて、PB−I、PB−IIおよび細胞質を観察した結果(「WT日本晴」、陰性コントロール)を示す。It is a photograph which shows the result of having analyzed the localization of mTNFαVHH dimer in rice seeds by immunoelectron microscopy. A shows the results of detecting and observing the localization of mTNFαVHH dimer (PB-I, PB-II, cytoplasm) in mTNFαVHH dimer rice (MucoRice-mTNFαVHH dimer) using anti-mTNFαVHH antibody, and B shows the results in mTNFαVHH dimer rice The localization of mTNFαVHH dimer (PB-I, PB-II, cytoplasm, cell wall) was detected using an anti-mTNFαVHH antibody and observed. C shows the result of observing PB-I, PB-II, St and cytoplasm by reacting mTNFαVHH dimer rice with normal rabbit IgG, and D shows the reaction of Japanese fine rice (WT-Rice) with anti-mTNFαVHH antibody. The results of observation of PB-I, PB-II and cytoplasm (“WT Nipponbare”, negative control) are shown.

本発明は、ナノ抗体をコードするDNAが導入され、ナノ抗体がコメに発現しているトランスジェニックイネを提供する。   The present invention provides transgenic rice in which DNA encoding a nanoantibody is introduced and the nanoantibody is expressed in rice.

本発明において「イネ」とは、Oryza sativaに属する植物を意味し、遺伝子組換えの対象となるイネの品種は、Oryza sativaに属する限り、特に限定されるものではない。In the present invention, “rice” means a plant belonging to Oryza sativa , and the variety of rice to be genetically modified is not particularly limited as long as it belongs to Oryza sativa .

本発明において「ナノ抗体」とは、抗体重鎖の可変領域(Variable domain of a heavy−chain antibody又はVHHとも称す)からなり、抗原を認識することができる抗体を意味する。ナノ抗体は、典型的には、ラクダ科の動物(例えば、ヒトコブラクダ、フタコブラクダ、ラマ、アルパカ、ビクーニャ)に由来する抗体である。   In the present invention, the “nanoantibody” refers to an antibody that is composed of a variable region of an antibody heavy chain (also referred to as variable domain of a heavy-chain antibody or VHH) and can recognize an antigen. Nanoantibodies are typically antibodies derived from camelids (eg, dromedaries, bactrian camels, llamas, alpaca, vicuna).

本発明におけるナノ抗体は、VHHをモノマーとして用いることができるが、ダイマー以上の多重抗体としても用いることができる。ダイマー以上の多重抗体としては、同一のVHHを連結したもの(例えば、二量体である場合はホモダイマー)であってもよく、異なる分子や同じ分子内の異なるエピト―プを認識する二つ以上のVHHが連結されているもの(例えば、二量体である場合はヘテロダイマー)であってもよい。かかるVHHの連結方法としては特に制限されることなく、公知の手法を用いることができる。例えば、スぺーサー配列を介してVHH間が連結されている抗体をコードするDNAを含むベクターを構築し、トランスジェニックイネのコメにおいて発現させる方法が挙げられる。また、コメにおいて単一のVHHを発現させ、水溶性画分から精製し、その後、精製されたVHH同士を結合することにより、ダイマー以上の多重抗体を作製することもできる。   The nanoantibodies in the present invention can use VHH as a monomer, but can also be used as multiple antibodies of dimers or higher. The dimer or higher multi-antibody may be one in which the same VHH is linked (for example, a homodimer in the case of a dimer), and two or more recognize different molecules or different epitopes within the same molecule. (For example, a heterodimer in the case of a dimer) may be used. Such a VHH connection method is not particularly limited, and a known method can be used. For example, a method comprising constructing a vector containing DNA encoding an antibody in which VHHs are linked via a spacer sequence and expressing the vector in rice of transgenic rice can be mentioned. In addition, a single VHH can be expressed in rice, purified from a water-soluble fraction, and then the purified VHHs can be bound to each other to produce multiple antibodies of dimers or higher.

本発明におけるナノ抗体は、所望の抗原に対するナノ抗体を用いることができる。抗原としては、例えば、(1)病原性ウィルス(例えば、ロタウィルス、A型肝炎ウィルス、B型肝炎ウィルス、C型肝炎ウィルス、ノーウオーク(ノロ)ウィルス、狂犬病ウィルス、RSウィルス、サイトメガロウィルス、口蹄疫ウィルス、伝染性胃腸炎ウィルス、風疹ウィルス、ATLウィルス、アデノウィルス、マンプス(おたふく風邪)ウィルス、コクサッキーウィルス、エンテロウィルス、ヘルペスウィルス、天然痘ウィルス、ポリオウィルス、麻疹ウィルス、日本脳炎ウィルス、テング熱ウィルス、黄熱ウィルス、西ナイルウィルス、SARS(コロナウィルス)、インフルエンザウィルス、HIV(AIDSウィルス)、エボラ出血熱ウィルス(フィロウィルス)、マールブルグウィルス(フィロウィルス)、ラッサ熱ウィルス、ハンタウィルス、ニパウィルス等)に由来する蛋白質などの抗原、(2)病原性細菌(例えば、コレラ菌、病原性大腸菌、インフルエンザ菌、肺炎球菌、百日咳菌、ジフテリア菌、ペスト菌、破傷風菌、ボツリヌス菌、炭ソ菌、野兎病菌、大腸菌O157、サルモネラ菌、MRSA(黄色ブドウ球菌)、VRE(腸球菌)、結核菌、赤痢菌、腸チフス菌、パラチフス菌、クラミジア菌、アメーバ赤痢、レジオネラ菌、ライム病ボレリア菌、ブルセラ病(波状熱)菌等)に由来する蛋白質などの抗原、(3)リケッチャ(例えば、Q熱リケッチャ、クラミジア等)に由来する蛋白質などの抗原、(4)原虫(マラリア原虫、トリパノソーマ等)に由来する蛋白質などの抗原、(5)サイトカイン(例えば、TNF−α、IL−1、IL−6、IL−8、IL−12、IL−18、IL−21、INF−γ、及びそれらのレセプターなど)、(6)ケモカイン(例えば、CCL17とそのレセプターCCR4、CXCL10とそのレセプターCXCR3、CXCR4など)、(7)成長因子及びホルモン(例えば、EGF (epidermal Growth factor)、FGF(Fibroblast growth factor)、hCG( human Chorionic gonadotropin)、およびそれらのレセプターなど)、(8)腫瘍抗原(例えば、CEA carcinoembryonic antigen等の大腸がん腫瘍抗原、Her2等の乳がん腫瘍抗原、PSA(prostate specific antigen)等の前立腺がん腫瘍抗原など)、(9)細胞抗原(例えばCD3、CD25、RANKLなど)、(10)その他(例えばフォン・ヴィレブランド因子(von Willebrand factor:vWF血小板凝集因子)など)が挙げられる。   As the nanoantibody in the present invention, a nanoantibody against a desired antigen can be used. Examples of the antigen include (1) pathogenic viruses (for example, rotavirus, hepatitis A virus, hepatitis B virus, hepatitis C virus, noo Oak virus, rabies virus, RS virus, cytomegalovirus, Foot-and-mouth disease virus, contagious gastroenteritis virus, rubella virus, ATL virus, adenovirus, mumps virus, coxsackie virus, enterovirus, herpes virus, smallpox virus, poliovirus, measles virus, Japanese encephalitis virus, proboscis fever Virus, Yellow fever virus, West Nile virus, SARS (coronavirus), Influenza virus, HIV (AIDS virus), Ebola virus (Firovirus), Marburg virus (Firovirus), Lassa fever Will (2) Pathogenic bacteria (eg, Vibrio cholerae, Pathogenic Escherichia coli, Haemophilus influenzae, Streptococcus pneumoniae, Bordetella pertussis, Diphtheria, Pesto, Tetanus, Botulinum Bacteria, anthrax, wild boar, Escherichia coli O157, Salmonella, MRSA (Staphylococcus aureus), VRE (Enterococcus), Mycobacterium tuberculosis, Shigella, Salmonella typhi, Paratyphi, Chlamydia, Amebic dysentery, Legionella, Lyme disease Antigens such as proteins derived from Borrelia bacteria, Brucella disease (wavy fever), etc.), (3) antigens such as proteins derived from rickettsia (eg, Q fever rickettsia, chlamydia etc.), (4) protozoa (protozoa malaria, Antigens such as proteins derived from trypanosoma, etc.) (5) cytokines (eg, TNF-α, IL-1, IL-6, IL-8, IL-12, IL-18, IL-21, INF-γ, and their receptors), (6) chemokines (eg, CCL17 and its receptor CCR4, CXCL10 and its receptor CXCR3, CXCR4, etc.), (7) Growth factors and hormones (for example, EGF (epidermal growth factor), FGF (Fibroblast growth factor), hCG (human hormonal gonadotropin), and their receptors, etc.) (8) Tumor antigens (for example, CEAec Colon cancer tumor antigens, breast cancer antigens such as Her2, and prostate cancer tumors such as PSA (prostate specific antigen) Hara, etc.), (9) such as cell antigen (e.g. CD3, CD25, RANKL), (10) Others (eg von Willebrand factor (von Willebrand factor: vWF platelet aggregating factor), and the like).

ナノ抗体をコードするDNAに含まれるコドンは、植物型コドンに改変されていることが好ましい。植物型コドンに改変されることにより、コメ(イネ胚乳細胞内)におけるナノ抗体の発現効率を向上させることができる。   The codon contained in the DNA encoding the nanoantibody is preferably modified to a plant type codon. By changing to a plant-type codon, the expression efficiency of the nano antibody in rice (in rice endosperm cells) can be improved.

ナノ抗体をコメにおいて発現させるための、ナノ抗体をコードするDNAを含むベクターにおいては、イネ胚乳特異的に機能するプロモーターおよびターミネーターを利用することが好ましい。ベクターにおいては、ナノ抗体をコードするDNAの上流に当該プロモーターが連結され、ナノ抗体をコードするDNAの下流に当該ターミネーターが連結される。イネ胚乳特異的に機能するプロモーターおよびターミネーターとしては、例えば、イネ胚乳貯蔵タンパク質をコードする遺伝子のプロモーターおよびターミネーターが挙げられる。イネ胚乳貯蔵タンパク質をコードする遺伝子のプロモーター及びターミネーターを利用することにより、コメにおいてナノ抗体を効率よく発現させることができる。ここで「イネ胚乳貯蔵タンパク質」とは、イネ胚乳細胞内で特異的に発現し、イネ胚乳細胞内に蓄積されるタンパク質を意味し、その種類は特に限定されるものではない。イネ胚乳貯蔵タンパク質としては、例えば、グルテリン、プロラミン、グロブリン等が挙げられる。   In vectors containing DNA encoding nanoantibodies for expressing nanoantibodies in rice, it is preferable to use promoters and terminators that function specifically in rice endosperm. In the vector, the promoter is linked upstream of the DNA encoding the nanoantibody, and the terminator is linked downstream of the DNA encoding the nanoantibody. Examples of promoters and terminators that function specifically in rice endosperm include promoters and terminators of genes that encode rice endosperm storage proteins. By using a promoter and terminator of a gene encoding rice endosperm storage protein, nanoantibodies can be efficiently expressed in rice. As used herein, “rice endosperm storage protein” means a protein that is specifically expressed in rice endosperm cells and accumulated in rice endosperm cells, and the type thereof is not particularly limited. Examples of rice endosperm storage protein include glutelin, prolamin, globulin, and the like.

イネ胚乳貯蔵タンパク質をコードする遺伝子のプロモーターは、グルテリンGluB−1遺伝子又はプロラミン13K遺伝子のプロモーターであることが好ましい。これら遺伝子のプロモーターは、その他のイネ胚乳貯蔵タンパク質をコードする遺伝子のプロモーターよりもプロモーター活性が高い点で有利である。イネ胚乳特異的プロモーターは、イネ胚乳特異的プロモーター活性を有する限り、天然型プロモーター及び変異型プロモーターのいずれであってもよい。「変異型プロモーター」とは、天然型プロモーターの塩基配列において1若しくは複数個の塩基が置換、欠失又は付加した塩基配列からなり、イネ胚乳特異的プロモーター活性を有するプロモーターを意味する。イネ胚乳特異的ターミネーターについても同様である。   The promoter of the gene encoding rice endosperm storage protein is preferably the promoter of glutelin GluB-1 gene or prolamin 13K gene. The promoters of these genes are advantageous in that their promoter activities are higher than those of genes encoding other rice endosperm storage proteins. The rice endosperm-specific promoter may be either a natural promoter or a mutant promoter as long as it has rice endosperm-specific promoter activity. The “mutant promoter” means a promoter having a rice endosperm-specific promoter activity, comprising a base sequence in which one or more bases are substituted, deleted or added in the base sequence of the natural promoter. The same applies to the rice endosperm-specific terminator.

また、コメにおいてナノ抗体を効率的に蓄積させるために、コメの貯蔵タンパク質の発現を抑制する処理を行うことが好ましい。このような処理としては、例えば、RNAi法により13Kプロラミン又はグルテリンの発現のどちらか一方を抑制する、または13Kプロラミン及びグルテリンの発現を両方とも抑制(2重抑制)する発現抑制カセットをイネに導入することが挙げられる。   In addition, in order to efficiently accumulate nanoantibodies in rice, it is preferable to perform a treatment that suppresses the expression of rice storage proteins. As such treatment, for example, an expression suppression cassette that suppresses either 13K prolamin or glutelin expression by RNAi method or suppresses both 13K prolamin and glutelin expression (double suppression) is introduced into rice. To do.

イネ細胞へのベクターの導入方法は特に限定されるものではないが、例えば、アグロバクテリウム・ツメファシエンス、アグロバクテリウム・リゾゲネス等を利用した間接導入法(Hiei,Y.et al.,Plant J.,6,271−282,1994;Takaiwa,F.et al.,Plant Sci.111,39−49,1995;日本特許第3141084号)、エレクトロポレーション法(Tada,Y. et al.Theor.Appl.Genet,80,475,1990)、ポリエチレングリコール法(Datta,S.K.et al.,Plant MolBiol.,20,619−629,1992)、パーティクルガン法(Christou,P.et al.,Plant J.2,275−281,1992、Fromm,M.E.,Bio/Technology,8,833−839,1990)等の直接導入法が挙げられる。イネ細胞を培養してイネ植物体を再生させる方法は特に限定されるものではなく、公知の方法に従えばよい。   The method for introducing a vector into rice cells is not particularly limited. For example, an indirect introduction method using Agrobacterium tumefaciens, Agrobacterium rhizogenes (Hiei, Y. et al., Plant J. et al.). Takayama, F. et al., Plant Sci. 111, 39-49, 1995; Japanese Patent No. 3141084), electroporation method (Tada, Y. et al. Theor. Appl. Genet, 80, 475, 1990), polyethylene glycol method (Datta, SK et al., Plant MolBiol., 20, 619-629, 1992), particle gun method (Christou, P. et al., Plant) J.2,275 281,1992, Fromm, M.E., Bio / Technology, 8,833-839,1990) direct introduction method may be mentioned of such. The method for regenerating rice plants by culturing rice cells is not particularly limited, and any known method may be followed.

トランスジェニックイネは、例えば、イネ細胞に、ナノ抗体をコードするDNAを発現させるためのベクターを導入した後、形質転換イネ細胞を培養してイネ植物体を再生させることにより作出することができる。ベクターを導入するイネ細胞の形態は、植物体に再生可能である限り特に限定されるものではなく、例えば、培養細胞、プロトプラスト、苗条原基、多芽体、毛状根、カルス等が挙げられる。ベクターとしてプラスミドを用いる場合は、ベクターが導入されたイネ細胞を効率よく選択することができるように、ハイグロマイシン、テトラサイクリン、アンピシリン等の薬剤耐性遺伝子を含有させておくことが好ましい。なお、経口剤として、発現米から精製することなしに医薬品に用いる場合は、特に安全性が確保されてないハイグロマイシンは、コトランスフェクション法等の公知の方法で除く必要がある。   Transgenic rice can be produced, for example, by introducing a vector for expressing a DNA encoding a nanoantibody into rice cells, and then culturing the transformed rice cells to regenerate the rice plant body. The form of the rice cell into which the vector is introduced is not particularly limited as long as it can be regenerated into a plant body, and examples thereof include cultured cells, protoplasts, shoot primordia, polyblasts, hairy roots, and callus. . When a plasmid is used as a vector, it is preferable to contain a drug resistance gene such as hygromycin, tetracycline, ampicillin so that rice cells into which the vector has been introduced can be efficiently selected. When used as an oral preparation for pharmaceuticals without being purified from the expressed rice, hygromycin for which safety is not ensured must be removed by a known method such as a cotransfection method.

こうして作出されたトランスジェニックイネのコメにおいては、ナノ抗体が、水溶性の形態で、かつ、その本来の特性(例えば、抗原への結合性、ナノ抗体の耐熱性や安定性)を失うことなく蓄積されている。従って、本発明は、ナノ抗体の製造方法であって、(a)ナノ抗体をコードするDNAをイネに導入し、ナノ抗体がコメに発現しているトランスジェニックイネを作出する工程、および(b)工程(a)で作出されたトランスジェニックイネのコメから水溶性画分を得る工程、を含む方法をも提供するものである。さらに、本発明は、本発明のトランスジェニックイネから採取したコメおよびそのナノ抗体を含有する水溶性画分をも提供するものである。ここで「コメ」とは、胚乳を含有する組織又はその部分を意味し、籾、玄米、種子、白米、これらの部分等が含まれる。また、「水溶性画分」とは、界面活性剤や還元剤など蛋白質を可溶化するための薬剤を含まない水や緩衝液で溶出しうるコメの画分を意味する。抗体を含め蛋白質を水溶性の形態でコメに蓄積させることは、これまで不可能であり、本発明において世界で初めて成功したことである。この水溶性の特質は、ナノ抗体が、主としてコメの蛋白質貯蔵体(PB)以外(すなわち、細胞質)に蓄積することが原因の一つになっていると考えらえる。   In the rice of transgenic rice produced in this way, the nanoantibodies are in a water-soluble form and without losing their original properties (for example, antigen binding, heat resistance and stability of the nanoantibodies). Accumulated. Accordingly, the present invention is a method for producing a nanoantibody, wherein (a) DNA encoding the nanoantibody is introduced into rice to produce transgenic rice in which the nanoantibody is expressed in rice; and (b) And (a) obtaining a water-soluble fraction from the rice of the transgenic rice produced in step (a). Furthermore, the present invention also provides a water-soluble fraction containing rice and its nanoantibodies collected from the transgenic rice of the present invention. Here, “rice” means a tissue containing endosperm or a portion thereof, and includes rice bran, brown rice, seeds, white rice, and these portions. The “water-soluble fraction” means a rice fraction that can be eluted with water or a buffer solution that does not contain a drug for solubilizing proteins such as a surfactant and a reducing agent. Accumulating proteins, including antibodies, in rice in a water-soluble form has never been possible, and is the first in the world to succeed in the present invention. This water-soluble characteristic is considered to be caused by the accumulation of nanoantibodies mainly other than the rice protein reservoir (PB) (ie, cytoplasm).

また、本発明は、上記コメや水溶性画分の加工物をも提供するものである。ここで「加工物」には、ナノ抗体を含有する限りいかなる加工物も含まれる。施す加工としては、例えば、脱穀、粉末化、ナノ抗体を含む所望の画分の抽出、抽出された画分の精製等が挙げられる。   Moreover, this invention also provides the processed material of the said rice and water-soluble fraction. Here, the “processed product” includes any processed product as long as it contains nanoantibodies. Examples of the processing to be applied include threshing, powdering, extraction of a desired fraction containing nanoantibodies, purification of the extracted fraction, and the like.

こうして調製されたコメ、その水溶性画分、あるいはそれらの加工物は、安全性の高い組成物として利用することができる。組成物の形態は特に制限はなく、医薬組成物、飲食品、動物用飼料などが含まれる。医薬組成物は、例えば、経口用組成物として利用することができる。コメの水溶性画分やその加工物は、例えば、注射用組成物などとしても利用することができる。本発明の組成物を投与もしくは摂取させる動物としては、例えば、ヒト及びその他の脊椎動物(例えば、哺乳類、鳥類、両性類、魚類、爬虫類)等が挙げられる。   The rice thus prepared, its water-soluble fraction, or a processed product thereof can be used as a highly safe composition. There is no restriction | limiting in particular in the form of a composition, A pharmaceutical composition, food-drinks, animal feed, etc. are contained. The pharmaceutical composition can be used, for example, as an oral composition. The water-soluble fraction of rice and its processed product can be used as, for example, an injectable composition. Examples of animals to be administered or ingested with the composition of the present invention include humans and other vertebrates (for example, mammals, birds, amphibians, fish, reptiles) and the like.

本発明における組成物は、公知の製剤学的方法により製剤化することもできる。これら製剤化においては、薬理学上もしくは飲食品や動物飼料として許容される担体、具体的には、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤あるいはその他の添加剤等と適宜組み合わせることができる。本発明の組成物を投与もしくは摂取する場合、その投与量または摂取量は、対象の年齢、体重、組成物の種類(医薬品、飲食品、動物飼料など)などに応じて、適宜選択される。例えば、1回当たりの投与量または摂取量は、一般に、0.001mg/kg体重〜100mg/kg体重である。   The composition in the present invention can also be formulated by a known pharmaceutical method. In these formulations, pharmacologically or carriers that are acceptable as foods and drinks and animal feeds, specifically, sterile water and physiological saline, vegetable oils, solvents, bases, emulsifiers, suspensions, surfactants, Stabilizer, flavor, fragrance, excipient, vehicle, preservative, binder, diluent, tonicity agent, soothing agent, extender, disintegrant, buffer, coating agent, lubricant, coloring It can be appropriately combined with agents, sweeteners, thickeners, flavoring agents, solubilizers or other additives. When administering or ingesting the composition of the present invention, the dose or intake is appropriately selected according to the age, weight, type of composition (pharmaceuticals, food and drink, animal feed, etc.) of the subject. For example, the dose or intake per dose is generally 0.001 mg / kg body weight to 100 mg / kg body weight.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
VHH1発現米(MucoRice−VHH1)の作出
ロタウィルスに対するナノ抗体(VHH1)の遺伝子情報は公知の公開情報を用いた(http://igitur−archive.library.uu.nl/dissertations/2004−0419−094105/c4.pdf)。VHH1は、アカゲザル・ロタウィルス(RRV)血清型G3をラクダ科のラマに免疫して得られたH鎖のみの抗体の抗原結合部位である。VHH1をコードする遺伝子を、イネが利用しやすいコドンをもとに再構築し人工合成した。
Example 1
Production of VHH1-expressing rice (MucoRice-VHH1) Nano-antibodies against rotavirus (VHH1) gene information used publicly known public information (http://igture-archive.libry.uu.nl/dissertations/2004-0419- 094105 / c4.pdf). VHH1 is an antigen-binding site of an antibody having only a heavy chain obtained by immunizing rhesus monkey rotavirus (RRV) serotype G3 with a camelid llama. The gene encoding VHH1 was reconstructed and artificially synthesized based on codons that are readily available to rice.

導入遺伝子の設計については、公開された特許情報(WO2004/056993 A1)で示されたように、選抜マーカーカセット、外来遺伝子の過剰発現カセット、種子内在性貯蔵タンパク質遺伝子に対する発現抑制カセット、の3者を1つのT−DNAバイナリーベクター(pZH2B/35SNos)上に連結して同時に導入する方法を参考にした。すなわち、まず選抜マーカーカセットは、ハイグロマイシン耐性遺伝子(mHPT)をCaMV35Sプロモーター及びNosターミネターに連結した。次に、外来遺伝子カセットは胚乳細胞特異的プロラミン13Kプロモーター・10Kプロラミンシグナルとプロラミン13Kプロラミンターミネターとの間にVHH1をコードする遺伝子を挿入した。さらに、貯蔵タンパク質遺伝子に対する発現抑制カセットは、RNAi法により13Kプロラミン及びグルテリンの発現を2重抑制するものを構築した。具体的には、イネアスパラギン酸プロテアーゼ(RAP)イントロンの両端に、13KプロラミンcDNAの一部45bpとグルテリンAのcDNAの一部129bpをセンスおよびアンチセンス方向に連結し、これをユビキチンプロモーターとNosターミネターの間に挿入することで、ヘアピン型RNAを発現する構造とした。これらすべてを連結したVHH1遺伝子発現用T−DNAバイナリーベクターを、アグロバクテリウムを介した定法によってイネ(日本晴)に導入し、VHH1発現米を作出した。   As for the design of the transgene, as shown in the published patent information (WO 2004/056993 A1), the selection marker cassette, the overexpression cassette of the foreign gene, and the expression suppression cassette for the seed endogenous storage protein gene. The method of ligation onto a single T-DNA binary vector (pZH2B / 35SNos) and simultaneous introduction was referred to. That is, first, the selection marker cassette was obtained by linking a hygromycin resistance gene (mHPT) to a CaMV35S promoter and a Nos terminator. Next, a gene encoding VHH1 was inserted between the endosperm cell-specific prolamin 13K promoter / 10K prolamin signal and the prolamin 13K prolamin terminator in the foreign gene cassette. Furthermore, the expression suppression cassette for the storage protein gene was constructed to double suppress the expression of 13K prolamin and glutelin by RNAi method. Specifically, a 45-bp portion of 13K prolamin cDNA and a 129-bp portion of glutelin A cDNA were ligated to both ends of a rice aspartic protease (RAP) intron in the sense and antisense directions, and the ubiquitin promoter and Nos terminator were ligated. It was set as the structure which expresses hairpin type RNA by inserting between. A VHH1 gene expression T-DNA binary vector ligated with all of these was introduced into rice (Nipponbare) by a conventional method using Agrobacterium to produce VHH1-expressing rice.

(実施例2)
MucoRice−VHH1におけるVHH1発現解析
VHH1遺伝子の導入を行ったイネの種子(以下、「MucoRice−VHH1」とも称する)がVHH1を発現しているかどうかに関して、SDS−PAGE、Western blotおよび免疫染色の手法を用いて解析した。脱穀後の種子(MucoRice−VHH1および野生株)を粉砕化し、米粉末をサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH 6.8)に懸濁し、抽出液ならびに陽性コントロールとして大腸菌由来のリコンビナントVHH1(以下、rVHH1と略す)を12% ポリアクリルアミドゲルを用いて電気泳動により分離した。分離後のゲルはCBB(クーマシー・ブリリアント・ブルー)染色を行った。その結果、野生株の種子にはrVHH1と同サイズの蛋白を認めなかったのに対して、MucoRice−VHH1にはrVHH1と同サイズの蛋白が発現していることが確認された(図1中a)。また、分離後のゲルをPVDFメンブレンに転写し、rVHH1をウサギに免疫して作製した抗VHH1ポリクローナル抗体を用いてWestern blot解析を行った。その結果、抗体特異的なバンドをリコンビナント蛋白と同位置に認めた(図1中a)。さらに、種子におけるVHH1の発現を抗VHH1ポリクローナル抗体を用いた免疫染色により解析を行った。具体的には、開花後14日目の種子を採取・切断し、4% パラフォルムアルデヒド溶液(PFA)に浸漬固定し、スクロース浸漬後に凍結包埋を行い、3μmの凍結切片を作成、抗VHH1ポリクローナル抗体を反応させ、その後HRP標識ロバ抗ウサギIgG抗体を反応させ、3,3’−diaminobenzidine(DAB)により発色、ヘマトキシリンによるカウンター染色を行った。その結果、野生株の種子には抗VHH1抗体特異的な染色像は見られなかったが、MucoRice−VHH1においては抗VHH1抗体特異的染色像が種子全域に認められた(図1中b)。
(Example 2)
Analysis of VHH1 expression in MucoRice-VHH1 Regarding whether or not rice seeds into which VHH1 gene has been introduced (hereinafter also referred to as “MucoRice-VHH1”) express VHH1, SDS-PAGE, Western blot, and immunostaining techniques were used. And analyzed. The seeds after threshing (MucoRice-VHH1 and wild type) are pulverized, and the rice powder is suspended in a sample buffer (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6.8). As an extract and a positive control, recombinant VHH1 derived from E. coli (hereinafter abbreviated as rVHH1) was separated by electrophoresis using a 12% polyacrylamide gel. The separated gel was stained with CBB (Coomassie Brilliant Blue). As a result, it was confirmed that a protein of the same size as rVHH1 was expressed in MucoRice-VHH1, whereas a protein of the same size as rVHH1 was not found in the seeds of the wild strain (a in FIG. 1). ). Further, the separated gel was transferred to a PVDF membrane, and Western blot analysis was performed using an anti-VHH1 polyclonal antibody prepared by immunizing a rabbit with rVHH1. As a result, an antibody-specific band was observed at the same position as the recombinant protein (a in FIG. 1). Furthermore, VHH1 expression in seeds was analyzed by immunostaining using an anti-VHH1 polyclonal antibody. Specifically, seeds on the 14th day after flowering were collected and cut, immersed and fixed in a 4% paraformaldehyde solution (PFA), frozen and embedded after sucrose soaking, and 3 μm frozen sections were prepared, anti-VHH1 A polyclonal antibody was reacted, and then an HRP-labeled donkey anti-rabbit IgG antibody was reacted, and color development was performed with 3,3′-diaminobenzidine (DAB) and counterstaining with hematoxylin was performed. As a result, a wild-type seed did not show an anti-VHH1 antibody-specific staining image, but in MucoRice-VHH1, an anti-VHH1 antibody-specific staining image was observed throughout the seed (b in FIG. 1).

(実施例3)
MucoRice−VHH1由来のVHH1の構造解析
米に発現したVHH1の構造を明らかにするため、構造解析を行った。MucoRice−VHH1米粉末をサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH 6.8)に懸濁し、抽出液ならびに陽性コントロールとしてrVHH1を12% ポリアクリルアミドゲルを用いて電気泳動により分離した。分離後のゲルはCBB染色を行い、VHH1に該当するバンドを切り出し、CBB脱色・脱水後にトリプシンによるゲル消化を行い、ペプチドを抽出した。抽出したペプチドはnanoLCによる分離を行い、2種類の質量分析計(QSTAR EliteおよびLTQ Orbitrap)を用いて解析した。なお、QSTAR Eliteの解析結果を配列番号:1に示し、LTQ Orbitrapの解析結果を配列番号:2に示し、また、これらをまとめて図2に示す。その結果、図2に示すように、2種類の質量分析計の結果を合わせて完全なアミノ酸配列を解読することができた。またこの結果から、VHH1の完全な配列に加え、N末端に米特有の配列であるSR(セリン+アルギニン)を持つことが示されたが、米の発現系を用いたことによるアスパラギンやセリン等への糖鎖付加のような修飾は認められなかった。
Example 3
Structural analysis of VHH1 derived from MucoRice-VHH1 In order to clarify the structure of VHH1 expressed in rice, structural analysis was performed. MucoRice-VHH1 rice powder was suspended in sample buffer (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6.8), and 12% polyacrylamide of rVHH1 as a positive control. Separation by electrophoresis using gel. The separated gel was subjected to CBB staining, a band corresponding to VHH1 was cut out, and after CBB decolorization / dehydration, gel digestion with trypsin was performed to extract peptides. The extracted peptides were separated by nanoLC and analyzed using two types of mass spectrometers (QSTAR Elite and LTQ Orbitrap). The analysis result of QSTAR Elite is shown in SEQ ID NO: 1, the analysis result of LTQ Orbitrap is shown in SEQ ID NO: 2, and these are collectively shown in FIG. As a result, as shown in FIG. 2, the complete amino acid sequence could be decoded by combining the results of the two types of mass spectrometers. In addition to the complete sequence of VHH1, the results showed that SR (serine + arginine), which is a rice-specific sequence, is present at the N-terminus, but asparagine, serine, etc. by using the rice expression system Modifications such as glycosylation were not observed.

(実施例4)
MucoRice−VHH1からのVHH1抽出条件検討
MucoRice−VHH1からのVHH1抽出条件を検討した。100mgのMucoRice−VHH1米粉末にリン酸緩衝液(以下、PBSと略す)1mLあるいは8M尿素入りPBS 1mLを加え、懸濁後すみやかに遠心し、上清および陽性コントロールとしてrVHH1をサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH 6.8)に懸濁し、12% ポリアクリルアミドゲルを用いて電気泳動により分離した。分離後のゲルはCBB染色を行った。その結果、図3に示すように、PBS単独で8M 尿素入りPBSと同程度のVHH1がMucoRice−VHH1から抽出されることが明らかとなった。このことは米粉末中のVHH1が水溶性であることを示している。
Example 4
Examination of VHH1 extraction conditions from MucoRice-VHH1 VHH1 extraction conditions from MucoRice-VHH1 were examined. To 100 mg of MucoRice-VHH1 rice powder, 1 mL of phosphate buffer (hereinafter abbreviated as PBS) or 1 mL of PBS containing 8M urea is added, and after suspension, immediately centrifuged, and rVHH1 is added to sample buffer (2% as a positive control). It was suspended in SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6.8) and separated by electrophoresis using a 12% polyacrylamide gel. The separated gel was subjected to CBB staining. As a result, as shown in FIG. 3, it became clear that VHH1 of the same level as PBS containing 8M urea was extracted from MucoRice-VHH1 with PBS alone. This indicates that VHH1 in the rice powder is water-soluble.

(比較例1)
1本鎖抗体を発現するMucoRiceと可溶化
マウスM細胞に特異性をもつモノクローナル抗体NKM−16−2−4(T.Nochi et.al.J. Exp.Med.204.2789−2796(2007))から抗体遺伝子をクローニングし、その1本鎖抗体(scFv)をコードする遺伝子を、イネが利用しやすいコドンをもとに再構築し人工合成した。米発現用に改変したscFv遺伝子は、実施例1において用いたT−DNAバイナリーベクターの胚乳細胞特異的プロモーター下に挿入し、最終的にアグロバクテリウムを介してイネ(日本晴)の形質転換を行い、定法によりscFv発現米を作出した。このscFvを発現する米粉末は実施例4の条件で、図4に示すように、PBSではまったく可溶化できず、尿素SDSでのみ可溶化された。
(Comparative Example 1)
MucoRice expressing single chain antibody and solubilization Monoclonal antibody NKM-16-2-4 with specificity for mouse M cells (T. Nochi et. Al. J. Exp. Med. 204. 2789-2796 (2007)) ) Was cloned, and the gene encoding the single-chain antibody (scFv) was reconstructed and artificially synthesized based on codons that can be easily used by rice. The scFv gene modified for rice expression is inserted under the endosperm cell-specific promoter of the T-DNA binary vector used in Example 1, and finally rice (Nipponbare) is transformed via Agrobacterium. Then, scFv-expressing rice was produced by a conventional method. This rice powder expressing scFv was not solubilized at all in PBS under the conditions of Example 4 as shown in FIG. 4, but was solubilized only with urea SDS.

(実施例5)
MucoRice−VHH1におけるVHH1の局在
免疫電子顕微鏡により種子におけるVHH1の局在を調べた。開花後14日目の種子を採取し、0.5〜1.0μm程度の切片を作製し、4% PFAで固定後、LR−ホワイト樹脂に浸漬包埋した。その後100μmの超薄切片を作製しグリッドに載せ、抗VHH1ポリクローナル抗体を反応させ、洗浄後18nm金コロイド標識抗ウサギIgG抗体を反応させた。その後、洗浄し、1%グルタルアルデヒドで固定し、2%酢酸ウラニルと鉛溶液による電子2重染色を行い、電子顕微鏡による観察を行った。その結果、VHH1は、PB−IIに顕著に観察され、PB−Iには外表付近に軽度観察されたが、これらPB以外の細胞質に多くのVHH1の蓄積が見られた(図5)。MucoRice−VHH1の抽出検討でみられたVHH1の水溶性は、特に、高い水溶性を示す細胞質への局在に依存していることが考えられた。
(Example 5)
Localization of VHH1 in MucoRice-VHH1 Localization of VHH1 in seeds was examined by immunoelectron microscopy. The seeds on the 14th day after flowering were collected, a section of about 0.5 to 1.0 μm was prepared, fixed with 4% PFA, and immersed in LR-white resin. Thereafter, an ultrathin section of 100 μm was prepared and placed on a grid, reacted with an anti-VHH1 polyclonal antibody, washed and reacted with an 18 nm gold colloid-labeled anti-rabbit IgG antibody. Thereafter, it was washed, fixed with 1% glutaraldehyde, electron double-stained with 2% uranyl acetate and a lead solution, and observed with an electron microscope. As a result, VHH1 was remarkably observed in PB-II and slightly observed in the vicinity of the outer surface of PB-I, but a large amount of VHH1 was accumulated in the cytoplasm other than PB (FIG. 5). It was considered that the water solubility of VHH1 observed in the extraction study of MucoRice-VHH1 was particularly dependent on localization to the cytoplasm showing high water solubility.

(実施例6)
ロタウィルスに対するMucoRice−VHH1の中和効果の評価(細胞感染実験)
MA104細胞(アカゲザル腎臓由来株化細胞)を96穴プレートに播種し、約2日後、ウェル内に十分増殖した上で、無血清MEM培地で洗浄を行った。トリプシン処理(37℃、30分)を行ったアカゲザル・ロタウィルス(以下、RRVと略す)液(無血清MEM培地使用)を準備した。また、MucoRice−VHH1粉末および野生米粉末100mgに無血清MEM 1mLを加え懸濁し、遠心後の上清を0.22um フィルターを通して無菌化したものを段階希釈した。様々な濃度の米抽出液に200ffu(focus forming units、フォーカス形成単位)のトリプシン処理されたRRVを加え、さらにその混合液を96穴プレートのMA104細胞上に加えた。陰性コントロールとして無血清MEM培地のみ、陽性コントロールとしてRRVのみを各ウェルに加えた。約1時間37℃でCOインキュベーターで反応させた後、無血清MEM培地で洗浄を繰り返し、10% FCS入りMEM培地を加えて、COインキュベーター(37℃)で12時間培養を行った。その後、無血清MEM培地で洗浄、さらにPBSで洗浄し、4% PFAで固定を行った。洗浄後、感染細胞内で増殖することの知られているVP6(RRVの構成蛋白の一種)に対するマウスモノクローナル抗体を反応させた。洗浄後、HRP標識ヤギ抗マウスIgGポリクローナル抗体を反応させ、洗浄後発色させた。感染細胞は赤茶色に発色することから、顕微鏡下で感染細胞数を測定し、RRVのみを反応させたウェルの感染細胞数を100%とした。その結果、図6に示すように、MucoRice−VHH1由来のVHH1は、RRV単独あるいはRRVと野生米抽出液の混合液と比較して有意に感染率を減少させ、RRVに対する中和効果を証明している(VHH1濃度は1ug/mL)。また1年間室温で保存したMucoRice−VHH1は収穫直後のMucoRice−VHH1と同程度の中和効果を持つことが明らかとなり、MucoRice−VHH1の長期室温保存性が証明された。
(Example 6)
Evaluation of neutralization effect of MucoRice-VHH1 against rotavirus (cell infection experiment)
MA104 cells (rhesus monkey kidney-derived cell line) were seeded in a 96-well plate, and after about 2 days, the cells were sufficiently grown in the wells and washed with serum-free MEM medium. A rhesus monkey rotavirus (hereinafter abbreviated as RRV) solution (using serum-free MEM medium) that had been trypsinized (37 ° C., 30 minutes) was prepared. In addition, 1 mL of serum-free MEM was suspended in 100 mg of MucoRice-VHH1 powder and wild rice powder, and the supernatant obtained after sterilization through a 0.22 um filter was serially diluted. 200 ffu (focus forming units) trypsinized RRV was added to various concentrations of rice extract, and the mixture was added onto MA104 cells in a 96-well plate. Only serum-free MEM medium was added to each well as a negative control, and only RRV was added to each well as a positive control. After reacting in a CO 2 incubator at 37 ° C. for about 1 hour, washing was repeated with serum-free MEM medium, MEM medium containing 10% FCS was added, and the cells were cultured in a CO 2 incubator (37 ° C.) for 12 hours. Thereafter, it was washed with a serum-free MEM medium, further washed with PBS, and fixed with 4% PFA. After washing, a mouse monoclonal antibody against VP6 (a kind of RRV constituent protein) known to grow in infected cells was reacted. After washing, HRP-labeled goat anti-mouse IgG polyclonal antibody was reacted, and color was developed after washing. Since the infected cells were colored reddish brown, the number of infected cells was measured under a microscope, and the number of infected cells in a well reacted only with RRV was defined as 100%. As a result, as shown in FIG. 6, MucoRice-VHH1-derived VHH1 significantly reduced the infection rate compared with RRV alone or a mixture of RRV and wild rice extract, and proved a neutralizing effect on RRV. (VHH1 concentration is 1 ug / mL). In addition, it was revealed that MucoRice-VHH1 stored at room temperature for 1 year has a neutralizing effect comparable to that of MucoRice-VHH1 immediately after harvest, and the long-term room temperature storage property of MucoRice-VHH1 was proved.

(実施例7)
消化管内におけるMucoRice−VHH1の安定性・分布の評価
MucoRice−VHH1粉末と純水との懸濁液を遠心した後、上清を回収し、100μg/mL濃度のVHH1溶液40μlを日齢4日のBalb/cマウスの胃内に投与した。1、3、4、9時間後に胃・空腸・回腸・大腸の内容物を回収し、PBS 500uLに懸濁した。その後、同液をサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH 6.8)に懸濁し、12% ポリアクリルアミドゲルを用いて電気泳動により分離し、抗VHH1ポリクローナル抗体を用いてウェスタンブロット解析を行った。その結果、図7に示すように米由来のVHH1は投与4時間後までは胃から大腸までの全消化管に認められた。また、投与9時間後では約50%のマウスに空腸から大腸にかけて米由来VHH1が認められた。
(Example 7)
Evaluation of stability and distribution of MucoRice-VHH1 in the gastrointestinal tract After centrifuging a suspension of MucoRice-VHH1 powder and pure water, the supernatant was recovered, and 40 μl of a VHH1 solution with a concentration of 100 μg / mL was applied on day 4 Administration into the stomach of Balb / c mice. The contents of stomach, jejunum, ileum, and large intestine were collected after 1, 3, 4, and 9 hours and suspended in 500 uL of PBS. Thereafter, the same solution is suspended in a sample buffer (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6.8) and separated by electrophoresis using a 12% polyacrylamide gel. Western blot analysis was performed using an anti-VHH1 polyclonal antibody. As a result, as shown in FIG. 7, VHH1 derived from rice was found in the entire digestive tract from the stomach to the large intestine until 4 hours after administration. In addition, 9 hours after administration, about 50% of mice had rice-derived VHH1 from the jejunum to the large intestine.

(実施例8)
ロタウィルスに対するMucoRice−VHH1の中和効果の評価(幼若動物を用いた感染実験1)
日齢4日目のBalb/cマウスに、トリプシン処理(37℃、30分)を行ったRRV 2x10ffu(MEM 20ulに含有)を胃内に投与すると、約24時間後から水様性下痢が認められ(図8)、3〜4日後に自然軽快する。この感染モデルを用い、MucoRice−VHH1のRRVに対する中和効果・下痢抑制効果を検証した。MucoRice−VHH1とPBSを懸濁して遠心後に得られた上清(VHH1濃度200ug/mL)をRRV投与6時間前あるいは6時間後に20μL(VHH1量4μg)投与し、以後12時間毎に胃内投与を投与4日目(RRV投与日を0日とする)まで繰り返した。投与4日目までの下痢の発症頻度を計測した。その結果、RRV投与前および投与後に米由来VHH1を投与した両群で、下痢の発症率は有意に低値であった(図9、10)。このことから、MucoRice−VHH1はRRVに対する中和効果・下痢抑制効果を有し、その効果は予防的投与だけでなく、RRV暴露後でも認められることが分かった。
(Example 8)
Evaluation of neutralization effect of MucoRice-VHH1 against rotavirus (infection experiment 1 using juvenile animals)
When RRV 2 × 10 7 ffu (contained in MEM 20 ul) treated with trypsin (37 ° C., 30 minutes) was intragastrically administered to Balb / c mice on day 4 of age, watery diarrhea was observed after about 24 hours. Is observed (FIG. 8) and spontaneously improves after 3-4 days. Using this infection model, MucoRice-VHH1 was tested for its neutralizing effect and diarrhea suppressing effect on RRV. The supernatant obtained after suspending MucoRice-VHH1 and PBS (VHH1 concentration 200 ug / mL) was administered 20 μL (4 μg of VHH1) 6 hours before or 6 hours after RRV administration, and intragastric administration every 12 hours thereafter Was repeated until day 4 of administration (the day of RRV administration was defined as day 0). The incidence of diarrhea was measured up to the 4th day of administration. As a result, the incidence of diarrhea was significantly low in both groups administered with rice-derived VHH1 before and after RRV administration (FIGS. 9 and 10). From this, it was found that MucoRice-VHH1 has a neutralizing effect and diarrhea suppressing effect on RRV, and the effect is observed not only after prophylactic administration but also after RRV exposure.

(実施例9)
ロタウィルスに対するMucoRice−VHH1の中和効果の評価(幼若動物を用いた感染実験2)
実施例8と同様にして、幼若マウスを用いてロタウィルス感染モデルを調製し、実施例8において指標とした下痢の状態の代わりに、小腸組織の切片の状態及びロタウィルス量の増加を指標としてロタウィルスに対するMucoRice−VHH1の中和効果を評価した。
Example 9
Evaluation of neutralization effect of MucoRice-VHH1 against rotavirus (infection experiment 2 using juvenile animals)
In the same manner as in Example 8, a rotavirus infection model was prepared using young mice, and instead of the diarrhea state used in Example 8, the state of the small intestine tissue section and the increase in the amount of rotavirus were used as indicators. The neutralizing effect of MucoRice-VHH1 against rotavirus was evaluated.

すなわち、小腸組織切片を定法にてHematoxylin/Eosin染色して観察した。得られた結果は図11に示す。   That is, a small intestine tissue section was stained with Hematoxylin / Eosin by a conventional method and observed. The obtained results are shown in FIG.

また、ロタウィルス量は小腸組織からの全RNAを抽出し、定法でcDNAを調製し、Pantらの方法(Pant,N.ら、J.Infect.Dis.、2006年、194巻、1580〜1588ページに記載の方法)にてロタウィルスのVP7をコードするmRNAをリアルタイムPCRで定量することによって、ロタウィルスの増減を評価した。得られた結果は図12に示す。   The amount of rotavirus was obtained by extracting total RNA from small intestinal tissue, preparing cDNA by a conventional method, and using the method of Pant et al. (Pant, N. et al., J. Infect. Dis., 2006, 194, 1580-1588). The amount of rotavirus increase / decrease was evaluated by quantifying mRNA encoding VP7 of rotavirus by real-time PCR using the method described in the page. The obtained results are shown in FIG.

図11に示した結果から明らかなように、実施例8と同様の条件にて、ロタウイルスを感染(2x10ffu RRV)させ、MucoRice−VHH1を投与した幼若マウスの小腸組織においては、上皮細胞(腸管上皮細胞)に異常は認められなかった(図11のIII 参照)。一方、ロタウイルスを感染させた幼若マウスの小腸組織(図11のII 参照)及びロタウイルスを感染させ、WT−Rice(日本晴)を投与した幼若マウスの小腸組織(図11のIV 参照)において、これらのマウスの上皮細胞には多数の空胞が観察された。As is apparent from the results shown in FIG. 11, rotavirus infection (2 × 10 7 ffu RRV) was performed under the same conditions as in Example 8, and in the small intestine tissue of young mice administered with MucoRice-VHH1, epithelium No abnormality was found in the cells (intestinal epithelial cells) (see III in FIG. 11). Meanwhile, the small intestine tissue of young mice infected with rotavirus (see II in FIG. 11) and the small intestine tissue of young mice infected with rotavirus and administered with WT-Rice (Nipponbare) (see IV in FIG. 11). In these mice, numerous vacuoles were observed in the epithelial cells of these mice.

また、図12に示した結果から明らかなように、ウイルス感染のみのマウス小腸及びロタウイルスに感染し、WT−Rice(日本晴)を投与したマウス小腸に比して、ロタウイルスに感染し、MucoRice−VHH1を投与した幼若マウスの小腸におけるロタウイルス(RRA)のVP7 RNAのコピー数は有意に低下していた。   Further, as is clear from the results shown in FIG. 12, the mouse small intestine and rotavirus infected only with virus infection were infected with rotavirus compared to the mouse small intestine administered with WT-Rice (Nipponbare), and MucoRice. -The copy number of VP7 RNA of rotavirus (RRA) in the small intestine of young mice administered with VHH1 was significantly reduced.

(実施例10)
ロタウィルスに対するMucoRice−VHH1の中和効果の評価(免疫不全動物を用いた感染実験)
免疫不全マウスであるSCIDマウスを用いてMucoRiceVHH1の抗RRV−VHH1の効果を評価した。すなわち、SCIDマウスにロタウイルス(2x10ffu RRV)を感染させた後、MucoRice−VHH1 200mg(1.7mgVHH1含有)を7日間毎日2回経口投与し、継時的に下痢の臨床状況と小腸のウイルス量をリアルタイムPCRによるVP7 RNA量で評価した。得られた結果を図13及び14に示す。なお、図13の「下痢スコア」は、下痢が認められない場合は「0」とし、弱い下痢が認められる場合は「1」とし、下痢が認められる場合は「2」として評価した結果に基づく。
(Example 10)
Evaluation of neutralizing effect of MucoRice-VHH1 against rotavirus (infection experiment using immunodeficient animals)
The effect of anti-RRV-VHH1 of MucoRiceVHH1 was evaluated using SCID mice which are immunodeficient mice. That is, after infecting SCID mice with rotavirus (2 × 10 7 ffu RRV), 200 mg of MucoRice-VHH1 (containing 1.7 mg VHH1) was orally administered twice daily for 7 days. The amount of virus was evaluated by the amount of VP7 RNA by real-time PCR. The obtained results are shown in FIGS. The “diarrhea score” in FIG. 13 is based on the result of evaluation as “0” when diarrhea is not observed, “1” when weak diarrhea is observed, and “2” when diarrhea is observed. .

図13及び14に示した結果から明らかなように、MucoRice−VHH1投与により免疫不全マウスにおいても下痢の状況は有意の好転し、同時にウイルス量は有意に低下した。   As is apparent from the results shown in FIGS. 13 and 14, the diarrhea situation was significantly improved in the immunodeficient mice by the administration of MucoRice-VHH1, and at the same time the viral load was significantly reduced.

従って、実施例8及び9に示したような小児のみならず、ワクチンを投与できない免疫不全患者にも、MucoRice−VHH1はロタウイルス感染に効果があることが示された。   Therefore, it was shown that MucoRice-VHH1 is effective for rotavirus infection not only in children as shown in Examples 8 and 9, but also in immunocompromised patients who cannot administer the vaccine.

(実施例11)
TNF−αVHH発現米(MucoRice−mTNFαVHH)の作出
TNF−αに対するナノ抗体(VHH)の遺伝子情報は公知の情報を用いた(Arthritis Rheum.54,1856−1866(2006)、J.Biotechnol.142:170−178(2009))。マウスTNFαVHHモノマー(mTNFαVHHモノマー)をコードする遺伝子を、イネが利用しやすいコドンをもとに再構築し人工合成した。また、TNFαVHHダイマー(mTNFαVHHダイマー)をコードする遺伝子は、当該VHHモノマーどうしを適当なリンカー(アミノ酸配列[GGGGSGGGGSGGGGS]からなるスぺーサー配列)を介して結合させダイマーとし、調製した。
(Example 11)
Production of TNF-αVHH-expressing rice (MucoRice-mTNFαVHH) Known information was used for gene information of nanoantibodies (VHH) against TNF-α (Arthritis Rheum. 54, 1856-1866 (2006), J. Biotechnol. 142: 170-178 (2009)). A gene encoding mouse TNFαVHH monomer (mTNFαVHH monomer) was reconstructed and artificially synthesized based on codons that are readily available to rice. A gene encoding TNFαVHH dimer (mTNFαVHH dimer) was prepared by combining the VHH monomers with each other via an appropriate linker (a spacer sequence consisting of an amino acid sequence [GGGGSGGGGSGGGS]).

そして、実施例1において用いたT−DNAバイナリーベクター(pZH2B/35SNos)の胚乳細胞特異的プロモーター下に、米発現用に改変したmTNFαVHHモノマー又はダイマーをコードする遺伝子を挿入し、最終的にアグロバクテリウムを介してイネ(日本晴)の形質転換を行い、定法によりTNF−αVHH発現米(MucoRice−mTNFαVHH:MucoRice−mTNFαVHHモノマー及びMucoRice−mTNFαVHHダイマー)を作出した。   Then, a gene encoding mTNFαVHH monomer or dimer modified for rice expression is inserted under the endosperm cell-specific promoter of the T-DNA binary vector (pZH2B / 35SNos) used in Example 1, and finally Agrobacterium Rice (Nipponbare) was transformed through um, and TNF-αVHH-expressing rice (MucoRice-mTNFαVHH: MucoRice-mTNFαVHH monomer and MucoRice-mTNFαVHH dimer) was produced by a conventional method.

(実施例12)
MucoRice−mTNFαVHHからのmTNFαVHH抽出
MucoRice−mTNFαVHHモノマー及びMucoRice−mTNFαVHHダイマーからのmTNFαVHHモノマー及びmTNFαVHHダイマーの各々の抽出について、SDS−PAGE及びWestern blotを用いて調べた。
(Example 12)
Extraction of mTNFαVHH from MucoRice-mTNFαVHH For extraction of each of mTNFαVHH monomer and mTNFαVHH dimer from MucoRice-mTNFαVHH dimer and SDS-PAGE using tter.

すなわち、先ず100mgのMucoRice−mTNFαVHH米粉末にPBS1mLを加えて懸濁した後、1時間4℃で撹拌して遠心を行った。次いで、上清及び陽性コントロールのrmTNFαVHHはサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH 6.8)に懸濁した。また、沈殿は尿素入りサンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、8M Urea、pH 6.8)に懸濁した。このようにして得られた、それぞれのサンプルを12% ポリアクリルアミドゲルを用いてSDS−PAGE電気泳動により分離し、分離後のゲルはCBB染色に供した。また、電気泳動後のゲルをPVDFメンブレンに転写し、rmTNFαVHHをマウスに免疫して得られた抗mTNFαVHHポリクローナル抗体を用いてWestern blotを行った。その結果、VHHモノマー及びVHHダイマー共に、抗体特異的なバンドが上清サンプルにおいて認められたことから、米で発現するmTNFαVHHはモノマーに限らずダイマーにおいてもPBSで可溶化できることがわかった(図15)。   That is, first, 1 mL of PBS was suspended in 100 mg of MucoRice-mTNFαVHH rice powder, and then the mixture was stirred for 1 hour at 4 ° C. and centrifuged. The supernatant and positive control rmTNFαVHH were then suspended in sample buffer (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6.8). The precipitate was suspended in a sample buffer containing urea (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, 8M Urea, pH 6.8). Each sample thus obtained was separated by SDS-PAGE electrophoresis using a 12% polyacrylamide gel, and the gel after separation was subjected to CBB staining. Further, the gel after electrophoresis was transferred to a PVDF membrane, and Western blotting was performed using an anti-mTNFαVHH polyclonal antibody obtained by immunizing mice with rmTNFαVHH. As a result, for both VHH monomer and VHH dimer, antibody-specific bands were observed in the supernatant sample, indicating that mTNFαVHH expressed in rice can be solubilized in PBS not only in the monomer but also in the dimer (FIG. 15). ).

(実施例13)
MucoRice−mTNFαVHHにおけるmTNFαVHHタンパク量の定量
MucoRice−mTNFαVHHにおいて発現しているmTNFαVHHタンパク質量を算出するため、SDS−PAGEを用いて調べた。すなわち、MucoRice−mTNFαVHH米粉末をPBSで可溶化し、得られた上清及びrmTNFαVHH標準品は、サンプルバッファー(2% SDS、5% β−メルカプトエタノール、50mM Tris−HCl、20% グリセロール、pH6.8)に懸濁し、12%ポリアクリルアミドゲルを用いてSDS−PAGE電気泳動により分離した。次いで、分離後のゲルはCBB染色に供した。さらに、CBB染色後のゲルはデンシトメーター(BIO−RAD社製)により定量を行った。その結果、MucoRice−mTNFαVHHに含まれるmTNFαVHHは、VHHモノマーにおいて米粉末重量あたり平均0.82%、VHHダイマーにおいて平均0.47%に達しており、VHHはモノマーのみならずダイマーにおいても高発現・高蓄積していることが判明した(図16)。
(Example 13)
Quantification of the amount of mTNFαVHH protein in MucoRice-mTNFαVHH In order to calculate the amount of mTNFαVHH protein expressed in MucoRice-mTNFαVHH, the amount of mTNFαVHH protein expressed in MucoRice-mTNFαVHH was examined using SDS-PAGE. That is, MucoRice-mTNFαVHH rice powder was solubilized with PBS, and the resulting supernatant and rmTNFαVHH standard product were sample buffer (2% SDS, 5% β-mercaptoethanol, 50 mM Tris-HCl, 20% glycerol, pH 6. It was suspended in 8) and separated by SDS-PAGE electrophoresis using a 12% polyacrylamide gel. Next, the separated gel was subjected to CBB staining. Further, the gel after CBB staining was quantified with a densitometer (manufactured by BIO-RAD). As a result, mTNFαVHH contained in MucoRice-mTNFαVHH reached an average of 0.82% per rice powder weight in VHH monomer and an average of 0.47% in VHH dimer, and VHH was highly expressed not only in monomer but also in dimer. It was found that the accumulation was high (FIG. 16).

(実施例14)
mTNFαに対するMucoRice−mTNFαVHHの阻害効果の評価(細胞死抑制試験)
WEHI164細胞(マウス線維芽細胞)を10%FCSを含むRPMI164培地で96穴プレートに2×10個/ウェルに播種し、5%COインキュベーター(37℃)で24時間培養した。培養後、培地を除去し、培地のみ(陰性コントロール)、2ng/mL rmTNFα(R&D systems社製)のみを添加した培地(陽性コントロール)又は2ng/mL rmTNFαとMucoRice−mTNFαVHH由来PBS抽出液とを混合した培地を100μL添加し、24時間培養した。そして、培養終了の2時間前にWST−8(同仁化学研究所製)10μLを加えて培養し、450nmで吸光度を測定して生細胞数を評価した。また、得られた測定値を用いて、mTNFαに対するmTNFαVHHの阻害率を、陽性コントロールの阻害率を0%、陰性コントロールの阻害率を100%として評価した。得られた結果を図17に示す。
(Example 14)
Evaluation of inhibitory effect of MucoRice-mTNFαVHH on mTNFα (cell death suppression test)
WEHI164 cells (mouse fibroblasts) were seeded in RPMI164 medium containing 10% FCS in a 96-well plate at 2 × 10 4 cells / well and cultured in a 5% CO 2 incubator (37 ° C.) for 24 hours. After the culture, the medium is removed, and the medium alone (negative control), the medium added with only 2 ng / mL rmTNFα (manufactured by R & D systems) (positive control), or 2 ng / mL rmTNFα and the MucoRice-mTNFαVHH-derived PBS extract are mixed. 100 μL of the prepared medium was added and cultured for 24 hours. Two hours before the end of the culture, 10 μL of WST-8 (manufactured by Dojindo Laboratories) was added and cultured, and the absorbance was measured at 450 nm to evaluate the number of living cells. Moreover, using the obtained measured value, the inhibition rate of mTNFαVHH with respect to mTNFα was evaluated with the inhibition rate of the positive control being 0% and the inhibition rate of the negative control being 100%. The obtained result is shown in FIG.

なお、rmTNFαの添加量(2ng/mL)は、WEHI164細胞の生存率が50%となる量とした。すなわち、前記同様に、WEHI164細胞を所定量(0.5〜4ng/mL)のrmTNFαを添加した培地にて培養し、WST−8アッセイに供し、得られた生細胞数から、生存率が50%になるrmTNFαの添加量を算出した(図18 参照)。   The amount of rmTNFα added (2 ng / mL) was such that the survival rate of WEHI164 cells was 50%. That is, as described above, WEHI164 cells were cultured in a medium supplemented with a predetermined amount (0.5 to 4 ng / mL) of rmTNFα, subjected to WST-8 assay, and the viability was 50 from the number of live cells obtained. % Of rmTNFα was calculated (see FIG. 18).

図17に示した結果から明らかなように、MucoRice−mTNFαVHH由来のmTNFαVHHは、mTNFαを著しく阻害した。また、その阻害効果はVHHダイマーの方がVHHモノマーより50〜100倍高いことが明らかになった。   As is clear from the results shown in FIG. 17, mTNFαVHH derived from MucoRice-mTNFαVHH markedly inhibited mTNFα. In addition, it was revealed that the inhibitory effect of VHH dimer is 50 to 100 times higher than that of VHH monomer.

(実施例15)
MucoRice−mTNFαVHHにおけるmTNFαVHHの局在(免疫電顕による観察)
種子におけるmTNFαVHHモノマー及びダイマーの局在を免疫電顕法にて解析した。すなわち、第二世代目にあたるMucoRice−mTNFαVHHモノマー及びダイマーの開花後14日目の種子を採取し、およそ0.5〜1.0μmの切片を作製した。次いで、これらの切片を4% PFAに4℃で4時間振とうさせながら浸漬固定した。エタノール(EtOH)系列での脱水後、4℃で2日間かけて段階的にLR−White樹脂を浸透させていき、最終的に100% LR−White樹脂に浸漬包埋し、50℃で二晩重合させた。重合後の樹脂ブロックから、ウルトラミクロトームにより80〜100nmの超薄切片を作製し、フォルムバール支持膜を貼ったニッケルグリッド(載物網)に回収して免疫染色用のサンプルとした。免疫染色は、10% ヤギ血清(Goat Serum)で室温30分のブロッキングを施した後、プロテインGカラムによってアフィニティー精製した抗mTNFαVHH抗体(家兎)を5μg/ml濃度にて室温1時間反応させた。次いで、洗浄後18nm金コロイド標識抗ウサギIgG抗体を反応させた。そして、二次抗体を反応させた後に再び洗浄し、1%グルタルアルデヒドで室温5分間固定を行った後、2%酢酸ウラニルで5分間次いで鉛塩で5分間の二重電子染色を行った。そして、透過電子顕微鏡により、このようにして免疫染色したサンプルを観察した。
(Example 15)
Localization of mTNFαVHH in MucoRice-mTNFαVHH (observation by immunoelectron microscope)
The localization of mTNFαVHH monomer and dimer in seeds was analyzed by immunoelectron microscopy. That is, seeds on the 14th day after flowering of the second-generation MucoRice-mTNFαVHH monomer and dimer were collected, and sections of about 0.5 to 1.0 μm were prepared. Subsequently, these sections were immersed and fixed in 4% PFA while shaking at 4 ° C. for 4 hours. After dehydration in the ethanol (EtOH) series, the LR-White resin was gradually infiltrated over 2 days at 4 ° C., and finally immersed in 100% LR-White resin, and overnight at 50 ° C. Polymerized. From the polymer block after polymerization, an ultrathin section of 80 to 100 nm was prepared by an ultramicrotome, and collected on a nickel grid (mounting net) on which a form bar support film was pasted to obtain a sample for immunostaining. Immunostaining was performed by blocking with 10% goat serum (Goat Serum) for 30 minutes at room temperature, and then reacting with an anti-mTNFαVHH antibody (rabbit) purified by affinity using a protein G column at a concentration of 5 μg / ml for 1 hour at room temperature. . Subsequently, after washing, an 18 nm gold colloid-labeled anti-rabbit IgG antibody was reacted. Then, after reacting the secondary antibody, it was washed again, fixed with 1% glutaraldehyde for 5 minutes at room temperature, and then subjected to double electron staining with 2% uranyl acetate for 5 minutes and then with a lead salt for 5 minutes. The sample immunostained in this way was observed with a transmission electron microscope.

その結果、mTNFα−VHH米においては、mTNFαVHHモノマー及びダイマー共に、細胞質に顕著に局在しており、イネ蛋白質貯蔵体であるPB−II(Proteinbody−II)内部にもこれらの局在は観察された(図19のA及びB、並びに及び図20のA及びB)。一方、対照の家兎IgGを反応させたmTNFα−VHH米(図19のC、図20のC)及びmTNFαVHH抗体を反応させたWT日本晴米(図19のD、図20のD)では、細胞質及びPB−IIのいずれにもmTNFαVHHは観察されなかった。   As a result, in mTNFα-VHH rice, both mTNFαVHH monomer and dimer were remarkably localized in the cytoplasm, and these localizations were also observed inside PB-II (Proteinbody-II), which is a rice protein reservoir. (A and B in FIG. 19 and A and B in FIG. 20). On the other hand, in mTNFα-VHH rice (FIG. 19C, FIG. 20C) reacted with control rabbit IgG and WT Nippon Haremai (FIG. 19D, FIG. 20D) reacted with mTNFαVHH antibody, the cytoplasm MTNFαVHH was not observed in any of PB-II and PB-II.

従って、図15及び16において示されたmTNFαVHHの水溶性の特質は、ナノ抗体のモノマー及びダイマーともに、主としてコメの蛋白質貯蔵体(PB)以外(すなわち、細胞質)に蓄積することに依ることが要因の一つとして推測される。   Therefore, the water-soluble nature of mTNFαVHH shown in FIGS. 15 and 16 is mainly due to the fact that both the nanoantibody monomer and dimer accumulate in other than the rice protein reservoir (PB) (ie, cytoplasm). As one of them.

ナノ抗体を用いた経口抗体製剤の開発は、従来から行われており、例えば、ロタウィルスのVP4およびVP7に対する結合親和性を持つナノ抗体(VHH1)(Dolk E,et al.,Proteins.2005;59:555−64.)やTNF−αのナノ抗体(Pant N,et al.,J Infect Dis.2006;194:1580−8.)を乳酸菌に発現させることで、経口でのロタウィルスの感染・下痢症やクローン病等の腸炎を予防する試みに成功している。人体にとって整腸剤として投与されることの多い乳酸菌を用いることにより人体に負担の少ない経口医薬品となりうるが、免疫能の低下した者や未熟児に投与する場合には乳酸菌に起因した敗血症や心筋炎のリスクがある(Vandenbroucke K,et al.,2010;3:49−56.、Land MH,et al.,Pediatrics.2005;115:178−81.、Schlegel L,et al.,Eur J Clin Microbiol Infect Dis.1998;17:887−8.0)。また、アウトブレイクへの対策や製造コストの観点をも考慮すると、ナノ抗体を用いた経口抗体製剤は、冷蔵保存が不要で長期に常温保存可能な製剤であることが望ましい。本発明により開発された、ナノ抗体が水溶性の形態で蓄積したコメは、精製工程をほとんど加えることなく、ナノ抗体を長期保存可能な経口抗体製剤として調製できる。また、コメから抽出した水溶性画分やその加工物は、注射製剤としても利用しうる。したがって、本発明は、抗体を有効成分とする安価でかつ常温保存可能な経口製剤や注射製剤などの医薬製剤の開発に大きく貢献しうるものである。   Development of oral antibody preparations using nanoantibodies has been conventionally performed, for example, nanoantibodies (VHH1) having binding affinity for rotavirus VP4 and VP7 (Dolk E, et al., Proteins. 2005; 59: 555-64.) And TNF-α nanoantibodies (Pant N, et al., J Infect Dis. 2006; 194: 1580-8.) Are expressed in lactic acid bacteria, so that rotavirus infection occurs orally.・ Successful attempts to prevent enteritis such as diarrhea and Crohn's disease. By using lactic acid bacteria, which are often administered to the human body as an intestinal adjuster, it can be an oral drug with less burden on the human body, but when administered to a person with reduced immunity or a premature infant, sepsis and myocarditis caused by lactic acid bacteria There is risk (Vandenbrooke K, et al., 2010; 3: 49-56., Land MH, et al., Pediatrics. 2005; 115: 178-81., Schlegel L, et al., Eur J Clin Microbiol Infect. Dis. 1998; 17: 887-8.0). In consideration of outbreak countermeasures and manufacturing costs, oral antibody preparations using nano-antibodies are preferably preparations that do not require refrigerated storage and can be stored at room temperature for a long period of time. Rice that has been developed according to the present invention and in which nanoantibodies are accumulated in a water-soluble form can be prepared as an oral antibody preparation capable of storing the nanoantibodies for a long period of time without adding a purification step. Moreover, the water-soluble fraction extracted from rice and its processed product can also be used as an injection preparation. Therefore, the present invention can greatly contribute to the development of a pharmaceutical preparation such as an oral preparation or an injection preparation which is inexpensive and can be stored at room temperature, which comprises an antibody as an active ingredient.

配列番号1
<223> MucoRice−VHH1(Q−STAR Eliteによる分析)
配列番号2
<223> MucoRice−VHH1(Orbitrapによる分析)
SEQ ID NO: 1
<223> MucoRice-VHH1 (analysis by Q-STAR Elite)
SEQ ID NO: 2
<223> MucoRice-VHH1 (analysis by Orbitrap)

Claims (6)

ナノ抗体をコードするDNAが導入され、ナノ抗体がコメの胚乳細胞特異的に発現し、水溶性の形態で当該細胞の細胞質に蓄積しているトランスジェニックイネ。 Transgenic rice in which DNA encoding a nanoantibody is introduced, the nanoantibody is expressed specifically in rice endosperm cells, and is accumulated in the cytoplasm of the cell in a water-soluble form . 請求項1に記載のトランスジェニックイネから採取されたコメ。 Rice harvested from the transgenic rice according to claim 1 . 請求項に記載のコメの、ナノ抗体を含有する水溶性画分。 A water-soluble fraction of the rice according to claim 2 containing nanoantibodies. 請求項に記載のコメまたは請求項に記載の水溶性画分の、ナノ抗体を含有する加工物。 A processed product containing nanoantibodies of the rice according to claim 2 or the water-soluble fraction according to claim 3 . 請求項に記載のコメ、請求項に記載の水溶性画分、または請求項に記載の加工物を含有する、組成物。 A composition comprising the rice according to claim 2 , the water-soluble fraction according to claim 3 , or the processed product according to claim 4 . ナノ抗体の製造方法であって、
(a)ナノ抗体をコードするDNAをイネに導入し、ナノ抗体がコメの胚乳細胞特異的に発現し、水溶性の形態で当該細胞の細胞質に蓄積しているトランスジェニックイネを作出する工程、
(b)工程(a)で作出されたトランスジェニックイネのコメから水溶性画分を得る工程、
を含む方法。
A method for producing a nanoantibody comprising:
(A) introducing a DNA encoding a nanoantibody into rice, and producing a transgenic rice in which the nanoantibody is specifically expressed in rice endosperm cells and accumulated in the cytoplasm of the cell in a water-soluble form ;
(B) obtaining a water-soluble fraction from the rice of the transgenic rice produced in step (a),
Including methods.
JP2012525370A 2010-07-20 2011-07-08 Transgenic rice expressing nanoantibodies Active JP5616449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012525370A JP5616449B2 (en) 2010-07-20 2011-07-08 Transgenic rice expressing nanoantibodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010162630 2010-07-20
JP2010162630 2010-07-20
JP2012525370A JP5616449B2 (en) 2010-07-20 2011-07-08 Transgenic rice expressing nanoantibodies
PCT/JP2011/065670 WO2012011396A1 (en) 2010-07-20 2011-07-08 Transgenic rice plant capable of expressing nanoantibody

Publications (2)

Publication Number Publication Date
JPWO2012011396A1 JPWO2012011396A1 (en) 2013-09-09
JP5616449B2 true JP5616449B2 (en) 2014-10-29

Family

ID=45496823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012525370A Active JP5616449B2 (en) 2010-07-20 2011-07-08 Transgenic rice expressing nanoantibodies

Country Status (2)

Country Link
JP (1) JP5616449B2 (en)
WO (1) WO2012011396A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2992100T (en) * 2013-04-29 2019-12-16 Agrosavfe Nv Agrochemical compositions comprising antibodies binding to sphingolipids
JP7089877B2 (en) 2014-11-05 2022-06-23 バイオタリス・エン・フェー Transgenic plants containing polynucleotides encoding variable domains of heavy chain antibodies
US11530254B2 (en) 2017-03-31 2022-12-20 The University Of Tokyo Norovirus antibody

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074491A2 (en) * 2003-02-18 2004-09-02 Syngeta Participations Ag Expression in plants of antibodies against enterotoxigenic escherichia coli

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079149A1 (en) * 2009-01-09 2010-07-15 Ipk Gatersleben Fusion antibody

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074491A2 (en) * 2003-02-18 2004-09-02 Syngeta Participations Ag Expression in plants of antibodies against enterotoxigenic escherichia coli

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014025540; TEH,Y.H. AND KAVANAGH,T.A.: 'High-level expression of Camelid nanobodies in Nicotiana benthamiana.' Transgenic Res. Vol.19, No.4, 20091028, pp.575-86 *
JPN6014025542; WINICHAYAKUL,S. et al.: 'Head-to-tail fusions of camelid antibodies can be expressed in planta and bind in rumen fluid.' Biotechnol. Appl. Biochem. Vol.53, No.2, 200906, pp.111-22 *
JPN6014025544; ABE,M. et al.: 'A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody sup' J. Biotechnol. Vol.175, 20140410, pp.45-52 *

Also Published As

Publication number Publication date
WO2012011396A1 (en) 2012-01-26
JPWO2012011396A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US9573996B2 (en) Monoclonal antibodies to human proinflammatory cytokines and methods for treating inflammatory diseases
JP2001500487A (en) Polypeptide fused to plant virus coat protein
WO2014180306A1 (en) Nucleic acid of coded gpc3 chimeric antigen receptor protein and t lymphocyte expressing gpc3 chimeric antigen receptor protein
CN109721659B (en) Novel Chimeric Antigen Receptor (CAR) targeting CD19 and application thereof
HU230364B1 (en) Simian adeniovirus nucleic acid and amino acid sequences, vectors containing same, and methods of use
JP2007528727A (en) Highly efficient peptide production in plant cells
Li et al. Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization
CN112584849A (en) Therapeutic agents comprising nucleic acids and CAR-modified immune cells and uses thereof
JP2010503668A (en) Influenza antibodies, compositions, and related methods
JP5616449B2 (en) Transgenic rice expressing nanoantibodies
WO2017128783A1 (en) Ebola virus disease vaccine taking human replication deficient adenovirus as vector
JP7233662B2 (en) Vaccine composition for preventing tuberculosis containing glycosylated AG85A protein and method for producing same
US20110179508A1 (en) Enterovirus type 71 protein and method for production
JP5008811B2 (en) Immunoadhesives to prevent rhinovirus infection
ES2336861T3 (en) PRODUCTION OF IL-10 IN BIORREACTOR OF GROWTH PLANT NON-FOOD.
TW201139672A (en) Immunization of fish with plant-expressed recombinant proteins
Chen et al. Surface display of peptides corresponding to the heptad repeat 2 domain of the feline enteric coronavirus spike protein on Bacillus Subtilis spores elicits protective immune responses against homologous infection in a feline aminopeptidase-N-transduced mouse model
JPWO2005096806A1 (en) Vaccine gene introduction rice
TWI777314B (en) Virus-like particle comprising expression plasmid for specifically expressing cd59 targeted short hairpin rna and application thereof
JPWO2006095749A1 (en) Methods for expressing and accumulating peptides in plants
KR20070045817A (en) Transgenic plant to express antigen for preventing porcine epidemic diarrhea and method for producing the same
TWI599654B (en) Virus-like particle expression plasmid of japanese encephalitis virus and japanese encephalitis virus dna vaccine
JP6633002B2 (en) Method for producing transformed plant producing immunogenic complex protein and immunogenic complex protein obtained therefrom
Jin et al. The heat-labile toxin B subunit of E. coli fused with VP6 from GCRV (Grass carp reovirus) was expressed and folded into an active protein in rice calli
KR20080052566A (en) Improved chimeric toxin receptor proteins and chimeric toxin receptor proteins for treatment and prevention of anthrax

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250