JP5606298B2 - Accident point identification device for airport light power system and method for identifying the accident point - Google Patents

Accident point identification device for airport light power system and method for identifying the accident point Download PDF

Info

Publication number
JP5606298B2
JP5606298B2 JP2010271507A JP2010271507A JP5606298B2 JP 5606298 B2 JP5606298 B2 JP 5606298B2 JP 2010271507 A JP2010271507 A JP 2010271507A JP 2010271507 A JP2010271507 A JP 2010271507A JP 5606298 B2 JP5606298 B2 JP 5606298B2
Authority
JP
Japan
Prior art keywords
cable
accident
lighting circuit
lighting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010271507A
Other languages
Japanese (ja)
Other versions
JP2012122752A (en
Inventor
康宏 野呂
淳之 石井
克己 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010271507A priority Critical patent/JP5606298B2/en
Publication of JP2012122752A publication Critical patent/JP2012122752A/en
Application granted granted Critical
Publication of JP5606298B2 publication Critical patent/JP5606298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

本発明の実施形態は、空港灯火電源システムの事故点特定装置及びその事故点特定方法に関する。   Embodiments described herein relate generally to an accident point identifying device and an accident point identifying method for an airport lighting power system.

空港には、航空機を安全に誘導するために、滑走路や誘導路に滑走路灯,誘導路灯、誘導路中心線灯その他多くの種類の灯火が設置されている。   In airports, runway lights, taxiway lights, taxiway centerline lights, and many other types of lights are installed on runways and taxiways to guide aircraft safely.

これらの灯火の電源システムは、定電流電源から出力される電力が地中に埋設される地中ケーブルに送られ、当該地中ケーブルに直列に接続された灯火対応のゴムトランスを通して各灯火に供給される。   In these lamp power supply systems, the electric power output from the constant current power supply is sent to underground cables buried in the ground and supplied to each lamp through a light-compatible rubber transformer connected in series to the underground cable. Is done.

地中ケーブルは、導体の周りが絶縁部材で被覆され、地中との間で対地絶縁がとられている。しかし、絶縁部材は、経年使用や周囲環境の影響を受けて絶縁劣化が起こり、その絶縁耐力が大きく低下すると、最終的に地絡事故に至る。   The underground cable is covered with an insulating member around the conductor, and is insulated from the ground. However, when the insulation member deteriorates due to the influence of aging and the surrounding environment, and the insulation strength is greatly reduced, a ground fault is finally caused.

そこで、空港灯火電源システムに地絡事故が発生した場合、航空機の安全走行を確保する観点から、速やかに回復処置を講じる必要がある。   Therefore, in the event of a ground fault in the airport lighting power system, it is necessary to take prompt recovery measures from the viewpoint of ensuring safe traveling of the aircraft.

ところで、一般的な電力系統(送・配電系統)に適用されている電力ケーブルの事故点特定装置は、地絡事故ケーブル導体と併設される健全ケーブル導体との各始端部側に直流電源を接続し、当該両ケーブル導体の終端部側をジャンパー線で接続する。そして、両ケーブル導体の各始端部側に生じる対地電圧V1,V2に含まれる高圧ノイズ成分をフイルタで抑制し、ノイズ成分抑制後の対地電圧V1,V2を計測する。引き続き、直流電源の極性を反転させて同様にフイルタを通して対地電圧V1´,V2´を計測する。   By the way, the power cable fault point identification device applied to a general power system (transmission / distribution system) connects a DC power source to each start end side of a ground fault cable conductor and a healthy cable conductor. Then, the end portions of the two cable conductors are connected by jumper wires. And the high voltage | pressure noise component contained in the ground voltages V1 and V2 which generate | occur | produce at each starting edge part side of both cable conductors is suppressed with a filter, and the ground voltages V1 and V2 after noise component suppression are measured. Subsequently, the polarity of the DC power supply is reversed, and the ground voltages V1 ′ and V2 ′ are similarly measured through the filter.

ここで、地絡位置(%)は、ケーブル導体の長さをl、直流電源と接続されるケーブル導体の始端部(接続点)から地絡事故点までの距離をxとすると、以下の演算式から求められる。   Here, the ground fault position (%) is calculated as follows, where l is the length of the cable conductor and x is the distance from the start end (connection point) of the cable conductor connected to the DC power source to the ground fault point. It is obtained from the formula.

(x/l)={2(V1−V2´)/(V1−V1´+V2´−V2)}・100(%)
……(1)
従って、この事故点特定装置は、事故ケーブル導体と併設される健全ケーブル導体とを用い、これらケーブル導体の各始端部側2箇所の対地電圧を同時に計測し、2箇所の対地電圧をキャンセルし、かつフイルタを通すことで、両ケーブル導体と併設する他の地中ケーブル導体からの高圧誘導ノイズを抑制する対策をとっている。
(X / l) = {2 (V1-V2 ') / (V1-V1' + V2'-V2)}. 100 (%)
...... (1)
Therefore, this fault point identifying device uses the fault cable conductor and the sound cable conductor provided side by side, simultaneously measures the ground voltage at two locations on the start side of each cable conductor, cancels the two ground voltages, In addition, measures are taken to suppress high-voltage induced noise from other underground cable conductors attached to both cable conductors by passing filters.

特開2007−170905号公報JP 2007-170905 A

山田 浩之他 新しいケーブル事故点測定器の開発 平成18年電気学会電力・エネルギー部門大会 p.14−13Hiroyuki Yamada et al. Development of a new cable fault point measuring instrument. 14-13

しかしながら、一般的な電力系統の事故点特定装置は従来から実施されているが、空港灯火電源システムでは、以下のような特殊なシステム構成を採っていることから、一般的な電力系統に適用される事故点特定装置は使用されていない。   However, although a fault point identification device for a general power system has been implemented in the past, the airport lighting power supply system employs the following special system configuration and is therefore applied to a general power system. No accident point identification device is used.

(1) すなわち、空港灯火電源システムは、前述したように定電流電源から導出される地中ケーブルがループ状に配置され、当該地中ケーブルにはグループ灯火数に相当する数のゴムトランスが直列に接続され、これらゴムトランスの2次巻線側に子局を介して灯火が接続されている。つまり、ループ状の地中ケーブルに多数の負荷機器が直列に連なった特殊なシステム構成となっている。 (1) That is, in the airport light power system, as described above, the underground cable derived from the constant current power supply is arranged in a loop shape, and a number of rubber transformers corresponding to the number of group lights are connected in series to the underground cable. A lamp is connected to the secondary winding side of these rubber transformers via a slave station. That is, it has a special system configuration in which a large number of load devices are connected in series to a loop-shaped underground cable.

(2) また、空港灯火電源システムは、管制官の操作指示に従って各灯火の調光操作を行っている。具体的には、管制官は、(イ)航空機の着陸時の運用方向、(ロ)昼間・夕暮れ・夜間などの背景輝度、(ハ)雲の高さが例えば1000m以上、以下の雲底高、(ニ)低視程時(夜間、降雨、濃霧等の視界不良時)よりなる4条件を判断しながら、操作スイッチを操作して電源システムを制御し、現在の環境状況にとって最適な明るさとなるように灯火の調光操作を行っている。 (2) In addition, the airport lamp power supply system performs dimming operation for each lamp according to the operation instructions of the controller. Specifically, the controller shall: (b) the operational direction at the time of landing of the aircraft; (b) the background brightness during daytime, dusk, nighttime; and (c) the cloud bottom height of 1000 m or more, for example. , (D) The power switch is controlled by operating the operation switch while judging the four conditions including low visibility (when visibility is poor at night, rain, heavy fog, etc.), and the brightness is optimal for the current environmental conditions. So that the lighting dimming operation.

その結果、この調光操作に伴って定電流電源から地中ケーブルに流れる正弦波の電流波形に多量の歪成分が重畳された状態となる。   As a result, a large amount of distortion components are superimposed on the sine wave current waveform flowing from the constant current power source to the underground cable in accordance with the dimming operation.

(3) さらに、空港に設置される灯火の数は、飛行場の規模によって異なるが、数百から数万にも及ぶ。これらの灯火は、種類ごと、同一種類であっても所定個数ごとにグループ化され、これら多数のグループに属する地中ケーブルが地中に併設され、かつ各地中ケーブルに直列に連なるゴムトランスに電力が供給されている。 (3) Furthermore, the number of lights installed at the airport varies from hundreds to tens of thousands, depending on the size of the airport. These lamps are grouped by type, even if they are the same type, and are grouped by a predetermined number. Underground cables belonging to many of these groups are installed in the ground, and power is supplied to rubber transformers that are connected in series to the cables in each location. Is supplied.

従って、地絡事故によるケーブルの事故点を特定するための計測時、他の多数のグループの地中ケーブルから誘導されるノイズ成分を受け、計測値に影響を与える問題がある。   Therefore, at the time of measurement for specifying the fault point of the cable due to the ground fault, there is a problem that the noise value induced from the underground cables of many other groups is received and the measurement value is affected.

そこで、従来、空港灯火電源システムに地絡事故が発生した場合、経験・熟練を有する作業員が地中ケーブルの取替やケーブル接続部の設置個所等に対応して設置される点検用マンホールに入り、持ち込んだ測定器の測定用クリップをケーブル接続部などに取り付け、必要な計測を実施し、その計測結果に基づいて地絡位置を特定する為の演算を実施する。この計測作業は、従来から知り得る周知の複数の測定法を使用しながら、かつ複数個所の点検用マンホールに入って、繰り返し計測し、演算を実施している。   Therefore, in the past, when a ground fault occurred in an airport lighting power system, workers with experience and skill can replace the underground cables and install in the inspection manholes corresponding to the installation locations of cable connections. Attach the measurement clip of the measuring instrument that you entered and brought in to the cable connection, etc., perform the necessary measurements, and perform calculations to identify the ground fault position based on the measurement results. In this measurement work, while using a plurality of known measurement methods that can be known from the past, the measurement work is repeatedly performed by entering into a plurality of inspection manholes and performing calculations.

その結果、地絡位置を特定するまでの作業は、非常に煩雑であるとともに、作業時間が長くかかる問題がある。特に、この地絡特定作業は、地絡位置を特定した後、現場に出向いて事故点を確認するが、地絡位置の特定精度が低いために特定された地絡位置を含む広い範囲にわたって事故点を確認しなければならない。さらに、必要に応じてケーブルやゴムトランスの交換作業を行う必要がある。   As a result, the work until the ground fault position is specified is very complicated and takes a long time. In particular, in this ground fault identification work, after identifying the ground fault position, we go to the site to check the accident point, but because the ground fault position identification accuracy is low, the accident has occurred over a wide range including the ground fault position identified. The point must be confirmed. Furthermore, it is necessary to replace cables and rubber transformers as necessary.

しかも、これらの一連の作業は、灯火の電源を停止した状態で行うことから、速やかに復旧させる必要があるが、作業時間の短縮が難しく、作業員の負担が大きい。   Moreover, these series of operations are performed in a state where the power source of the lamp is stopped, and thus it is necessary to quickly recover the operation. However, it is difficult to shorten the operation time, and the burden on the worker is great.

また、前記(2),(3)項にて説明したように、特殊な電源システム構成から、誘導ノイズの影響を受け易い状況にあり、ひいては地絡位置の特定精度を改善することが難しい状況にある。   In addition, as described in the above items (2) and (3), it is in a situation where it is easily affected by inductive noise due to a special power system configuration, and thus it is difficult to improve the accuracy of identifying the ground fault position. It is in.

そこで、本空港灯火電源システムの事故点特定装置及びその事故点特定方法は、作業員の負担を軽減し、システム特有のノイズ成分を確実に抑制して地絡位置の特定精度を向上するとともに、速やかに復旧作業を行うことにある。   Therefore, the accident point identification device and the accident point identification method of this airport lighting power system reduce the burden on the worker, and reliably suppress the noise component peculiar to the system and improve the identification accuracy of the ground fault position. It is to carry out restoration work promptly.

実施形態によれば、交流電源の出力側にループ状をなすようにケーブルが配置され、当該ケーブルに直列に複数の灯火に関する負荷機器を備えた灯火回路部が接続され、前記ケーブルを含む灯火回路部に事故が発生したとき、その事故点を特定する空港灯火電源システムの事故点特定装置であって、
前記事故発生時に前記交流電源に代えて前記ケーブルの両端部に接続され、前記灯火回路部に直流電圧を印加する直流電圧印加手段と、前記ケーブルの両端部に接続され、フイルタ部を通して当該ケーブル各端部の対地電圧を計測する電圧計測手段と、前記ケーブルを含む灯火回路部の属性・回路構成情報を保存する情報保存手段と、前記電圧計測手段で計測された複数の対地電圧及び前記情報保存手段に保存された属性・回路構成情報を用いて、事故点である前記負荷機器位置を特定する事故位置判定手段と、この事故位置判定手段で特定された負荷機器位置に基づき、前記情報保存手段に保存された回路構成情報から得られる前記ケーブルを含む灯火回路部を構成する回路構成画像データに存在する前記特定された負荷機器位置に事故点を表すマーキングを施して表示する外部出力装置とを備え、
前記事故位置判定手段は、前記情報保存手段に保存された前記ケーブルを含む灯火回路部の属性・回路構成情報から前記ケーブルの一方端部から前記各負荷機器までの加算距離(機器位置)及び加算抵抗を順次算出し保存する機器必要情報算出手段と、前記直流電圧印加手段から所定極性及び極性反転された直流電圧の印加後、前記電圧計測手段で計測された各対地電圧と前記負荷機器の全個数または少なくとも前記灯火回路部を構成する全負荷機器の加算抵抗とを用いて、前記ケーブルの一方端部から前記事故点までの負荷機器の個数または加算抵抗を推定する地絡属性値推定手段と、この地絡属性値推定手段で推定された負荷機器の個数または加算抵抗と前記機器必要情報算出手段で算出された前記各負荷機器までの加算距離(機器位置)または加算抵抗とを比較し、事故点となった前記負荷機器位置を特定する地絡機器位置特定手段とを備えた構成である。
According to the embodiment, a cable is disposed so as to form a loop on the output side of the AC power supply, and a lighting circuit unit including a plurality of lighting-related load devices is connected in series to the cable, and the lighting circuit including the cable When an accident occurs in the department, the accident point identification device of the airport lighting power system that identifies the accident point,
When the accident occurs, the cable is connected to both ends of the cable instead of the AC power supply, DC voltage applying means for applying a DC voltage to the lighting circuit section, and connected to both ends of the cable, and each cable is connected through the filter section. Voltage measuring means for measuring the ground voltage at the end, information storing means for storing attribute / circuit configuration information of the lighting circuit section including the cable, a plurality of ground voltages measured by the voltage measuring means and the information storing Accident position determination means for specifying the load equipment position that is an accident point using the attribute / circuit configuration information stored in the means, and the information storage means based on the load equipment position specified by the accident position determination means The accident point at the specified load device position existing in the circuit configuration image data constituting the lighting circuit unit including the cable obtained from the circuit configuration information stored in And an external output device for displaying by performing marking indicating,
The accident position determination means includes an addition distance (equipment position) and an addition distance from one end of the cable to each load device from the attribute / circuit configuration information of the lighting circuit portion including the cable stored in the information storage means. Equipment required information calculation means for sequentially calculating and storing the resistance, and after applying a DC voltage having a predetermined polarity and polarity reversed from the DC voltage application means, each ground voltage measured by the voltage measurement means and all of the load equipment Ground fault attribute value estimating means for estimating the number of load devices from one end of the cable to the fault point or the addition resistance using the number or at least the addition resistors of all load devices constituting the lighting circuit section; The number of load devices estimated by the ground fault attribute value estimation means or the addition resistance and the addition distance to each load device calculated by the device required information calculation means (device position) Or comparing the summing resistor, a configuration in which an earth絡機device position specifying means for specifying the load device position became fault point.

実施形態1に係る空港灯火電源システムの事故点特定装置を示す構成図。The block diagram which shows the accident point specific device of the airport lamp power supply system which concerns on Embodiment 1. FIG. 従来の一般的な空港灯火電源システムの構成図。The block diagram of the conventional general airport light power supply system. 地絡事故位置を特定する際に地中ケーブルの両端部に接続する機器(直流電源,電圧計測部)を示す図。The figure which shows the apparatus (DC power supply, voltage measurement part) connected to the both ends of an underground cable when pinpointing a ground fault accident position. 図1に示す地絡事故位置判定部を構成する機能ブロック図。The functional block diagram which comprises the ground fault accident position determination part shown in FIG. 地中ケーブルに接続されるゴムトランスを抵抗に置き換えたときの等価回路図。The equivalent circuit diagram when the rubber transformer connected to the underground cable is replaced with a resistor. 実施形態1における地絡事故位置判定部及び空港灯火電源システムの事故点特定方法を説明する一連の処理手順を説明する図。The figure explaining a series of processing procedures explaining the fault point identification method of the ground fault position determination part and airport lighting power supply system in Embodiment 1. FIG. 図4に示す機器必要情報算出手段で作成される機器管理テーブルのデータ配列例図。FIG. 5 is a data array example diagram of a device management table created by the device required information calculation unit shown in FIG. 4. 事故点となる負荷機器位置に事故点を表すマーキングを施した図。The figure which gave the marking which shows an accident point to the load equipment position used as an accident point. 機器取付位置と地絡抵抗とに応じて変化する推定位置のずれ範囲を示す図。The figure which shows the shift | offset | difference range of the estimated position which changes according to an apparatus attachment position and ground fault resistance. 実施形態2における地絡事故位置判定部及び空港灯火電源システムの事故点特定方法を説明する一連の処理手順を説明する図。The figure explaining a series of processing procedures explaining the fault point identification method of the ground fault accident position determination part and airport lighting power supply system in Embodiment 2. FIG. 実施形態3に係る空港灯火電源システムの事故点特定装置を示す構成図。The block diagram which shows the accident point specific device of the airport lamp power supply system which concerns on Embodiment 3. FIG. 実施形態4に係る空港灯火電源システムの事故点特定装置を示す構成図。The block diagram which shows the accident point specific device of the airport lamp power supply system which concerns on Embodiment 4. FIG.

以下、実施形態について、図面を参照して説明する。
(実施形態1)
図1は空港灯火電源システムの事故点特定装置の実施形態1を示す構成図である。
空港灯火電源システムは、常時は所要の定電流波形の電力を接続点2,3に供給する定電流電源1と、これら接続点2,3にループ状をなすように接続される地中ケーブル4と、この地中ケーブル4に直列に接続される灯火回路部5と、事故点特定装置10とを含む構成である。
Hereinafter, embodiments will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a block diagram showing Embodiment 1 of an accident point identifying device for an airport lighting power system.
The airport lighting power supply system includes a constant current power source 1 that supplies power at a constant current waveform to connection points 2 and 3 at all times, and an underground cable 4 that is connected to the connection points 2 and 3 in a loop. And a lighting circuit unit 5 connected in series to the underground cable 4 and an accident point specifying device 10.

定電流電源1は、商用交流電源から所要の定電流の交流電源波形を生成し、接続点2,3及び地中ケーブル4を通して灯火回路部5に供給する。   The constant current power source 1 generates an AC power source waveform having a required constant current from a commercial AC power source and supplies the waveform to the lighting circuit unit 5 through the connection points 2 and 3 and the underground cable 4.

灯火回路部5は、図2に示すように地中ケーブル4に直列にグループ灯火数に相当するゴムトランス6,…が接続され、これらゴムトランス6の2次巻線側にそれぞれ子局(図示せず)を介して灯火7が接続される。すなわち、灯火回路部5は、地中ケーブル4に直列に多数のゴムトランス6,…が接続され、定電流電源1に対して、ループ状を成すように接続されている。   As shown in FIG. 2, the lighting circuit unit 5 is connected to the underground cable 4 in series with rubber transformers 6,... Corresponding to the number of group lamps. The lamp 7 is connected via a not-shown). That is, the lighting circuit unit 5 is connected to the underground cable 4 in series with a number of rubber transformers 6... And connected to the constant current power source 1 so as to form a loop.

ここで、灯火7とは、空港の滑走路や誘導路などに設置される滑走路灯,誘導路灯、誘導路中心線灯その他多くの種類の灯火だけでなく、空港内のループ状をなす地中ケーブル4に直列に一般の照明(照明器具など)が接続されている場合、それらの照明(照明器具など)も含むものである。   Here, the lights 7 are not only runway lights, taxiway lights, taxiway centerline lights, and many other types of lights that are installed on airport runways and taxiways, but also in the ground that forms a loop in the airport. When general lighting (such as lighting fixtures) is connected to the cable 4 in series, such lighting (such as lighting fixtures) is also included.

事故点特定装置10は、直流電源11、極性切替部12、電圧計測部13、地絡事故位置判定部14、情報保存記憶部15及び外部出力装置16を含むものである。   The accident point identifying device 10 includes a DC power source 11, a polarity switching unit 12, a voltage measurement unit 13, a ground fault accident position determination unit 14, an information storage / storage unit 15, and an external output device 16.

直流電源11は、地絡事故等の発生対象となっている地中ケーブル4に接続される灯火回路部5に直流電圧を印加する。極性切替部12は、直流電源11の出力端側に設けられ、地絡位置の特定時に直流電源11の極性を反転させて灯火回路部5に印加する機能を有する。   The DC power source 11 applies a DC voltage to the lighting circuit unit 5 connected to the underground cable 4 that is a target of occurrence of a ground fault or the like. The polarity switching unit 12 is provided on the output end side of the DC power supply 11 and has a function of inverting the polarity of the DC power supply 11 and applying it to the lighting circuit unit 5 when the ground fault position is specified.

電圧計測部13は、地絡事故等の発生対象となる灯火回路部5の端子電圧を検出するものであって、図3に示すように少なくともフイルタ部13−1及び複数の対地電圧計測部13−2,13−3が含まれる。   The voltage measuring unit 13 detects a terminal voltage of the lighting circuit unit 5 that is a target of occurrence of a ground fault or the like, and includes at least a filter unit 13-1 and a plurality of ground voltage measuring units 13 as shown in FIG. -2, 13-3 are included.

フイルタ部13−1は、各接続点2,3に現れる対地電圧に含む誘導ノイズ成分を抑制するものであって、ノイズ成分の除去された対地電圧が複数の対地電圧計測部13−2,13−3に印加される。対地電圧計測部13−2,13−3は、接続点2及び接続点3に現れる対地電圧を計測し、その計測値を地絡事故位置判定部14に送出する。具体的には、対地電圧計測部13−2は接続点2に現れる対地電圧V1を、対地電圧計測部13−3は接続点3に現れる対地電圧V2をそれぞれ計測し、それぞれ地絡事故位置判定部14に送出する。   The filter unit 13-1 suppresses an induced noise component included in the ground voltage appearing at each of the connection points 2 and 3, and the ground voltage from which the noise component has been removed is a plurality of ground voltage measuring units 13-2 and 13. -3. The ground voltage measuring units 13-2 and 13-3 measure the ground voltage appearing at the connection point 2 and the connection point 3, and send the measured value to the ground fault position determination unit 14. Specifically, the ground voltage measuring unit 13-2 measures the ground voltage V1 appearing at the connection point 2, and the ground voltage measuring unit 13-3 measures the ground voltage V2 appearing at the connection point 3, respectively. To the unit 14.

地絡事故位置判定部14は、各対地電圧計測部13−2,13−3から受け取った対地電圧と情報保存記憶部15に保存される地中ケーブル4を含む灯火回路部5に関係する情報,つまりゴムトランス6,…の個数や抵抗値などの属性データとを用いて、地絡事故点となっている機器(何番目のゴムトランス)位置を特定する機能を有する。   The ground fault position determination unit 14 is information related to the lighting circuit unit 5 including the ground voltage received from each of the ground voltage measurement units 13-2 and 13-3 and the underground cable 4 stored in the information storage storage unit 15. That is, it has a function of specifying the position of the equipment (numbered rubber transformer) that is the ground fault point by using attribute data such as the number of rubber transformers 6,... And the resistance value.

地絡事故位置判定部14は、機能的には、図4に示すように機器必要情報,例えば各機器(例えばゴムトランス)までの直流抵抗や距離(機器位置)を算出する機器必要情報算出手段14Aと、対地電圧計測部13−2,13−3で計測された対地電圧V1,V2及び直流電源11の極性を反転された後に対地電圧計測部13−2,13−3で計測される対地電圧V1´,V2´などのデータを用いて、接続点2から地絡事故点までの機器個数や加算抵抗などの属性値を推定する地絡属性値推定手段14Bと、地絡属性値推定手段14Bで推定された属性値と機器必要情報算出手段14Aで得られた各機器(例えばゴムトランス)までの距離(位置)から地絡事故点に近い機器位置を特定する地絡機器位置特定手段14Cとを含む構成である。   Functionally, the ground fault position determination unit 14 calculates equipment necessary information as shown in FIG. 4, for example, equipment necessary information calculating means for calculating DC resistance and distance (equipment position) to each equipment (for example, rubber transformer). 14A, the ground voltages V1, V2 measured by the ground voltage measuring units 13-2, 13-3, and the ground measured by the ground voltage measuring units 13-2, 13-3 after the polarity of the DC power supply 11 is inverted. A ground fault attribute value estimating means 14B for estimating attribute values such as the number of devices from the connection point 2 to the ground fault point and an added resistance using data such as voltages V1 'and V2', and a ground fault attribute value estimating means The ground fault equipment position specifying means 14C for specifying the equipment position close to the ground fault point from the attribute value estimated in 14B and the distance (position) to each equipment (for example, rubber transformer) obtained by the equipment required information calculation means 14A. It is the structure containing these.

情報保存記憶部15は、後記する図6に示すように、ケーブル情報保存部15a、ゴムトランス情報保存部15b及び回路構成情報保存部15cを備える。   As shown in FIG. 6 described later, the information storage unit 15 includes a cable information storage unit 15a, a rubber transformer information storage unit 15b, and a circuit configuration information storage unit 15c.

ケーブル情報保存部15aには少なくとも線種データ及び当該線種のm当りあるいはkm当りの抵抗データなどが保存される。ゴムトランス情報保存部15bには少なくともトランス型式及び抵抗データなどが保存されている。なお、1種類だけでなく、複数の線種,トランス型式の場合でも同様にそれぞれkm当りの抵抗データ、ゴムトランスの抵抗データが保存される。   The cable information storage unit 15a stores at least line type data and resistance data per m or km of the line type. The rubber transformer information storage unit 15b stores at least a transformer type and resistance data. Not only one type but also a plurality of line types and transformer types, resistance data per km and resistance data of a rubber transformer are similarly stored.

回路構成情報保存部15cとしては、定電流電源1に連なる地中ケーブル4を含む灯火回路部5を構築するための回路構成要素データ、あるいはフレーム画像データ、ビットマップ方式でデジタルデータ化及びファイル化した画像ファイルの他、各機器(例えば各ゴムトランス)までの直流抵抗や距離(位置)等のデータが保存される。   As the circuit configuration information storage unit 15c, circuit configuration element data for constructing the lighting circuit unit 5 including the underground cable 4 connected to the constant current power source 1, or frame image data, digital data and file format using a bitmap system In addition to the image file, data such as DC resistance and distance (position) to each device (for example, each rubber transformer) is stored.

外部出力装置16は、地絡事故点の特定位置を外部に出力するものであって、データ加工部16−1と表示部16−2とを含む。   The external output device 16 outputs a specific position of the ground fault point to the outside, and includes a data processing unit 16-1 and a display unit 16-2.

データ加工部16−1は、回路構成情報保存部15cに保存される地中ケーブル4を含む灯火回路部5に関係する情報を読み出して地絡事故等の発生対象となるケーブル4を含む灯火回路部5に相当する回路構成画像データを生成するとともに、当該画像データ中の地絡事故位置判定部14で特定された機器特定位置(個所)に、ユーザが把握し易い所要とする図形のマーキングを施し、地絡事故の生じた位置を表すように加工する。   The data processing unit 16-1 reads information related to the lighting circuit unit 5 including the underground cable 4 stored in the circuit configuration information storage unit 15c, and includes a lighting circuit including the cable 4 that is a target of occurrence of a ground fault or the like. The circuit configuration image data corresponding to the unit 5 is generated, and the required graphic marking that is easy for the user to grasp is provided at the device specific position (location) specified by the ground fault position determination unit 14 in the image data. And process to indicate the location where the ground fault occurred.

表示部16−2は、データ加工部16−1で加工されたマーキングを施した灯火回路部5の回路構成画像データを表示する。   The display unit 16-2 displays the circuit configuration image data of the lighting circuit unit 5 subjected to the marking processed by the data processing unit 16-1.

次に、以上のように構成された空港灯火電源システムの事故点特定装置の作用及び事故点特定方法について、図面を参照して説明する。   Next, the operation of the accident point identification device and the accident point identification method of the airport lighting power system configured as described above will be described with reference to the drawings.

今、図3に示す空港灯火電源システムにおいて、保護継電器などの動作により灯火回路部5から地絡事故の発生を検出すると、接続点2,3から定電流電源1を切り離す。   Now, in the airport lighting power supply system shown in FIG. 3, when the occurrence of a ground fault is detected from the lighting circuit section 5 by the operation of a protective relay or the like, the constant current power supply 1 is disconnected from the connection points 2 and 3.

この定電流電源1の切り離し時、併設される他の多数のグループに属する灯火電源システムは活線状態となっており、かつ、管制官による灯火の調光操作により、他の多数のグループケーブル4から誘導ノイズの影響を受け、誤差要因となる。   When the constant current power supply 1 is disconnected, the lamp power supply systems belonging to many other groups installed are in a live line state, and a number of other group cables 4 are controlled by the dimming operation of the lights by the controller. It is influenced by induction noise and causes an error.

そこで、定電流電源1に代えて、接続点2,3には図1に示す事故点特定装置10の一部を構成する極性切替部12及び電圧計測部13を接続し、直流電源11から所定の直流電圧を極性切替部12を通して灯火回路部5に印加するとともに、電圧計測部13にて灯火回路部5に接続される地中ケーブル4の両端部に現れる対地電圧V1,V2を計測する(計測ステップ)。   Therefore, instead of the constant current power source 1, the polarity switching unit 12 and the voltage measuring unit 13 constituting a part of the accident point identifying device 10 shown in FIG. Is applied to the lighting circuit unit 5 through the polarity switching unit 12, and the ground voltage V1, V2 appearing at both ends of the underground cable 4 connected to the lighting circuit unit 5 is measured by the voltage measuring unit 13 ( Measurement step).

ここで、電圧計測部13では、対地電圧V1,V2だけでなく、管制官による調光操作により定電流波形に重畳される多量の歪成分や併設される活線状態にある他の地中ケーブルからの誘導ノイズ成分を含んだ状態で計測される。   Here, in the voltage measuring unit 13, not only the ground voltages V1 and V2, but also a large amount of distortion components superimposed on the constant current waveform by the dimming operation by the controller, and other underground cables in the live line state attached together. It is measured in a state including an induction noise component from

そこで、電圧計測部13にはフイルタ部13−1が設けられている。このフイルタ部13−1は、定電流波形に重畳される多量の歪成分(誘導ノイズの一種)や活線状態にある他の地中ケーブルから入り込む誘導ノイズ成分のうち、比較的小刻みな変化をもった誘導ノイズ成分を除去した後、対地電圧計測部13−2,13−3に送出する。   Therefore, the voltage measuring unit 13 is provided with a filter unit 13-1. This filter unit 13-1 has a relatively small change among a large amount of distortion component (a kind of induction noise) superimposed on a constant current waveform and an induction noise component entering from another underground cable in a live state. After removing the induced noise component, it is sent to the ground voltage measuring units 13-2 and 13-3.

その結果、各対地電圧計測部13−2,13−3は、比較的小さな変化をもった誘導ノイズ成分を除去した後のケーブル4両端部に現れる対地電圧V1,V2を計測し、地絡事故位置判定部14または適宜なバッフアメモリ(図示せず)に一時的に保存される。   As a result, the ground voltage measuring units 13-2 and 13-3 measure the ground voltages V1 and V2 appearing at both ends of the cable 4 after removing the induction noise component having a relatively small change, and a ground fault occurs. It is temporarily stored in the position determination unit 14 or an appropriate buffer memory (not shown).

なお、定電流波形に重畳される歪成分及び活線状態にある他の地中ケーブルから入り込む誘導ノイズ成分のうち、比較的大きなレベル変化をもつノイズ成分は後記する式(3)及び式(4)による対地電圧の差分,例えばV1−V2をとることにより、該当誘導ノイズ成分が互いに打ち消し合い、誤差要因の発生を抑制できる。   Of the distortion component superimposed on the constant current waveform and the induction noise component entering from another underground cable in the live state, the noise component having a relatively large level change is expressed by the following equations (3) and (4). ), For example, V1−V2, the corresponding induced noise components cancel each other, and the generation of error factors can be suppressed.

引き続き、電圧計測部13からの切替指示または人為的に極性切替部12を切替え、直流電源11から極性反転された所定の直流電圧を灯火回路部5に印加し、電圧計測部13にて灯火回路部5両端子に現れる誘導ノイズ除去後の対地電圧V1´,V2´を計測し、地絡事故位置判定部14または適宜なバッフアメモリ(図示せず)に保存する(計測ステップ)。   Subsequently, the switching instruction from the voltage measuring unit 13 or the polarity switching unit 12 is artificially switched, and a predetermined DC voltage whose polarity is inverted from the DC power supply 11 is applied to the lighting circuit unit 5. The ground voltages V1 ′ and V2 ′ after induction noise removal appearing at both terminals of the unit 5 are measured and stored in the ground fault position determination unit 14 or an appropriate buffer memory (not shown) (measurement step).

次に、地絡事故位置判定部14による地絡事故点の特定(事故位置判定ステップ)について、図5及び図6を参照して説明する。なお、図5は、地絡事故時における灯火回路部5を構成するゴムトランス6を抵抗に置き換えた等価回路を示す図であって、Rtrは1個のゴムトランス6の抵抗値、8は地絡事故点、9は地絡抵抗を示す。   Next, the identification of the ground fault point by the ground fault position determination unit 14 (accident position determination step) will be described with reference to FIGS. FIG. 5 is a diagram showing an equivalent circuit in which the rubber transformer 6 constituting the lighting circuit section 5 in the event of a ground fault is replaced with a resistor, where Rtr is the resistance value of one rubber transformer 6 and 8 is the ground value. A fault point, 9 indicates ground fault resistance.

地絡事故位置判定部14は、地絡事故の位置を特定するに先立ち、機器必要情報算出手段14Aを実行する。機器必要情報算出手段14Aは、情報保存記憶部15を構成するケーブル情報保存部15a、ゴムトランス情報保存部15b及び回路構成情報保存部15cに記憶される情報を用いて、接続点2から灯火回路部5を構成する各機器(例えば各ゴムトランス6,…)までの直流抵抗及び距離(機器位置)を算出する(S1)。   Prior to identifying the position of the ground fault accident, the ground fault position determination unit 14 executes the device necessary information calculation unit 14A. The equipment required information calculation unit 14A uses the information stored in the cable information storage unit 15a, the rubber transformer information storage unit 15b, and the circuit configuration information storage unit 15c constituting the information storage unit 15 to start the lighting circuit from the connection point 2. The DC resistance and the distance (device position) to each device (for example, each rubber transformer 6,...) Constituting the unit 5 are calculated (S1).

機器必要情報算出手段14Aは、具体的には、回路構成情報保存部15cの回路構成情報から、例えば接続点2から最も近い配列位置にある機器番号「1」の機器(ゴムトランス6)に接続されるケーブル4の線種の抵抗及び当該機器の抵抗とを加算した加算抵抗(直流抵抗)、接続点2から機器番号「1」の機器に接続されるケーブル4の長さから機器番号「1」の機器の距離(機器位置)を算出し、回路構成情報保存部15c上に例えば図7に示すような機器管理テーブル15c1を作成する。   Specifically, the device necessary information calculation unit 14A is connected to the device (rubber transformer 6) having the device number “1” at the arrangement position closest to the connection point 2, for example, from the circuit configuration information of the circuit configuration information storage unit 15c. Device number “1” from the length of the cable 4 connected to the device of the device number “1” from the connection point 2, the addition resistance (DC resistance) obtained by adding the resistance of the line type of the cable 4 and the resistance of the device ”Is calculated, and a device management table 15c1 as shown in FIG. 7 is created on the circuit configuration information storage unit 15c.

すなわち、機器必要情報算出手段14Aは、接続点2から各機器までの加算抵抗及び各機器までの距離(機器位置)を算出し、回路構成情報保存部15cから得られる各機器の機器番号及び機器名称に対応付けた状態で機器管理テーブル15c1に書き込む。   That is, the device necessary information calculation unit 14A calculates the addition resistance from the connection point 2 to each device and the distance (device position) to each device, and the device number and device of each device obtained from the circuit configuration information storage unit 15c. Write in the device management table 15c1 in a state associated with the name.

引き続き、地絡事故位置判定部14は地絡属性値推定手段14Bを実行する。地絡属性値推定手段14Bは、電圧計測部13の各対地電圧計測部13−2,13−3で計測された対地電圧V1,V2及び極性反転された後に得られた対地電圧V1´,V2´を受け取るか、あるいは計測完了信号のもとに適宜な記憶手段に記憶されている対地電圧V1,V2及び対地電圧V1´,V2´を読み出すことで取得すると(S2)、接続点2から地絡事故点8までの機器個数を推定する(S3)。   Subsequently, the ground fault position determination unit 14 executes the ground fault attribute value estimation unit 14B. The ground fault attribute value estimator 14B includes ground voltages V1 and V2 measured by the ground voltage measurement units 13-2 and 13-3 of the voltage measurement unit 13 and ground voltages V1 ′ and V2 obtained after polarity inversion. 'Or by reading the ground voltages V1 and V2 and the ground voltages V1' and V2 'stored in the appropriate storage means based on the measurement completion signal (S2), Estimate the number of devices up to the point of accident 8 (S3).

具体的には、接続点2から接続点3までの地中ケーブル4の抵抗とゴムトランス6,…全部の抵抗とを加算した全回路抵抗をRall、接続点2から地絡事故点8までの地中ケーブル4の抵抗とゴムトランス6,…の抵抗を全て加算した抵抗をRxとすると、接続点2の対地電圧V1と、接続点3の対地電圧V2との間には、次のような関係式が成立する。   Specifically, the resistance of the underground cable 4 from the connection point 2 to the connection point 3 and the total resistance of the rubber transformer 6,..., Rall, the total circuit resistance from the connection point 2 to the ground fault point 8 When the resistance obtained by adding all the resistances of the underground cable 4 and the rubber transformers 6 is Rx, between the ground voltage V1 at the connection point 2 and the ground voltage V2 at the connection point 3 is as follows. The relational expression is established.

V1=(Rx/Rall)・(V1−V2) ……(2)
V2=−{(Rall−Rx)/Rall}・(V1−V2)……(3)
また、直流電源11の極性を反転させた後に計測される対地電圧V1´,V2´の間には、次のような関係式が成立する。
V1´=(Rx/Rall)・(V1´−V2´) ……(4)
V2´=−(Rx/Rall)・(V1´−V2´) ……(5)
そこで、式(2)、式(4)から、以下のような関係式(6)が導かれる。
Rx(V1−V2)−V1・Rall=Rx(V1´−V2´)−V1´・Rall
……(6)
この関係式(6)をRxについて整理すると、接続点2から地絡事故点8までの抵抗Rxと全回路抵抗をRallとの間に次のような演算式を導くことができる。
Rx={(V1−V1´)/(V1−V1´−V2+V2´)}・Rall…(7)
ここで、一般に、ゴムトランス6の抵抗≫地中ケーブル4の抵抗であることから、空港灯火電源システムの抵抗分≒全体のゴムトランス6の抵抗分合計であると考えると、空港灯火電源システムのゴムトランス6の全個数をNtr、接続点2から地絡事故点8までのゴムトランス6の個数(属性値)をNflとすると、以下のような式が得られる。
V1 = (Rx / Rall). (V1-V2) (2)
V2 =-{(Rall-Rx) / Rall}. (V1-V2) (3)
Further, the following relational expression is established between the ground voltages V1 ′ and V2 ′ measured after the polarity of the DC power supply 11 is inverted.
V1 ′ = (Rx / Rall) · (V1′−V2 ′) (4)
V2 ′ = − (Rx / Rall) · (V1′−V2 ′) (5)
Therefore, the following relational expression (6) is derived from the expressions (2) and (4).
Rx (V1-V2) -V1.Rall = Rx (V1'-V2 ')-V1'.Rall
...... (6)
If this relational expression (6) is arranged for Rx, the following arithmetic expression can be derived between the resistance Rx from the connection point 2 to the ground fault point 8 and the total circuit resistance Rall.
Rx = {(V1−V1 ′) / (V1−V1′−V2 + V2 ′)} · Rall (7)
Here, in general, since the resistance of the rubber transformer 6 is the resistance of the underground cable 4, the resistance of the airport lighting power system is approximately equal to the total resistance of the rubber transformer 6. When the total number of rubber transformers 6 is Ntr and the number (attribute value) of the rubber transformers 6 from the connection point 2 to the ground fault point 8 is Nfl, the following equation is obtained.

Rall≒Rtr×Ntr ……(8)
Rx≒Rtr×Nfl ……(9)
Nfl={(V1−V1´)/(V1−V1´−V2+V2´)}・Ntr…(10)
すなわち、各対地電圧計測部13−2,13−3で計測された対地電圧V1,V2,V1´,V2´と灯火回路部5を構成するゴムトランス6の全個数Ntrから、式(10)に従って、接続点2から地絡事故点8までのゴムトランス6の個数(地絡属性値)を求めることができる(S3)。
Rall≈Rtr × Ntr (8)
Rx≈Rtr × Nfl (9)
Nfl = {(V1−V1 ′) / (V1−V1′−V2 + V2 ′)} · Ntr (10)
That is, from the ground voltages V1, V2, V1 ′, V2 ′ measured by the ground voltage measuring units 13-2, 13-3 and the total number Ntr of the rubber transformers 6 constituting the lighting circuit unit 5, formula (10) Accordingly, the number (ground fault attribute value) of the rubber transformer 6 from the connection point 2 to the ground fault point 8 can be obtained (S3).

なお、地絡属性値推定手段14Bによって地絡属性値を推定するに際し、例えば図5の回路構成において、接続点2から1つ目のゴムトランス6(1)までのケーブル4が長く、ゴムトランス6の抵抗≫地中ケーブル4の抵抗の関係が成り立たない場合が有り得る。   When estimating the ground fault attribute value by the ground fault attribute value estimating means 14B, for example, in the circuit configuration of FIG. 5, the cable 4 from the connection point 2 to the first rubber transformer 6 (1) is long, and the rubber transformer 6 Resistance >> The resistance relationship of the underground cable 4 may not hold.

このとき、接続点2から接続点3までのケーブル4の抵抗とゴムトランス6,…の抵抗を全て加算した回路抵抗をRall、接続点2から1つ目のゴムトランス6(1)までのケーブル抵抗をRpri、各ゴムトランス6の抵抗をRtrとすると、上記式(10)は下記式(11)のように表すことができる。   At this time, Rall is a circuit resistance obtained by adding all the resistances of the cable 4 from the connection point 2 to the connection point 3 and the resistances of the rubber transformers 6,..., And the cable from the connection point 2 to the first rubber transformer 6 (1). When the resistance is Rpri and the resistance of each rubber transformer 6 is Rtr, the above equation (10) can be expressed as the following equation (11).

Nfl=[{(V1−V1´)/(V1−V1´−V2+V2´)}・Rall
−Rpri]÷Rtr ……(11)
よって、接続点2から1つ目のゴムトランス6(1)までのケーブル4が長い場合でも、式(11)を用いて、接続点2から地絡事故点8までのゴムトランス6の個数を求めることができる(S3)。
Nfl = [{(V1−V1 ′) / (V1−V1′−V2 + V2 ′)} · Rall
−Rpri] ÷ Rtr (11)
Therefore, even when the cable 4 from the connection point 2 to the first rubber transformer 6 (1) is long, the number of the rubber transformers 6 from the connection point 2 to the ground fault point 8 is calculated using the equation (11). It can be obtained (S3).

次に、地絡事故点8までのゴムトランス6の個数Nflを算出した後、地絡事故位置判定部14は地絡機器位置特定手段14Cを実行する。   Next, after calculating the number Nfl of the rubber transformers 6 up to the ground fault point 8, the ground fault position determination unit 14 executes the ground fault device position specifying means 14C.

地絡機器位置特定手段14Cは、接続点2から地絡事故点8までのゴムトランス6の個数Nflと機器管理テーブル15c1に格納される機器番号(ゴムトランス番号)とを比較する(S4)。   The ground fault equipment position specifying means 14C compares the number Nfl of the rubber transformers 6 from the connection point 2 to the ground fault point 8 with the equipment number (rubber transformer number) stored in the equipment management table 15c1 (S4).

そして、機器管理テーブル15c1からゴムトランス6の個数Nflに相当する接続点2からのNfl番目の機器番号を特定し、当該機器番号に対応する機器名称及び機器位置(機器までの距離)を特定し(S5)、データ加工部16−1に送出する。   Then, the Nfl-th device number from the connection point 2 corresponding to the number Nfl of rubber transformers 6 is specified from the device management table 15c1, and the device name and device position (distance to the device) corresponding to the device number are specified. (S5), sent to the data processing unit 16-1.

ここで、データ加工部16−1は、回路構成情報保存部15cから例えば地絡事故等の発生対象となる灯火回路部5のフレーム画像データまたはビットマップ方式でデジタルデータ化された画像ファイルデータ、あるいは灯火回路部5を構築するための回路構成要素データを取り出し、特に回路構成要素データの場合には予め定める編集手順ソフトに従って灯火回路部5の回路構成画像データを作成する。   Here, the data processing unit 16-1 includes, for example, the frame image data of the lighting circuit unit 5 to be generated such as a ground fault from the circuit configuration information storage unit 15c, or image file data converted into digital data by a bitmap method, Alternatively, circuit component data for constructing the lighting circuit unit 5 is taken out. In particular, in the case of circuit component data, circuit configuration image data of the lighting circuit unit 5 is created according to a predetermined editing procedure software.

データ加工部16−1は、回路構成画像データ(画像ファイル,画像ファイルを含む)を作成した後、地絡事故位置判定部14から機器名称及び機器位置(距離)を受け取ると、回路構成画像データ上に連なる機器画像のうち、機器名称及び該当機器位置(距離)に対応する機器画像部分に、ユーザが地絡事故点を把握し易い所要とする図形、例えば×印のマーキングデータ21を付与し、表示部16−2に表示する(事故点表示ステップ)。   When the data processing unit 16-1 generates the circuit configuration image data (including the image file and the image file) and then receives the device name and the device position (distance) from the ground fault position determination unit 14, the circuit configuration image data Of the device images that are connected to the top, a required figure that makes it easy for the user to grasp the ground fault point, for example, marking data 21 with an X mark, is assigned to the device image portion corresponding to the device name and the corresponding device position (distance). Is displayed on the display unit 16-2 (accident point display step).

図8は表示部16−2に表示された画面表示例を示す図である。すなわち、表示画面には、ループ状に配列されたケーブルライン4´上に灯火回路部5を構成するゴムトランス6´,…の画像が所定の順序で配置され、最後尾から3つ目のゴムトランス6´の位置に地絡事故点が存在することを表している。なお、22は機器位置と地絡抵抗とから定まる機器の位置ずれ範囲を表す。   FIG. 8 is a diagram illustrating a screen display example displayed on the display unit 16-2. That is, on the display screen, images of the rubber transformers 6 ′,... Constituting the lighting circuit unit 5 are arranged in a predetermined order on the cable line 4 ′ arranged in a loop shape, and the third rubber from the end is arranged. This indicates that a ground fault point exists at the position of the transformer 6 '. In addition, 22 represents the position shift range of the apparatus determined from the apparatus position and the ground fault resistance.

通常、地絡事故点8の地絡抵抗9の大きさに応じて機器位置に多少のずれが生じる(図9参照)。そこで、該当する推定機器位置(距離)に例えば×印のマーキングデータ21を付与するが、同時に表示部16−2の表示画面に推定機器位置に応じて地絡事故点8のずれ範囲22を例えば実線枠で明示することにより、地絡事故点の確認範囲が明確になり、ひいては、ケーブルやゴムトランスを含む機器交換の有無を迅速に判断できる。   Usually, the device position slightly deviates depending on the magnitude of the ground fault resistance 9 at the ground fault point 8 (see FIG. 9). Therefore, for example, marking data 21 with a cross is attached to the corresponding estimated device position (distance), and at the same time, the deviation range 22 of the ground fault point 8 is displayed on the display screen of the display unit 16-2 according to the estimated device position, for example. By clearly indicating it with a solid line frame, the confirmation range of the ground fault point can be clarified, and as a result, it is possible to quickly determine whether or not the device including the cable and the rubber transformer has been replaced.

従って、以上のような実施の形態によれば、地絡事故等の発生対象となっている地中ケーブル4に接続される灯火回路部5に定電流電源1に代えて、直流電源11の直流電圧を印加し、灯火回路部5の両端部からフイルタ部13−1を通して対地電圧V1,V2及び極性反転後の対地電圧V1´,V2´を取り出す。そして、空港灯火電源システムに特有の誘導ノイズ成分のうち、比較的小刻みな誘導ノイズ成分をフイルタ部13−1で抑制し、比較的大きなレベル変化を伴うノイズ成分は、対地電圧V1,V2の差分をとることで互いに打ち消し、誘導ノイズ成分の影響を大幅に低減でき、地絡位置の特定精度を高めることができる。   Therefore, according to the embodiment as described above, instead of the constant current power source 1, the direct current of the direct current power source 11 is replaced with the lighting circuit unit 5 connected to the underground cable 4 subject to occurrence of a ground fault or the like. A voltage is applied, and ground voltages V1, V2 and ground voltages V1 ', V2' after polarity inversion are taken out from both ends of the lighting circuit section 5 through the filter section 13-1. Of the induced noise components peculiar to the airport lighting power system, the relatively small induced noise component is suppressed by the filter unit 13-1, and the noise component accompanied by a relatively large level change is the difference between the ground voltages V1 and V2. By canceling each other, the influence of the induced noise component can be greatly reduced, and the accuracy in identifying the ground fault position can be increased.

また、従来の地絡事故点8の特定方法は、従来周知の幾つかの測定法を組合せながら大雑把に地絡位置を推定していたが、ケーブル4やゴムトランス6の抵抗、灯火回路部5の回路構成情報等を用いて、前記式(10)や式(11)のようにケーブル4に直列に接続される何番目のゴムトランス5を地絡事故点とする地絡位置を特定し、灯火回路部5の回路構成画像データの中の該当ゴムトランス5などの機器にマーキング21を付加し表示するので、作業員は何れの機器(個所)に地絡事故が発生したかが直ちに認識でき、かつ、一連の処理手順に従って自動的に機器位置を特定でき、作業員の負担を大幅に軽減でき、精度の高い地絡位置から容易に事故点の確認や機器交換作業を実施でき、ひいては迅速に復旧作業を進めることが可能である。   In addition, the conventional method for specifying the ground fault point 8 has roughly estimated the ground fault position by combining several conventionally known measurement methods. However, the resistance of the cable 4 and the rubber transformer 6 and the lighting circuit unit 5 Using the circuit configuration information, etc., the ground fault position where the ground fault point is the number of the rubber transformer 5 connected in series to the cable 4 as in the formula (10) and the formula (11), Since the marking 21 is added to and displayed on the equipment such as the rubber transformer 5 in the circuit configuration image data of the lighting circuit section 5, the worker can immediately recognize which equipment (location) the ground fault has occurred. In addition, the position of the equipment can be automatically identified according to a series of processing procedures, the burden on workers can be greatly reduced, accident points can be confirmed and equipment can be replaced easily from a highly accurate ground fault position, and in turn It is possible to proceed with recovery work That.

なお、上記実施形態では、便宜上,ケーブル4を含む灯火回路部5の事故の一例として地絡事故を上げて説明したが、作業員による定期点検時、例えば地絡事故が発生する前の段階である絶縁抵抗が大きく低下している事故予兆時、接続点2から絶縁抵抗が大きく低下している部分までの加算抵抗をRxとすれば、ケーブル4を含む灯火回路部5などの絶縁耐力が低下している該当部位を容易に特定できる。   In the above embodiment, for the sake of convenience, a ground fault has been described as an example of an accident in the lighting circuit unit 5 including the cable 4, but at the time of periodic inspection by an operator, for example, at a stage before the occurrence of the ground fault. At the time of an accident sign that a certain insulation resistance is greatly reduced, if the addition resistance from the connection point 2 to the part where the insulation resistance is greatly reduced is Rx, the dielectric strength of the lighting circuit section 5 including the cable 4 is reduced. The corresponding site can be easily identified.

(実施形態2)
図10は空港灯火電源システムの事故点特定装置の実施形態2を説明する図である。
実施形態2は、地絡機器位置を特定する地絡事故位置判定部14のうち、特に地絡属性値推定手段14B及び地絡機器位置特定手段14Cの一部の処理に変更を加えたものである。
(Embodiment 2)
FIG. 10 is a diagram for explaining an embodiment 2 of an accident point identifying device for an airport lighting power system.
In the second embodiment, a part of the ground fault attribute value estimation unit 14B and the ground fault device position specifying unit 14C is changed in the ground fault position determination unit 14 that specifies the ground fault device position. is there.

すなわち、実施形態1の地絡属性値推定手段14Bは、図6に示すように対地電圧V1,V2,V1´,V2´を用いて、式(10)、式(11)に従って接続点2から地絡事故点8までのゴムトランス6の個数Nflを算出したが(S3)、実施形態2の地絡属性値推定手段14Bでは、ゴムトランス6の個数Nflではなく、図10に示すように接続点2から地絡事故点8までの地中ケーブル4及びゴムトランス6の加算抵抗(抵抗合計)Rxを算出するものである(S3´)。   That is, the ground fault attribute value estimation means 14B of the first embodiment uses the ground voltages V1, V2, V1 ′, V2 ′ as shown in FIG. 6 and starts from the connection point 2 according to the equations (10) and (11). Although the number Nfl of rubber transformers 6 up to the ground fault point 8 is calculated (S3), the ground fault attribute value estimating means 14B of the second embodiment is connected not as the number Nfl of rubber transformers 6 but as shown in FIG. The addition resistance (total resistance) Rx of the underground cable 4 and the rubber transformer 6 from the point 2 to the ground fault point 8 is calculated (S3 ′).

以上のように地絡事故点8までの加算抵抗(抵抗合計)Rxを算出した後、地絡事故位置判定部14は地絡機器位置特定手段14Cを実行する。   After calculating the addition resistance (total resistance) Rx up to the ground fault point 8 as described above, the ground fault position determination unit 14 executes the ground fault device position specifying unit 14C.

地絡機器位置特定手段14Cでは、接続点2から地絡事故点8までの加算抵抗(属性値)Rxと図7に示す機器管理テーブル15c1に格納される接続点2から各機器までの加算抵抗とを比較し、Rxに最も近い加算抵抗を推定する(S4´)。   In the ground fault equipment position specifying means 14C, the addition resistance (attribute value) Rx from the connection point 2 to the ground fault point 8 and the addition resistance from the connection point 2 to each equipment stored in the equipment management table 15c1 shown in FIG. And the addition resistance closest to Rx is estimated (S4 ′).

そして、推定された加算抵抗に対応付けられた機器番号に基づき、機器管理テーブル15c1から当該機器番号に対応する機器名称及び地絡機器位置(距離)を特定し(S5)、データ加工部16−1に送出する。データ加工部16−1は、地絡事故位置判定部14から少なくとも地絡機器位置(距離)データを受け取ると、地中ケーブル4を含む灯火回路部5の構成を表す回路構成画像データ上に連なる機器画像のうち、該当機器位置(距離)に対応する機器画像に、地絡事故点として把握し易い所定図形、例えば×印のマーキングデータ21を付与し、表示部16−2に表示する。   Based on the device number associated with the estimated addition resistance, the device name and ground fault device position (distance) corresponding to the device number are identified from the device management table 15c1 (S5), and the data processing unit 16- 1 to send. When the data processing unit 16-1 receives at least ground fault device position (distance) data from the ground fault position determination unit 14, the data processing unit 16-1 continues on the circuit configuration image data representing the configuration of the lighting circuit unit 5 including the underground cable 4. Among the device images, a predetermined figure that is easily grasped as a ground fault point, for example, marking data 21 with an X mark, is assigned to the device image corresponding to the corresponding device position (distance) and displayed on the display unit 16-2.

従って、実施形態2によれば、前述した実施形態1と同様の効果を奏することができる。   Therefore, according to the second embodiment, the same effects as those of the first embodiment can be obtained.

(実施形態3)
図11は空港灯火電源システムの事故点特定装置の実施形態3を示す構成図であって、図1と比較して特に異なるところは、地絡事故位置判定部14と情報保存記憶部15の間に新たに情報選択部31を追加した構成である。その他の構成は図1と同様であるので、同一部分には同一符号を付し、その詳しい説明を省略する。
(Embodiment 3)
FIG. 11 is a block diagram showing Embodiment 3 of the accident point identifying device for an airport lighting power system. The difference between FIG. 11 and FIG. 1 is that between the ground fault position determination unit 14 and the information storage storage unit 15. The information selection unit 31 is newly added. Since other configurations are the same as those in FIG. 1, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.

この空港灯火電源システムは、前述したように灯火の種類ごと、同一種類の灯火であっても所定個数ごとにグループ化され、多数のグループごとの地中ケーブル4が地中に併設され、各地中ケーブル4にそれぞれ直列に多数のゴムトランス6,…が接続されている。   As described above, this airport lamp power supply system is grouped into predetermined groups for each type of lamp, even for the same type of lamp, and underground cables 4 for each group are attached to the ground. A number of rubber transformers 6 are connected to the cable 4 in series.

そこで、情報保存記憶部15には、グループ番号ごと、あるいは所定の識別番号(灯火の種類と設置個所・区域など)に対応付けて複数のケーブル4を含む灯火回路部5に関する属性・構成回路情報が保存されている。   Therefore, the information storage storage unit 15 includes attribute / configuration circuit information related to the lighting circuit unit 5 including a plurality of cables 4 in association with each group number or a predetermined identification number (such as a type of lighting and an installation location / area). Is saved.

そこで、本実施形態における空港灯火電源システムでは、新たに情報選択部31を設け、あるケーブル4を含む灯火回路部5に地絡事故が発生したとき、情報保存記憶部15から地絡事故の発生対象となった地中ケーブル4を含む灯火回路部5のグループ番号を選定し、該当する地中ケーブルを含む灯火回路部5に属する属性・回路構成情報を選択し、地絡事故位置の特定処理のために後続の地絡事故位置判定部14及びデータ加工部16−1に提供するものである。   Therefore, in the airport lighting power supply system according to the present embodiment, when an information selection unit 31 is newly provided and a ground fault occurs in the lighting circuit unit 5 including a certain cable 4, the occurrence of the ground fault from the information storage storage unit 15 occurs. Select the group number of the lighting circuit section 5 including the target underground cable 4, select the attribute / circuit configuration information belonging to the lighting circuit section 5 including the corresponding underground cable, and identify the ground fault location Therefore, it is provided to the subsequent ground fault position determination unit 14 and the data processing unit 16-1.

情報選択部31としては、人為的に選択操作する少なくとも1個のロータリスイッチ、グループ数に応じた押しボタンスイッチ、あるいは事故点特定装置10にパーソナルコンピュータが使用されている場合にはキーボード、表示画面にグループ番号がメニュー表示されている場合にはグループ番号を選択するポインティングデバイスが用いられる。   The information selection unit 31 includes at least one rotary switch that is manually selected, a push button switch corresponding to the number of groups, or a keyboard and display screen when a personal computer is used for the accident point identification device 10. When a group number is displayed on the menu, a pointing device for selecting the group number is used.

従って、以上のような実施形態によれば、事故点を特定するためのケーブル4を含む灯火回路部5が複数存在する場合でも、実際に地絡事故または事故予兆状態にある1つのケーブル4を含む灯火回路部5に属する属性・回路構成情報を選択し、地絡機器位置を特定できる。   Therefore, according to the embodiment as described above, even when there are a plurality of lighting circuit parts 5 including the cable 4 for specifying the accident point, one cable 4 that is actually in a ground fault or a sign of an accident is connected. The attribute / circuit configuration information belonging to the included lighting circuit unit 5 can be selected to identify the ground fault device position.

(実施形態4)
図12は空港灯火電源システムの事故点特定装置の実施形態4を示す構成図である。
この実施形態4において、図11と比較して特に異なるところは、新たに回路切替選択部32及び回路切替部33−1,33−2,33−3,…を追加した構成である。
(Embodiment 4)
FIG. 12 is a block diagram showing Embodiment 4 of the accident point identifying device of the airport lighting power system.
In the fourth embodiment, what is particularly different from FIG. 11 is a configuration in which a circuit switching selection unit 32 and circuit switching units 33-1, 33-2, 33-3,.

従って、その他の構成は図1,図11と同様であるので、同一部分には同一符号を付し、その詳しい説明を省略する。   Therefore, since the other structure is the same as that of FIG. 1, FIG. 11, the same code | symbol is attached | subjected to the same part and the detailed description is abbreviate | omitted.

回路切替選択部32としては、地絡事故が発生したケーブル4を含む灯火回路部例えば5−1に接続される回路切替部33−1に対して切替指令を送出するものであって、前述した情報選択部31で説明したスイッチなどが用いられる。   The circuit switching selection unit 32 sends a switching command to the circuit switching unit 33-1 connected to the lighting circuit unit including the cable 4 in which the ground fault has occurred, for example, 5-1, The switches described in the information selection unit 31 are used.

回路切替部32−1,32−2,32−3,…は、各定電流電源1−1,1−2,…と各ケーブル4を含む灯火回路部5−1,5−2,…の間に個別に設けられ、回路切替選択部32から例えば回路切替部32−1が切替指令を受けると、定電流電源1−1に代えて、ケーブル4の両端部(接続点2,3)に直流電源11及び電圧計測部13を接続し、ケーブル4の両端部に所定の直流電圧を印加し、地絡事故点を特定するために必要な対地電圧の計測準備を整える。すなわち、ケーブル4の両端部に所定の直流電圧を印加するとともに、電圧計測部13にて当該ケーブル4の両端部に現れる対地電圧を計測する。   The circuit switching units 32-1, 32-2, 32-3,... Are connected to the lighting circuit units 5-1, 5-2,. When the circuit switching unit 32-1 receives a switching command from the circuit switching selection unit 32, for example, instead of the constant current power source 1-1, both ends (connection points 2 and 3) of the cable 4 are provided. The DC power supply 11 and the voltage measuring unit 13 are connected, and a predetermined DC voltage is applied to both ends of the cable 4 to prepare for the measurement of the ground voltage necessary for identifying the ground fault point. That is, a predetermined DC voltage is applied to both ends of the cable 4 and the ground voltage appearing at both ends of the cable 4 is measured by the voltage measuring unit 13.

一方、情報選択部31は、回路切替選択部32から送られてくるスイッチ信号から何れのケーブルを含む灯火回路部例えば5−1を選択したかを認識し、情報保存記憶部15から該当するケーブルを含む灯火回路部例えば5−1に属する属性・回路構成情報を選択し、地絡事故位置判定部14及びデータ加工部16−1に提供する。   On the other hand, the information selection unit 31 recognizes which lighting circuit unit including, for example, 5-1 is selected from the switch signal sent from the circuit switching selection unit 32, and the corresponding cable from the information storage storage unit 15. Is selected, and the attribute / circuit configuration information belonging to 5-1, for example, is selected and provided to the ground fault position determination unit 14 and the data processing unit 16-1.

従って、以上のような実施形態によれば、例えば4つのケーブル4を含む灯火回路部5−1〜5−4の中から、地絡事故の発生したケーブル4を含む灯火回路部5−1に対応する回路切替部33−1に切替指令を送出し、自動的に地絡事故位置を特定するための計測準備を整えるので、現場に出向いて回路の繋ぎかえなどの作業が不要となって作業員の負担が大幅に軽減でき、速やかに地絡事故位置を特定でき、迅速に復旧作業を進めることが可能である。   Therefore, according to the above embodiment, for example, from among the lighting circuit units 5-1 to 5-4 including the four cables 4, the lighting circuit unit 5-1 including the cable 4 in which the ground fault has occurred is changed. Sends a switching command to the corresponding circuit switching unit 33-1, and prepares for measurement to automatically identify the position of the ground fault, so it is not necessary to go to the work site and change the circuit. The burden on personnel can be greatly reduced, the location of the ground fault can be quickly identified, and the restoration work can be proceeded quickly.

(その他の実施形態)
(1) 上記実施形態では、各ゴムトランス6,…に接続される灯火7の例について説明したが、ゴムトランス6を使用せずに例えばLED灯火を使用する灯火電源システムの場合でも同様に適用できる。すなわち、ループ状に配置されるケーブル4に直列に複数のLED灯火を接続し、前述した各ゴムトランス6の抵抗(インピーダンス)を各LED灯火の抵抗(インピーダンス)に置き換えれば、容易に地絡機器(LED灯火)位置を特定できる。
(Other embodiments)
(1) In the above embodiment, the example of the lamp 7 connected to each of the rubber transformers 6 is described. However, the present invention is similarly applied to a lamp power supply system that uses, for example, an LED lamp without using the rubber transformer 6. it can. That is, if a plurality of LED lamps are connected in series to the cable 4 arranged in a loop and the resistance (impedance) of each rubber transformer 6 described above is replaced with the resistance (impedance) of each LED lamp, the ground fault device is easily obtained. (LED lighting) The position can be specified.

(2) また、空港灯火電源システムは、空港に設置される灯火7に限るものでなく、ループ状をなすケーブルに直列に一般の照明が接続されている電源システムも含むものであり、同様に適用可能である。 (2) The airport lighting power system is not limited to the lighting 7 installed at the airport, but also includes a power system in which general lighting is connected in series to a looped cable. Applicable.

(3) 実施形態4では、対象となる灯火回路部として、4つの灯火回路部5−1〜5−4を例に上げて説明したが、灯火回路部の数に限定されるものでなく、灯火回路部ごとに回路切替部を設けることにより、任意の灯火回路部数に対応することが可能である。 (3) In the fourth embodiment, the four lighting circuit units 5-1 to 5-4 have been described as examples of the lighting circuit unit to be processed, but the number of lighting circuit units is not limited, By providing a circuit switching unit for each lighting circuit unit, any number of lighting circuit units can be accommodated.

(4) また、上記実施形態では、地中ケーブル4に直列に接続される複数のゴムトランス6について説明したが、例えば地中に埋設せずに例えば断面凹状の蓋付き溝などに敷設されるケーブルに直列に複数のゴムトランス6が接続された構成のものでも同様に適用できるものである。 (4) Moreover, although the several rubber transformer 6 connected in series with the underground cable 4 was demonstrated in the said embodiment, it is laid, for example in the groove | channel with a lid with a concave cross section etc., for example, without being embedded in the ground. A configuration in which a plurality of rubber transformers 6 are connected in series to a cable can be similarly applied.

(5) 上記実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 (5) The above embodiment is presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1,1−1,1−2,……定電流電源、2,3…接続点、4…地中ケーブル、5,5−1,5−2,……灯火回路部、6、6(1)…ゴムトランス、7…灯火、8…地絡事故点、10…事故点特定装置、11…直流電源、12…極性切替部、13…電圧計測部、13−1…フイルタ部、13−2,13−3…対地電圧計測部、14…地絡事故位置判定部、14A…機器必要情報算出手段、14B…地絡属性値推定手段、14C…地絡機器位置特定手段、15…情報保存記憶部、16…外部出力装置、16−1…データ加工部、16−2…表示部、31…情報選択部、32…回路切替選択部、33−1,33−2,…回路切替部。   1, 1-1, 1-2, ... constant current power supply, 2, 3 ... connection point, 4 ... underground cable, 5,5-1, 5-2, ... lighting circuit, 6, 6 (1 ) ... Rubber transformer, 7 ... Light, 8 ... Ground fault point, 10 ... Accident point identification device, 11 ... DC power source, 12 ... Polarity switching unit, 13 ... Voltage measurement unit, 13-1 ... Filter unit, 13-2 , 13-3 ... Ground voltage measurement unit, 14 ... Ground fault accident position determination unit, 14A ... Equipment required information calculation means, 14B ... Ground fault attribute value estimation means, 14C ... Ground fault equipment position specification means, 15 ... Information storage storage 16, external output device, 16-1 data processing unit, 16-2 display unit, 31 information selection unit, 32 circuit switching selection unit, 33-1, 33-2, circuit switching unit.

Claims (8)

交流電源の出力側にループ状をなすようにケーブルが配置され、当該ケーブルに直列に複数の灯火に関する負荷機器を備えた灯火回路部が接続され、前記ケーブルを含む灯火回路部に事故が発生したとき、その事故点を特定する空港灯火電源システムの事故点特定装置であって、
前記事故発生時に前記交流電源に代えて前記ケーブルの両端部に接続され、前記灯火回路部に直流電圧を印加する直流電圧印加手段と、
前記ケーブルの両端部に接続され、フイルタ部を通して当該ケーブル各端部の対地電圧を計測する電圧計測手段と、
前記ケーブルを含む灯火回路部の属性・回路構成情報を保存する情報保存手段と、
前記電圧計測手段で計測された複数の対地電圧及び前記情報保存手段に保存された属性・回路構成情報を用いて、事故点である前記負荷機器位置を特定する事故位置判定手段と、
この事故位置判定手段で特定された負荷機器位置に基づき、前記情報保存手段に保存された回路構成情報から得られる前記ケーブルを含む灯火回路部を構成する回路構成画像データに存在する前記特定された負荷機器位置に事故点を表すマーキングを施して表示する外部出力装置とを備え、
前記事故位置判定手段は、
前記情報保存手段に保存された前記ケーブルを含む灯火回路部の属性・回路構成情報から前記ケーブルの一方端部から前記各負荷機器までの加算距離(機器位置)及び加算抵抗を順次算出し保存する機器必要情報算出手段と、
前記直流電圧印加手段から所定極性及び極性反転された直流電圧の印加後、前記電圧計測手段で計測された各対地電圧と前記負荷機器の全個数または少なくとも前記灯火回路部を構成する全負荷機器の加算抵抗とを用いて、前記ケーブルの一方端部から前記事故点までの負荷機器の個数または加算抵抗を推定する地絡属性値推定手段と、
この地絡属性値推定手段で推定された負荷機器の個数または加算抵抗と前記機器必要情報算出手段で算出された前記各負荷機器までの加算距離(機器位置)または加算抵抗とを比較し、事故点となった前記負荷機器位置を特定する地絡機器位置特定手段と
を備えた空港灯火電源システムの事故点特定装置。
A cable is arranged so as to form a loop on the output side of the AC power supply, and a lighting circuit unit including a plurality of load devices related to lighting is connected in series to the cable, and an accident occurs in the lighting circuit unit including the cable. When it is an accident point identification device of an airport lighting power system that identifies the accident point,
DC voltage application means that is connected to both ends of the cable instead of the AC power supply when the accident occurs, and that applies a DC voltage to the lighting circuit section,
Voltage measuring means connected to both ends of the cable and measuring the ground voltage at each end of the cable through the filter section;
Information storage means for storing the attribute / circuit configuration information of the lighting circuit unit including the cable,
Accident position determination means for identifying the load device position that is the accident point using a plurality of ground voltages measured by the voltage measurement means and the attribute / circuit configuration information stored in the information storage means,
Based on the load device position specified by the accident position determination means, the specified information existing in the circuit configuration image data constituting the lighting circuit unit including the cable obtained from the circuit configuration information stored in the information storage means. With an external output device that displays markings indicating the accident point at the load equipment position ,
The accident position determination means includes
From the attribute / circuit configuration information of the lighting circuit unit including the cable stored in the information storage unit, the addition distance (device position) and the addition resistance from one end of the cable to each load device are sequentially calculated and stored. Device required information calculation means,
After application of a DC voltage having a predetermined polarity and polarity reversed from the DC voltage application means, each ground voltage measured by the voltage measurement means and the total number of the load equipment or at least all of the load equipment constituting the lighting circuit section A ground fault attribute value estimating means for estimating the number of load devices from the one end of the cable to the accident point or the addition resistance using an addition resistor,
The number of load devices estimated by the ground fault attribute value estimating means or the added resistance is compared with the added distance (equipment position) or added resistance to each load device calculated by the required device information calculating means. fault point identifying device of airports lighting power supply system provided with a <br/> earth絡機device position specifying means for specifying the load device position becomes the point.
前記ケーブルを含む灯火回路部に発生する事故には、少なくとも地絡事故の他、当該地絡事故が発生する前の段階である前記ケーブルの絶縁抵抗が所定値以下となる事故予兆が含まれる請求項1に記載の空港灯火電源システムの事故点特定装置。 The accident occurring in the lighting circuit section including the cable includes at least a ground fault accident and an accident sign that the insulation resistance of the cable at a stage before the ground fault occurs is equal to or less than a predetermined value. Item 2. Accident point identification device for airport lighting power system according to item 1. 請求項1又は2の何れか一項に記載の空港灯火電源システムの事故点特定装置において、
前記情報保存手段に保存された複数のケーブルを含む灯火回路部の属性・回路構成情報の中から、事故点を特定するためのケーブルを含む灯火回路部に関する属性・回路構成情報を選択し、前記事故位置判定手段や前記外部出力装置に提供する情報選択手段をさらに有する空港灯火電源システムの事故点特定装置。
In the accident point identifying device for an airport light power supply system according to any one of claims 1 and 2,
From the attribute / circuit configuration information of the lighting circuit unit including a plurality of cables stored in the information storage means, select the attribute / circuit configuration information about the lighting circuit unit including the cable for specifying the accident point, An accident point identifying device for an airport lighting power system, further comprising an accident position determination means and an information selection means provided to the external output device.
交流電源の出力側にループ状をなすようにケーブルが配置され、当該ケーブルに直列に複数の灯火に関する負荷機器を備えた灯火回路部が接続され、前記ケーブルを含む灯火回路部に事故が発生したとき、その事故点を特定する空港灯火電源システムの事故点特定装置であって、
前記事故発生時に前記交流電源に代えて前記ケーブルの両端部に接続され、前記灯火回路部に直流電圧を印加する直流電圧印加手段と、
前記ケーブルの両端部に接続され、フイルタ部を通して当該ケーブル各端部の対地電圧を計測する電圧計測手段と、
前記ケーブルを含む灯火回路部の属性・回路構成情報を保存する情報保存手段と、
前記電圧計測手段で計測された複数の対地電圧及び前記情報保存手段に保存された属性・回路構成情報を用いて、事故点である前記負荷機器位置を特定する事故位置判定手段と、
この事故位置判定手段で特定された負荷機器位置に基づき、前記情報保存手段に保存された回路構成情報から得られる前記ケーブルを含む灯火回路部を構成する回路構成画像データに存在する前記特定された負荷機器位置に事故点を表すマーキングを施して表示する外部出力装置と、
複数のケーブルを含む灯火回路部のうち、事故が発生された前記ケーブルを含む灯火回路部を選択するための切替指令を出力する回路切替選択手段と、
前記各灯火回路部のケーブル両端部にそれぞれ接続され、前記回路切替選択手段から切替指令を受けたとき、前記交流電源に代えて前記事故点を特定するためのケーブルを含む灯火回路部に前記直流電圧印加手段からの直流電圧を印加し、かつ当該ケーブル両端部に前記電圧計測手段を接続する回路切替手段と、
前記回路切替選択手段から回路選択に関する前記切替指令を受けたとき、前記情報保存手段に保存される複数のケーブルを含む灯火回路部の属性・回路構成情報の中から、前記事故点を特定するためのケーブルを含む灯火回路部を認識し、当該ケーブルを含む灯火回路部に関する属性・回路構成情報を選択し、前記事故位置判定手段や前記外部出力装置に提供する情報選択手段と
を備えた空港灯火電源システムの事故点特定装置。
A cable is arranged so as to form a loop on the output side of the AC power supply, and a lighting circuit unit including a plurality of load devices related to lighting is connected in series to the cable, and an accident occurs in the lighting circuit unit including the cable. When it is an accident point identification device of an airport lighting power system that identifies the accident point,
DC voltage application means that is connected to both ends of the cable instead of the AC power supply when the accident occurs, and that applies a DC voltage to the lighting circuit section,
Voltage measuring means connected to both ends of the cable and measuring the ground voltage at each end of the cable through the filter section;
Information storage means for storing the attribute / circuit configuration information of the lighting circuit unit including the cable,
Accident position determination means for identifying the load device position that is the accident point using a plurality of ground voltages measured by the voltage measurement means and the attribute / circuit configuration information stored in the information storage means,
Based on the load device position specified by the accident position determination means, the specified information existing in the circuit configuration image data constituting the lighting circuit unit including the cable obtained from the circuit configuration information stored in the information storage means. An external output device that displays markings indicating the accident point at the load equipment position;
A circuit switching selection means for outputting a switching command for selecting the lighting circuit unit including the cable in which the accident has occurred, among the lighting circuit units including a plurality of cables;
Each of the lighting circuit units is connected to both ends of the cable, and when receiving a switching command from the circuit switching selection means, the direct current is connected to the lighting circuit unit including a cable for specifying the fault point instead of the AC power source. Circuit switching means for applying a DC voltage from the voltage applying means and connecting the voltage measuring means to both ends of the cable;
In order to identify the accident point from the attribute / circuit configuration information of the lighting circuit unit including a plurality of cables stored in the information storage unit when receiving the switching command related to circuit selection from the circuit switching selection unit An information selection means for recognizing the lighting circuit section including the cable, selecting attribute / circuit configuration information relating to the lighting circuit section including the cable, and providing the accident position determination means and the external output device;
Airport light power system accident point identification device equipped with .
前記ケーブルを含む灯火回路部に発生する事故には、少なくとも地絡事故の他、当該地絡事故が発生する前の段階である前記ケーブルの絶縁抵抗が所定値以下となる事故予兆が含まれる請求項4に記載の空港灯火電源システムの事故点特定装置。 The accident occurring in the lighting circuit section including the cable includes at least a ground fault accident and an accident sign that the insulation resistance of the cable at a stage before the ground fault occurs is equal to or less than a predetermined value. Item 5. Accident point identifying device for airport lighting power system according to item 4 . 請求項4又は5の何れか一項に記載の空港灯火電源システムの事故点特定装置において、
前記事故位置判定手段は、
前記情報保存手段に保存された前記ケーブルを含む灯火回路部の属性・回路構成情報から前記ケーブルの一方端部から前記各負荷機器までの加算距離(機器位置)及び加算抵抗を順次算出し保存する機器必要情報算出手段と、
前記直流電圧印加手段から所定極性及び極性反転された直流電圧の印加後、前記電圧計測手段で計測された各対地電圧と前記負荷機器の全個数または少なくとも前記灯火回路部を構成する全負荷機器の加算抵抗とを用いて、前記ケーブルの一方端部から前記事故点までの負荷機器の個数または加算抵抗を推定する地絡属性値推定手段と、
この地絡属性値推定手段で推定された負荷機器の個数または加算抵抗と前記機器必要情報算出手段で算出された前記各負荷機器までの加算距離(機器位置)または加算抵抗とを比較し、事故点となった前記負荷機器位置を特定する地絡機器位置特定手段と
を備えた空港灯火電源システムの事故点特定装置
In the accident point identifying device for an airport light power supply system according to any one of claims 4 and 5,
The accident position determination means includes
From the attribute / circuit configuration information of the lighting circuit unit including the cable stored in the information storage unit, the addition distance (device position) and the addition resistance from one end of the cable to each load device are sequentially calculated and stored. Device required information calculation means,
After application of a DC voltage having a predetermined polarity and polarity reversed from the DC voltage application means, each ground voltage measured by the voltage measurement means and the total number of the load equipment or at least all of the load equipment constituting the lighting circuit section A ground fault attribute value estimating means for estimating the number of load devices from the one end of the cable to the accident point or the addition resistance using an addition resistor,
The number of load devices estimated by the ground fault attribute value estimating means or the added resistance is compared with the added distance (equipment position) or added resistance to each load device calculated by the required device information calculating means. A ground fault device position specifying means for specifying the load device position which is a point;
Airport light power system accident point identification device equipped with .
交流電源の出力側にループ状をなすようにケーブルが配置され、当該ケーブルに直列に複数の灯火に関する負荷機器を備えた灯火回路部が接続され、前記ケーブルを含む灯火回路部に事故が発生したとき、その事故点を特定する空港灯火電源システムの事故点特定装置に適用する事故点特定であって、
前記事故発生時に前記交流電源に代えて前記ケーブルの両端部に接続され、前記灯火回路部に直流電圧を印加する処理と、
前記ケーブルの両端部に接続され、フイルタ部を通して当該ケーブル各端部の対地電圧を計測する処理と、
前記ケーブルを含む灯火回路部の属性・回路構成情報を保存する処理と、
前記計測された複数の対地電圧及び前記保存された属性・回路構成情報を用いて、事故点である前記負荷機器位置を特定する事故位置判定処理と、
この事故位置判定処理で特定された負荷機器位置に基づき、前記保存された回路構成情報から得られる前記ケーブルを含む灯火回路部を構成する回路構成画像データに存在する前記特定された負荷機器位置に事故点を表すマーキングを施して表示する処理とを実行し、
前記事故位置判定処理は、
前記保存された前記ケーブルを含む灯火回路部の属性・回路構成情報から前記ケーブルの一方端部から前記各負荷機器までの加算距離(機器位置)及び加算抵抗を順次算出して保存し、
所定極性及び極性反転された前記直流電圧の印加後、前記計測された各対地電圧と前記負荷機器の全個数または少なくとも前記灯火回路部を構成する全負荷機器の加算抵抗とを用いて、前記ケーブルの一方端部から前記事故点までの負荷機器の個数または加算抵抗を推定し、
前記推定された負荷機器の個数または加算抵抗と前記算出された前記各負荷機器までの加算距離(機器位置)または加算抵抗とを比較し、事故点となった前記負荷機器位置を特定する事故点特定方法
A cable is arranged so as to form a loop on the output side of the AC power supply, and a lighting circuit unit including a plurality of load devices related to lighting is connected in series to the cable, and an accident occurs in the lighting circuit unit including the cable. The accident point identification applied to the accident point identification device of the airport lighting power system to identify the accident point,
In the event of the accident, instead of the AC power supply, connected to both ends of the cable, a process of applying a DC voltage to the lighting circuit unit,
A process of measuring the ground voltage at each end of the cable connected to both ends of the cable and through the filter section;
Processing to store the attribute / circuit configuration information of the lighting circuit section including the cable;
Using the measured ground voltage and the stored attribute / circuit configuration information, an accident position determination process that identifies the load device position that is an accident point;
Based on the load device position specified in the accident position determination process, the specified load device position present in the circuit configuration image data constituting the lighting circuit unit including the cable obtained from the stored circuit configuration information. Execute the process of marking and displaying the accident point,
The accident position determination process
From the attribute / circuit configuration information of the lighting circuit unit including the stored cable, the additional distance (device position) and the additional resistance from one end of the cable to each load device are sequentially calculated and stored,
After the application of the DC voltage having a predetermined polarity and the polarity reversed, the cable is measured using the measured ground voltages and the total number of the load devices or at least the addition resistors of all the load devices constituting the lighting circuit unit. Estimate the number or load resistance of the load equipment from one end of the to the accident point,
The accident point that identifies the load device position that is the accident point by comparing the estimated number or load resistance of the load devices with the calculated addition distance (device position) or addition resistance to each load device Identification method .
交流電源の出力側にループ状をなすようにケーブルが配置され、当該ケーブルに直列に複数の灯火に関する負荷機器を備えた灯火回路部が接続され、前記ケーブルを含む灯火回路部に事故が発生したとき、その事故点を特定する空港灯火電源システムの事故点特定装置に適用する事故点特定であって、
前記事故発生時に前記交流電源に代えて前記ケーブルの両端部に接続され、前記灯火回路部に直流電圧を印加する処理と、
前記ケーブルの両端部に接続され、フイルタ部を通して当該ケーブル各端部の対地電圧を計測する処理と、
前記ケーブルを含む灯火回路部の属性・回路構成情報を保存する処理と、
前記計測された複数の対地電圧及び前記保存された属性・回路構成情報を用いて、事故点である前記負荷機器位置を特定する処理と、
前記特定された負荷機器位置に基づき、前記保存された回路構成情報から得られる前記ケーブルを含む灯火回路部を構成する回路構成画像データに存在する前記特定された負荷機器位置に事故点を表すマーキングを施して表示する処理と、
複数のケーブルを含む灯火回路部のうち、事故が発生された前記ケーブルを含む灯火回路部を選択するための切替指令を出力する処理と、
前記各灯火回路部のケーブル両端部にそれぞれ接続され、前記切替指令を受けたとき、前記交流電源に代えて前記事故点を特定するためのケーブルを含む灯火回路部に前記直流電圧を印加し、かつ当該ケーブル両端部の対地電圧を計測するように回路切替を実行する処理と、
前記切替指令を受けたとき、前記保存される複数のケーブルを含む灯火回路部の属性・回路構成情報の中から、前記事故点を特定するためのケーブルを含む灯火回路部を認識し、当該ケーブルを含む灯火回路部に関する属性・回路構成情報を選択して提供する処理と
を実行する事故点特定方法
A cable is arranged so as to form a loop on the output side of the AC power supply, and a lighting circuit unit including a plurality of load devices related to lighting is connected in series to the cable, and an accident occurs in the lighting circuit unit including the cable. The accident point identification applied to the accident point identification device of the airport lighting power system to identify the accident point,
In the event of the accident, instead of the AC power supply, connected to both ends of the cable, a process of applying a DC voltage to the lighting circuit unit,
A process of measuring the ground voltage at each end of the cable connected to both ends of the cable and through the filter section;
Processing to store the attribute / circuit configuration information of the lighting circuit section including the cable;
Using the measured plurality of ground voltages and the stored attribute / circuit configuration information, a process of identifying the load device position that is an accident point;
Marking indicating an accident point at the specified load device position existing in the circuit configuration image data constituting the lighting circuit unit including the cable obtained from the stored circuit configuration information based on the specified load device position Processing to display and
A process of outputting a switching command for selecting a lighting circuit unit including the cable in which an accident has occurred among lighting circuit units including a plurality of cables;
When connected to both ends of the cable of each lighting circuit section and receiving the switching command, the DC voltage is applied to the lighting circuit section including a cable for specifying the fault point instead of the AC power supply, And the process of performing circuit switching so as to measure the ground voltage at both ends of the cable,
When the switching command is received, the lighting circuit unit including the cable for identifying the accident point is recognized from the attribute / circuit configuration information of the lighting circuit unit including the plurality of stored cables, and the cable Processing to select and provide attribute / circuit configuration information related to lighting circuit parts including
Accident point identification method to carry out .
JP2010271507A 2010-12-06 2010-12-06 Accident point identification device for airport light power system and method for identifying the accident point Active JP5606298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271507A JP5606298B2 (en) 2010-12-06 2010-12-06 Accident point identification device for airport light power system and method for identifying the accident point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271507A JP5606298B2 (en) 2010-12-06 2010-12-06 Accident point identification device for airport light power system and method for identifying the accident point

Publications (2)

Publication Number Publication Date
JP2012122752A JP2012122752A (en) 2012-06-28
JP5606298B2 true JP5606298B2 (en) 2014-10-15

Family

ID=46504350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271507A Active JP5606298B2 (en) 2010-12-06 2010-12-06 Accident point identification device for airport light power system and method for identifying the accident point

Country Status (1)

Country Link
JP (1) JP5606298B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976514B2 (en) * 2012-12-05 2016-08-23 株式会社東芝 DC resistance measuring system, measuring apparatus and measuring method for light source circuit
JP6382576B2 (en) * 2014-05-22 2018-08-29 東芝インフラシステムズ株式会社 Insulation degradation position specifying device and voltage measuring device
US9863997B2 (en) 2015-06-19 2018-01-09 Honeywell International Inc. Devices, methods, and systems for localizing a fault on a live cable
CN106154114A (en) * 2016-08-03 2016-11-23 四川网达科技有限公司 Fault testing apparatus and method
EP3923009B1 (en) * 2020-06-11 2024-02-21 Ellego Powertec Oy A method for determining the location of a ground fault in an electrical circuit and an electrical circuit
CN113514734B (en) * 2021-04-16 2024-06-11 西安热工研究院有限公司 Long-distance high-voltage submarine cable fault diagnosis method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173580A (en) * 1988-12-27 1990-07-05 Showa Electric Wire & Cable Co Ltd Detection for accident point of feeder
JPH095385A (en) * 1995-06-22 1997-01-10 Toshiba Corp Detector for detecting run out of wick in lamp
JP4996851B2 (en) * 2005-12-20 2012-08-08 関西電力株式会社 Cable accident point identification device and cable accident point identification method

Also Published As

Publication number Publication date
JP2012122752A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5606298B2 (en) Accident point identification device for airport light power system and method for identifying the accident point
RU2631025C2 (en) Detection of direction of weakly resistant short circuit to earth of average voltage with help of linear correlation
CN104380124B (en) The apparatus and method for that fault detect and position are determined
CN111937264B (en) Method and apparatus for protection in a multi-terminal power transmission system
EA022653B1 (en) Directional detection of an earth fault with a single sensor
EP4062181B1 (en) Method and system for cable insulation testing
CN107850640A (en) DC meter and application method
JP6382576B2 (en) Insulation degradation position specifying device and voltage measuring device
KR101551341B1 (en) Apparatus for checking of cable
KR101853117B1 (en) Method for locating a short circuit in an electrical grid comprising at least one line section
KR102397120B1 (en) System and Method for combined fault locating in electric railway
JP5932529B2 (en) Accident point identification device
JP2016070854A (en) Short-circuit fault-point determining system
JP6611668B2 (en) Instrument current transformer secondary side wiring connection confirmation device
CN210865191U (en) Special operation power cable synthesizes examination and banks up platform analogue means
JP6490532B2 (en) Light monitoring and control device
CN103983853A (en) Phase position check method of high voltage cable frogging interconnected system
JP5976514B2 (en) DC resistance measuring system, measuring apparatus and measuring method for light source circuit
KR102397121B1 (en) System and Method for branch line fault locating in electric railway
JP3272905B2 (en) Inspection test equipment
RU2572364C1 (en) Method for determination of damaged section in branched distributing network
KR102341251B1 (en) Traffic light controller and leak detection method thereof
JP2014211400A (en) Indirect ac megger measuring instrument and insulation resistance measuring method
CN103050949B (en) Calculation method for relay protection fixed value backup protection range
US20230333154A1 (en) Method and system for distributed ground detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R151 Written notification of patent or utility model registration

Ref document number: 5606298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151