JP5613318B2 - Electromagnetic wave shield structure and reinforced concrete partition - Google Patents

Electromagnetic wave shield structure and reinforced concrete partition Download PDF

Info

Publication number
JP5613318B2
JP5613318B2 JP2013500744A JP2013500744A JP5613318B2 JP 5613318 B2 JP5613318 B2 JP 5613318B2 JP 2013500744 A JP2013500744 A JP 2013500744A JP 2013500744 A JP2013500744 A JP 2013500744A JP 5613318 B2 JP5613318 B2 JP 5613318B2
Authority
JP
Japan
Prior art keywords
conductor
lattice
reinforcing bar
interval
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013500744A
Other languages
Japanese (ja)
Other versions
JPWO2012114448A1 (en
Inventor
隆治 川瀬
隆治 川瀬
淳一 田野井
淳一 田野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Publication of JPWO2012114448A1 publication Critical patent/JPWO2012114448A1/en
Application granted granted Critical
Publication of JP5613318B2 publication Critical patent/JP5613318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/04Mats
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B2001/925Protection against harmful electro-magnetic or radio-active radiations, e.g. X-rays

Description

本発明は、伝搬される電磁波を減衰させるために、2つの空間の間に鉄筋コンクリートなどによって構築される壁や床などに設けられる電磁波シールド構造及び鉄筋コンクリート仕切体に関するものである。   The present invention relates to an electromagnetic wave shielding structure and a reinforced concrete partition provided on a wall or floor constructed of reinforced concrete between two spaces in order to attenuate a propagating electromagnetic wave.

従来、特許文献1,2に開示されているように、建物の外部から内部への不要な電磁波の侵入や、建物の内部から外部への電磁波の漏洩を防ぐために、電磁波シールド機能を備えた建物が構築されている。すなわち、建物の外で伝搬されている電磁波が室内に侵入すると、テレビやパソコンの画像が乱れたり、電子機器が誤作動を起こしたりすることがある。また、室内での無線送信などによって発生した電磁波が建物の外まで伝搬されることによって、情報が漏洩してしまうことがある。   Conventionally, as disclosed in Patent Documents 1 and 2, a building having an electromagnetic wave shielding function in order to prevent intrusion of unnecessary electromagnetic waves from the outside to the inside of the building and leakage of electromagnetic waves from the inside to the outside of the building Has been built. That is, when electromagnetic waves propagating outside the building enter the room, images on televisions and personal computers may be disturbed, and electronic devices may malfunction. In addition, information may leak due to propagation of electromagnetic waves generated by indoor wireless transmission to the outside of a building.

一方、ビルなどの壁や床は、主に鉄筋コンクリートによって構築されるが、構造体として必要とされる耐力のみを満たすようにして構築された鉄筋コンクリート自体は電磁波シールド機能が低い。特に、波長が短い1GHz以上の周波数の電磁波は、ほとんど鉄筋コンクリートの壁を透過してしまう。
そこで、例えば、鉄筋コンクリートの壁や床の表面に、鉄板、金属網、金属箔、金属メッシュなどの電磁波シールド機能を有する部材を貼り付けることで、電磁波シールド機能を備えた建物にしている。
On the other hand, walls and floors of buildings and the like are mainly constructed of reinforced concrete, but reinforced concrete itself constructed to satisfy only the proof stress required as a structure has a low electromagnetic wave shielding function. In particular, electromagnetic waves having a short wavelength of 1 GHz or more almost pass through the walls of reinforced concrete.
Therefore, for example, a building having an electromagnetic wave shielding function is formed by attaching a member having an electromagnetic wave shielding function such as an iron plate, a metal net, a metal foil, or a metal mesh to the surface of a reinforced concrete wall or floor.

特開平11−121973号公報Japanese Patent Laid-Open No. 11-121973 特開2002−54248号公報JP 2002-54248 A

しかしながら、従来の電磁波シールド部材を壁表面に貼り付ける方法は、鉄筋コンクリートによって構築される構造体とは別に電磁波シールド部材を付加する方法であるため、材料費が追加される上に、電磁波シールド部材を貼り付ける作業などの工程が増える。   However, the conventional method of attaching the electromagnetic wave shielding member to the wall surface is a method of adding the electromagnetic wave shielding member separately from the structure constructed by the reinforced concrete. Processes such as pasting work increase.

また、建物の内部にいても携帯電話の電波は受信したいが、無線LAN(Local Area Network)の電波は外部に漏洩させたくないなど、特定の周波数の電磁波のみを遮蔽したい場合がある。   In addition, there are cases where it is desired to shield only electromagnetic waves of a specific frequency, such as wanting to receive radio waves from a mobile phone even inside a building but not wanting radio LAN (Local Area Network) radio waves to leak outside.

そこで、本発明は、対象とする周波数の電磁波に対して電磁波シールド機能を発揮させることができる電磁波シールド構造及び鉄筋コンクリート仕切体を提供することを目的としている。   Therefore, an object of the present invention is to provide an electromagnetic wave shielding structure and a reinforced concrete partition that can exhibit an electromagnetic wave shielding function against electromagnetic waves having a target frequency.

前記目的を達成するために、本発明の電磁波シールド構造は、所定の伝搬方向に伝搬される対象周波数の電磁波を減衰させる電磁波シールド構造であって、前記伝搬方向に略直交する方向に一定の間隔を置いて並んで配設される複数の第1導体棒によって形成される主導体部と、前記主導体部から前記伝搬方向に間隔を置いた位置で、前記第1導体棒と略同じ方向に向けて一定の間隔を置いて並んで配設される複数の第1副導体棒によって形成される副導体部とを備え、前記主導体部と前記副導体部との前記伝搬方向の距離が、前記対象周波数の前記主導体部と前記副導体部との間に介在される媒質に依存する一波長の整数倍(ここで、整数は0を除く正の整数)の長さを基準に所定の許容誤差範囲内で設定されるとともに、前記第1導体棒の間隔が、前記第1副導体棒の間隔の3の整数倍(ここで、整数は0を除く正の整数)の長さを基準に所定の許容誤差範囲内で設定されることを特徴とする。
また、本発明の鉄筋コンクリート仕切体は、上記電磁波シールド構造を、前記伝搬方向を厚さ方向とするコンクリート部に埋設させたことを特徴とする。
In order to achieve the above object, the electromagnetic wave shielding structure of the present invention is an electromagnetic wave shielding structure for attenuating an electromagnetic wave of a target frequency propagated in a predetermined propagation direction, and has a constant interval in a direction substantially orthogonal to the propagation direction. A main conductor portion formed by a plurality of first conductor rods arranged side by side, and at a position spaced from the main conductor portion in the propagation direction, in substantially the same direction as the first conductor rod. A sub-conductor portion formed by a plurality of first sub-conductor rods arranged side by side at a predetermined interval, and the distance in the propagation direction between the main conductor portion and the sub-conductor portion is Based on a length of an integral multiple of one wavelength (where the integer is a positive integer excluding 0) depending on the medium interposed between the main conductor portion and the sub-conductor portion of the target frequency The first conductor rod is set within an allowable error range. The interval is set within a predetermined allowable error range based on a length of an integer multiple of 3 (where the integer is a positive integer excluding 0) as the interval between the first sub-conductor rods. .
The reinforced concrete partition of the present invention is characterized in that the electromagnetic wave shielding structure is embedded in a concrete portion having the propagation direction as a thickness direction.

このように構成された本発明の電磁波シールド構造は、伝搬方向に略直交する方向に一定の間隔を置いて並んで配設される複数の第1導体棒によって形成される主導体部と、第1導体棒と略同じ方向に向けて一定の間隔を置いて並んで配設される複数の第1副導体棒によって形成される副導体部とが配置されている。また、主導体部と副導体部との距離が対象周波数の電磁波の波長に基づいて調整されている。そして、主導体部の第1導体棒の間隔に対して、副導体部の第1副導体棒の間隔が対象周波数の電磁波の伝搬を大きく減衰させることができる広さに調整されている。
このように、導体棒や副導体棒の間隔や位置関係を調整するだけで、対象とする周波数の電磁波に対して電磁波シールド機能を発揮させることができる。また、本発明の鉄筋コンクリート仕切体は、構造体として必然的に構築される鉄筋コンクリートの壁や床の中に副導体部を埋設させるだけで、対象周波数の電磁波を効果的に遮蔽することができる。
The electromagnetic wave shielding structure of the present invention configured as described above includes a main conductor portion formed by a plurality of first conductor rods arranged side by side at a predetermined interval in a direction substantially orthogonal to the propagation direction, A sub-conductor portion formed by a plurality of first sub-conductor rods arranged side by side at a predetermined interval in substantially the same direction as one conductor rod is arranged. Further, the distance between the main conductor portion and the sub conductor portion is adjusted based on the wavelength of the electromagnetic wave of the target frequency. And the space | interval of the 1st subconductor rod of a subconductor part is adjusted to the width | variety which can attenuate the propagation of the electromagnetic wave of an object frequency largely with respect to the space | interval of the 1st conductor rod of a main conductor part.
Thus, the electromagnetic wave shielding function can be exhibited against electromagnetic waves having a target frequency simply by adjusting the interval and positional relationship between the conductor rods and the sub conductor rods. Moreover, the reinforced concrete partition of this invention can shield effectively the electromagnetic wave of object frequency only by burying a subconductor part in the wall and floor of a reinforced concrete necessarily constructed | assembled as a structure.

本発明の実施の形態の鉄筋コンクリート仕切体の構成を説明する断面図である。It is sectional drawing explaining the structure of the reinforced concrete partition of embodiment of this invention. 本発明の実施の形態の鉄筋コンクリート仕切体の構成を説明する斜視図である。It is a perspective view explaining the composition of the reinforced concrete partition of an embodiment of the invention. 主導体部の格子間隔と副導体部の格子間隔との関係を示した説明図である。It is explanatory drawing which showed the relationship between the lattice spacing of a main conductor part, and the lattice spacing of a subconductor part. 鉄筋コンクリート仕切体の電磁波シールド効果を確認するためにおこなった解析のモデルを模式的に示した説明図である。It is explanatory drawing which showed typically the model of the analysis performed in order to confirm the electromagnetic wave shielding effect of a reinforced concrete partition. 解析結果を示す電界強度分布図である。It is an electric field strength distribution map which shows an analysis result. 複数の副導体部の格子間隔に対して周波数と電磁波シールド効果との関係を示したグラフである。It is the graph which showed the relationship between a frequency and an electromagnetic wave shielding effect with respect to the lattice space | interval of a some subconductor part. 主導体部と副導体部の格子間隔の複数の組み合わせに対して周波数と電磁波シールド効果との関係を示したグラフである。It is the graph which showed the relationship between a frequency and an electromagnetic wave shielding effect with respect to the several combination of the lattice spacing of a main conductor part and a subconductor part. 鉄筋コンクリート仕切体の中で共振を起こす電磁波の周波数と主導体部の格子間隔との関係を示したグラフである。It is the graph which showed the relationship between the frequency of the electromagnetic waves which cause resonance in a reinforced concrete partition, and the lattice spacing of the main conductor part. 鉄筋コンクリート仕切体の中で共振を起こす電磁波の反射波長と主導体部の格子間隔との関係を示したグラフである。It is the graph which showed the relationship between the reflection wavelength of the electromagnetic waves which cause resonance in a reinforced concrete partition, and the lattice spacing of the main conductor part. 実施例1の拡幅部が延出された導体棒によって形成された主導体部の構成を説明する斜視図である。It is a perspective view explaining the structure of the main conductor part formed of the conductor rod by which the widened part of Example 1 was extended.

以下、本発明の実施の形態について図面を参照して説明する。
本実施の形態の鉄筋コンクリート仕切体としてのRC壁1は、図1に示すように、一方の空間としての建物の内部空間R1と他方の空間としての建物の外部空間R2とを仕切るものである。このRC壁1が設けられることによって、建物の内部空間R1から外部空間R2という伝搬方向、又は外部空間R2から内部空間R1という伝搬方向に伝搬される対象周波数の電磁波の遮蔽がおこなわれる。なお、ここで「遮蔽」とは、伝搬される電磁波が減衰されることで電磁波シールド効果(SE:Shield Effectiveness)が得られる状態をいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the RC wall 1 as a reinforced concrete partition according to the present embodiment partitions an internal space R1 of the building as one space and an external space R2 of the building as the other space. By providing this RC wall 1, the electromagnetic wave of the target frequency propagating in the propagation direction from the internal space R1 of the building to the external space R2 or from the external space R2 to the internal space R1 is shielded. Here, “shielding” means a state in which an electromagnetic wave shielding effect (SE: Shield Effectiveness) is obtained by attenuating a propagating electromagnetic wave.

まず、図1,2を参照しながらRC壁1の構成について説明する。
このRC壁1は、図1,2に示すように、厚さCのコンクリート部2と、コンクリート部2の内部空間R1側に埋設される主導体部としての前側鉄筋格子3と、前側鉄筋格子3と並列に外部空間R2側に埋設される主導体部としての後側鉄筋格子4と、前側鉄筋格子3と後側鉄筋格子4との間の略中央の位置に埋設される副導体部としての溶接金網6とを備えている。そして、伝搬方向に間隔を置いて側方から見て略平行に配置される前側鉄筋格子3と溶接金網6と後側鉄筋格子4とによって電磁波シールド構造が形成される。
First, the configuration of the RC wall 1 will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the RC wall 1 includes a concrete portion 2 having a thickness C, a front rebar lattice 3 as a main conductor portion embedded in the internal space R1 side of the concrete portion 2, and a front rebar lattice. 3 as a rear conductor lattice 4 as a main conductor portion embedded in the external space R2 side in parallel with the sub-conductor portion embedded in a substantially central position between the front reinforcement lattice 3 and the rear reinforcement lattice 4. Welding wire mesh 6. Then, an electromagnetic wave shielding structure is formed by the front reinforcing bar lattice 3, the welded wire mesh 6, and the rear reinforcing bar lattice 4 which are disposed substantially parallel to each other with an interval in the propagation direction.

このコンクリート部2は、例えばセメントと骨材と水とを混合して製造されており、電磁波を伝搬させる媒質になる。また、コンクリート部2の配合は、RC壁1として必要とされる強度を満たすように設定すればよい。
また、このコンクリート部2によって形成される壁の内部空間R1側の面を前面11とし、外部空間R2側の面を後面12とする。さらに、コンクリート部2は、上記伝搬方向が厚さ方向となり、前面11と後面12は伝搬方向に略直交している。そして、図1の断面図に示すように、前面11から内部空間R1方向に間隔を置いて、内装板5が前面11と略平行に並べられる。
The concrete part 2 is manufactured by mixing cement, aggregate, and water, for example, and becomes a medium for propagating electromagnetic waves. Moreover, what is necessary is just to set the mixing | blending of the concrete part 2 so that the intensity | strength required as the RC wall 1 may be satisfy | filled.
In addition, a surface of the wall formed by the concrete portion 2 on the inner space R1 side is a front surface 11, and a surface on the outer space R2 side is a rear surface 12. Further, in the concrete portion 2, the propagation direction is the thickness direction, and the front surface 11 and the rear surface 12 are substantially orthogonal to the propagation direction. And as shown in sectional drawing of FIG. 1, the interior board 5 is arranged in parallel with the front surface 11 at intervals from the front surface 11 to internal space R1 direction.

また、前側鉄筋格子3は、図2に示すように、鉛直方向に向けて立設された複数の第1導体棒としての縦鉄筋31,・・・と、縦鉄筋31に略直角となるように交差する複数の第2導体棒としての横鉄筋32,・・・とによって格子状に形成される。すなわち、縦鉄筋31,・・・及び横鉄筋32,・・・は、それぞれ伝搬方向に略直交する方向に一定の間隔を置いて並んで配設される。そして、縦鉄筋31,・・・と横鉄筋32,・・・とが接する面が鉄筋面30となる。なお、「鉄筋」は、RC壁1の引張抵抗部材として配置される主構造部材である。   Further, as shown in FIG. 2, the front reinforcing bar grid 3 is substantially perpendicular to the vertical reinforcing bars 31 as a plurality of first conductor rods erected in the vertical direction and the vertical reinforcing bars 31. Are formed in a lattice shape by a plurality of horizontal reinforcing bars 32,. That is, the vertical reinforcing bars 31,... And the horizontal reinforcing bars 32,... Are arranged side by side with a predetermined interval in a direction substantially orthogonal to the propagation direction. The surface where the vertical reinforcing bars 31,... And the horizontal reinforcing bars 32,. The “rebar” is a main structural member arranged as a tensile resistance member of the RC wall 1.

また、横鉄筋32,32及び縦鉄筋31,31は、それぞれ一定の間隔で略平行に配設されている。そして、横鉄筋32,32間の距離を間隔P1とし、縦鉄筋31,31間の距離を間隔P2とする。さらに、この間隔P1(P2)は、すべての横鉄筋32,32(縦鉄筋31,31)間で等しくしておく。なお、以下においては、間隔P1と間隔P2とが等しい場合は、両方を合わせて格子間隔Pと呼ぶ場合もある。
さらに、図1に示すように、縦鉄筋31の直径を鉄筋径B1とし、横鉄筋32の直径を鉄筋径B3とする。また、縦鉄筋31とコンクリート部2の前面11との距離を被り厚さC1とする。そして、前面11と鉄筋面30との距離をD1、鉄筋面30と後面12との距離をD2とする。
Further, the horizontal reinforcing bars 32 and 32 and the vertical reinforcing bars 31 and 31 are arranged substantially in parallel at regular intervals, respectively. The distance between the horizontal bars 32 and 32 is defined as a distance P1, and the distance between the vertical bars 31 and 31 is defined as a distance P2. Furthermore, this space | interval P1 (P2) is made equal among all the horizontal reinforcing bars 32 and 32 (vertical reinforcing bars 31, 31). In the following, when the interval P1 and the interval P2 are equal, both may be collectively referred to as the lattice interval P.
Further, as shown in FIG. 1, the diameter of the vertical reinforcing bar 31 is defined as a reinforcing bar diameter B1, and the diameter of the horizontal reinforcing bar 32 is defined as a reinforcing bar diameter B3. Further, the distance between the vertical reinforcing bar 31 and the front surface 11 of the concrete portion 2 is defined as the covering thickness C1. The distance between the front surface 11 and the reinforcing bar surface 30 is D1, and the distance between the reinforcing bar surface 30 and the rear surface 12 is D2.

一方、後側鉄筋格子4は、前側鉄筋格子3と同様に、鉛直方向に向けて立設された複数の第1導体棒としての縦鉄筋41,・・・と、縦鉄筋41に略直角となるように交差する複数の第2導体棒としての横鉄筋42,・・・とによって格子状に形成される。すなわち、縦鉄筋41,・・・及び横鉄筋42,・・・は、それぞれ伝搬方向に略直交する方向に一定の間隔を置いて略平行に配設される。そして、縦鉄筋41と横鉄筋42とが接する面が鉄筋面40となる。また、前側鉄筋格子3の鉄筋面30と鉄筋面40とのコンクリート部2の厚さ方向の間隔を、距離C3とする。   On the other hand, the rear reinforcing bar lattice 4 is substantially perpendicular to the vertical reinforcing bars 41 and the vertical reinforcing bars 41 as a plurality of first conductor rods erected in the vertical direction, like the front reinforcing bar lattice 3. It forms in a grid | lattice form with the horizontal reinforcing bars 42 ... as several 2nd conductor rods which cross | intersect. That is, the vertical reinforcing bars 41,... And the horizontal reinforcing bars 42,... Are arranged substantially in parallel with a certain interval in a direction substantially orthogonal to the propagation direction. The surface where the vertical reinforcing bar 41 and the horizontal reinforcing bar 42 are in contact becomes the reinforcing bar surface 40. Moreover, let the space | interval of the thickness direction of the concrete part 2 of the reinforcing bar surface 30 and the reinforcing bar surface 40 of the front side reinforcement lattice 3 be the distance C3.

また、横鉄筋42,42間の距離及び縦鉄筋41,41間の距離は、前側鉄筋格子3と同様に間隔P1,P2とし、すべての横鉄筋42,42(縦鉄筋41,41)間で等しくしておく(格子間隔P)。
さらに、図1に示すように、縦鉄筋41の直径を鉄筋径B2とし、横鉄筋42の直径を鉄筋径B4とする。また、縦鉄筋41とコンクリート部2の後面12との距離を被り厚さC2とする。
Further, the distance between the horizontal reinforcing bars 42 and 42 and the distance between the vertical reinforcing bars 41 and 41 are set to the intervals P1 and P2 in the same manner as the front reinforcing bar lattice 3, and between all the horizontal reinforcing bars 42 and 42 (vertical reinforcing bars 41 and 41). It is set to be equal (grating interval P).
Furthermore, as shown in FIG. 1, the diameter of the vertical reinforcing bar 41 is defined as a reinforcing bar diameter B2, and the diameter of the horizontal reinforcing bar 42 is defined as a reinforcing bar diameter B4. Further, the distance between the vertical reinforcing bar 41 and the rear surface 12 of the concrete portion 2 is defined as the covering thickness C2.

また、溶接金網6によって形成される後述する副鉄筋面60は、前側鉄筋格子3の鉄筋面30及び後側鉄筋格子4の鉄筋面40と略平行になるようにコンクリート部2に埋設されている。この溶接金網6は、鉛直方向に向けて立設された複数の第1副導体棒としての縦線材61,・・・と、縦線材61に略直角となるように交差する複数の第2副導体棒としての横線材62,・・・とによって格子状に形成される。すなわち、縦線材61,・・・及び横線材62,・・・は、それぞれ伝搬方向に略直交する方向に一定の間隔を置いて並んで配設される。そして、縦線材61,・・・と横線材62,・・・とが接する面が副鉄筋面60となる。なお、溶接金網6は、上述した鉄筋のようにRC壁1の主構造部材として配置されるものではなく、直径が小さい鉄筋、鋼線などによって形成される。   Further, a secondary rebar surface 60 described later formed by the welded wire mesh 6 is embedded in the concrete portion 2 so as to be substantially parallel to the rebar surface 30 of the front rebar lattice 3 and the rebar surface 40 of the rear rebar lattice 4. . The welded wire mesh 6 includes a plurality of second sub-lines that intersect with the vertical wire members 61 so as to be substantially perpendicular to the vertical wire members 61,. It forms in a grid | lattice form with the horizontal wire 62 as a conductor rod. That is, the vertical wires 61,... And the horizontal wires 62,... Are arranged side by side with a certain interval in a direction substantially orthogonal to the propagation direction. And the surface which the vertical wire 61, ... and the horizontal wire 62, ... contact becomes the sub-rebar surface 60. Note that the welded wire mesh 6 is not arranged as a main structural member of the RC wall 1 like the above-described reinforcing bars, but is formed by a reinforcing bar having a small diameter, a steel wire, or the like.

また、横線材62,62及び縦線材61,61は、それぞれ一定の間隔で略平行に配設されている。そして、横線材62,62間の距離を間隔S1とし、縦線材61,61間の距離を間隔S2とする。さらに、この間隔S1(S2)は、すべての横線材62,62(縦線材61,61)間で等しくしておく。なお、以下においては、間隔S1と間隔S2とが等しい場合は、両方を合わせて格子間隔Sと呼ぶ場合もある。
さらに、図1に示すように、縦線材61の直径を副鉄筋径E1とし、横線材62の直径を副鉄筋径E2とする。また、溶接金網6の副鉄筋面60と後側鉄筋格子4の鉄筋面40との距離をD3とする。
Further, the horizontal wire rods 62 and 62 and the vertical wire rods 61 and 61 are arranged substantially in parallel at regular intervals, respectively. The distance between the horizontal wires 62 and 62 is defined as a distance S1, and the distance between the vertical wires 61 and 61 is defined as a distance S2. Furthermore, this space | interval S1 (S2) is made equal among all the horizontal wire rods 62 and 62 (vertical wire rods 61 and 61). In the following, when the interval S1 and the interval S2 are equal, both may be collectively referred to as a lattice interval S.
Further, as shown in FIG. 1, the diameter of the vertical wire 61 is set as a secondary reinforcing bar diameter E1, and the diameter of the horizontal wire 62 is set as a secondary reinforcing bar diameter E2. Further, the distance between the secondary reinforcing bar surface 60 of the welded wire mesh 6 and the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 is defined as D3.

そして、図2,3に示すように、縦鉄筋31,41と縦線材61とは略同じ方向を向いている。また、横鉄筋32,42と横線材62とは略同じ方向を向いている。さらに、図3に示すように、前側鉄筋格子3(又は後側鉄筋格子4)の格子間隔Pと溶接金網6の格子間隔Sとの比は、P:S=3n:1(nは0を除く正の整数)となるように設定する。   As shown in FIGS. 2 and 3, the vertical reinforcing bars 31 and 41 and the vertical wire 61 are directed in substantially the same direction. Moreover, the horizontal reinforcing bars 32 and 42 and the horizontal wire 62 are directed in substantially the same direction. Further, as shown in FIG. 3, the ratio of the lattice interval P of the front reinforcing bar lattice 3 (or the rear reinforcing lattice 4) and the lattice interval S of the welded wire mesh 6 is P: S = 3n: 1 (n is 0). Excluding a positive integer).

次に、図4及び図5を参照しながら、本実施の形態のRC壁1の電磁波シールド効果を検討するためにおこなった解析について説明する。
図4は、有限要素法による数値シミュレーションで使用する解析モデルの一部を模式的に示した図である。この図4に示すように、モデル化されたRC壁M1の両側に内部空間MR1と外部空間MR2がモデル化される。また、RC壁M1の内部には、図3に示した格子(格子間隔P,P)の4分の1であるL字状の前側鉄筋格子M3と後側鉄筋格子M4とがモデル化されている。さらに、その格子(格子間隔P,P)の4分の1の範囲に収まる溶接金網M6もモデル化されている。そして、RC壁M1の内部空間R1側が前面M11となり、RC壁M1の外部空間MR2側が後面M12となる。
なお、鉄筋径B1−B4を10mm、副鉄筋径E1,E2を3.2mm、RC壁M1の厚さCを200mm、前側鉄筋格子3の被り厚さC1を40mm、後側鉄筋格子4の被り厚さC2を35mm、鉄筋面30と鉄筋面40との距離C3を105mm、副鉄筋面60と鉄筋面40との距離D3を50.9mmとして解析をおこなった(図1参照)。
Next, the analysis performed in order to examine the electromagnetic wave shielding effect of RC wall 1 of this Embodiment is demonstrated, referring FIG.4 and FIG.5.
FIG. 4 is a diagram schematically showing a part of the analysis model used in the numerical simulation by the finite element method. As shown in FIG. 4, an internal space MR1 and an external space MR2 are modeled on both sides of the modeled RC wall M1. Further, inside the RC wall M1, an L-shaped front reinforcing bar lattice M3 and a rear reinforcing bar lattice M4 that are a quarter of the lattice (lattice spacing P, P) shown in FIG. 3 are modeled. Yes. Further, a welded wire mesh M6 that falls within a quarter of the lattice (lattice spacing P, P) is also modeled. The inner wall R1 side of the RC wall M1 is the front surface M11, and the outer space MR2 side of the RC wall M1 is the rear surface M12.
The reinforcing bar diameter B1-B4 is 10 mm, the secondary reinforcing bar diameters E1, E2 are 3.2 mm, the thickness C of the RC wall M1 is 200 mm, the covering thickness C1 of the front reinforcing bar grid 3 is 40 mm, and the covering thickness of the rear reinforcing bar grid 4 The length C2 was 35 mm, the distance C3 between the reinforcing bar surface 30 and the reinforcing bar surface 40 was 105 mm, and the distance D3 between the secondary reinforcing bar surface 60 and the reinforcing bar surface 40 was 50.9 mm (see FIG. 1).

この解析では、内部空間MR1側からRC壁M1に向けて垂直偏波の平面波を伝搬させて、外部空間MR2側まで伝搬される電磁波の電界強度を確認した。また、垂直偏波は、周波数を2.0 GHz−3.0 GHzまで0.01 GHz刻みで変化させてシミュレーションをおこなった。それらの解析結果の中で、RC壁M1による電磁波シールド効果が高かった一例を、側方から見た電界強度分布図として図5に示した。図中では、相対的に電界強度が高い部分を濃いドットで示し、電界強度が低くなるにつれてドットが薄くなり、さらには白色になるという表示としている。   In this analysis, a vertically polarized plane wave was propagated from the internal space MR1 side toward the RC wall M1, and the electric field strength of the electromagnetic wave propagated to the external space MR2 side was confirmed. The simulation was performed by changing the frequency of vertically polarized waves in 0.01 GHz increments from 2.0 GHz to 3.0 GHz. Among these analysis results, an example in which the electromagnetic wave shielding effect by the RC wall M1 was high is shown in FIG. 5 as an electric field intensity distribution diagram viewed from the side. In the drawing, a portion having a relatively high electric field strength is indicated by a dark dot, and as the electric field strength decreases, the dot becomes lighter and further becomes white.

図5は、2.79GHzの周波数の垂直偏波の平面波を伝搬させたときの電界強度分布図である。この周波数の電磁波を伝搬させると、図5に示すように溶接金網M6と後側鉄筋格子M4との間で定在波が形成されて電界強度が高く(濃いドット)なっていることがわかる。これは、溶接金網M6と後側鉄筋格子M4との間(図1の距離D3)で共振が起きて、反射波の多重反射の相互関係により定在波が形成されたものと考えられる。すなわち、溶接金網M6と後側鉄筋格子M4は、入射した電磁波の少なくとも一部を反射する半透過面として機能していると考えられる。そして、こうした2つの半透過面の間で共振が起こり、定在波が形成されるのは、半透過面同士の距離が、共振する電磁波の一波長の概ね整数倍になっているためと考えられる。   FIG. 5 is an electric field intensity distribution diagram when a vertically polarized plane wave having a frequency of 2.79 GHz is propagated. When an electromagnetic wave of this frequency is propagated, it can be seen that a standing wave is formed between the welded wire mesh M6 and the rear reinforcing bar lattice M4 as shown in FIG. 5, and the electric field strength is high (dark dots). This is probably because resonance occurred between the welded wire mesh M6 and the rear reinforcing bar lattice M4 (distance D3 in FIG. 1), and a standing wave was formed by the mutual relationship of the multiple reflection of the reflected wave. That is, it is considered that the welded wire mesh M6 and the rear reinforcing bar lattice M4 function as a semi-transmissive surface that reflects at least a part of the incident electromagnetic wave. Resonance occurs between these two semi-transmissive surfaces, and a standing wave is formed because the distance between the semi-transmissive surfaces is approximately an integral multiple of one wavelength of the resonating electromagnetic wave. It is done.

他方、外部空間MR2では電界強度が非常に低く(薄いドット又は白色)なっているのは、RC壁M1内の共振によって電磁波が減衰され、外部空間MR2にほとんど電磁波が伝搬されなかったためと考えられる。
このようにRC壁M1では、特定の周波数のときに壁内部で共振が起き、透過波が抑制されることがわかる。ここで、透過波の抑制に寄与する現象としては、共振と共振以外の現象とが考えられるが、少なくとも共振が発生しているので、これらの現象を合わせて「共振に準じた現象」という。
On the other hand, the reason why the electric field strength is very low (thin dots or white) in the external space MR2 is considered to be that the electromagnetic waves are attenuated by resonance in the RC wall M1 and hardly transmitted to the external space MR2. .
Thus, it can be seen that the RC wall M1 resonates inside the wall at a specific frequency, and the transmitted wave is suppressed. Here, as a phenomenon contributing to suppression of transmitted waves, a phenomenon other than resonance and resonance can be considered, but since at least resonance occurs, these phenomena are collectively referred to as “a phenomenon corresponding to resonance”.

図6は、前側鉄筋格子3の格子間隔Pと後側鉄筋格子4の格子間隔Pを150mmに固定したうえで、溶接金網6の格子間隔Sを30mm,50mm,75mm,150mmと変化させて上述した解析をおこなった結果を示している。また、比較のために溶接金網6がないケースの解析もおこなった。
この図6では、周波数を横軸に、電磁波シールド効果(SE)を縦軸にとっている。ここで、電磁波シールド効果(SE)は、RC壁M1の有無で比べた電界強度の比に基づいてデシベル(dB)で表す。
SE=20log10(RC壁M1が無いときの電界強度/RC壁M1が有るときの電界強度)
例えば、電磁波シールド効果(SE)が20dBとは、電磁波の強さが10分の1に減衰されたことを示し、シールド率でいうと90%となる。
In FIG. 6, the lattice spacing P of the front reinforcing bar lattice 3 and the lattice spacing P of the rear reinforcing steel lattice 4 are fixed to 150 mm, and the lattice spacing S of the welded wire mesh 6 is changed to 30 mm, 50 mm, 75 mm, and 150 mm. The result of having performed the analysis is shown. For comparison, a case without the welded wire mesh 6 was also analyzed.
In FIG. 6, the frequency is on the horizontal axis and the electromagnetic shielding effect (SE) is on the vertical axis. Here, the electromagnetic wave shielding effect (SE) is expressed in decibels (dB) based on the ratio of the electric field strength compared with or without the RC wall M1.
SE = 20 log 10 (electric field strength when there is no RC wall M1 / electric field strength when there is an RC wall M1)
For example, an electromagnetic wave shielding effect (SE) of 20 dB indicates that the intensity of electromagnetic waves is attenuated to 1/10, and the shielding rate is 90%.

図6のグラフを見ると、溶接金網6の格子間隔Sが50mmのケース(二点鎖線)で、周波数2.8GHzにおいて電磁波シールド効果(SE)のピーク(23dB)が発生している。これは、溶接金網6がないケース(実線)のピーク(周波数2.79GHzで15dB)と比べて約8dBも大きな電磁波を減衰する効果が得られることを示している。
これに対して溶接金網6の格子間隔Sが30mm,75mm,150mmの各ケースは、溶接金網6がないケースと同程度にしか電磁波を減衰することができない。すなわち、50mmを境にして、溶接金網6の格子間隔Sが狭くなったとしても、広くなったとしても、溶接金網6の格子間隔Sが50mmのときのような電磁波を減衰する効果が得られないことがわかる。そして、この格子間隔Sが50mmとは、前側鉄筋格子3及び後側鉄筋格子4の格子間隔P=150mmと、P:S=3:1の関係にある。
When the graph of FIG. 6 is seen, the peak (23 dB) of the electromagnetic wave shielding effect (SE) is generated at a frequency of 2.8 GHz in a case (two-dot chain line) where the lattice spacing S of the welded wire mesh 6 is 50 mm. This indicates that an effect of attenuating an electromagnetic wave that is about 8 dB larger than the peak (15 dB at a frequency of 2.79 GHz) in the case without the wire mesh 6 (solid line) is obtained.
On the other hand, each case in which the lattice spacing S of the welded wire mesh 6 is 30 mm, 75 mm, and 150 mm can attenuate electromagnetic waves only to the same extent as the case without the welded wire mesh 6. That is, even if the lattice spacing S of the welded wire mesh 6 becomes narrower or widens at the boundary of 50 mm, the effect of attenuating electromagnetic waves as when the lattice spacing S of the welded wire mesh 6 is 50 mm is obtained. I understand that there is no. The lattice spacing S of 50 mm is in the relationship of P: S = 3: 1 with the lattice spacing P = 150 mm of the front reinforcing bar lattice 3 and the rear reinforcing bar lattice 4.

そこで、前側鉄筋格子3及び後側鉄筋格子4の格子間隔Pと溶接金網6の格子間隔Sとの比が、P:S=3:1となるように設定しておこなった解析結果を図7に示した。すなわち図7は、格子間隔Pを150mm,160mm,170mm,180mmと10mm単位で変化させ、それぞれに対して3分の1となるように格子間隔Sを50mm,53mm,56mm,60mmに設定した各ケースの解析結果を示した図である。
この図7を見ると、すべてのケースにおいて大きなピークが現れていることがわかる。すなわち、P=150mm:S=50mmのケース(実線)は、周波数2.8GHzにおいて電磁波シールド効果(SE)のピーク(23dB)が発生している。また、P=160mm:S=53mmのケース(一点鎖線)では、周波数2.6GHzにおいて電磁波シールド効果(SE)のピーク(26.7dB)が発生している。さらに、P=170mm:S=56mmのケース(二点鎖線)では、周波数2.5GHzにおいて電磁波シールド効果(SE)のピーク(21.4dB)が発生している。そして、P=180mm:S=60mmのケース(破線)では、周波数2.36GHzにおいて電磁波シールド効果(SE)のピーク(16.3dB)が発生している。よって、格子間隔Pと格子間隔Sとの比がP:S=3:1となるように設定することで、大きな電磁波シールド効果(SE)が得られることがわかる。
Therefore, the analysis results obtained by setting the ratio of the lattice interval P of the front reinforcing bar lattice 3 and the rear reinforcing lattice 4 and the lattice interval S of the welded wire mesh 6 to P: S = 3: 1 are shown in FIG. It was shown to. That is, in FIG. 7, the grid spacing P is changed in units of 10 mm such as 150 mm, 160 mm, 170 mm, and 180 mm, and the grid spacing S is set to 50 mm, 53 mm, 56 mm, and 60 mm so as to be one third of each. It is the figure which showed the analysis result of the case.
It can be seen from FIG. 7 that a large peak appears in all cases. That is, in the case of P = 150 mm: S = 50 mm (solid line), an electromagnetic wave shielding effect (SE) peak (23 dB) occurs at a frequency of 2.8 GHz. In the case of P = 160 mm: S = 53 mm (one-dot chain line), an electromagnetic wave shielding effect (SE) peak (26.7 dB) occurs at a frequency of 2.6 GHz. Furthermore, in the case of P = 170 mm: S = 56 mm (two-dot chain line), an electromagnetic wave shielding effect (SE) peak (21.4 dB) occurs at a frequency of 2.5 GHz. In the case of P = 180 mm: S = 60 mm (broken line), an electromagnetic wave shielding effect (SE) peak (16.3 dB) occurs at a frequency of 2.36 GHz. Therefore, it can be seen that a large electromagnetic shielding effect (SE) can be obtained by setting the ratio of the lattice spacing P to the lattice spacing S to be P: S = 3: 1.

以上で説明した解析結果からわかるように、RC壁1内部では、後側鉄筋格子4の鉄筋面40と溶接金網6の副鉄筋面60との間、若しくは前側鉄筋格子3の鉄筋面30と溶接金網6の副鉄筋面60との間、又は後側鉄筋格子4の鉄筋面40と前側鉄筋格子3の鉄筋面30との間で電磁波の共振に準じた現象が起きており、それによって電磁波のエネルギーが損失されている。
ここで発生している共振に準じた現象は、1次の共振だけでなく、2次,3次,・・・,n次の共振でも同様に起きるため、P:S=3n:1(nは0を除く正の整数)と一般化することができる。
また、同様に、後側鉄筋格子4の鉄筋面40と溶接金網6の副鉄筋面60との距離、又は前側鉄筋格子3の鉄筋面30と溶接金網6の副鉄筋面60との距離についても、対象周波数の電磁波のコンクリート中の一波長(反射波長)λのn倍(nは0を除く正の整数)と一般化することができる。
As can be seen from the analysis results described above, inside the RC wall 1, the welding is performed between the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 and the secondary reinforcing bar surface 60 of the welded wire mesh 6 or the reinforcing bar surface 30 of the front reinforcing bar lattice 3. A phenomenon corresponding to the resonance of the electromagnetic wave occurs between the reinforcing bar surface 60 of the wire mesh 6 or between the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 and the reinforcing bar surface 30 of the front reinforcing bar lattice 3. Energy is lost.
Since the phenomenon according to the resonance generated here occurs not only in the first-order resonance but also in the second-order, third-order,..., N-th order resonance, P: S = 3n: 1 (n Is a positive integer other than 0).
Similarly, the distance between the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 and the secondary reinforcing bar surface 60 of the welded wire mesh 6 or the distance between the reinforcing bar surface 30 of the front reinforcing steel lattice 3 and the auxiliary reinforcing bar surface 60 of the welded metal mesh 6. It can be generalized to n times (one is a positive integer excluding 0) one wavelength (reflection wavelength) λ c in the concrete of the electromagnetic wave of the target frequency.

図8には、格子間隔Pを横軸に、RC壁1内で電磁波が反射する(共振する)周波数fを縦軸にしたグラフを示した。この図8の周波数グラフF1は解析結果をプロットしたもので、周波数線形グラフFLは最小自乗法で求めた関係式に基づくグラフである。
この周波数線形グラフFLは、電磁波を後側鉄筋格子4の鉄筋面40又は前側鉄筋格子3の鉄筋面30と溶接金網6の副鉄筋面60との間で反射させる場合の周波数fと格子間隔Pとの関係を示している。また、図8にドットで示した帯域FWは、無線LAN(Local Area Network)でよく使用される周波数である2.4GHz周辺を示している。
FIG. 8 shows a graph in which the lattice interval P is on the horizontal axis and the frequency f at which the electromagnetic wave is reflected (resonated) in the RC wall 1 is on the vertical axis. The frequency graph F1 in FIG. 8 is a plot of analysis results, and the frequency linear graph FL is a graph based on the relational expression obtained by the least square method.
This frequency linear graph FL shows the frequency f and the lattice spacing P when the electromagnetic wave is reflected between the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 or the reinforcing bar surface 30 of the front reinforcing bar lattice 3 and the secondary reinforcing bar surface 60 of the welded wire mesh 6. Shows the relationship. Further, a band FW indicated by dots in FIG. 8 indicates the vicinity of 2.4 GHz which is a frequency often used in a wireless LAN (Local Area Network).

例えば、2.4GHzの周波数の電磁波を共振させるためには、図8の周波数線形グラフFLから格子間隔Pを177mm(溶接金網6の格子間隔Sは177/3=59mm)にすればよいことが読み取れる。なお、この周波数線形グラフFLを使用するにあたって、所定の許容誤差範囲内であれば、対象周波数周辺の電磁波を遮蔽させる効果を得ることができるので、実際にRC壁1を構築する際の格子間隔Pは許容誤差範囲内(例えば鉄筋径又は副鉄筋径以内の誤差)で変更することができる。
導体棒となる鉄筋(31,32,41,42)又は副導体棒となる線材(61,62)の直径(鉄筋径又は副鉄筋径)以内で格子間隔Pや格子間隔Sを変更できる理由は、実際の電磁波の反射面の位置が導体棒や副導体棒の表面になるためである。
For example, in order to resonate an electromagnetic wave having a frequency of 2.4 GHz, it can be read from the frequency linear graph FL of FIG. 8 that the lattice interval P should be 177 mm (the lattice interval S of the welded wire mesh 6 is 177/3 = 59 mm). . Note that, when using this frequency linear graph FL, an effect of shielding electromagnetic waves around the target frequency can be obtained as long as it is within a predetermined allowable error range. Therefore, the lattice spacing when the RC wall 1 is actually constructed is obtained. P can be changed within an allowable error range (for example, an error within a reinforcing bar diameter or a secondary reinforcing bar diameter).
The reason why the lattice spacing P and the lattice spacing S can be changed within the diameter (rebar diameter or sub-rebar diameter) of the reinforcing bars (31, 32, 41, 42) serving as the conductor bars or the wires (61, 62) serving as the subsidiary conductor bars. This is because the position of the reflection surface of the actual electromagnetic wave becomes the surface of the conductor rod or the sub conductor rod.

これに対して、図8の周波数fと格子間隔Pとの関係を、RC壁1内の電磁波の波長λと格子間隔Pとの関係で示したのが図9である。すなわち図9は、波長λを縦軸に、格子間隔Pを横軸にしている。ここで、RC壁1内のコンクリート部2の波長λは、媒質となるコンクリート部2の比誘電率をε、電磁波の周波数をf、光速をvとすると次の変換式によって算出できる。
λ=v/f×1/√ε
On the other hand, FIG. 9 shows the relationship between the frequency f and the grating interval P in FIG. 8 by the relationship between the wavelength λ c of the electromagnetic wave in the RC wall 1 and the grating interval P. That 9, the vertical axis wavelength lambda c, has a lattice spacing P in the horizontal axis. Here, the wavelength λ c of the concrete portion 2 in the RC wall 1 can be calculated by the following conversion equation, where ε r is the relative dielectric constant of the concrete portion 2 serving as a medium, f is the frequency of the electromagnetic wave, and v is the speed of light.
λ c = v / f × 1 / √ε r

周波数グラフF1を上記変換式によって変換すると波長グラフW1となる。また、最小自乗法で求めた波長線形グラフWLの関係式は、以下のようになる。
λ=0.2714P+4.6833 ・・・(式1)
ここで、格子間隔P=P1=P2
When the frequency graph F1 is converted by the above conversion formula, a wavelength graph W1 is obtained. The relational expression of the wavelength linear graph WL obtained by the least square method is as follows.
λ c = 0.2714P + 4.6833 (Formula 1)
Here, the lattice spacing P = P1 = P2

よって、RC壁1によって遮蔽したい任意の対象周波数fの波長λ(コンクリート中の反射波長)を上記式1に代入すれば、前側鉄筋格子3又は後側鉄筋格子4と溶接金網6とを半透過面として壁内で電磁波を共振させるために必要な格子間隔Pを得ることができる。なお、式1又は波長線形グラフWLを使用するにあたって、所定の許容誤差範囲内であれば、対象周波数周辺の電磁波を遮蔽させる効果を得ることができるので、実際にRC壁1を構築する際の格子間隔Pは許容誤差範囲内(例えば鉄筋径又は副鉄筋径以内の誤差)で変更することができる。Therefore, if the wavelength λ c (reflection wavelength in the concrete) of an arbitrary target frequency f to be shielded by the RC wall 1 is substituted into the above equation 1, the front reinforcing bar grid 3 or the rear reinforcing bar grid 4 and the welded wire mesh 6 are half It is possible to obtain a lattice interval P necessary for resonating electromagnetic waves in the wall as a transmission surface. In addition, in using Formula 1 or the wavelength linear graph WL, if it is within a predetermined allowable error range, an effect of shielding electromagnetic waves around the target frequency can be obtained, so when actually building the RC wall 1 The lattice interval P can be changed within an allowable error range (for example, an error within a reinforcing bar diameter or a secondary reinforcing bar diameter).

例えば、周波数が2.4GHzのときのコンクリート中の波長(反射波長)λは52.8mmとなるので、式1又は波長線形グラフWLから格子間隔Pを177mmとすればよいことがわかる。そして、格子間隔Pの3分の1となる59mmが溶接金網6の格子間隔Sとなる。
一方、溶接金網6の副鉄筋面60と後側鉄筋格子4の鉄筋面40との距離D3は50.9mmであり、一波長λ=52.8mmと許容誤差範囲(鉄筋径(10mm)又は副鉄筋径(3.2mm))内で略等しくなっている。
導体棒となる鉄筋(31,32,41,42)又は副導体棒となる線材(61,62)の直径(鉄筋径又は副鉄筋径)以内で鉄筋面30,40と副鉄筋面60との距離を変更できる理由は、実際の電磁波の反射面の位置が導体棒や副導体棒の表面になるためである。さらに、導体棒同士又は副導体棒同士が交差して接する面(30,40,60)を半透過面とした場合に、例えば導体棒同士が交差している場所付近などでは、半透過面の位置と実際の反射位置が最大で導体棒の直径程度ずれる可能性があるため、導体棒の直径の範囲内で位置を変更しても共振を起こさせることができる。
For example, since the wavelength (reflection wavelength) λ c in the concrete when the frequency is 2.4 GHz is 52.8 mm, it can be seen from Equation 1 or the wavelength linear graph WL that the lattice spacing P should be 177 mm. Then, 59 mm, which is one third of the lattice interval P, is the lattice interval S of the welded wire mesh 6.
On the other hand, the distance D3 between the secondary reinforcing bar surface 60 of the welded wire mesh 6 and the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 is 50.9 mm, and one wavelength λ c = 52.8 mm and an allowable error range (reinforcing bar diameter (10 mm) or secondary reinforcing bar). (Diameter (3.2mm))
The rebar surfaces 30, 40 and the sub-rebar surface 60 are within the diameter (rebar diameter or sub-rebar diameter) of the rebar (31, 32, 41, 42) serving as the conductor rod or the wire (61, 62) serving as the sub-conductor rod. The reason why the distance can be changed is that the position of the reflection surface of the actual electromagnetic wave becomes the surface of the conductor rod or the sub conductor rod. Furthermore, when the surfaces (30, 40, 60) where the conductor rods or the sub conductor rods intersect and contact each other are used as the semi-transmissive surface, for example, in the vicinity of the location where the conductor rods intersect, Since there is a possibility that the position and the actual reflection position are shifted at the maximum by about the diameter of the conductor rod, resonance can be caused even if the position is changed within the range of the diameter of the conductor rod.

次に、本実施の形態の鉄筋コンクリート仕切体(RC壁1)の作用について説明する。
このように構成された本実施の形態のRC壁1は、コンクリート部2の内部に埋設される前側鉄筋格子3と後側鉄筋格子4との間の略中央の位置に、複数の縦線材61,・・・と複数の横線材62,・・・とによって格子状に形成された溶接金網6が配置されている。
そして、前側鉄筋格子3及び後側鉄筋格子4の格子間隔Pに対して、溶接金網6の格子間隔Sが、P:S=3n:1(nは0を除く正の整数)となるように調整されている。この格子間隔Pと格子間隔Sとの比は、対象周波数の電磁波の伝搬を大きく減衰させることができる比である。
さらに、前側鉄筋格子3の鉄筋面30及び後側鉄筋格子4の鉄筋面40と溶接金網6の副鉄筋面60との距離D3,(C3−D3−E1)も対象周波数の電磁波のコンクリート中の一波長(反射波長)λの略整数倍(整数は0を除く正の整数)に調整されている。
Next, the effect | action of the reinforced concrete partition (RC wall 1) of this Embodiment is demonstrated.
The RC wall 1 of the present embodiment configured as described above has a plurality of vertical wires 61 at a substantially central position between the front reinforcing bar lattice 3 and the rear reinforcing bar lattice 4 embedded in the concrete portion 2. ,... And a plurality of horizontal wires 62,.
Then, the lattice spacing S of the welded wire mesh 6 is P: S = 3n: 1 (n is a positive integer excluding 0) with respect to the lattice spacing P of the front reinforcing steel lattice 3 and the rear reinforcing steel lattice 4. It has been adjusted. The ratio between the lattice spacing P and the lattice spacing S is a ratio that can greatly attenuate the propagation of electromagnetic waves of the target frequency.
Furthermore, the distance D3 (C3-D3-E1) between the reinforcing bar surface 30 of the front reinforcing bar lattice 3 and the reinforcing bar surface 40 of the rear reinforcing bar lattice 4 and the secondary reinforcing bar surface 60 of the welded wire mesh 6 is also in the electromagnetic wave of the target frequency. It is adjusted to a substantially integer multiple of one wavelength (reflection wavelength) λ c (the integer is a positive integer excluding 0).

例えば、上記した変換式によってRC壁1によって遮蔽したい対象周波数fの波長λを算出する。そして、後側鉄筋格子4(又は前側鉄筋格子3)の鉄筋面40(30)と溶接金網6の副鉄筋面60との間の共振に準じた現象によって電磁波を減衰させるために、鉄筋面40(30)と副鉄筋面60を電磁波の半透過面として作用可能な構成にする。
すなわち、上記式1に対象周波数fの波長λを代入し、前側鉄筋格子3及び後側鉄筋格子4の格子間隔P(間隔P1,P2)を算出する。なお、図9の波長線形グラフWLを使って格子間隔Pを求めることもできる。そして、格子間隔Pの3分の1を溶接金網6の格子間隔S(間隔S1,S2)に設定する。
さらに、電磁波の半透過面として作用させたい後側鉄筋格子4(又は前側鉄筋格子3)の鉄筋面40(30)と溶接金網6の副鉄筋面60との厚さ方向(電磁波の伝搬方向)の位置関係を調整する。すなわち、図1に示した距離D3及び距離(C3−D3−E1)が略一波長λと同じ長さになるように前側鉄筋格子3、後側鉄筋格子4及び溶接金網6の位置を設定する。
For example, the wavelength λ c of the target frequency f desired to be shielded by the RC wall 1 is calculated by the above conversion formula. And in order to attenuate electromagnetic waves by the phenomenon according to the resonance between the reinforcing bar surface 40 (30) of the rear reinforcing bar lattice 4 (or the front reinforcing bar lattice 3) and the secondary reinforcing bar surface 60 of the welded wire mesh 6, the reinforcing bar surface 40 (30) and the secondary rebar surface 60 are configured to be able to act as a semi-transmission surface for electromagnetic waves.
That is, by substituting the wavelength lambda c of the target frequency f in Equation 1, to calculate the lattice pitch P of the front reinforcing bar grating 3 and the rear rebar grid 4 (spacing P1, P2). In addition, the grating | lattice space | interval P can also be calculated | required using the wavelength linear graph WL of FIG. Then, one third of the lattice interval P is set as the lattice interval S (interval S1, S2) of the welded wire mesh 6.
Further, the thickness direction (the propagation direction of the electromagnetic wave) between the reinforcing bar surface 40 (30) of the rear reinforcing bar lattice 4 (or the front reinforcing bar lattice 3) and the auxiliary reinforcing bar surface 60 of the welded wire mesh 6 that is desired to act as a semi-transmission surface of electromagnetic waves. Adjust the positional relationship. That is, setting the position of the front reinforcing bar grating 3, the rear rebar grid 4 and welded wire mesh 6 as the distance D3 and distance shown in FIG. 1 (C3-D3-E1) is the same length as the substantially wave lambda c To do.

このように前側鉄筋格子3と後側鉄筋格子4との間の適切な位置に適切な格子間隔Sの溶接金網6を配置するだけで、構造体として必然的に構築されるRC壁1自体によって、対象周波数fの電磁波を遮蔽することができる。
特に、前側鉄筋格子3と後側鉄筋格子4の両方を半透過面として機能させることで、電磁波シールド効果をより高めることができる。
In this way, the RC wall 1 itself inevitably constructed as a structure can be obtained simply by arranging the welded wire mesh 6 having an appropriate lattice spacing S at an appropriate position between the front reinforcing bar lattice 3 and the rear reinforcing steel lattice 4. The electromagnetic wave having the target frequency f can be shielded.
In particular, the electromagnetic shielding effect can be further enhanced by causing both the front reinforcing bar lattice 3 and the rear reinforcing bar lattice 4 to function as semi-transmissive surfaces.

すなわちこのようにして構築されるRC壁1は、構造体として構築しなければならない鉄筋コンクリート壁の鉄筋の間隔P1,P2を調整したうえで溶接金網6を埋設させることで、電磁波シールド機能を発揮させることができる。このため、電磁波シールド部材を壁の表面に別途、貼り付けなければならない従来の場合に比べて、材料費を削減できる。また、作業も鉄筋コンクリート壁自体を構築する作業とほとんど変わらず、電磁波シールド機能を付加するための追加作業がほとんど発生せず容易に構築できる。   That is, the RC wall 1 constructed in this way exhibits an electromagnetic wave shielding function by embedding the welded wire mesh 6 after adjusting the intervals P1 and P2 between the reinforcing bars of the reinforced concrete wall that must be constructed as a structure. be able to. For this reason, material cost can be reduced compared with the conventional case where the electromagnetic wave shielding member must be separately attached to the surface of the wall. In addition, the work is almost the same as the work of constructing the reinforced concrete wall itself, and can be easily constructed with little additional work for adding an electromagnetic shielding function.

ここで、このようなRC壁1を構築する建物として、データセンター、サーバルーム、放送スタジオ、撮影スタジオ、空港レーダ管制室、無線LANが利用可能なオフィス、電磁波シールドルームなどが挙げられる。   Here, as a building for constructing such an RC wall 1, there are a data center, a server room, a broadcasting studio, a photography studio, an airport radar control room, an office where a wireless LAN can be used, an electromagnetic shielding room, and the like.

また、このRC壁1は、対象周波数fに対する電磁波シールド効果(SE)は高いが、それ以外の周波数の電磁波は透過させることができる。このため、建物の内部にいても携帯電話の電波は受信したいが、無線LANの電波は外部に漏洩させたくないなど、特定の周波数の電磁波のみを遮蔽することができる。   The RC wall 1 has a high electromagnetic shielding effect (SE) for the target frequency f, but can transmit electromagnetic waves of other frequencies. For this reason, it is possible to shield only electromagnetic waves having a specific frequency, such as wanting to receive mobile phone radio waves even inside buildings, but not letting radio LAN radio waves leak outside.

また、このようなRC壁1は建物の建築現場で直接、構築することができる。さらに、工場や作業ヤードなどでRC壁1を構成するプレキャストパネルを予め製造し、建築現場でプレキャストパネルを組み立てることによってRC壁1とすることもできる。
そして、工場などでプレキャストパネルを製造する方法であれば、前側鉄筋格子3、後側鉄筋格子4及び溶接金網6を正確な格子間隔P,Sで正確な位置に配置することが安定的にできる。さらに、コンクリート部2も高品質に形成することができるので、所望する電磁波シールド機能を備えた安定した品質のRC壁1を構築することができる。
Moreover, such RC wall 1 can be constructed | assembled directly in the building construction site of a building. Furthermore, the precast panel which comprises RC wall 1 in a factory, a work yard, etc. can be manufactured previously, and it can also be set as RC wall 1 by assembling a precast panel in a construction site.
And if it is a method which manufactures a precast panel in a factory etc., it can be stably arrange | positioning the front reinforcement lattice 3, the rear reinforcement lattice 4, and the welding wire mesh 6 in the exact position by exact lattice spacing P and S. . Furthermore, since the concrete part 2 can also be formed with high quality, a stable quality RC wall 1 having a desired electromagnetic wave shielding function can be constructed.

次に、前記実施の形態で説明した前側鉄筋格子3、後側鉄筋格子4又は溶接金網6とは別の形態の主導体部又は副導体部について説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語や同一符号を用いて説明する。   Next, a description will be given of a main conductor portion or sub-conductor portion in a form different from the front-side reinforcing bar lattice 3, the rear-side reinforcing bar lattice 4 or the welded wire mesh 6 described in the above embodiment. Note that the description of the same or equivalent parts as the contents described in the above embodiment will be described using the same terms and the same reference numerals.

図10は、実施例1の主導体部としての羽付き鉄筋格子7の斜視図である。この羽付き鉄筋格子7は、鉛直方向に向けて立設された複数の第1導体棒としての縦鉄筋71,・・・と、縦鉄筋71に略直角となるように交差する複数の第2導体棒としての横鉄筋72,・・・とによって格子状に形成される。この縦鉄筋71,71と横鉄筋72,72とによって形成される正方形状の格子の目を、ここでは隙間73と呼ぶ。   FIG. 10 is a perspective view of the winged reinforcing bar lattice 7 as the main conductor portion of the first embodiment. This winged reinforcing bar lattice 7 includes a plurality of second reinforcing bars 71,... As a plurality of first conductor rods erected in the vertical direction, and a plurality of second bars intersecting the vertical reinforcing bars 71 so as to be substantially perpendicular to each other. It forms in a grid | lattice form with the horizontal rebar 72 as a conductor rod. The square grid formed by the vertical reinforcing bars 71 and 71 and the horizontal reinforcing bars 72 and 72 is called a gap 73 here.

また、この縦鉄筋71には、図10に示すように、左右の両側に拡幅部としての羽部71a,71aが延出される。すなわち羽部71a,71aは、縦鉄筋71を挟んで対峙する位置に設けられる。また、この羽部71a,71aは、縦鉄筋71の長手方向に沿って帯板状の鋼板を固着することによって形成できる。
さらに、横鉄筋72にも、図10に示すように、上下の両側に拡幅部としての羽部72a,72aが延出される。すなわち羽部72a,72aは、横鉄筋72を挟んで対峙する位置に設けられる。また、この羽部72a,72aは、横鉄筋72の長手方向に沿って帯板状の鋼板を固着することによって形成できる。
Further, as shown in FIG. 10, the vertical reinforcing bars 71 have wings 71 a and 71 a extending as widened portions on both the left and right sides. That is, the wings 71 a and 71 a are provided at positions facing each other with the vertical reinforcing bar 71 interposed therebetween. The wings 71 a and 71 a can be formed by fixing a strip-shaped steel plate along the longitudinal direction of the vertical reinforcing bar 71.
Further, as shown in FIG. 10, wings 72 a and 72 a as widening portions are extended to the horizontal reinforcing bar 72 on both the upper and lower sides. That is, the wings 72 a and 72 a are provided at positions facing each other with the horizontal reinforcing bar 72 interposed therebetween. The wings 72 a and 72 a can be formed by fixing a strip-shaped steel plate along the longitudinal direction of the horizontal reinforcing bar 72.

そして、このように羽部71a,72aが延出された縦鉄筋71と横鉄筋72とは、格子の隙間73が最も狭くなる方向に羽部71a,72aを向けた状態で交差させる。ここで、羽付き鉄筋格子7の羽部71aの面と羽部72aの面とが側方から見て平行に配置された場合が、隙間73の投影面積が最も狭くなる。   The vertical reinforcing bar 71 and the horizontal reinforcing bar 72 from which the wings 71a and 72a are extended in this way are crossed with the wings 71a and 72a facing in the direction in which the gap 73 of the lattice becomes the narrowest. Here, when the surface of the wing portion 71a of the winged reinforcing bar lattice 7 and the surface of the wing portion 72a are arranged in parallel when viewed from the side, the projected area of the gap 73 is the narrowest.

このように縦鉄筋71と横鉄筋72とに羽部71a,72aを設けることによって、羽部72a,72aによる間隔P11(又は羽部71a,71aによる間隔P21)から横鉄筋72,72間の間隔P1(又は縦鉄筋71,71間の間隔P2)に至るまで、格子間隔を幅広くみなすことができる。そして、格子間隔が広いということは複数の格子間隔Pを含んでいることを意味し、各格子間隔に対応する周波数を共振させることができることを意味する。すなわち、羽部71a,72aを設けることによって、共振させることができる対象周波数の帯域幅を広げることができる。   Thus, by providing the wings 71a, 72a on the vertical reinforcing bar 71 and the horizontal reinforcing bar 72, the distance between the horizontal reinforcing bars 72, 72 from the interval P11 by the wings 72a, 72a (or the interval P21 by the wings 71a, 71a). The lattice spacing can be considered widely up to P1 (or the spacing P2 between the vertical bars 71, 71). A wide lattice interval means that a plurality of lattice intervals P are included, and it means that frequencies corresponding to the respective lattice intervals can be resonated. That is, by providing the wings 71a and 72a, the bandwidth of the target frequency that can be resonated can be widened.

このように構成された羽付き鉄筋格子7が配置されたRC壁1は、遮蔽可能な電磁波の周波数の帯域幅が広いため、広い範囲で電磁波を効果的に遮蔽することができる。   The RC wall 1 on which the winged reinforcing bar lattice 7 configured as described above is arranged has a wide frequency band of electromagnetic waves that can be shielded, and therefore can effectively shield electromagnetic waves in a wide range.

また、上記では帯板状の羽部71a,72aを拡幅部として説明したが、これに限定されるものではなく、縦鉄筋71及び横鉄筋72に線状やテープ状の鋼材を巻き付けることによって拡幅部を形成してもよい。   In the above description, the band-like wings 71a and 72a have been described as widened portions, but the present invention is not limited to this, and widening can be achieved by winding linear or tape-like steel materials around the vertical reinforcing bars 71 and the horizontal reinforcing bars 72. A part may be formed.

さらに、以上では主導体部に拡幅部(羽部71a,72a)を設ける場合について説明したが、これと同様にして副導体部の第1副導体棒及び第2副導体棒にも拡幅部を設けることができる。
なお、実施例1のこの他の構成及び作用効果については、前記実施の形態と略同様であるため説明を省略する。
Further, the case where the widened portions (wing portions 71a, 72a) are provided in the main conductor portion has been described above, but in the same manner, the widened portions are also provided in the first subconductor rod and the second subconductor rod of the subconductor portion. Can be provided.
Other configurations and operational effects of the first embodiment are substantially the same as those in the above embodiment, and thus description thereof is omitted.

次に、前記実施の形態で説明したコンクリート部2とは別の形態のコンクリート部について説明する。なお、前記実施の形態又は実施例1で説明した内容と同一乃至均等な部分の説明については、同一用語や同一符号を用いて説明する。
この実施例2で説明するコンクリート部は、電磁波を吸収する性能が通常のコンクリートのみを使った場合に比べて高くなるように形成される。
Next, a concrete part having a different form from the concrete part 2 described in the above embodiment will be described. Note that the description of the same or equivalent parts as those described in the above embodiment or Example 1 will be described using the same terms and the same reference numerals.
The concrete portion described in the second embodiment is formed so that the performance of absorbing electromagnetic waves is higher than when only normal concrete is used.

例えば、導電性粉体、導電性繊維又は磁性粉体などの電磁波の吸収性能を高めるための混合材をコンクリートに混入してコンクリート部を形成することによって、コンクリート部自体で電磁波を吸収させることができる。ここで、導電性粉体としては、粒径1−500μmのカーボンビーズ又は金属粉などが使用できる。また、導電性繊維としては、繊維径5−30μmかつ繊維長1−20mmの炭素繊維、炭化ケイ素繊維又は金属繊維などが使用できる。さらに、磁性粉体としては、粒径3−500μmのフェライト粉、チタン粉又は磁石粉などが使用できる。   For example, the concrete part itself can absorb the electromagnetic wave by forming a concrete part by mixing the concrete with a mixture for enhancing electromagnetic wave absorption performance such as conductive powder, conductive fiber or magnetic powder. it can. Here, as the conductive powder, carbon beads or metal powder having a particle diameter of 1 to 500 μm can be used. In addition, as the conductive fiber, carbon fiber, silicon carbide fiber, metal fiber, or the like having a fiber diameter of 5-30 μm and a fiber length of 1-20 mm can be used. Furthermore, as the magnetic powder, ferrite powder, titanium powder or magnet powder having a particle size of 3 to 500 μm can be used.

また、コンクリートに気泡を混入したり、多孔性コンクリートを用いたりしても、コンクリート部自体の電磁波を吸収させる性能を高めることができる。
なお、実施例2のこの他の構成及び作用効果については、前記実施の形態又は実施例1と略同様であるため説明を省略する。
Moreover, even if air bubbles are mixed in concrete or porous concrete is used, the performance of absorbing the electromagnetic waves of the concrete part itself can be enhanced.
Other configurations and operational effects of the second embodiment are substantially the same as those of the above-described embodiment or the first embodiment, and thus description thereof is omitted.

以上、本発明の鉄筋コンクリート仕切体を、実施形態及び実施例に基づき説明してきたが、具体的な構成については、これらの実施形態などに限られるものではなく、本発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the reinforced concrete partition of this invention has been demonstrated based on embodiment and an Example, about a specific structure, it is not restricted to these embodiment etc., Unless it deviates from the summary of this invention, Design changes and additions are allowed.

例えば、前記実施の形態では、内部空間R1と外部空間R2との間をRC壁1で仕切る外壁の場合について説明したが、これに限定されるものではなく、内部空間の間仕切り壁に本発明を適用することができる。また、壁に限定されるものではなく、床や天井を本発明の鉄筋コンクリート仕切体としてもよい。   For example, in the above embodiment, the case of the outer wall that partitions the inner space R1 and the outer space R2 with the RC wall 1 has been described. However, the present invention is not limited to this, and the present invention is applied to the partition wall of the inner space. Can be applied. Moreover, it is not limited to a wall, A floor and a ceiling are good also as a reinforced concrete partition of this invention.

また、前記実施の形態又は実施例では、鉄筋コンクリート構造物中に本発明の電磁波シールド構造を設ける場合について説明したが、これに限定されるものではなく、モルタル、ガラス、アクリル又は塩化ビニルなどによって成形された仕切体の中に本発明の電磁波シールド構造を埋設させることもできる。さらに、空気中に本発明の電磁波シールド構造を配置してもよい。   Further, in the above-described embodiment or example, the case where the electromagnetic wave shielding structure of the present invention is provided in the reinforced concrete structure has been described, but the present invention is not limited thereto, and is molded by mortar, glass, acrylic, vinyl chloride, or the like. The electromagnetic shielding structure of the present invention can also be embedded in the formed partition. Furthermore, you may arrange | position the electromagnetic wave shield structure of this invention in the air.

また、前記実施の形態又は実施例では、導体棒を鉄筋、副導体棒を鋼線又は細径の鉄筋として説明したが、これに限定されるものではなく、導体棒及び副導体棒は、鋼棒などの金属棒や鋼線などであってもよい。さらに、導体棒と副導体棒は同等の構成であってもよい。「副」の名称は、単に識別のために付けたものに過ぎない。
そして、鉄筋以外の導体棒や副導体棒を使用する場合には、格子間隔P,S及び主導体部と副導体部との距離を、導体棒や副導体棒の太さ以内の範囲で変更することができる。ここでいう導体棒(又は副導体棒)の太さとは、導体棒の軸に直交する断面上において最も離れた2点をとったときの2点間の距離(最大断面径)であって、例えば断面円形の導体棒にあってはその直径、断面矩形の導体棒にあってはその対角線の長さとなる。
In the above-described embodiment or example, the conductor rod is described as a reinforcing bar, and the sub conductor rod is described as a steel wire or a small diameter reinforcing rod. However, the present invention is not limited to this, and the conductor rod and the sub conductor rod are made of steel. It may be a metal rod such as a rod or a steel wire. Furthermore, the conductor rod and the sub conductor rod may have the same configuration. The “secondary” name is merely used for identification.
When using conductor bars or sub conductor bars other than reinforcing bars, change the grid spacing P, S and the distance between the main conductor part and the sub conductor part within the range of the thickness of the conductor bar or sub conductor bar. can do. The thickness of the conductor rod (or sub conductor rod) here is the distance (maximum cross-sectional diameter) between two points when taking the two most distant points on the cross section orthogonal to the axis of the conductor rod. For example, in the case of a conductor rod having a circular cross section, the diameter is the same, and in the case of a conductor rod having a rectangular cross section, the length of the diagonal line.

また、前記実施の形態では、内部空間R1から外部空間R2に向けて伝搬される電磁波を例に説明したが、これに限定されるものではなく、外部空間R2から内部空間R1に向けて伝搬される電磁波を対象とする場合にも同様の考え方によって主導体部及び副導体部を配置すればよい。   In the above embodiment, the electromagnetic wave propagated from the internal space R1 to the external space R2 has been described as an example. However, the present invention is not limited to this, and is propagated from the external space R2 to the internal space R1. In the case of targeting electromagnetic waves, the main conductor portion and the sub conductor portion may be arranged based on the same concept.

また、前記実施の形態及び実施例では、前側鉄筋格子3の横鉄筋32を縦鉄筋31に対してRC壁1の後面12側に配置したが、これに限定されるものではなく、縦鉄筋31に対してRC壁1の前面11側に横鉄筋32を配置してもよい。同じく、後側鉄筋格子4の横鉄筋42を縦鉄筋41に対してRC壁1の後面12側に配置してもよい。   Moreover, in the said embodiment and Example, although the horizontal reinforcement 32 of the front reinforcement lattice 3 was arrange | positioned with respect to the vertical reinforcement 31 at the rear surface 12 side of the RC wall 1, it is not limited to this, The vertical reinforcement 31 On the other hand, the horizontal reinforcing bars 32 may be arranged on the front surface 11 side of the RC wall 1. Similarly, the horizontal reinforcing bars 42 of the rear reinforcing bar lattice 4 may be arranged on the rear surface 12 side of the RC wall 1 with respect to the vertical reinforcing bars 41.

また、前記実施の形態では、格子間隔P(S)として間隔P1,P2(S1,S2)を等しくする場合について説明したが、これに限定されるものではなく、同じ方向となるいずれか一方の間隔P1(P2)が間隔S1(S2)とP1(P2):S1(S2)=3n:1(nは0を除く正の整数)の関係になっている構成であってもよい。   Moreover, although the said embodiment demonstrated the case where space | interval P1, P2 (S1, S2) was made equal as lattice space | interval P (S), it is not limited to this, Either one which becomes the same direction The interval P1 (P2) may be configured such that the interval S1 (S2) and P1 (P2): S1 (S2) = 3n: 1 (n is a positive integer excluding 0).

さらに、前記実施の形態及び実施例では、格子状に形成された主導体部(前側鉄筋格子3、後側鉄筋格子4)について説明したが、これに限定されるものではなく、鉛直方向や水平方向など伝搬方向に略直交する任意のいずれか一方向に向けた複数の平行な導体棒によって主導体部を構成することもできる。   Furthermore, in the said embodiment and Example, although the main conductor part (front side reinforcement lattice 3 and rear side reinforcement lattice 4) formed in the grid | lattice form was demonstrated, it is not limited to this, A vertical direction or horizontal The main conductor portion can also be constituted by a plurality of parallel conductor rods oriented in any one direction substantially orthogonal to the propagation direction such as the direction.

また、前記実施の形態では、格子状の溶接金網6について説明したが、これに限定されるものではなく、溶接金網ではない網目状の副導体部であってもよい。さらに、格子状ではなく、鉛直方向や水平方向など伝搬方向に略直交する任意のいずれか一方向に向けた複数の平行な副導体棒によって副導体部を構成することもできる。すなわち、主導体部の導体棒と副導体棒とが同じ方向を向いていればよい。   In the above embodiment, the lattice-shaped welded wire mesh 6 has been described. However, the present invention is not limited to this, and a mesh-like subconductor portion that is not a welded wire mesh may be used. Furthermore, the sub conductor portion may be configured by a plurality of parallel sub conductor rods oriented in any one direction substantially orthogonal to the propagation direction such as the vertical direction and the horizontal direction instead of the lattice shape. That is, it is only necessary that the conductor rod and the sub conductor rod of the main conductor portion face the same direction.

また、前記実施の形態及び実施例では、縦鉄筋31(41,71)と横鉄筋32(42,72)とが直交する場合について説明したが、これに限定されるものではなく、第1導体棒と第2導体棒とは直角以外の角度で交差するものであってもよい。さらに、第1導体棒と第2導体棒は、鉛直方向や水平方向を向いていなくてもよく、斜めに配筋されていてもよい。そして、このような場合は、副導体部の第1副導体棒と第2副導体棒もそれらに合わせて斜めに配筋すればよい。   Moreover, although the said embodiment and Example demonstrated the case where the vertical reinforcement 31 (41, 71) and the horizontal reinforcement 32 (42, 72) were orthogonal, it is not limited to this, The 1st conductor The rod and the second conductor rod may intersect at an angle other than a right angle. Furthermore, the first conductor rod and the second conductor rod do not need to face the vertical direction or the horizontal direction, and may be arranged diagonally. In such a case, the first sub-conductor rod and the second sub-conductor rod of the sub conductor portion may be arranged diagonally in accordance with them.

また、前記実施の形態では、前側鉄筋格子3の鉄筋面30と後側鉄筋格子4の鉄筋面40との間の距離C3の略中央に溶接金網6を配置したが、これに限定されるものではなく、例えば鉄筋面30又は鉄筋面40のいずれか一方のみが副鉄筋面60と一波長の略整数倍になるような位置関係であってもよい。   Moreover, in the said embodiment, although the welding wire mesh 6 was arrange | positioned in the approximate center of the distance C3 between the reinforcing bar surface 30 of the front reinforcing bar lattice 3, and the reinforcing bar surface 40 of the rear reinforcing bar lattice 4, it is limited to this. Instead, for example, the positional relationship may be such that only one of the reinforcing bar surface 30 and the reinforcing bar surface 40 is approximately an integral multiple of one wavelength with the auxiliary reinforcing bar surface 60.

さらに、前記実施の形態では、前側鉄筋格子3と後側鉄筋格子4の2つの主導体部を設ける場合について説明したが、これに限定されるものではなく、前側鉄筋格子3又は後側鉄筋格子4のいずれか一方にするなど、一つの主導体部と副導体部との組み合わせであってもよい。   Furthermore, in the above-described embodiment, the case where the two main conductor portions of the front rebar lattice 3 and the rear rebar lattice 4 are provided has been described. However, the present invention is not limited to this, and the front rebar lattice 3 or the rear rebar lattice 4 may be a combination of one main conductor portion and sub conductor portion.

また、前記実施の形態では設けていないが、内装板5とRC壁1との間に、鉄板、金属網、金属箔、金属メッシュ、フェライト材などの電磁波シールド部材を配置するなどして電磁波シールド効果を高めることができる。
Although not provided in the above embodiment, an electromagnetic wave shield such as an iron plate, a metal net, a metal foil, a metal mesh, or a ferrite material is disposed between the interior board 5 and the RC wall 1. The effect can be enhanced.

Claims (9)

所定の伝搬方向に伝搬される対象周波数の電磁波を減衰させる電磁波シールド構造であって、
前記伝搬方向に略直交する方向に一定の間隔を置いて並んで配設される複数の第1導体棒によって形成される主導体部と、
前記主導体部から前記伝搬方向に間隔を置いた位置で、前記第1導体棒と略同じ方向に向けて一定の間隔を置いて並んで配設される複数の第1副導体棒によって形成される副導体部とを備え、
前記主導体部と前記副導体部との前記伝搬方向の距離が、前記対象周波数の前記主導体部と前記副導体部との間に介在される媒質に依存する一波長の整数倍(ここで、整数は0を除く正の整数)の長さを基準に前記第1導体棒又は第1副導体棒の直径以内の誤差で設定されるとともに、
前記第1導体棒の間隔が、前記第1副導体棒の間隔の3の整数倍(ここで、整数は0を除く正の整数)の長さを基準に前記第1導体棒又は第1副導体棒の直径以内の誤差で設定されることを特徴とする電磁波シールド構造。
An electromagnetic shielding structure that attenuates electromagnetic waves of a target frequency that propagates in a predetermined propagation direction,
A main conductor portion formed by a plurality of first conductor rods arranged side by side at a constant interval in a direction substantially orthogonal to the propagation direction;
Formed by a plurality of first sub-conductor rods arranged side by side at a certain distance in the same direction as the first conductor rod at a position spaced from the main conductor portion in the propagation direction. A sub conductor portion,
The distance in the propagation direction between the main conductor portion and the sub conductor portion is an integral multiple of one wavelength depending on the medium interposed between the main conductor portion and the sub conductor portion of the target frequency (here, , The integer is a positive integer excluding 0) and is set with an error within the diameter of the first conductor rod or the first sub conductor rod ,
The interval between the first conductor rods or the first conductor rods is based on a length of an integral multiple of 3 (the integer is a positive integer excluding 0) as the interval between the first conductor rods. An electromagnetic shielding structure characterized by being set with an error within the diameter of the conductor rod .
前記主導体部は、前記第1導体棒に交差するように一定の間隔を置いて並んで配設される複数の第2導体棒を有するとともに、
前記副導体部は、前記第2導体棒と略同じ方向に向けて一定の間隔を置いて並んで配設される複数の第2副導体棒を有することを特徴とする請求項1に記載の電磁波シールド構造。
The main conductor portion has a plurality of second conductor rods arranged side by side at regular intervals so as to intersect the first conductor rods,
The said subconductor part has a some 2nd subconductor rod arrange | positioned along with a fixed space | interval toward the substantially same direction as the said 2nd conductor rod. Electromagnetic wave shield structure.
前記第1導体棒と前記第2導体棒とは略直交していることを特徴とする請求項2に記載の電磁波シールド構造。   The electromagnetic shielding structure according to claim 2, wherein the first conductor rod and the second conductor rod are substantially orthogonal to each other. 前記副導体部は、前記伝搬方向に間隔を置いて配置される2つの前記主導体部の間に配置されることを特徴とする請求項1乃至3のいずれか一項に記載の電磁波シールド構造。   4. The electromagnetic shielding structure according to claim 1, wherein the sub conductor portion is disposed between the two main conductor portions that are disposed at an interval in the propagation direction. 5. . 前記第1導体棒、前記第2導体棒、前記第1副導体棒又は前記第2副導体棒の少なくとも一つに対して、間隔の隙間が狭くなる方向に延出される拡幅部を設けたことを特徴とする請求項1乃至4のいずれか一項に記載の電磁波シールド構造。   A widening portion is provided that extends in a direction in which a gap between the first conductor rod, the second conductor rod, the first sub conductor rod, and the second sub conductor rod is narrowed. The electromagnetic wave shielding structure according to any one of claims 1 to 4, wherein 請求項1乃至5のいずれか一項に記載の電磁波シールド構造を、前記伝搬方向を厚さ方向とするコンクリート部に埋設させたことを特徴とする鉄筋コンクリート仕切体。   A reinforced concrete partition body in which the electromagnetic wave shielding structure according to any one of claims 1 to 5 is embedded in a concrete portion having the propagation direction as a thickness direction. 請求項2又は3に記載の電磁波シールド構造を、前記伝搬方向を厚さ方向とするコンクリート部に埋設させた鉄筋コンクリート仕切体であって、
前記第1導体棒の間隔と前記第2導体棒の間隔とは等しい格子間隔Pであるとともに、前記対象周波数の前記コンクリート部内の波長λとの関係で、λ=0.2714P+4.6833を満たす値を基準に前記第1導体棒又は第1副導体棒の直径以内の誤差で前記格子間隔Pが設定されることを特徴とする鉄筋コンクリート仕切体。
A reinforced concrete partition body in which the electromagnetic wave shielding structure according to claim 2 or 3 is embedded in a concrete portion having the propagation direction as a thickness direction,
The interval between the first conductor rods and the interval between the second conductor rods is equal to the lattice interval P and satisfies λ c = 0.2714P + 4.6833 in relation to the wavelength λ c in the concrete portion of the target frequency. The reinforced concrete partition body, wherein the lattice interval P is set with an error within a diameter of the first conductor rod or the first sub-conductor rod based on a value.
前記コンクリート部には、電磁波の吸収性能を高める混合材又は気泡が混入されていることを特徴とする請求項6又は7に記載の鉄筋コンクリート仕切体。   The reinforced concrete partition according to claim 6 or 7, wherein the concrete part is mixed with a mixed material or air bubbles for improving electromagnetic wave absorption performance. パネル状に成形されたことを特徴とする請求項6乃至8のいずれか一項に記載の鉄筋コンクリート仕切体。   The reinforced concrete partition according to any one of claims 6 to 8, which is formed into a panel shape.
JP2013500744A 2011-02-22 2011-02-22 Electromagnetic wave shield structure and reinforced concrete partition Active JP5613318B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053759 WO2012114448A1 (en) 2011-02-22 2011-02-22 Electromagnetic shielding structure and reinforced concrete divider

Publications (2)

Publication Number Publication Date
JPWO2012114448A1 JPWO2012114448A1 (en) 2014-07-07
JP5613318B2 true JP5613318B2 (en) 2014-10-22

Family

ID=46720268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500744A Active JP5613318B2 (en) 2011-02-22 2011-02-22 Electromagnetic wave shield structure and reinforced concrete partition

Country Status (2)

Country Link
JP (1) JP5613318B2 (en)
WO (1) WO2012114448A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814825B (en) * 2015-11-27 2023-11-03 中国长城科技集团股份有限公司 Rack-mounted server
FR3047756B1 (en) * 2016-02-17 2020-05-01 Spie Batignolles Genie Civil ARCHITECTURE ASSEMBLY FORMING AN ARMORING AGAINST ELECTROMAGNETIC RADIATION.
CN107194126A (en) * 2017-06-26 2017-09-22 苏交科集团股份有限公司 A kind of method that use Waveform Method analyzes Tunneling by mining method second row reinforcement location
KR102553978B1 (en) * 2021-07-19 2023-07-10 고려대학교 산학협력단 Method and system for selection of rebar grids reinforced in concrete for EMP shielding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053394A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Electricwave absorber
JPH05267880A (en) * 1991-02-28 1993-10-15 Nippon Light Metal Co Ltd Radio wave absorbing wall
JPH09214168A (en) * 1996-02-01 1997-08-15 Mitsubishi Chem Corp Radio wave absorptive wall and adjustment method of absorptive characteristic
JP2002076678A (en) * 2000-08-31 2002-03-15 Takenaka Komuten Co Ltd Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002115346A (en) * 2000-10-06 2002-04-19 Shimizu Corp Wave-absorbing precast concrete panel
JP2004140194A (en) * 2002-10-17 2004-05-13 Goto Ikueikai Radio wave absorber effective to multifrequency band
JP2004363159A (en) * 2003-06-02 2004-12-24 Fujita Corp Electromagnetic wave absorptive panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267880A (en) * 1991-02-28 1993-10-15 Nippon Light Metal Co Ltd Radio wave absorbing wall
JPH053394A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Electricwave absorber
JPH09214168A (en) * 1996-02-01 1997-08-15 Mitsubishi Chem Corp Radio wave absorptive wall and adjustment method of absorptive characteristic
JP2002076678A (en) * 2000-08-31 2002-03-15 Takenaka Komuten Co Ltd Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002115346A (en) * 2000-10-06 2002-04-19 Shimizu Corp Wave-absorbing precast concrete panel
JP2004140194A (en) * 2002-10-17 2004-05-13 Goto Ikueikai Radio wave absorber effective to multifrequency band
JP2004363159A (en) * 2003-06-02 2004-12-24 Fujita Corp Electromagnetic wave absorptive panel

Also Published As

Publication number Publication date
WO2012114448A1 (en) 2012-08-30
JPWO2012114448A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5452706B2 (en) Reinforced concrete partition
JP5613318B2 (en) Electromagnetic wave shield structure and reinforced concrete partition
CN105555733A (en) Structural concrete mix for construction for electromagnetic wave/pulse shielding
US20230420864A1 (en) Electromagnetic wave reflector, reflected electromagnetic wave fence, and method of assembling electromagnetic wave reflector
JP5802501B2 (en) Partition
US20230358030A1 (en) Conductive concrete compositions for infrastructure applications
JP2008004901A (en) Radio wave shielding plate and radio wave shielding system using metal mesh
JP6279393B2 (en) Partition
JP5811177B2 (en) Partition structure and partition
JP6042882B2 (en) Partition
US11956934B2 (en) Conductive concrete structure for doorless access to electromagnetic shielded structures
JP3845829B2 (en) TV radio wave non-reflective building
ES2925504T3 (en) Architectural ensemble that forms a shield against electromagnetic radiation
KR20210135879A (en) Reinforced concrete plate structure for shielding electromagnetic wave and design method of reinforcement arrangement for the same
KR20200004587A (en) Factory Building And Construction Method Of The Same
JP3776506B2 (en) Electromagnetic wave scattering absorber and electromagnetic wave scattering absorption method
JP2529614B2 (en) Electromagnetic shield floor
JP3477534B2 (en) Electromagnetic shield structure and method of constructing electromagnetic shield structure
JPH1037345A (en) Concrete structural body
KR200262796Y1 (en) wave absorbing wall
JPH01290846A (en) Method for constituting electromagnetic shielding space
Garcia-Chocano et al. Acoustic barriers based on latticces of absorptive cylinders
Liu et al. A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires
JP2003176581A (en) Radio absorbing back board, and glass curtain wall
JPS63141398A (en) Electromagnetic shielding structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5613318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250