JP5614735B2 - Measuring system of tunnel lining behavior during earthquake - Google Patents

Measuring system of tunnel lining behavior during earthquake Download PDF

Info

Publication number
JP5614735B2
JP5614735B2 JP2008156887A JP2008156887A JP5614735B2 JP 5614735 B2 JP5614735 B2 JP 5614735B2 JP 2008156887 A JP2008156887 A JP 2008156887A JP 2008156887 A JP2008156887 A JP 2008156887A JP 5614735 B2 JP5614735 B2 JP 5614735B2
Authority
JP
Japan
Prior art keywords
tunnel
lining
behavior
earthquake
tunnel lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008156887A
Other languages
Japanese (ja)
Other versions
JP2009300323A (en
Inventor
究 津野
究 津野
祐介 中西
祐介 中西
貴司 仲山
貴司 仲山
秀矢 蒲地
秀矢 蒲地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2008156887A priority Critical patent/JP5614735B2/en
Publication of JP2009300323A publication Critical patent/JP2009300323A/en
Application granted granted Critical
Publication of JP5614735B2 publication Critical patent/JP5614735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、地震時のトンネル覆工挙動の計測システムに関するものである。   The present invention relates to a tunnel lining behavior measurement system during an earthquake.

従来、地震時の構造物挙動のモニタリングとして加速度を測定するようにしているが、トンネルの場合、覆工の変形度合が分からず、覆工の損傷状態を把握することができない。さらに、トンネルの損傷はひずみや内空変位とリンクしており、加速度だけではその挙動を判断することができない。
また、トンネルにおいては、その延長方向に計測用の配線を敷設することが困難であるため、測定箇所近くにデータ収録機器を置くことが一般的であるが、この場合、データ収録機器が高価であり、多点に配置することが難しく、地震時にトンネル内の挙動を多点でリアルタイムに測定することができない(下記非特許文献1参照)。
Conventionally, acceleration is measured as monitoring of the behavior of a structure during an earthquake, but in the case of a tunnel, the degree of deformation of the lining cannot be known and the damage status of the lining cannot be grasped. Furthermore, tunnel damage is linked to strain and internal displacement, and its behavior cannot be determined by acceleration alone.
Also, in tunnels, it is difficult to lay measurement wires in the extension direction, so it is common to place data recording equipment near the measurement location, but in this case the data recording equipment is expensive. Yes, it is difficult to arrange at multiple points, and the behavior in the tunnel cannot be measured at multiple points in real time during an earthquake (see Non-Patent Document 1 below).

さらに、トンネル内のデータ収録機器設置箇所まで地震時のトンネル覆工挙動データを取りに行く必要があり、地震が発生した場合にすぐにデータを見ることができない。また、機器設置箇所前後に覆工崩落があり現地に行けなかったり、データ収録機器が損傷した等、被害が大きい時にデータが取れない場合もある。さらに、地震直後にトンネル内の収録機器設置箇所までデータを収集しに行くことに危険が伴う。
財団法人 鉄道総合技術研究所,「鉄道構造物等維持管理標準・同解説(構造物編 トンネル)」,丸善株式会社,平成19年1月25日発行,pp.113−115
Furthermore, it is necessary to go to the tunnel lining behavior data at the time of the earthquake to the location where the data recording equipment is installed in the tunnel, and when the earthquake occurs, the data cannot be seen immediately. Also, there are cases where data cannot be obtained when the damage is significant, such as the lining collapse before and after the installation of the equipment, making it impossible to go to the site, or damage to the data recording equipment. In addition, it is dangerous to go to the recording equipment installation site in the tunnel immediately after the earthquake.
Railway Technical Research Institute, “Maintenance Standards for Railway Structures and Explanations (Tunnel for Structures)”, Maruzen Co., Ltd., published on January 25, 2007, pp. 113-115

上記したように、地震時のトンネルの覆工挙動のデータをリアルタイムに把握することは困難であった。
本発明は、上記問題点を解決するために、地震時のトンネルの覆工挙動のデータをリアルタイムに把握することができる地震時のトンネル覆工挙動の計測システムを提供することを目的とする。
As mentioned above, it was difficult to grasp the data of tunnel lining behavior during an earthquake in real time.
In order to solve the above-described problems, an object of the present invention is to provide a measurement system for a tunnel lining behavior at the time of an earthquake that can grasp data of the lining behavior of a tunnel at the time of an earthquake in real time.

本発明は、上記目的を達成するために、
〔1〕地震時のトンネル覆工挙動の計測システムにおいて、トンネルの覆工表面にそれぞれ配置される、逆U字形状の支持体の一面に配置される歪みゲージを有するセンサーとこのセンサーに接続される無線送信装置と、この無線送信装置からの前記トンネルの覆工表面の変状情報を前記トンネルの外で受信する無線受信装置と、この無線受信装置からの前記トンネルの覆工表面の変状情報を解析するトンネル覆工情報解析装置とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] The measuring system of the tunnel lining behavior during an earthquake, a sensor having a strain gauge disposed respectively disposed on the lining surface of the tunnel, on one surface of the support of the inverted U-shaped, connected to the sensor A wireless transmitting device , a wireless receiving device for receiving deformation information on the lining surface of the tunnel from the wireless transmitting device outside the tunnel, and a change in the lining surface of the tunnel from the wireless receiving device. And a tunnel lining information analysis device for analyzing state information.

〔2〕地震時のトンネル覆工挙動の計測システムにおいて、トンネルの覆工表面にそれぞれ配置される、光学的変位計を有するセンサーとこのセンサーに接続される無線送信装置と、この無線送信装置からの前記トンネルの覆工表面の変状情報を前記トンネルの外で受信する無線受信装置と、この無線受信装置からの前記トンネルの覆工表面の変状情報を解析するトンネル覆工情報解析装置とを具備することを特徴とする。 [2] The measuring system of the tunnel lining behavior during an earthquake, are arranged on the lining surface of the tunnel, and a sensor having an optical displacement meter, a radio transmission device connected to the sensor, the wireless transmission device a radio receiver for receiving Deformation information of the tunnel lining surface outside of the tunnel from the tunnel lining information analyzer for analyzing Deformation information lining surface of the tunnel from the radio receiver It is characterized by comprising.

〔3〕上記〔2〕記載の地震時のトンネル覆工挙動の計測システムにおいて、前記光学的変位計がレーザー変位計であることを特徴とする。
〔4〕上記〔1〕又は〔2〕記載の地震時のトンネル覆工挙動の計測システムにおいて、前記センサーを前記トンネルの複数の断面に配置して3次元的なトンネル覆工挙動の計測を行うようにしたことを特徴とする。
[3] In the measurement system of tunnel lining behavior at the time of earthquake described in [2] above, the optical displacement meter is a laser displacement meter.
[4] In the tunnel lining behavior measurement system according to the above [1] or [2], the sensor is arranged on a plurality of cross sections of the tunnel to measure the three-dimensional tunnel lining behavior. It is characterized by doing so.

本発明によれば、地震時のトンネルの覆工挙動のデータをリアルタイムに把握することができる。   According to the present invention, data of tunnel lining behavior at the time of an earthquake can be grasped in real time.

本発明の地震時のトンネル覆工挙動の計測システムは、トンネルの覆工表面にそれぞれ配置される、逆U字形状の支持体の一面に配置される歪みゲージを有するセンサーとこのセンサーに接続される無線送信装置と、この無線送信装置からの前記トンネルの覆工表面の変状情報を前記トンネルの外で受信する無線受信装置と、この無線受信装置からの前記トンネルの覆工表面の変状情報を解析するトンネル覆工情報解析装置とを具備する。 The tunnel lining behavior measuring system according to the present invention includes a sensor having a strain gauge arranged on one surface of an inverted U-shaped support , which is arranged on the lining surface of the tunnel, and the sensor. A wireless transmitting device , a wireless receiving device for receiving deformation information on the lining surface of the tunnel from the wireless transmitting device outside the tunnel, and a change in the lining surface of the tunnel from the wireless receiving device. A tunnel lining information analysis device for analyzing state information.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の第1実施例を示す歪みゲージを有するセンサーを備えた地震時のトンネル覆工挙動の計測装置を示す模式図、図2はその計測装置の配置状態を示す図面代用の写真、図3はその地震時のトンネル覆工挙動の計測システムの模式図、図4は本発明の地震時のトンネル覆工挙動の計測システムの無線送信装置のブロック図、図5はその計測システムの無線受信装置のブロック図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view showing a measuring device for tunnel lining behavior at the time of an earthquake provided with a sensor having a strain gauge according to the first embodiment of the present invention, and FIG. 2 is a drawing-substituting photograph showing an arrangement state of the measuring device. 3 is a schematic diagram of a tunnel lining behavior measurement system during an earthquake, FIG. 4 is a block diagram of a wireless transmission device of the tunnel lining behavior measurement system according to the present invention, and FIG. 5 is a diagram of the measurement system. It is a block diagram of a wireless receiver.

これらの図において、1はトンネルの覆工表面、2は歪みゲージ4を逆U字形状の支持体3の背面に有するセンサーであり、逆U字形状の支持体3の脚部5,6は固定ボルト7,8でトンネルの覆工表面1に固定される。そこで、例えば、トンネルの覆工表面1にひび割れ9が発生すると、逆U字形状の支持体3の両脚部5,6は広がることになり、歪みゲージ4に作用することになり、トンネルの覆工表面1の挙動が歪みゲージ4の出力情報として得られる。また、センサー2の近傍にはこのセンサー2に接続される無線送信装置10を設置する。つまり、無線送信装置10は、図4に示すように、アナログ情報をデジタル情報に変換する入力インターフェース11と、CPU(中央処理装置)12と、無線送信部13とからなる。なお、センサー2は同一断面上に複数個配置することが望ましい。また、歪みゲージ4は支持部材(テープなど)でトンネルの覆工表面に配置するようにしてもよい。 In these drawings, 1 is a tunnel lining surface, 2 is a sensor having a strain gauge 4 on the back surface of an inverted U-shaped support 3, and legs 5 and 6 of the inverted U-shaped support 3 are It is fixed to the lining surface 1 of the tunnel with fixing bolts 7 and 8. Therefore, for example, when a crack 9 is generated on the lining surface 1 of the tunnel, both legs 5 and 6 of the inverted U-shaped support body 3 spread and act on the strain gauge 4, thereby covering the tunnel. The behavior of the work surface 1 is obtained as output information of the strain gauge 4. Further, a wireless transmission device 10 connected to the sensor 2 is installed in the vicinity of the sensor 2. That is, as shown in FIG. 4, the wireless transmission device 10 includes an input interface 11 that converts analog information into digital information, a CPU (central processing unit) 12, and a wireless transmission unit 13. Incidentally, the sensor 2 is preferably arranged several double on the same cross section. Further, the strain gauge 4 may be disposed on the lining surface of the tunnel with a support member (tape or the like).

図3に示すように、無線送信装置10からは地震時のトンネル覆工挙動の計測情報が送信され、トンネル14の外に配置される無線受信装置20で受信される。この無線受信装置20は、図5に示すように、無線受信部21、CPU(中央処理装置)22と、出力インターフェース23とを備えている。
この無線受信部21得られたトンネル覆工挙動の計測情報は、出力インターフェース23を介してトンネル覆工情報解析装置30で解析される。
As shown in FIG. 3, the measurement information of the tunnel lining behavior at the time of an earthquake is transmitted from the wireless transmission device 10 and received by the wireless reception device 20 arranged outside the tunnel 14. As shown in FIG. 5, the wireless reception device 20 includes a wireless reception unit 21 , a CPU (central processing unit) 22, and an output interface 23.
The measurement information of the tunnel lining behavior obtained in the wireless receiving unit 21 is analyzed in the tunnel lining analysis circuit 30 via the output interface 23.

図6は本発明の第2実施例を示すトンネルの複数断面にセンサーを配置した地震時のトンネル覆工挙動の3次元的計測システムの模式図である。
上記した第1実施例では、トンネルの一断面のトンネル覆工挙動を計測する例について述べたが、本実施例では、図6に示すように、トンネルの複数の断面41,42にそれぞれセンサー43,44を配置した。これにより、それぞれの断面でのトンネル覆工表面の変状情報を、その断面の位置情報とともに無線送信装置45,46で送信して、トンネルの外に配置される無線受信装置47で受信するようにした。無線受信装置47で受信された複数断面のトンネル覆工挙動の計測情報は、トンネル覆工情報解析装置48で解析され、3次元的なトンネル覆工挙動を把握することができる。
FIG. 6 is a schematic diagram of a three-dimensional measurement system for tunnel lining behavior during an earthquake in which sensors are arranged on a plurality of cross sections of a tunnel according to a second embodiment of the present invention.
In the first embodiment described above, an example in which the tunnel lining behavior of one cross section of the tunnel is measured has been described. In this embodiment, as shown in FIG. 44 are arranged. Thereby, the deformation information on the tunnel lining surface in each cross section is transmitted by the wireless transmission devices 45 and 46 together with the position information of the cross section, and is received by the wireless reception device 47 arranged outside the tunnel. I made it. The measurement information of the tunnel lining behavior of a plurality of cross sections received by the wireless reception device 47 can be analyzed by the tunnel lining information analysis device 48 to grasp the three-dimensional tunnel lining behavior.

図7は本発明の第3実施例を示すレーザー変位計を有するセンサーを備えた地震時のトンネル覆工挙動の計測システムの模式図である。
この実施例では、トンネル14の覆工表面にレーザー変位計50を配置して、トンネル覆工表面の変位を計測し、第1実施例と同様に、その計測情報を無線送信装置でトンネルの外に配置される無線受信装置20に送信し、トンネル覆工情報解析装置30で解析する。
FIG. 7 is a schematic diagram of a measurement system for tunnel lining behavior at the time of an earthquake provided with a sensor having a laser displacement meter according to a third embodiment of the present invention.
In this embodiment, a laser displacement meter 50 is arranged on the lining surface of the tunnel 14 to measure the displacement of the tunnel lining surface, and the measurement information is transmitted to the outside of the tunnel by a wireless transmission device as in the first embodiment. Is transmitted to the wireless receiver 20 arranged in the network, and is analyzed by the tunnel lining information analyzer 30.

この第3実施例においても、トンネルの一断面のみのトンネル覆工挙動の計測について述べたが、第2実施例と同様に、トンネルの複数の断面にそれぞれレーザー変位計50を有するセンサーを配置してもよい。これにより、それぞれの断面でのトンネル覆工表面の変状情報を、その断面の位置情報とともに無線送信装置で送信して、トンネルの外に配置される無線受信装置で受信するようにした。この無線受信装置で受信された複数断面のトンネル覆工挙動の計測情報は、トンネル覆工情報解析装置で解析され、3次元的なトンネル覆工挙動を把握することができる。   In the third embodiment, the measurement of the tunnel lining behavior of only one section of the tunnel has been described. However, as in the second embodiment, sensors each having a laser displacement meter 50 are arranged on a plurality of sections of the tunnel. May be. Thereby, the deformation information on the tunnel lining surface in each cross section is transmitted by the wireless transmission device together with the position information of the cross section, and is received by the wireless reception device arranged outside the tunnel. The measurement information of the tunnel lining behavior of a plurality of cross sections received by the wireless reception device can be analyzed by the tunnel lining information analysis device, and the three-dimensional tunnel lining behavior can be grasped.

この第3実施例では、レーザー変位計50を用いるようにしたが、これに限定されるものではなく、例えば、通常の発光ランプと距離センサ付き受光素子との組み合わせ等の種々の光学的変位計を用いるようにしてもよい。
本発明によれば、トンネル覆工に取り付けたセンサーで得られたデータを無線送信装置で送信し、トンネル外で受信することにより、トンネル坑外で覆工挙動をリアルタイムに監視することができる。
In the third embodiment, the laser displacement meter 50 is used. However, the present invention is not limited to this. For example, various optical displacement meters such as a combination of a normal light emitting lamp and a light receiving element with a distance sensor. May be used.
ADVANTAGE OF THE INVENTION According to this invention, the data obtained with the sensor attached to the tunnel lining can be transmitted with a wireless transmitter, and it can receive outside a tunnel, and can monitor a lining behavior in real time outside a tunnel mine.

また、このシステムを用いた計測断面をあらかじめトンネル変状箇所等に複数設置し、地震発生時(緊急地震速報等で地震が予知された段階)に動的なセンサー(計測装置)を開始させ、地震による挙動が収束したり、計測・無線装置が損傷するまで計測とデータ送信を継続することにより、地震時の覆工挙動を動的にリアルタイムで計測することができる。   In addition, multiple measurement sections using this system are installed in advance in tunnel deformation locations, etc., and a dynamic sensor (measurement device) is started when an earthquake occurs (when an earthquake is predicted by an emergency earthquake bulletin, etc.) By continuing measurement and data transmission until the behavior due to the earthquake converges or the measurement / wireless device is damaged, the lining behavior at the time of the earthquake can be measured dynamically in real time.

このように、無線受信装置と周波数分析等を行うトンネル覆工情報解析装置を組み合わせたシステムを構築し、これをもとにトンネル覆工の損傷程度を把握して運転規制等の判断に資することができる。
また、トンネル内に配置される各種センサーや無線送信装置等の機器が安価であり、小型であるため、多くの計測断面を設けることができる。これにより高密度のモニタリングができる。
In this way, a system that combines a wireless receiver and a tunnel lining information analyzer that performs frequency analysis, etc. is constructed, and based on this, the damage level of the tunnel lining is grasped and contributes to judgments such as operation regulations Can do.
In addition, since various devices such as various sensors and wireless transmission devices arranged in the tunnel are inexpensive and small in size, many measurement cross sections can be provided. This enables high-density monitoring.

さらに、トンネル内にデータを収集しに行く必要がないので、地震によるトンネル崩壊の危険性がある場合でも安全にデータを得ることができる。また、被害が大きな場合でも、機器類が損傷するまで、データを取り続けることができる。
そして、トンネル覆工の地震時挙動メカニズムが解明できる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Furthermore, since it is not necessary to go to the tunnel to collect data, data can be obtained safely even when there is a risk of tunnel collapse due to an earthquake. Even if the damage is significant, data can be collected until the equipment is damaged.
And the behavior mechanism of tunnel lining during earthquake can be clarified.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の地震時のトンネル覆工挙動の計測システムは、地震時のトンネルの覆工挙動をリアルタイムに把握することができるシステムとして利用可能である。   The tunnel lining behavior measurement system at the time of an earthquake of the present invention can be used as a system that can grasp the lining behavior of a tunnel at the time of an earthquake in real time.

本発明の第1実施例を示す歪みゲージを有するセンサーを備えた地震時のトンネル覆工挙動の計測装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus of the tunnel lining behavior at the time of the earthquake provided with the sensor which has a strain gauge which shows 1st Example of this invention. 本発明の第1実施例を示す歪みゲージを有するセンサーを備えた地震時のトンネル覆工挙動の計測装置の配置状態を示す図面代用の写真である。It is a drawing substitute photograph which shows the arrangement | positioning state of the measuring device of the tunnel lining behavior at the time of the earthquake provided with the sensor which has a strain gauge which shows 1st Example of this invention. 本発明の第1実施例を示す歪みゲージを有するセンサーを備えた地震時のトンネル覆工挙動の計測システムの模式図である。It is a schematic diagram of the measuring system of the tunnel lining behavior at the time of an earthquake provided with the sensor which has a strain gauge which shows 1st Example of this invention. 本発明の地震時のトンネル覆工挙動の計測システムの無線送信装置のブロック図である。It is a block diagram of the wireless transmission apparatus of the measuring system of the tunnel lining behavior at the time of the earthquake of this invention. 本発明のトンネル覆工挙動の計測システムの無線受信装置のブロック図である。It is a block diagram of the radio | wireless receiver of the measurement system of the tunnel lining behavior of this invention. 本発明の第2実施例を示すトンネルの複数断面にセンサーを配置した地震時のトンネル覆工挙動の3次元的計測システムの模式図である。It is a schematic diagram of the three-dimensional measurement system of the tunnel lining behavior at the time of the earthquake which has arrange | positioned the sensor to the several cross section of the tunnel which shows 2nd Example of this invention. 本発明の第3実施例を示すレーザー変位計を有するセンサーを備えた地震時のトンネル覆工挙動の計測システムの模式図である。It is a schematic diagram of the measuring system of the tunnel lining behavior at the time of the earthquake provided with the sensor which has the laser displacement meter which shows 3rd Example of this invention.

1 トンネルの覆工表面
2 センサー
3 逆U字形状の支持体
4 歪みゲージ
5,6 逆U字形状の支持体の脚部
7,8 固定ボルト
9 ひび割れ
10,45,46 無線送信装置
11 入力インターフェース
12,22 CPU(中央処理装置)
13 無線送信部
14 トンネル
20,47 無線受信装置
21 無線受信部
23 出力インターフェース
30,48 トンネル覆工情報解析装置
41,42 トンネルの断面
43,44 センサー
50 レーザー変位計
DESCRIPTION OF SYMBOLS 1 Tunnel lining surface 2 Sensor 3 Reverse U-shaped support body 4 Strain gauge 5,6 Leg part of reverse U-shaped support body 7,8 Fixing bolt 9 Crack 10,45,46 Wireless transmitter 11 Input interface 12, 22 CPU (Central Processing Unit)
DESCRIPTION OF SYMBOLS 13 Wireless transmission part 14 Tunnel 20, 47 Wireless receiver 21 Wireless receiver 23 Output interface 30, 48 Tunnel lining information analyzer 41, 42 Section of tunnel 43, 44 Sensor 50 Laser displacement meter

Claims (4)

(a)トンネルの覆工表面にそれぞれ配置される、逆U字形状の支持体の一面に配置される歪みゲージを有するセンサーと該センサーに接続される無線送信装置と、
(b)該無線送信装置からの前記トンネルの覆工表面の変状情報を前記トンネルの外で受信する無線受信装置と、
(c)該無線受信装置からの前記トンネルの覆工表面の変状情報を解析するトンネル覆工情報解析装置とを具備することを特徴とする地震時のトンネル覆工挙動の計測システム。
(A) a sensor having a strain gauge disposed on one surface of an inverted U-shaped support , each disposed on the lining surface of the tunnel , and a wireless transmission device connected to the sensor ;
(B) a wireless reception device for receiving deformation information on the lining surface of the tunnel from the wireless transmission device outside the tunnel;
(C) A tunnel lining behavior measurement system during an earthquake, comprising: a tunnel lining information analysis device that analyzes deformation information on the lining surface of the tunnel from the wireless receiver.
(a)トンネルの覆工表面にそれぞれ配置される、光学的変位計を有するセンサーと該センサーに接続される無線送信装置と、
(b)該無線送信装置からの前記トンネルの覆工表面の変状情報を前記トンネルの外で受信する無線受信装置と、
(c)該無線受信装置からの前記トンネルの覆工表面の変状情報を解析するトンネル覆工情報解析装置とを具備することを特徴とする地震時のトンネル覆工挙動の計測システム。
(A) a sensor having an optical displacement meter , which is disposed on the lining surface of the tunnel , and a wireless transmission device connected to the sensor ;
(B) a radio receiver for receiving Deformation information of the tunnel lining surface from the wireless transmitting device outside of the tunnel,
(C) A tunnel lining behavior measurement system during an earthquake, comprising: a tunnel lining information analysis device that analyzes deformation information on the lining surface of the tunnel from the wireless receiver.
請求項2記載の地震時のトンネル覆工挙動の計測システムにおいて、前記光学的変位計がレーザー変位計であることを特徴とする地震時のトンネル覆工挙動の計測システム。   The tunnel lining behavior measuring system according to claim 2, wherein the optical displacement meter is a laser displacement meter. 請求項1又は2記載の地震時のトンネル覆工挙動の計測システムにおいて、前記センサーを前記トンネルの複数の断面に配置して3次元的なトンネル覆工挙動の計測を行うようにしたことを特徴とする地震時のトンネル覆工挙動の計測システム。   3. The tunnel lining behavior measurement system according to claim 1 or 2, wherein the sensor is arranged on a plurality of cross sections of the tunnel to measure a three-dimensional tunnel lining behavior. A measurement system for tunnel lining behavior during an earthquake.
JP2008156887A 2008-06-16 2008-06-16 Measuring system of tunnel lining behavior during earthquake Expired - Fee Related JP5614735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156887A JP5614735B2 (en) 2008-06-16 2008-06-16 Measuring system of tunnel lining behavior during earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156887A JP5614735B2 (en) 2008-06-16 2008-06-16 Measuring system of tunnel lining behavior during earthquake

Publications (2)

Publication Number Publication Date
JP2009300323A JP2009300323A (en) 2009-12-24
JP5614735B2 true JP5614735B2 (en) 2014-10-29

Family

ID=41547374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156887A Expired - Fee Related JP5614735B2 (en) 2008-06-16 2008-06-16 Measuring system of tunnel lining behavior during earthquake

Country Status (1)

Country Link
JP (1) JP5614735B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167551A (en) * 2012-02-16 2013-08-29 Railway Technical Research Institute Detection data transmitting and gathering system using self power-generating type water leakage detection sensor of underground facility
FR3033586B1 (en) * 2015-03-13 2019-01-25 Soletanche Freyssinet INSTRUMENT WALL ELEMENT
CN107655420A (en) * 2017-11-14 2018-02-02 云南省建筑科学研究院 One kind is in built tunnel surrouding rock deformation automated watch-keeping facility
CN108225262B (en) * 2018-01-04 2023-11-03 重庆市勘测院 Method for monitoring settlement of tunnel section based on submillimeter displacement sensor
CN110411361B (en) * 2019-05-15 2021-08-17 首都师范大学 Laser detection data processing method for mobile tunnel
CN113404541A (en) * 2021-06-29 2021-09-17 陕西工业职业技术学院 Tunnel surrounding rock deformation on-line monitoring and early warning system
CN115183965B (en) * 2022-05-17 2023-08-08 中铁西北科学研究院有限公司 Tunnel lining earthquake accumulated damage evaluation method suitable for vibrating table test

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623004U (en) * 1985-06-24 1987-01-09
JPH10197296A (en) * 1997-01-07 1998-07-31 Hitachi Eng & Services Co Ltd Regional monitoring system for soil or baserock collapse and central monitoring system
JP2000304531A (en) * 1999-04-23 2000-11-02 Maeda Corp Tunnel measuring system
JP4334095B2 (en) * 1999-12-22 2009-09-16 株式会社ケンウッド Tunnel monitoring system
JP3820459B2 (en) * 2001-07-24 2006-09-13 株式会社大林組 Correction method for image processing displacement measurement
JP2007018126A (en) * 2005-07-06 2007-01-25 Nec Tokin Corp Collapse monitoring system

Also Published As

Publication number Publication date
JP2009300323A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5614735B2 (en) Measuring system of tunnel lining behavior during earthquake
KR100782319B1 (en) Monitoring apparatus of measuring a rail to diagnose the safety of a railway
KR101300010B1 (en) Monitoring system and method for railroad rail
KR101083627B1 (en) System for safety measure of structure using inclinometer
CN101788352B (en) Composite fiber detection module and device
US10618532B2 (en) Train coupler structural health monitoring system
JPWO2020044660A1 (en) State identification system, state identification device, state identification method, and program
KR101470358B1 (en) System for monitoring broken rail using an optical fiber cable
KR101291591B1 (en) Monitoring system and method for concreteballast
CN108458858A (en) A kind of train coupler arranged structural healthy monitoring system
JP6346851B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
CN102854541B (en) There is passive post-disaster downhole information acquisition method and the system thereof of stationkeeping ability
Bernini et al. Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors
JP2004101398A (en) System and method for measuring bridge
EP2454576B1 (en) Method and system for monitoring a thin structure
KR20050108008A (en) Integrated monitoring system for preventing disaster and method for controlling the same
KR100950324B1 (en) New construction joint dvice displacement detection system of railway rail
KR102041949B1 (en) System for monitoring temperature of railway through distributed temperature optical sensor
KR20060102804A (en) Fatigue intensity monitorring system of construction
RU172963U1 (en) Automatic device for controlling displacements of the near-edge rock mass of mine workings
KR20210037213A (en) Wireless Instrumentation System of Structures for Securing Reliability of Measuring Data Analysiss
KR100925801B1 (en) Structural Health Monitoring Method
KR102710209B1 (en) Acceleration and strain wireless composite sensor
JPWO2020100509A1 (en) Civil engineering structure monitoring system, civil engineering structure monitoring device, civil engineering structure monitoring method, and program
KR20100002686A (en) Structure measurement control system using bidirectional communcation function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130121

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5614735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees