JP5614611B2 - Electric mobile body comprising a secondary battery and a solid oxide fuel cell - Google Patents

Electric mobile body comprising a secondary battery and a solid oxide fuel cell Download PDF

Info

Publication number
JP5614611B2
JP5614611B2 JP2009256485A JP2009256485A JP5614611B2 JP 5614611 B2 JP5614611 B2 JP 5614611B2 JP 2009256485 A JP2009256485 A JP 2009256485A JP 2009256485 A JP2009256485 A JP 2009256485A JP 5614611 B2 JP5614611 B2 JP 5614611B2
Authority
JP
Japan
Prior art keywords
electric
fuel cell
secondary battery
oxide fuel
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009256485A
Other languages
Japanese (ja)
Other versions
JP2011100698A (en
Inventor
剛正 山田
剛正 山田
照一郎 日高
照一郎 日高
Original Assignee
剛正 山田
剛正 山田
照一郎 日高
照一郎 日高
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 剛正 山田, 剛正 山田, 照一郎 日高, 照一郎 日高 filed Critical 剛正 山田
Priority to JP2009256485A priority Critical patent/JP5614611B2/en
Publication of JP2011100698A publication Critical patent/JP2011100698A/en
Application granted granted Critical
Publication of JP5614611B2 publication Critical patent/JP5614611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、2次電池と固体酸化物型燃料電池とを備えた電気自動車等の電動式移動体に関する。   The present invention relates to an electric vehicle such as an electric vehicle including a secondary battery and a solid oxide fuel cell.

近年、リチウムイオン電池の性能向上に伴い、これを利用した電気自動車の性能も向上し相当程度の市場展開が進みつつある。そして現状では、これらの電気自動車は一回のフル充電での走行距離も、ほぼ100〜200kmが可能とされている。
自動車は本来、望む時に望む所へ人を移動させるとともに、移動中に快適な室内空間を提供する機能を備えている。特に快適な移動空間の提供は単に快適さのみでなく安全面からも必要とされる。
電気自動車も当然その機能を具備する必要があるが、そのための必要エネルギーは走行可能距離を犠牲にしつつ、2次電池システムから得ているのが現状である。
In recent years, along with the improvement in performance of lithium ion batteries, the performance of electric vehicles using the lithium ion battery has been improved, and a considerable degree of market development is progressing. Under the present circumstances, these electric vehicles can travel about 100 to 200 km at a single full charge.
An automobile originally has a function of moving a person to a desired place when desired and providing a comfortable indoor space while moving. In particular, provision of a comfortable moving space is required not only for comfort but also for safety.
The electric vehicle naturally needs to have the function, but the necessary energy for that purpose is obtained from the secondary battery system at the expense of the travelable distance.

比較的小型の電気自動車の例では、一定速40km/hで走行中、ほぼ2.5kWのエネルギが必要とされる。しかるに、冬季走行中は暖房を必要とするころ、その暖房エネルギーは、ヒートポンプ利用の場合でも約2.5kW程度必要とされ、よって、一回のフル充電での走行距離は大きく減少することとなる。
特に冬季の暖房は単に車室内を暖めるのみでなく、車内の水蒸気凝縮によるフロントガラスの曇りを除き、良好な視界を得るためにも必要とされる。
そこで、燃料電池車においては、モータ、インバータ等の発生熱が利用可能ではあるが、これらだけでは暖房熱としては不充分である。
また、寒冷地での早朝においては、室内のみでなくフロントガラスの霜取りも含めた停止中の暖機操作を行う時のエネルギは、数十km走行分のエネルギに等しいものとなる。
In the case of a relatively small electric vehicle, approximately 2.5 kW of energy is required while traveling at a constant speed of 40 km / h. However, when heating is required during winter driving, the heating energy is required to be about 2.5 kW even when using a heat pump, and the travel distance in one full charge is greatly reduced. .
In particular, heating in winter is not only required to warm the vehicle interior, but is also required to obtain a good field of view except for fogging of the windshield caused by water vapor condensation inside the vehicle.
Thus, in a fuel cell vehicle, heat generated by a motor, an inverter, or the like can be used, but these alone are insufficient as heating heat.
Further, in the early morning in a cold region, the energy when performing a warming-up operation while stopping including not only indoors but also windshield defrosting is equal to the energy for traveling several tens of kilometers.

また、夏場の冷房に要するヒートポンプによる電気エネルギはほぼ2kWとされる。 特に予想の難しい街中の渋滞においては、非走行状態でも2kW程度を消費するため、その後の走行可能距離の予想がつきにくく、思わぬ走行不能の事態に遭遇するおそれがある。
熱を有効に利用する吸着冷凍技術も車内冷房への利用の可能性の高い手段ではあるが、現在の電気自動車にはこのための熱源がない。
Moreover, the electric energy by the heat pump required for cooling in summer is approximately 2 kW. In particular, in a traffic jam in a city where it is difficult to predict, since about 2 kW is consumed even in a non-traveling state, it is difficult to predict the possible travel distance thereafter, and there is a possibility of encountering an unexpected travel impossible situation.
Adsorption refrigeration technology that makes effective use of heat is also a means with high potential for use in vehicle interior cooling, but current electric vehicles do not have a heat source for this purpose.

現電気自動車のリチウムイオンベースの2次電池システムは、100年以上の歴史を持つ内燃機関による走行システムに比較し、歴史も浅く、少なくとも全く同等の高い信頼性を持つとは言いがたい面もある。
特に懸念されるのは、2次電池の劣化による予期しない走行距離の減少である。 もちろん、2次電池駆動電気自動車にはモニタにより運転者に状況を報せるシステムが装備されているが、予期しない走行不能に対応し得る何らかの補助システムが必要とされる。
そのため、車輪を駆動する複数の駆動用モータごとに2次電池ユニットを分散配置し、いずれかの2次電池ユニットに異常が生じ、ある駆動用モータが駆動できなくなった場合でも、残りの2次電池ユニットによって残りの駆動用モータの駆動を確保して、車両の完全な停止状態を回避できるという、各駆動用モータに個別に電源供給を行う技術が提案されている(特許文献1参照)。
The lithium-ion-based secondary battery system of the current electric vehicle has a short history compared to a traveling system using an internal combustion engine with a history of more than 100 years, and it is difficult to say that it has at least the same high reliability. is there.
Of particular concern is the unexpected decrease in travel distance due to secondary battery deterioration. Of course, the secondary battery-powered electric vehicle is equipped with a system that informs the driver of the situation by a monitor, but some auxiliary system that can cope with unexpected inability to drive is required.
For this reason, the secondary battery units are dispersedly arranged for each of the plurality of drive motors that drive the wheels, and even if any of the secondary battery units has an abnormality and the drive motor cannot be driven, the remaining secondary battery units can be driven. A technique for individually supplying power to each driving motor has been proposed, in which driving of the remaining driving motors can be ensured by the battery unit and a complete stop state of the vehicle can be avoided (see Patent Document 1).

電気自動車は走行中は二酸化炭素は排出しないが、電気自動車が必要とする駆動用の電力を作る発電所では二酸化炭素が排出される。
発電での熱効率、受電端までの送電ロス、更に電力が2次電池に注入された後のモータ、インバータ等のロスを考慮した、電気自動車の走行キロ当たりの二酸化炭素排出量は32.6gC/kmでガソリンハイブリッド車の29.8gC/kmより多いという報告もある(非特許文献1参照)
さらに、暖房等の熱エネルギーをも2次電池のエネルギで賄う場合は、二酸化炭素排出量は最新の内燃機関ベースのハイブリッド車に劣る可能性がある。
While an electric vehicle does not emit carbon dioxide while it is running, carbon dioxide is emitted at a power plant that produces the electric power required for the electric vehicle.
Taking into account the thermal efficiency in power generation, the power transmission loss to the receiving end, and the loss of the motor, inverter, etc. after the power is injected into the secondary battery, the carbon dioxide emissions per kilometer of electric vehicle traveling are 32.6 gC / There is also a report that it is more than 29.8 gC / km of a gasoline hybrid vehicle at km (see Non-Patent Document 1).
Furthermore, when the heat energy such as heating is also provided by the energy of the secondary battery, the carbon dioxide emissions may be inferior to the latest internal combustion engine-based hybrid vehicles.

特開平10−056701号公報Japanese Patent Laid-Open No. 10-056701 ON THE ROAD IN 2020,Energy Laboratory Report ♯MIT EL 00−003 October2000ON THE ROAD IN 2020, Energy Laboratory Report #MIT EL 00-003 October 2000

現在、2次電池のみでシステムを構成する電気自動車においては、走行時に必要とする室内空調用等の熱需要に対応するためには、走行距離を犠牲にする他はない。   Currently, in an electric vehicle that constitutes a system with only a secondary battery, there is no other way than sacrificing the travel distance in order to meet the heat demand for indoor air conditioning and the like that is required during travel.

冷房に関しては、一般的にはヒートポンプで行われるが、これの駆動エネルギーも2次電池システムに頼らざるを得ない。特に夏場の渋滞はその予想が難しく、2次電池の思わぬ完全放電によって走行不能に陥る危険が生じる。
そこで、冷房を電力に頼らず、熱による方式、例えば吸着冷凍方式等による場合は、そのための熱の供給源を必要とする。
The cooling is generally performed by a heat pump, but the driving energy of the cooling must be relied on the secondary battery system. In particular, it is difficult to predict traffic jams in summer, and there is a risk that the vehicle will become unable to run due to unexpected complete discharge of the secondary battery.
Therefore, in the case of a system using heat without relying on electric power for cooling, for example, an adsorption refrigeration system, a heat supply source is required.

さらに、リチウムイオン電池をベースとする2次電池システムはまだ歴史も浅く、100年以上の歴史を持つ内燃機関のシステムに比較して、その信頼性には未知の部分が多い。したがって、こうした予想の難しいトラブルに対処するためリンプホーム(limp home)機能を装備させることが必須となる。   Furthermore, secondary battery systems based on lithium-ion batteries have a short history, and the reliability is much unknown compared to internal combustion engine systems with a history of more than 100 years. Therefore, it is essential to equip a limp home function to deal with such difficult to predict problems.

上記のように、発電所における発電時の二酸化炭素排出量も考慮した電気自動車の実質的な二酸化炭素排出量はハイブリッド車に劣っている場合もあり、クリーンなイメージの高い電気自動車としては、この二酸化炭素排出量の低減への対応手段を設けることが求められる。
また、車輪を駆動する複数の駆動用モータごとに2次電池ユニットを分散配置する方法は、車体重量が増加するだけでなく、コスト的にも問題があった。
As mentioned above, the actual carbon dioxide emissions of electric vehicles taking into account carbon dioxide emissions during power generation at power plants may be inferior to hybrid vehicles. It is required to provide means for reducing carbon dioxide emissions.
In addition, the method of distributing the secondary battery units in a plurality of drive motors that drive the wheels not only increases the weight of the vehicle body, but also has a problem in cost.

本発明者は、上記に鑑み鋭意研究の結果、次の手段によりこの課題を解決した。
(1)2次電池と固体酸化物型燃料電池とを備え、前記2次電池及び/又は固体酸化物型燃料電池の電力により駆動されるモータにより走行する電動式移動体において、燃料改質器を装備せず、燃料としてジメチルエーテルが使用される同固体酸化物型燃料電池により室内空調用の熱エネルギ並びに前記モータ駆動用及び2次電池充電用の電力が供給されるようになしたことを特徴とする電動式移動体。
(2)前記固体酸化物型燃料電池からの出力電力が、前記電動式移動体市街地走行時に少なくとも必要とされる動力を賄い得るものであることを特徴とする前項(1)に記載の電動式移動体。
(3)前記固体酸化物型燃料電池が2次電池との連携が全くない状態でも起動し、走行が可能となることを特徴とする前項(1)又は(2)に記載の電動式移動体。
(4)電動式移動体が、電気自動車、電動式トラック、電動式二輪車又は農業用移動体から選ばれるいずれか1種の陸上移動体であることを特徴とする前項(1)〜(3)のいずれか1項に記載の電動式移動体。
(5)電動式移動体が、電動式輸送船、電動式船舶、電動式ボート又は電動式潜水艇から選ばれるいずれか1種の水上・水中移動体であることを特徴とする前項(1)〜(3)のいずれか1項に記載の電動式移動体。
(6)電動式移動体が、電動式航空機、電動式ヘリコプタ又は電動式飛行船から選ばれるいずれか1種の空中飛行体であることを特徴とする前項(1)〜(3)のいずれか1項に記載の電動式移動体。
As a result of intensive studies in view of the above, the present inventor has solved this problem by the following means.
(1) A fuel reformer in an electric mobile body comprising a secondary battery and a solid oxide fuel cell and running by a motor driven by electric power of the secondary battery and / or the solid oxide fuel cell . The solid oxide fuel cell that uses dimethyl ether as a fuel without being equipped with a thermal energy for indoor air conditioning and electric power for driving the motor and charging the secondary battery is provided. Electric mobile body.
(2) The electric type described in (1 ) above, wherein the output power from the solid oxide fuel cell can cover at least the power required for traveling in the electric mobile urban area. Moving body.
(3) The electric mobile body according to (1) or (2 ) above, wherein the solid oxide fuel cell starts up and can run even when there is no cooperation with a secondary battery. .
(4) The above-described items (1) to (3) , wherein the electric mobile body is any one of land mobile bodies selected from an electric vehicle, an electric truck, an electric motorcycle, or an agricultural mobile body. The electric mobile body according to any one of the above.
(5) The preceding item (1), wherein the electric mobile body is any one of a water / underwater mobile body selected from an electric transport ship, an electric ship, an electric boat or an electric submersible. The electric mobile body according to any one of to (3) .
(6) Any one of (1) to (3) above , wherein the electric mobile body is any one type of aerial vehicle selected from an electric aircraft, an electric helicopter or an electric airship. The electric mobile body according to the item.

本発明によれば、次のような効果が発揮される。
1.2次電池に加えてジメチルエーテルを燃料とする固体酸化物型燃料電池を備え、固体酸化物型燃料電池の500℃以上という高温度の発熱を移動体の空調に利用するようにしたため、従来の電動式移動体では不可能であった走行距離の延長を確保することができる。
また、固体酸化物型燃料電池の電力は走行時モータ駆動用及び2次電池充電用として使用でき、走行距離の延長化及び不側の走行トラブルにも対応できる。
According to the present invention, the following effects are exhibited.
1. In addition to the secondary battery, a solid oxide fuel cell using dimethyl ether as a fuel is provided, and the high-temperature heat generation of 500 ° C. or higher of the solid oxide fuel cell is used for air conditioning of the mobile body. It is possible to ensure the extension of the travel distance, which is impossible with the conventional electric mobile body.
In addition, the power of the solid oxide fuel cell can be used for driving a motor during driving and for charging a secondary battery, and it is possible to cope with extended travel distances and non-traveling troubles.

2.冷暖房共に空調エネルギーをジメチルエーテルを燃料とする固体酸化物型燃料電池に頼ることで、渋滞などによる予測不可能な2次電池システムの完全放電が避けられ、走行可能距離の予測精度が上がり電動式移動体としての信頼性を高め得る。
2. By relying on solid oxide fuel cells that use dimethyl ether as the air conditioning energy for both air conditioning and heating, it is possible to avoid unpredictable secondary battery system discharge due to traffic jams, etc. Can improve the reliability of the body.

3.ジメチルエーテルを燃料とする固体酸化物型燃料電池の採用により、その内部が極めて高温であるため、それにジメチルエーテルが接触すると直ちに低分子の反応性ガスに分解される。そのため、従来の燃料電池が備えていた燃料改質器を備える必要がなくなり、簡素な構成となし得る。
また、燃料のジメチルエーテルはカセット交換による供給が可能となり、簡便な燃料システムが構築できる。
3. By adopting a solid oxide fuel cell using dimethyl ether as fuel , the inside of the fuel cell is extremely hot, and when it comes into contact with dimethyl ether, it is immediately decomposed into a low-molecular reactive gas. Therefore, it is not necessary to provide the fuel reformer that the conventional fuel cell has, and a simple configuration can be achieved.
Further, dimethyl ether as a fuel can be supplied by exchanging cassettes, and a simple fuel system can be constructed.

4.ジメチルエーテルを燃料とする固体酸化物型燃料電池においては、熱及び発電の合計の効率はほぼ85%となり、本電熱併給システムの利用により、発電所側での二酸化炭素排出量を低減する効果を持つ。
ヒートポンプによる冷房の場合は、固体酸化物型燃料電池の発電効率は40%、系統電力の受電端効率も40%と、ほぼ同一であり、特に固体酸化物型燃料電池により、二酸化炭素排出量が増加することはない。
また、吸着冷凍等の熱による冷房の場合は、暖房と同じく発電所側での二酸化炭素排出量の低減に寄与できる。
4). In the solid oxide fuel cell using dimethyl ether as fuel, the total efficiency of heat and power generation is almost 85%, and the use of this electric heat cogeneration system has the effect of reducing carbon dioxide emissions at the power plant side. .
In the case of cooling by a heat pump, the power generation efficiency of the solid oxide fuel cell is 40%, and the receiving end efficiency of the system power is 40%, which is almost the same. In particular, the solid oxide fuel cell emits carbon dioxide. The amount will not increase.
In addition, in the case of cooling by heat such as adsorption refrigeration, it is possible to contribute to the reduction of carbon dioxide emission on the power plant side as well as heating.

本発明実施例の2次電池システムと固体酸化物燃料電池システムを備えた電気自動車の概念説明図。BRIEF DESCRIPTION OF THE DRAWINGS Concept explanatory drawing of the electric vehicle provided with the secondary battery system and solid oxide fuel cell system of the Example of this invention. 一般的な電気自動車の2次電池システム構成概要説明図。The secondary battery system structure outline explanatory drawing of a general electric vehicle. 本発明実施例の固体酸化物型燃料電池システムの概念説明図。BRIEF DESCRIPTION OF THE DRAWINGS The conceptual explanatory drawing of the solid oxide fuel cell system of the Example of this invention.

本発明を実施するための形態を図に基づいて詳細に説明する。
本発明実施例は、現在定置用として開発されつつあるジメチルエーテルを固体酸化物型燃料電池の燃料とし、改質器を必要としない移動体に適した形に改良して、これを電動式移動体の一種である電気自動車に搭載し、暖房等の熱エネルギ及び電気の供給源として使用するものである。
本発明実施例の電気自動車の構成及び機能を図面に基づき説明する。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described in detail with reference to the drawings.
The embodiment of the present invention uses dimethyl ether, which is currently being developed for stationary use, as a fuel for a solid oxide fuel cell, and is improved to a shape suitable for a moving body that does not require a reformer. It is mounted on an electric vehicle that is a kind of the above, and is used as a heat energy source such as heating and an electric power supply source.
The configuration and function of an electric vehicle according to an embodiment of the present invention will be described with reference to the drawings.

まず、図2にベースとなる一般的な電気自動車の2次電池システム10の構成概要を示す。
図において、実線は主として電力供給回線であり、点線は信号・制御回線を示すものとする。
2次電池システム10を搭載した電気自動車においては、2次電池オン・オフスイッチ10−12及びモータ駆動インバータオン・オフスイッチ10−13を投入することにより、2次電池10−1の電力によって、モータ10−2が駆動されその駆動力で車は走行する。運転者の加速、減速の意図はスロットル10−10からの信号によりPCU(パワーコントロールユニット)10−8に伝えられ、ここで、駆動力制御信号としてモータ駆動インバータ10−4に伝えられ、加速、減速が行われる。
First, FIG. 2 shows an outline of the configuration of a secondary battery system 10 for a general electric vehicle as a base.
In the figure, solid lines are mainly power supply lines, and dotted lines are signal / control lines.
In an electric vehicle equipped with the secondary battery system 10, by turning on the secondary battery on / off switch 10-12 and the motor drive inverter on / off switch 10-13, the electric power of the secondary battery 10-1 The motor 10-2 is driven and the vehicle travels with the driving force. The driver's intention to accelerate or decelerate is transmitted to the PCU (power control unit) 10-8 by a signal from the throttle 10-10, where it is transmitted to the motor drive inverter 10-4 as a driving force control signal, and the acceleration, Deceleration is performed.

10−3は空調システムを示す。これも温度設定レバー10−9の操作に従い、PCU10−8からの信号により空調システム制御インバータ10−5で空調システム10−3は制御される。   10-3 shows an air conditioning system. Also in accordance with the operation of the temperature setting lever 10-9, the air conditioning system 10-3 is controlled by the air conditioning system control inverter 10-5 by a signal from the PCU 10-8.

この電気自動車の空調システム10−3は、この例ではヒートポンプを内蔵しており、運転者が温度設定レバー10−9を操作することによって発生する信号がPCU10−8に伝えられ、PCU10−8から空調システム制御インバータ10−5に送られる信号によって、空調システム10−3が制御されることとなる。   In this example, the electric vehicle air conditioning system 10-3 incorporates a heat pump, and a signal generated by the driver operating the temperature setting lever 10-9 is transmitted to the PCU 10-8. The air conditioning system 10-3 is controlled by a signal sent to the air conditioning system control inverter 10-5.

DC−DCコンバータ10−6は、高圧な2次電源から車内補機10−14を駆動する12V電源10−7を構成するためのものである。10−15は12V用バッテリーである。2次電池10−1の状態はバッテリーセンサ10−11で常時モニタされ結果は運転者に示される。   The DC-DC converter 10-6 is for configuring a 12V power supply 10-7 that drives the in-vehicle auxiliary machine 10-14 from a high-voltage secondary power supply. 10-15 is a battery for 12V. The state of the secondary battery 10-1 is constantly monitored by the battery sensor 10-11, and the result is shown to the driver.

図3に本発明実施例に係る固体酸化物燃料電池システム図を示す。
図において、実線は主として電力供給回線であり、点線は信号・制御回線、太い実線は空気・燃料配送管を示すものとする。
30−1が固体酸化物燃料電池である。燃料は燃料カセット30−2から供給される。 燃料コントロールバルブA30−3及び燃料コントロールバルブB30−4を経て固体酸化物燃料電池30−1に向かう。本図では燃料はカセット入りのジメチルエーテルを採用しており、燃料改質器は配置されていない。
空気は吸気ファン30−12で吸い込まれ、熱交換器30−10、起動時加熱機30−8を通って固体酸化物燃料電池30−1に向かう。
FIG. 3 shows a solid oxide fuel cell system diagram according to an embodiment of the present invention.
In the figure, a solid line is mainly a power supply line, a dotted line is a signal / control line, and a thick solid line is an air / fuel delivery pipe.
30-1 is a solid oxide fuel cell. The fuel is supplied from the fuel cassette 30-2. It goes to the solid oxide fuel cell 30-1 through the fuel control valve A30-3 and the fuel control valve B30-4. In this figure, dimethyl ether in a cassette is used as the fuel, and no fuel reformer is arranged.
The air is sucked in by the intake fan 30-12, and goes to the solid oxide fuel cell 30-1 through the heat exchanger 30-10 and the startup heater 30-8.

熱交換器30−10は、吸気を固体酸化物燃料電池30−1からの排熱によって、固体酸化物燃料電池30−1内に入る前に加熱するものである。この効率の良い熱交換による吸気加熱は発電効率を向上させる。
固体酸化物燃料電池の起動時には、吸気ファン30−12でシステム内に取り込まれた空気は、まず前記熱交換機30−10を経由して起動時加熱器30−8に入る。起動時加熱器30−8では、起動時に開かれる加熱器燃料コントロールバルブ30−5から送り込まれる燃料を、前記起動時加熱機30−8内のノズル30−8−2から噴出させ、イグナイタ30−8−1で着火し、加熱した空気を固体酸化物燃料電池30−1内に送る。
The heat exchanger 30-10 heats the intake air by exhaust heat from the solid oxide fuel cell 30-1 before entering the solid oxide fuel cell 30-1. The intake air heating by this efficient heat exchange improves the power generation efficiency.
When the solid oxide fuel cell is started, the air taken into the system by the intake fan 30-12 first enters the start-up heater 30-8 via the heat exchanger 30-10. In the start-up heater 30-8, the fuel fed from the heater fuel control valve 30-5 that is opened at start-up is ejected from the nozzle 30-8-2 in the start-up heater 30-8, and the igniter 30- The air ignited and heated at 8-1 is sent into the solid oxide fuel cell 30-1.

固体酸化物燃料電池30−1内温度が目標にまで上昇した時点で、燃料コントロールバルブB30−4を開き、また、加熱器燃料コントロールバルブ30−5を閉じて発電を開始する。
固体酸化物燃料電池30−1の燃料利用率が100%でない場合、未燃燃料を燃焼させるために酸化触媒30−9−1を内蔵する燃焼器30−9を固体酸化物燃料電池30−1出口に設け、排ガスを通過させることで完全に燃焼させる。
燃焼器30−9からの排ガスは熱交換機30−10を介し、ホットエア制御バルブ30−11を経て、排出ロ30−13から大気に排出される。
When the temperature in the solid oxide fuel cell 30-1 rises to the target, the fuel control valve B30-4 is opened, and the heater fuel control valve 30-5 is closed to start power generation.
When the fuel utilization rate of the solid oxide fuel cell 30-1 is not 100%, the combustor 30-9 containing the oxidation catalyst 30-9-1 is used to burn the unburned fuel so that the solid oxide fuel cell 30-1 It is provided at the outlet and completely combusted by passing the exhaust gas.
The exhaust gas from the combustor 30-9 is discharged to the atmosphere from the discharge port 30-13 via the heat exchanger 30-10, the hot air control valve 30-11.

FCCU(フューエルセルコントロールユニット)30−6は起動、固体酸化物燃料電池30−1の起動、運転に伴う作動機器の制御、センサ一類のモニタを行う。   The FCCU (fuel cell control unit) 30-6 performs start-up, start-up of the solid oxide fuel cell 30-1, control of operating equipment associated with operation, and monitoring of a sensor class.

2次電池システム10と組み合わせる時の連結ポートは、ホットエア供給30−14、電力供給30−15、共通アース30−16及びFCCU30−6を通してのデータ授受ポート30−17、30−18であり、PCU10−8(図2参照)と連結される。   The connection ports when combined with the secondary battery system 10 are the hot air supply 30-14, the power supply 30-15, the common ground 30-16, and the data transfer ports 30-17 and 30-18 through the FCCU 30-6. -8 (see FIG. 2).

図1に本発明の実施例である、2次電池システム10と固体酸化物型燃料電池システム30の連結システム40の例を示す。
図において、実線は主として電力供給回線であり、点線は信号・制御回線、太い実線は空気・燃料配送管を示すものとする。
暖房時の固体酸化物型燃料電池30−1からの熱は、PCU10−8から熱の供給要求をFCCU30−6が受け、FCC30−6によりホットエア制御バルブ30−11を制御することでホットエアの供給熱は30−14(図3参照)を経て、空調システム10−3に送られる。
冷房が、空調システム10−3内のヒートポンプで行われる場合はホットエアはホットエア制御バルブ30−11を経て排出口30−13(図3参照)から大気中に排出される。
冷房が空調システム10−3内の吸着冷凍機(図示せず)で行われる場合は、暖房時と同じくホットエアの供給熱は空調システム10−3に送られる。なおこの場合は、インバータ10−5は不要となる。
FIG. 1 shows an example of a connection system 40 of a secondary battery system 10 and a solid oxide fuel cell system 30 according to an embodiment of the present invention.
In the figure, a solid line is mainly a power supply line, a dotted line is a signal / control line, and a thick solid line is an air / fuel delivery pipe.
Heat from the solid oxide fuel cell 30-1 during heating is supplied by the FCCU 30-6 in response to a heat supply request from the PCU 10-8, and the hot air control valve 30-11 is controlled by the FCC 30-6. Heat is sent to the air conditioning system 10-3 via 30-14 (see FIG. 3).
When cooling is performed by a heat pump in the air conditioning system 10-3, the hot air is discharged into the atmosphere from the discharge port 30-13 (see FIG. 3) via the hot air control valve 30-11.
When cooling is performed by an adsorption refrigerator (not shown) in the air conditioning system 10-3, the supply heat of hot air is sent to the air conditioning system 10-3 as in the case of heating. In this case, the inverter 10-5 is not necessary.

固体酸化物型燃料電池30−1の出力は、DC−DCコンバータ40−1により固体酸化物燃料電池30−1側の電圧を常時2次電池10−1側電圧より僅かに高く設定し、常に2次電池10−1側に電力が供給されるようにする。
ここでは、固体酸化物燃料電池30−1の出力は、例えば1kW、2kW、及び200Wの3段階とし、2次電池側の熱需要及び電力需要により、最適なモードをPCU10−8により選定し、結果はFCCU30−6に送られる。
FCCU30−6はその指示に従い燃料流量、空気量等が目標値となるよう、各種設定を行う。
動力の伝達・制御方法は図1の説明に準ずる。
The output of the solid oxide fuel cell 30-1 is always set by the DC-DC converter 40-1 so that the voltage on the solid oxide fuel cell 30-1 side is always slightly higher than the voltage on the secondary battery 10-1 side. Electric power is supplied to the secondary battery 10-1 side.
Here, the output of the solid oxide fuel cell 30-1 is, for example, three stages of 1 kW, 2 kW, and 200 W, and the optimal mode is selected by the PCU 10-8 according to the heat demand and power demand on the secondary battery side, The result is sent to FCCU 30-6.
The FCCU 30-6 performs various settings according to the instructions so that the fuel flow rate, the air amount, etc. become target values.
The power transmission / control method is the same as in FIG.

本例の固体酸化物型燃料電池30−1の出力設定では、常時充電をしながらの走行は難しく、2次電池10−1の完全放電の場合に、リンプホーム状態で、2次電池オン・オフスイッチ10−12をオフとし、固体酸化物型燃料電池の出力をモータ10−2をはじめ電気自動車内の走行に「必要な機能部に供給するのに必要な電力を賄うことになる。
なお、運転者の意図により走行中に変動する駆動電力が、その時に選択されている前記段階の固体酸化物燃料電池30−1の発電電力より小さい場合は、その差分だけの電力が充電制御インバータ40−2を経由して2次電池10−1に充電されるものとされる。
本例では、2kWでほぼ35〜40km/hの走行が可能と推定される。電気出力が2kWの時は、発電効率40%とすると3kWの熱が同時に生じ、計5kW分の燃料が消費される。1kgのジメチルエーテルはほぼ8kWhのエネルギーを有しているので、電気出力が2kWの場合、カセットの燃料質量が1kgとすれば1時間半の走行が可能である。
In the output setting of the solid oxide fuel cell 30-1 of this example, it is difficult to run while charging constantly, and in the case of complete discharge of the secondary battery 10-1, the secondary battery is turned on in the limp home state. The off switch 10-12 is turned off, and the output of the solid oxide fuel cell is covered with the electric power necessary to supply the necessary functional units for running in the electric vehicle including the motor 10-2.
In addition, when the driving power which fluctuates during driving according to the driver's intention is smaller than the power generation power of the solid oxide fuel cell 30-1 selected at that time, only the difference is the charge control inverter. It is assumed that the secondary battery 10-1 is charged via 40-2.
In this example, it is estimated that traveling of approximately 35-40 km / h is possible at 2 kW. When the electrical output is 2 kW, assuming that the power generation efficiency is 40%, 3 kW of heat is generated at the same time, and a total of 5 kW of fuel is consumed. Since 1 kg of dimethyl ether has an energy of about 8 kWh, when the electric output is 2 kW, the fuel mass of the cassette is 1 kg, and the vehicle can run for 1.5 hours.

2次電池10−1のフル充電直後は、過充電防止のために200Wモードで走行する。 そして、熱需要があるときは1kWモードで走り、電力と排熱の両方を熱として使うことも提案される。   Immediately after the secondary battery 10-1 is fully charged, it travels in the 200W mode to prevent overcharging. And when there is a heat demand, it is also proposed to run in 1 kW mode and use both electric power and exhaust heat as heat.

以上においては、2次電池とジメチルエーテルを燃料とする固体酸化物燃料電池を備えた電気自動車の例を説明したが、該発明は下記のごとき全ての電動式移動体に適用可能である。
(1)電気自動車、電動式トラック、電動式二輪車又は農業用移動体から選ばれるいずれか1種の陸上移動体。
(2)電動式輸送船、電動式船舶、電動式ボート又は電動式潜水艇から選ばれるいずれか1種の水上・水中移動体。
(3)電動式航空機、電動式ヘリコプタ又は電動式飛行船から選ばれるいずれか1種の空中飛行体。
In the above, an example of an electric vehicle including a secondary battery and a solid oxide fuel cell using dimethyl ether as a fuel has been described. However, the present invention can be applied to all electric vehicles as described below.
(1) Any one land mobile body selected from an electric vehicle, an electric truck, an electric motorcycle, or an agricultural mobile body.
(2) Any one type of water / underwater vehicle selected from an electric transport ship, an electric ship, an electric boat or an electric submersible.
(3) Any one type of aerial vehicle selected from an electric aircraft, an electric helicopter or an electric airship.

10:一般的な電気自動車の2次電池システム
10−1:2次電池
10−2:モータ
10−3:空調システム
10−4:モータ駆動インバータ
10−5:空調システム制御インバータ
10−6:DC−DCコンバータ
10−7:補機駆動用12V電源
10−8:PCU
10−9:温度設定レバー
10−10:スロットル信号
10−11:バッテリーセンサ
10−12:2次電池オン・オフスイッチ
10−13:モータ駆動インバータオン・オフスイッチ
30:固体酸化物型燃料電池システム
30−1:固体酸化物燃料電池
30−2:燃料カセット
30−3:燃料コントロールバルブA
30−4:燃料コントロールバルブB
30−5:加熱器燃料コントロールバルブ
30−6:FCCU
30−8:起動時加熱器
30−8−1:イグナイタ
30−8−2:ノズル
30−9:燃焼器
30−9−1:酸化触媒
30−10:熱交換機
30−11:ホットエア制御バルブ
30−12:吸気ファン
30−13:排出口
30−14:ホットエヤ供給
30−15:電力供給
30−16:共通アース
30−17:データの授受ポート
30−18:データの授受ポート
40:電気自動車の2次電池システム10と固体酸化物型燃料電池システム30の連結システム
40−1:DC−DCコンバータ
40−2:充電制御インバータ
10: Secondary battery system 10-1 for a general electric vehicle: Secondary battery 10-2: Motor 10-3: Air conditioning system 10-4: Motor drive inverter 10-5: Air conditioning system control inverter 10-6: DC DC converter 10-7: Auxiliary drive 12V power supply 10-8: PCU
10-9: Temperature setting lever 10-10: Throttle signal 10-11: Battery sensor 10-12: Secondary battery on / off switch 10-13: Motor drive inverter on / off switch 30: Solid oxide fuel cell system 30-1: Solid oxide fuel cell 30-2: Fuel cassette 30-3: Fuel control valve A
30-4: Fuel control valve B
30-5: Heater fuel control valve 30-6: FCCU
30-8: Startup heater 30-8-1: Igniter 30-8-2: Nozzle 30-9: Combustor 30-9-1: Oxidation catalyst 30-10: Heat exchanger 30-11: Hot air control valve 30 -12: intake fan 30-13: outlet 30-14: hot air supply 30-15: power supply 30-16: common ground 30-17: data transfer port 30-18: data transfer port 40: electric vehicle Connection system 40-1 of secondary battery system 10 and solid oxide fuel cell system 30: DC-DC converter 40-2: charge control inverter

Claims (6)

2次電池と固体酸化物型燃料電池とを備え、前記2次電池及び/又は固体酸化物型燃料電池の電力により駆動されるモータにより走行する電動式移動体において、燃料改質器を装備せず、燃料としてジメチルエーテルが使用される同固体酸化物型燃料電池により室内空調用の熱エネルギ並びに前記モータ駆動用及び2次電池充電用の電力が供給されるようになしたことを特徴とする電動式移動体。 An electric mobile body comprising a secondary battery and a solid oxide fuel cell and driven by a motor driven by electric power of the secondary battery and / or the solid oxide fuel cell is equipped with a fuel reformer. In addition, the solid oxide fuel cell using dimethyl ether as the fuel supplies heat energy for indoor air conditioning and electric power for driving the motor and charging the secondary battery. Expression moving body. 前記固体酸化物型燃料電池からの出力電力が、前記電動式移動体市街地走行時に少なくとも必要とされる動力を賄い得るものであることを特徴とする請求項1に記載の電動式移動体。 It said solid output power from the oxide fuel cell, electric moving body according to claim 1, characterized in that it is capable catering power that is at least required during the electric moving body city driving. 前記固体酸化物型燃料電池が2次電池との連携が全くない状態でも起動し、走行が可能となることを特徴とする請求項1又は2に記載の電動式移動体。 3. The electric mobile body according to claim 1, wherein the solid oxide fuel cell starts up and can run even when there is no cooperation with the secondary battery. 4. 電動式移動体が、電気自動車、電動式トラック、電動式二輪車又は農業用移動体から選ばれるいずれか1種の陸上移動体であることを特徴とする請求項1〜のいずれか1項に記載の電動式移動体。 Electric moving body, an electric vehicle, motorized track, in any one of claims 1 to 3, characterized in that any one of the land mobile selected from electric motorcycle or agricultural mobile The electric mobile body described. 電動式移動体が、電動式輸送船、電動式船舶、電動式ボート又は電動式潜水艇から選ばれるいずれか1種の水上・水中移動体であることを特徴とする請求項1〜のいずれか1項に記載の電動式移動体。 Electric moving body, motorized transport ship, any claim 1-3, characterized in that any one of the water-underwater vehicle that motorized vessels, selected from motorized boat or electric submersible The electric mobile body according to claim 1. 電動式移動体が、電動式航空機、電動式ヘリコプタ又は電動式飛行船から選ばれるいずれか1種の空中飛行体であることを特徴とする請求項1〜のいずれか1項に記載の電動式移動体。 The electric vehicle according to any one of claims 1 to 3 , wherein the electric mobile body is any one type of aerial vehicle selected from an electric aircraft, an electric helicopter, or an electric airship. Moving body.
JP2009256485A 2009-11-09 2009-11-09 Electric mobile body comprising a secondary battery and a solid oxide fuel cell Expired - Fee Related JP5614611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256485A JP5614611B2 (en) 2009-11-09 2009-11-09 Electric mobile body comprising a secondary battery and a solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256485A JP5614611B2 (en) 2009-11-09 2009-11-09 Electric mobile body comprising a secondary battery and a solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2011100698A JP2011100698A (en) 2011-05-19
JP5614611B2 true JP5614611B2 (en) 2014-10-29

Family

ID=44191713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256485A Expired - Fee Related JP5614611B2 (en) 2009-11-09 2009-11-09 Electric mobile body comprising a secondary battery and a solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5614611B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021023498A2 (en) 2019-05-24 2022-02-08 Alakai Tech Corporation Integrated multi-mode thermal energy transfer system, method and apparatus for clean fuel electric multi-rotor aircraft
KR102525851B1 (en) * 2021-05-25 2023-04-26 주식회사 빈센 Power management system for hybrid boat

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332630A (en) * 1991-11-04 1994-07-26 Hsu Michael S On-board recharging system for battery powered electric vehicles
JPH05260606A (en) * 1992-03-09 1993-10-08 Sanyo Electric Co Ltd Electric road vehicle
JPH10189022A (en) * 1996-12-27 1998-07-21 Nkk Corp Fuel cell
JP2000231930A (en) * 1999-02-09 2000-08-22 Honda Motor Co Ltd On-vehicle fuel cell system
JP4265067B2 (en) * 2000-02-07 2009-05-20 株式会社デンソー Vehicle air conditioner
JP2003039941A (en) * 2001-07-31 2003-02-13 Japan Climate Systems Corp Air conditioner for electric vehicle
EP1354856B1 (en) * 2002-04-16 2005-11-02 Airbus Deutschland GmbH Process for the recovery and distribution of water generated on board an aircraft, land based vehicle and/or watercraft
JP3939640B2 (en) * 2002-12-24 2007-07-04 本田技研工業株式会社 Reactive gas circulation fuel cell system
US20050106427A1 (en) * 2003-11-17 2005-05-19 Ford Motor Company Direct operation of low temperature solid oxide fuel cells using oxygenated fuel
DE102004002445A1 (en) * 2004-01-16 2005-08-11 Webasto Ag Air conditioner for stationary air conditioning of a vehicle
JP4914273B2 (en) * 2007-04-02 2012-04-11 日本電信電話株式会社 Hydrogen production method and hydrogen production system
JP5234401B2 (en) * 2007-12-06 2013-07-10 日産自動車株式会社 Solid oxide fuel cell system
JP2009266472A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Heating system of movable body including fuel cell

Also Published As

Publication number Publication date
JP2011100698A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
US8630759B2 (en) Control of regenerative braking in a hybrid vehicle
US6622804B2 (en) Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US7808118B2 (en) Method for creating energy sources for a vehicle drive system
US9020668B2 (en) Apparatus and method for air conditioning vehicle interior using battery charge control of electric vehicle
US8356682B2 (en) Fuel cell system using external heat sources for maintaining internal temperature
JP2018030581A (en) Systems and methods for controlling operation of vehicle
US20110260470A1 (en) Tribrid electric transportation system
US10618399B2 (en) Front-engine extended range electric passenger vehicle
US20110017532A1 (en) A hybrid powertrain
US20120118988A1 (en) Heating system for fuel cell vehicle
US20190359199A1 (en) Vehicle system having function of preventing occurrence factors of sudden unintended acceleration
US20070013192A1 (en) Method for creating energy sources for a vehicle drive system
CN102815192B (en) Based on mild hybrid power system and the control method of the conversion of vehicle exhaust thermoelectricity
US20200070808A1 (en) Hybrid vehicle
JP2016132417A (en) Battery cooling structure of hybrid vehicle
CN104786858A (en) Extended range electric vehicle
JP5614611B2 (en) Electric mobile body comprising a secondary battery and a solid oxide fuel cell
JP3168907B2 (en) Hybrid electric vehicle
US20110095093A1 (en) Motor Vehicle and associated operating method
US20090266097A1 (en) Mechanism for maintaining a desired temperature in a truck cab including an auxiliary motor for operating a vehicle air conditioning pump as well as a secondary generator for providing either power when the vehicle is parked or a convective heat transfer via a fluid jacket communicating with a vehicle mounted convective heat transfer network
JP2019055649A (en) Battery temperature control system
US20090120115A1 (en) Diesel truck battery disclosure
WO2018138717A1 (en) Device and method for hybrid vehicle range extending
JP2013163412A (en) Heating device for electric vehicle
EP4063182A1 (en) A braking system, a fuel cell system, and a vehicle comprising a fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5614611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees