JP5605704B2 - 2D ultrasonic anemometer - Google Patents
2D ultrasonic anemometer Download PDFInfo
- Publication number
- JP5605704B2 JP5605704B2 JP2010290823A JP2010290823A JP5605704B2 JP 5605704 B2 JP5605704 B2 JP 5605704B2 JP 2010290823 A JP2010290823 A JP 2010290823A JP 2010290823 A JP2010290823 A JP 2010290823A JP 5605704 B2 JP5605704 B2 JP 5605704B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- holding surface
- wind speed
- wind
- transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 description 18
- 238000004088 simulation Methods 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Description
本発明は、超音波を利用して風速の2次元成分を測定する2次元超音波風速計に関する。 The present invention relates to a two-dimensional ultrasonic anemometer that measures a two-dimensional component of wind speed using ultrasonic waves.
今日、空気の流れを風として精度良く検出し制御することが要求される場所に超音波風速計が利用されはじめている。 Today, ultrasonic anemometers are beginning to be used in places where it is required to accurately detect and control air flow as wind.
この超音波風速計は、超音波送受波器の対を用意し、一方の超音波送受波器から他方の超音波送受波器に向かう伝播経路上の超音波の伝播所要時間と、その逆の伝播経路上の超音波の伝播所要時間との差から、その経路に沿う風速の成分が検出されように構成されている。 This ultrasonic anemometer prepares a pair of ultrasonic transducers, the time required for propagation of ultrasonic waves on the propagation path from one ultrasonic transducer to the other ultrasonic transducer, and vice versa. The component of the wind speed along the path is detected from the difference from the propagation time of the ultrasonic wave on the propagation path.
特に水平面内の風速の直交2軸成分のみを測定対象とする場合、図5に示すように、若干ずれた2つの平面上で超音波が直交するように2対の超音波送受波器を配置する2次元風速計が知られている。この2次元風速計は計4個の送受波器が必要になるため、装置の小型化及び低廉化を図る目的で、図6に示すように3個の送受波器(超音波素子)1,2,3を保持する保持面4とこの保持面4に対向して配置された反射板5とを備えた反射型の超音波風速計が提案されている(特許文献1参照)。尚、図6は特許文献1に記載の超音波風速計の構成を示しており、(A)は正面図、(B)は平面図である。これらの図では、超音波の伝播経路を二点鎖線で概念的に表してある。
In particular, when only the orthogonal biaxial component of the wind speed in the horizontal plane is to be measured, as shown in FIG. 5, two pairs of ultrasonic transducers are arranged so that the ultrasonic waves are orthogonal to each other on two slightly shifted planes. Two-dimensional anemometers are known. Since this two-dimensional anemometer requires a total of four transducers, for the purpose of reducing the size and cost of the apparatus, as shown in FIG. A reflection-type ultrasonic anemometer including a holding surface 4 that holds 2 and 3 and a reflecting
図6の反射型超音波風速計では、まず、第1の送受波器1から放射された超音波の一部が反射板5で反射され、この反射波の更に一部が第2の送受波器2に受信される。このように、超音波は斜め上下方向に伝播する。次に、第2の送受波器2から放射された超音波の一部が反射板5で反射され、この反射波の更に一部が第1の送受波器1に受信される。同様に、第2の送受波器2と第3の送受波器3との間でも超音波が反射板5との間で斜め上下方向に送受信され、第3の送受波器3と第1の送受波器1との間でも反射板5との間で斜め上下方向に超音波が送受信される。
In the reflection-type ultrasonic anemometer of FIG. 6, first, a part of the ultrasonic wave radiated from the first transducer 1 is reflected by the
上記各伝播経路上の超音波の所要伝播時間は風速の影響を受けることから、ある伝播方向(正方向)とその逆の伝播方向(逆方向)とでは異なる値となる。この正逆両方向の伝播所要時間の差からその伝播経路上に投影した風速の成分が検出される。ただし、垂直方向に関する伝播経路は上方に伝播したのち反射されて下方に伝播するため、風速の垂直成分の伝播所要時間への影響は上方への伝播経路上と下方への伝播経路上とで互いに相殺し合う。従って、この種の反射型では風速の垂直成分は検出されず、水平成分のみ(送受波器間を結ぶ線上の風速成分)が検出の対象となる。 Since the required propagation time of the ultrasonic wave on each propagation path is affected by the wind speed, the value varies depending on a certain propagation direction (forward direction) and the opposite propagation direction (reverse direction). The component of the wind speed projected on the propagation path is detected from the difference in propagation time in both the forward and reverse directions. However, since the propagation path in the vertical direction propagates upward and is reflected and propagates downward, the influence of the vertical component of the wind speed on the propagation time cancels each other on the upward propagation path and the downward propagation path. Hold on. Therefore, with this type of reflection type, the vertical component of the wind speed is not detected, and only the horizontal component (the wind speed component on the line connecting the transducers) is to be detected.
図6の反射型超音波風速計では3個の超音波送受波器間で3つの超音波伝播経路が形成される。風の流れは瞬間的であったり一様でなかったりすることが多いため、風速の測定誤差が小さくなるように、3つの超音波伝播経路上の風速の水平成分のうちの直交2軸方向の風速成分を平均化して風速を算出することが行われている。 In the reflective ultrasonic anemometer of FIG. 6, three ultrasonic propagation paths are formed between three ultrasonic transducers. Since the wind flow is often instantaneous or non-uniform, in order to reduce the measurement error of the wind speed, out of two horizontal components of the wind speed on the three ultrasonic propagation paths The wind speed is calculated by averaging the wind speed components.
上記のように装置の小型化及び低廉化を図った、反射型の二次元超音波風速計は、反射板を超音波素子の保持面に対向させて支持する支柱が必要になる。従来、この支柱は図6に示されるように、超音波素子の保持面4と反射板5との対向状態を安定させることを目的として3本配置されていた。
As described above, the reflection type two-dimensional ultrasonic anemometer in which the apparatus is reduced in size and cost is required to have a support column that supports the reflection plate facing the holding surface of the ultrasonic element. Conventionally, as shown in FIG. 6, three support columns are arranged for the purpose of stabilizing the facing state between the holding surface 4 of the ultrasonic element and the reflecting
しかしながら、支柱が風を受けると支柱の風下では風の乱れが発生する。本発明者らは、この支柱による風の乱れが風速にどのように影響を及ぼすかをシミュレーションした。 However, when the column receives wind, turbulence occurs in the lee of the column. The present inventors simulated how the turbulence by the support column affects the wind speed.
図7は支柱が風速を乱す様子をシミュレーションした結果を示している。このシミュレーションは、200mm×100mmの四角内で一方向から風速5m/sの風をφ4mmの支柱に吹き付けた場合に支柱の風下で風速がどのように変化するのかを得ようとしたものである。この条件によれば、支柱の風下に風速4.25m/s以下の範囲、この周囲に風速4.75m/s以下の範囲、さらにこの周囲に風速5m/s以下の範囲が出来た。つまり、支柱により風速が概ね1%以上低下する範囲、風速が0.5%以上低下する範囲、風速が0〜0.5%低下する範囲が出来た(図8)。これらの範囲は測定風速を大きくしても同様の結果を示した。 FIG. 7 shows the result of simulating how the struts disturb the wind speed. This simulation is to obtain how the wind speed changes in the lee of the support when a wind of 5 m / s is blown from one direction within a square of 200 mm × 100 mm onto the support of φ4 mm. According to this condition, a wind speed range of 4.25 m / s or less was found downstream of the column, a wind speed range of 4.75 m / s or less was created around this, and a wind speed range of 5 m / s or less was created around this range. That is, a range in which the wind speed is reduced by approximately 1% or more, a range in which the wind speed is reduced by 0.5% or more, and a range in which the wind speed is reduced by 0 to 0.5% were created by the support (FIG. 8). These ranges showed similar results even when the measured wind speed was increased.
このようにシミュレーション結果により、支柱による風の乱れが、測定しようとする本来の風速の分布を撹乱してしまい、正確な風速測定に影響を及ぼすことがあることが分かった。 As described above, it has been found from the simulation results that the turbulence of the wind due to the support column disturbs the distribution of the original wind speed to be measured, which may affect accurate wind speed measurement.
図6の反射型超音波風速計の場合、3つの超音波伝播経路の水平面内における直交2軸方向の風速成分を平均化することで風速の測定精度を上げているので、それぞれの支柱が各超音波伝播経路上の風速検出に対して影響を及ぼさないほど、測定精度は高くなる。しかし、図6の反射型超音波風速計の構成上、それぞれの支柱による風の乱れは必ず一つないし二つの超音波伝播経路に及んでしまう。これを考慮して測定精度の向上を図るには、支柱による風の乱れが二つの超音波伝播経路に及んでしまう事象は最小限に留めたい。 In the case of the reflection type ultrasonic anemometer of FIG. 6, the measurement accuracy of the wind speed is increased by averaging the wind speed components in the two orthogonal directions in the horizontal plane of the three ultrasonic propagation paths. The measurement accuracy increases so as not to affect the wind speed detection on the ultrasonic propagation path. However, due to the configuration of the reflection-type ultrasonic anemometer of FIG. 6, the turbulence of the wind due to each of the columns always reaches one or two ultrasonic propagation paths. In order to improve the measurement accuracy in consideration of this, it is desirable to minimize the phenomenon in which the wind turbulence caused by the struts reaches the two ultrasonic propagation paths.
しかしながら、特許文献1記載の反射型超音波風速計では支柱が風速におよぼす影響は全く関知されておらず、上記の事象を最小限に留める支柱の改善策は全く施されていない。後で詳述するが、図6に示したように支柱を配置すると、それぞれの支柱による風の乱れが二つの超音波伝播経路へ及ぼす範囲が比較的大きいことも分かった。 However, in the reflection type ultrasonic anemometer described in Patent Document 1, the influence of the strut on the wind speed is not known at all, and no measures for improving the strut to minimize the above-described phenomenon are taken. As will be described in detail later, it has also been found that when the columns are arranged as shown in FIG. 6, the range of wind turbulence caused by each column on the two ultrasonic propagation paths is relatively large.
そこで本発明の目的は、上記背景技術の実情に鑑み、支柱が風速に及ぼす影響を最小限に留めて測定精度の更なる向上を図った反射型超音波風速計を提供することにある。 Accordingly, an object of the present invention is to provide a reflection type ultrasonic anemometer in which the measurement accuracy is further improved by minimizing the influence of the support on the wind speed in view of the actual situation of the background art.
本発明による2次元超音波風速計は、3個の超音波素子と、これらの超音波素子を、各超音波素子の中心が正三角形の3個の頂点のそれぞれに一致するように保持した保持面と、保持面と対向して配置された反射板と、保持面から突出し、反射板を保持面に対向させて支持する3本の支柱とを有する。 The two-dimensional ultrasonic anemometer according to the present invention holds three ultrasonic elements and holds these ultrasonic elements so that the center of each ultrasonic element coincides with each of the three vertices of an equilateral triangle. A reflecting plate disposed opposite to the holding surface, and three support columns protruding from the holding surface and supporting the reflecting plate so as to face the holding surface.
さらに、支柱は、保持面の中心から見て前記超音波素子よりも外側位置に配置され、かつ、支柱は、3個の超音波素子の中心を結んでできる正三角形のそれぞれの辺から当該辺に垂直な線を当該辺に対向する正三角形の各頂点に向けて延ばし、さらに当該頂点を経て延長した線上の位置に配置されている。 Further, struts, wherein when viewed from a center of the holding surface is located outside position than the ultrasonic element, and struts, the sides of three respective sides of the equilateral triangle formed by connecting the centers of the ultrasonic element It is arranged at a position on the side extending toward each vertex of an equilateral triangle opposite the further extended through the vertex line of the line perpendicular to.
本発明によれば、支柱が風速に及ぼす影響を最小限に留めて測定精度の更なる向上を図ることができる。 According to the present invention, it is possible to further improve the measurement accuracy by minimizing the influence of the column on the wind speed.
以下、本発明の実施の形態について図面を参照して説明する。尚、図6に示した従来装置と同じ構成部材には同一の符号を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same components as those in the conventional apparatus shown in FIG.
図1は本発明の一実施例による反射型超音波風速計の構成を示しており、(A)は正面図、(B)は平面図である。 FIG. 1 shows the configuration of a reflective ultrasonic anemometer according to an embodiment of the present invention, in which (A) is a front view and (B) is a plan view.
図1(B)に示すように、円柱形状の保持体6の先端面である保持面4に、3個の超音波送受波器(電気音響変換素子等の超音波素子)1,2,3が、それぞれの中心1a,2a,3aを二点鎖線で示す正三角形の3個の頂点のそれぞれに一致させるように配置されている。
As shown in FIG. 1B, three ultrasonic transducers (ultrasound elements such as electroacoustic transducers) 1, 2, 3 are provided on the holding surface 4 which is the front end surface of the cylindrical holding body 6. Are arranged so that the
図1(A)に示すように、保持面4の周辺部分から3本の支柱7が上方に突出されており、それぞれの先端には、保持面4とほぼ同一径の反射板5が保持されている。反射板5は3本の支柱7により保持面4と平行な状態で対向させて支持されている。なお、吹上げ風などが心配な場合は、反射板5のうち、音波の反射に使用しない部分をくり貫くなどの対策がとられてもよい。
As shown in FIG. 1A, three
各支柱7は、保持面4の中心から見て超音波送受波器1,2,3よりも外側位置であって、超音波送受波器1,2,3のそれぞれ一定の近傍位置に配置されている。特に、支柱7は、各超音波送受波器1,2,3の中心1a,2a,3aを結んでできる正三角形の夫々の辺から当該辺に対向する正三角形の各頂点を通って延びるそれぞれの垂直線上(計3本;一点鎖線で図示。)の位置に配置されている。
Each
各送受波器と風速計本体の演算処理部との間は保持体6の内部を通して延長される図示しないケーブルによって相互に接続されている。 Each transducer is connected to the operation processing unit of the anemometer body by a cable (not shown) extending through the inside of the holding body 6.
上記構成によれば、隣り合う送受波器1,2間で超音波が反射板Rとの間で斜め上下方向に送受信される。これと同様に、隣り合う送受波器2,3間および送受波器3,1間でも反射板5との間に斜め上下方向の超音波の伝播経路が形成される。このような反射型の超音波風速計では、背景技術の欄で説明したように、各超音波送受波器間を結ぶ線上の風速成分が検出される。
According to the said structure, an ultrasonic wave is transmitted / received between the reflectors R in the diagonal up-down direction between the transmitter /
上記保持面4と反射板5の間での斜め上下方向の超音波伝播経路を水平面内に投影すると、図2で示すように、それらの超音波伝播経路(図中の二点鎖線)は送受波器1,2,3のそれぞれの中心1a,2a,3aを三頂点のそれぞれとする正三角形の三辺と一致する。
When an oblique and vertical ultrasonic wave propagation path between the holding surface 4 and the reflecting
ここで、送受波器の対(1,2)によって検出される風速の水平成分をA、送受波器の対(2,3)によって検出される風速の水平成分をB,送受波器の対(3,1)によって検出される風速の水平成分をCと定義する。更に、この水平面内に、図示のように、互いに直交するx軸とy軸を定義する。 Here, the horizontal component of the wind speed detected by the transducer pair (1, 2) is A, the horizontal component of the wind speed detected by the transducer pair (2, 3) is B, and the transducer pair. The horizontal component of the wind speed detected by (3, 1) is defined as C. Further, in the horizontal plane, an x axis and a y axis that are orthogonal to each other are defined as shown in the figure.
算定する風速V,風速B,風速Cのx軸,y軸成分をそれぞれ(Vx,Vy),(Bx,By),(Cx,Cy)とおけば、理想的には、次式の関係が成立する。 If the x-axis and y-axis components of the calculated wind speed V, wind speed B, and wind speed C are (Vx, Vy), (Bx, By), and (Cx, Cy), respectively, To establish.
Vx=A=−Bx=−Cx ・・・(1)
Vy=By=−Cy ・・・(2)
しかしながら、風速A,B,Cは同一箇所の風速ではないため風速の瞬間的かつ空間的な分布から、あるいは測定誤差から、(1)式、(2)式は必ず成立するとは限らない。
Vx = A = −Bx = −Cx (1)
Vy = By = −Cy (2)
However, since the wind speeds A, B, and C are not the same wind speed, the expressions (1) and (2) are not necessarily satisfied from the instantaneous and spatial distribution of the wind speed or from the measurement error.
そこで、一例として、(1)式,(2)式の各辺の風速成分を単純平均することによって平均化した風速成分を次式のように定義する。 Therefore, as an example, a wind speed component averaged by simply averaging the wind speed components on each side of the formulas (1) and (2) is defined as the following formula.
Vx=(A−Bx−Cx)/3 ・・・(3)
Vy=(By−Cy)/2 ・・・(4)
更に、Bx=Bcos60°=B/2、Cx=Ccos 60°=C/2、By=Bcos30° =(√3/2)B、Cy=Ccos 30° =(√3/2)C を(1)式,(2)式に代入すると、次式を得る。
Vx = (A−Bx−Cx) / 3 (3)
Vy = (By-Cy) / 2 (4)
Furthermore, Bx = Bcos 60 ° = B / 2, Cx = Ccos 60 ° = C / 2, By = Bcos 30 ° = (√3 / 2) B, Cy = Ccos 30 ° Substituting = (√3 / 2) C into the formulas (1) and (2), the following formula is obtained.
Vx=(2A−B−C)/6 ・・・(5)
Vy=(B−C)(√3/4) ・・・(6)
3個の超音波送受波器の3種類の組合せによって検出した風速成分A,B,Cに基づき(5)式,(6)式に従って、平面内の風速の直交2軸成分Vx,Vyが算定される。
Vx = (2A-B-C) / 6 (5)
Vy = (BC) (√3 / 4) (6)
Based on the wind velocity components A, B, and C detected by the three combinations of the three ultrasonic transducers, the orthogonal biaxial components Vx and Vy of the wind velocity in the plane are calculated according to the equations (5) and (6). Is done.
このように、3つの超音波伝播経路における水平面内の風速A,B,Cを検出し、これらの風速A,B,CのX軸方向成分およびY軸方向成分をそれぞれ平均化することにより、測定誤差を小さくすることができる。 Thus, by detecting the wind speeds A, B, C in the horizontal plane in the three ultrasonic propagation paths, and averaging the X-axis direction component and the Y-axis direction component of these wind speeds A, B, C, respectively, Measurement error can be reduced.
さらに本発明は、各支柱7を特定の位置に設置することにより、本来の風速に対して各支柱7が及ぼす影響を最小限に留めることができ、図6の従来の反射型超音波風速計と比べて更に測定精度を高めることができる。
Furthermore, the present invention can minimize the influence of each
この効果を得るため、各支柱7が保持面4の中心から見て超音波送受波器1,2,3よりも外側位置に設置された場合には、各支柱7は超音波送受波器1,2,3のそれぞれ一定の近傍位置であって、各超音波送受波器1,2,3の中心1a,2a,3aを結んでできる正三角形の夫々の辺から当該辺に対向する正三角形の各頂点を通ってそれぞれ延びる垂直線上(計3本)の位置に配置されている。
In order to obtain this effect, when each
ここで、測定しようとする風速に対して各支柱7が及ぼす影響について、支柱7の位置が本願発明による場合と従来技術による場合とで比較した結果を述べる。
Here, the effect of each
図3は、図2に示した3個の超音波送受波器1,2,3と反射板5との間の超音波伝播経路を送受波器保持面4内に投影した図であって、超音波伝播経路(図中の二点鎖線)と、支柱による測定風速の乱れ領域(図中の斜線部)との係わり合いを表したものである。
FIG. 3 is a diagram in which the ultrasonic propagation path between the three
図3の(A1),(B1),(A2),(B2)では、第1の超音波送受波器1で送受波される2つの超音波伝播経路のみに、1つの支柱7により本来の風速V[m/s]を乱す範囲(図8参照)が及んでいる状態(以下、2パス影響状態と略す。)を示している。便宜上、これらの図には、支柱7の影響で風速が0.5%以上低下する範囲のみを示している。
In (A1), (B1), (A2), and (B2) in FIG. 3, only one ultrasonic wave is transmitted to and received by the first ultrasonic wave transmitter 1 by one
従来技術による支柱配置(図6(B)参照)によると、上記2パス影響状態が第2の超音波送受波器2に最も近い所で生じる場合の風向きは図3の(A1)に示す様になり、上記2パス影響状態が第1の超音波送受波器1に最も近い所で生じる場合の風向きは図3の(B1)に示す様になる。これら図3の(A1)及び(B1)に示すシミュレーション結果から、上記2パス影響状態が生じる風向きの範囲は、図3の(C1)に示すように29.37°であった。この事は第3の超音波送受波器3で送受波される2つの超音波伝播経路についても同じである。結局、従来技術による支柱配置の場合、常に2つの超音波伝播経路へ支柱による風の乱れが及んでしまう風向きの範囲は、支柱1本当たり約58°(29.37°+29.37°)となった。支柱7は3本有るので、全風向範囲を考慮すると約174°(=約58°×3本)となる。
According to the arrangement of struts according to the prior art (see FIG. 6B), the wind direction when the above-mentioned two-path influence state occurs closest to the second
この従来技術は、水平面内の全風向範囲(360°)に対して約174°の風向範囲で上記2パス影響状態が生じることが分かった。上記2パス影響状態が生じる風向範囲が小さくなるほど測定誤差が発生する確率は小さくなる。そこで、上記2パス影響状態を最小限に留められる3本の支柱7の配置位置を試行錯誤したところ、本発明者らは本願発明の支柱配置に至った。
It has been found that the above-mentioned two-pass influence state occurs in this conventional technique in a wind direction range of about 174 ° with respect to the entire wind direction range (360 °) in the horizontal plane. The smaller the wind direction range in which the two-pass influence state occurs, the smaller the probability that a measurement error will occur. Then, when the arrangement position of the three
本発明の支柱配置(図1(B)参照)によれば、上記2パス影響状態が第2の超音波送受波器2に最も近い所で生じる場合の風向きは図3の(A2)に示す様になり、上記2パス影響状態が第3の超音波送受波器3に最も近い所で生じる場合の風向きは図3の(B2)に示す様になる。これら図3の(A2)及び(B2)に示すシミュレーション結果から、上記2パス影響状態が生じる風向きの範囲は、図3の(C2)に示すように22.52°であった。結局、本発明による支柱配置の場合、常に2つの超音波伝播経路へ支柱による風の乱れが及んでしまう風向きの範囲は、支柱1本当たり約22°となった。支柱7は3本有るので、全風向範囲を考慮すると約66°(=約22°×3本)となる。
According to the strut arrangement of the present invention (see FIG. 1B), the wind direction when the above-mentioned two-path influence state occurs closest to the second
本願発明のように支柱を配置すると、上記2パス影響状態が生じる風向範囲が最小になるため、水平面内の全風向範囲において従来技術よりも測定誤差が小さくなった。 When the struts are arranged as in the present invention, the wind direction range in which the above-mentioned two-pass influence state occurs is minimized, so that the measurement error is smaller than in the conventional technique in the entire wind direction range in the horizontal plane.
もっとも、各支柱7の位置を保持面4の中心に対して超音波送受波器1,2,3よりも外側へ離すほど、支柱7による風速の乱れが超音波伝播経路へ及びにくくなることは当然のことであるが、本発明によれば、風速計の小型化のために支柱7を超音波伝播経路から遠ざけることが難しい場合であっても、従来装置よりも確かな測定精度を得ることができる。
Of course, as the position of each
(その他の実施例)
上記の実施例では、3本の支柱7が保持面4の中心から見て超音波送受波器1,2,3よりも外側位置に設置された場合において、支柱による風速の乱れの、風速の測定精度への影響を低減する支柱7の位置を示した。こうした目的を達成する為の支柱の位置は、上記の実施例に限られない。
(Other examples)
In the above embodiment, when the three
図4は本発明のその他の実施例による反射型超音波風速計の構成を示す平面図である。この図に示すように、円柱形状の保持体6の先端面である保持面4に、3個の超音波送受波器(電気音響変換素子等の超音波素子)1,2,3が、それぞれの中心1a,2a,3aを二点鎖線で示す正三角形の3個の頂点のそれぞれに一致させるように配置されている。
FIG. 4 is a plan view showing a configuration of a reflective ultrasonic anemometer according to another embodiment of the present invention. As shown in this figure, three ultrasonic transducers (ultrasound elements such as electroacoustic transducers) 1, 2, and 3 are respectively provided on the holding surface 4 which is the tip surface of the cylindrical holding body 6. Are arranged so that the
そして本実施例では、保持面4の中心部4aから、ステンレス鋼やモリブデンやタングステンなどの高硬度の1本の支柱7が上方に突出されており、その先端には、保持面4とほぼ同一径の反射板(不図示)が保持されている。反射板5は1本の支柱7により保持面4と平行な状態で対向させて支持されている。
In this embodiment, one
この場合、シミュレーション結果から常に2つの超音波伝播経路へ支柱による風の乱れが及んでしまう風向きの範囲は、支柱1本当たり約30°となった。支柱7は3本有るので、全風向範囲を考慮すると約90°(=約30°×3本)となる。したがって、本実施例の支柱配置においても、水平面内の全風向範囲において図6の従来技術よりも風速の測定誤差を小さくことができる。
In this case, from the simulation result, the range of the wind direction in which the turbulence by the support always reaches the two ultrasonic wave propagation paths is about 30 ° per support. Since there are three
しかし反射板5の支柱7は、図1に示した実施例のように3本均等に設けられている方がより望ましい。超音波素子の保持面4と反射板5との対向状態が安定するため、風によって反射板5が振動したり、風に反射板5が煽られて保持面4との対向位置関係が変わったりして風速測定を乱すという懸念が無くなるからである。
However, it is more desirable that the three
尚、以上説明した各実施例では、超音波送受波器の中心に立てた法線を互いに平行に保った状態で各送受波器1,2,3を保持面4に配置する構成を示した。しかしながら、各送受波器の中心に立てた法線線を前方に互いに交差するように多少傾けて配置することにより、各送受波器が反射板5の中心方向に向けて放射されるように配置する構成を採用することもできる。
In each of the embodiments described above, a configuration is shown in which the
さらに、上記の各実施例では反射板5の送受波器1,2,3側の面が保持面4と平行に形成されている場合を例示したが、保持面4から離れる方向に凸状に湾曲する反射板5が形成されていてもよい。このように反射板5を形成した場合、一の送受波器から他の送受波器へ送出された超音波が風で流されても、反射板5の音波反射面部分の傾斜角の違いによって他の送受波器に入りやすくなり、受信効率が上がる。
Further, in each of the above-described embodiments, the case where the surface of the
1,2,3 超音波送受波器
4 保持面
5 反射板
6 保持体
7 支柱
1, 2, 3 Ultrasonic transducer 4
Claims (3)
前記3個の超音波素子を、各超音波素子の中心が正三角形の3個の頂点のそれぞれに一致するように保持した保持面と、
前記保持面と対向して配置された反射板と、
前記保持面から突出し、前記反射板を前記保持面に対向させて支持する3本の支柱とを有し、
前記支柱は、前記保持面の中心から見て前記超音波素子よりも外側位置に配置され、かつ、前記支柱は、前記3個の超音波素子の中心を結んでできる正三角形のそれぞれの辺から当該辺に垂直な線を当該辺に対向する正三角形の各頂点に向けて延ばし、さらに当該頂点を経て延長した線上の位置に配置されていることを特徴とする2次元超音波風速計。 Three ultrasonic elements,
A holding surface that holds the three ultrasonic elements such that the center of each ultrasonic element coincides with each of the three vertices of an equilateral triangle;
A reflector disposed opposite the holding surface;
Three struts that protrude from the holding surface and support the reflector opposite to the holding surface;
The support column is disposed at a position outside the ultrasonic element as viewed from the center of the holding surface , and the support column is formed from each side of an equilateral triangle formed by connecting the centers of the three ultrasonic elements. extending the line perpendicular to the sides toward each vertex of an equilateral triangle opposite to the sides, two-dimensional ultrasonic anemometer that characterized that further disposed at a position on the extended lines through the vertex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010290823A JP5605704B2 (en) | 2010-12-27 | 2010-12-27 | 2D ultrasonic anemometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010290823A JP5605704B2 (en) | 2010-12-27 | 2010-12-27 | 2D ultrasonic anemometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012137417A JP2012137417A (en) | 2012-07-19 |
JP5605704B2 true JP5605704B2 (en) | 2014-10-15 |
Family
ID=46674946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010290823A Active JP5605704B2 (en) | 2010-12-27 | 2010-12-27 | 2D ultrasonic anemometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5605704B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104569484A (en) * | 2015-01-27 | 2015-04-29 | 长春建筑学院 | Multi-input multi-output array type ultrasound anemometry system and method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2540737A (en) * | 2015-07-06 | 2017-02-01 | Gill Instr Ltd | An anemometer |
CN106940384A (en) * | 2017-03-10 | 2017-07-11 | 中煤科工集团重庆研究院有限公司 | Mining ultrasonic anemoscope and wind measuring method thereof |
CN113031113A (en) * | 2021-03-05 | 2021-06-25 | 山东仁科测控技术有限公司 | Control method of ultrasonic anemorumbometer |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5917784B2 (en) * | 1977-12-26 | 1984-04-23 | 沖電気工業株式会社 | Ultrasonic flow velocity measurement method |
JPS6022741B2 (en) * | 1979-06-29 | 1985-06-04 | 株式会社東和製作所 | ultrasonic current meter |
JPS57201970U (en) * | 1981-06-19 | 1982-12-22 | ||
JPH09184848A (en) * | 1995-12-28 | 1997-07-15 | Kaijo Corp | Apparatus for measuring flow velocity distribution |
GB9607804D0 (en) * | 1996-04-13 | 1996-06-19 | F T Tech Ltd | Anemometer |
JPH10132839A (en) * | 1996-10-28 | 1998-05-22 | Kaijo Corp | Probe of ultrasonic anemometer |
-
2010
- 2010-12-27 JP JP2010290823A patent/JP5605704B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104569484A (en) * | 2015-01-27 | 2015-04-29 | 长春建筑学院 | Multi-input multi-output array type ultrasound anemometry system and method |
Also Published As
Publication number | Publication date |
---|---|
JP2012137417A (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5605704B2 (en) | 2D ultrasonic anemometer | |
US9279707B2 (en) | Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths | |
US9097567B2 (en) | Ultrasonic, flow measuring device | |
JP6192816B2 (en) | Liquid tank with ultrasonic sensor | |
JPH05506092A (en) | Improvement of ultrasonic gas/liquid flow meter | |
CN104482884A (en) | Small-angle measurement device and measurement method thereof | |
JP7021019B2 (en) | Detection system, detection device, and detection method | |
JP7006354B2 (en) | Measuring device | |
WO2024060929A1 (en) | Photoacoustic measuring device and film thickness measuring method | |
KR101169195B1 (en) | A frame for measurement of sound velocity | |
CN110108330B (en) | Water meter measuring tube and ultrasonic water meter | |
JP6093229B2 (en) | Ultrasonic flow measurement system | |
CN111238575A (en) | Composite three-hole pressure-temperature probe | |
JP7066982B2 (en) | Optical scanning device | |
JP2004264221A (en) | Ultrasonic sensor | |
JPH10132839A (en) | Probe of ultrasonic anemometer | |
JP3619160B2 (en) | Reflector antenna reception phase calibration device | |
JP3535625B2 (en) | Ultrasonic current meter | |
JPH08220127A (en) | Ultrasonic wind vane anemometer | |
JP4359892B2 (en) | Ultrasonic flaw detection method | |
JP5528507B2 (en) | Level | |
JP7102726B2 (en) | How to determine the flaw detection range of an ultrasonic flaw detector | |
US20230194561A1 (en) | Wave generator for ultrasonic air data systems | |
CN102426039B (en) | Rotary current stabilizer | |
JP5049689B2 (en) | Ultrasonic flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140814 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5605704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |