JP5604571B1 - Method for separating zirconium and hafnium and method for producing zirconium from which hafnium has been removed - Google Patents

Method for separating zirconium and hafnium and method for producing zirconium from which hafnium has been removed Download PDF

Info

Publication number
JP5604571B1
JP5604571B1 JP2013176541A JP2013176541A JP5604571B1 JP 5604571 B1 JP5604571 B1 JP 5604571B1 JP 2013176541 A JP2013176541 A JP 2013176541A JP 2013176541 A JP2013176541 A JP 2013176541A JP 5604571 B1 JP5604571 B1 JP 5604571B1
Authority
JP
Japan
Prior art keywords
hafnium
extraction
zirconium
organic phase
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013176541A
Other languages
Japanese (ja)
Other versions
JP2015036454A (en
Inventor
イ・ファヨン
チョ・ビョンウォン
イ・ジュンギ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco M Tech Co Ltd
Original Assignee
Posco M Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco M Tech Co Ltd filed Critical Posco M Tech Co Ltd
Application granted granted Critical
Publication of JP5604571B1 publication Critical patent/JP5604571B1/en
Publication of JP2015036454A publication Critical patent/JP2015036454A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

【課題】ハフニウムの選択的な抽出速度を向上させ、ハフニウムが除去されたジルコニウムを迅速かつ効率的に得ることのできる、ジルコニウムとハフニウムの分離方法及びハフニウムが除去されたジルコニウムの製造方法を提供する。
【解決手段】本発明の一実施形態によるジルコニウムとハフニウムの分離方法は、ジルコニウム、ハフニウム及び硫酸を含む水溶液と触媒とを含む抽出原液を準備する準備段階と、水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する抽出段階と、前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する分離段階とを含み、前記触媒は、ハフニウムの抽出速度を向上させる金属イオンであり、ニッケルイオン、銅イオン及びこれらの組み合わせからなる群から選択されるいずれか1つである。
【選択図】図1
A method for separating zirconium and hafnium and a method for producing zirconium from which hafnium has been removed, which can improve the selective extraction rate of hafnium and can quickly and efficiently obtain zirconium from which hafnium has been removed. .
According to one embodiment of the present invention, a method for separating zirconium and hafnium includes a preparation step of preparing an extraction stock solution containing an aqueous solution containing zirconium, hafnium and sulfuric acid and a catalyst, and the extraction stock solution and the acidic extraction which are aqueous solutions. An organic phase solution containing an agent, and selectively extracting hafnium in the extraction stock solution into the organic phase solution; and a first stirred solution that is an aqueous solution from which hafnium has been removed through the extraction step; A separation step of separating the second extraction liquid, which is an organic phase solution that has passed through the extraction step, and the catalyst is a metal ion that improves the extraction rate of hafnium, and includes nickel ions, copper ions, and combinations thereof. Any one selected from the group consisting of:
[Selection] Figure 1

Description

本発明は、D2EHPA(Di-(2-ethylhexyl) phosphoric acid)、PC88A(2-Ethylhexyl phosphonic acid mono-2-ethylhexyl ester)、M2EHPA(Mono-(2-ethylhexyl) phosphoric acid)、Cyanex272(Bis(2,4,4-trimethylpentyl) phosphinic acid)又はP−229(Di(2-ethylhexyl) phosphinic acid)などの酸性抽出剤を用いて溶媒抽出法でジルコニウムとハフニウムを分離する方法に関する。また、本発明は、異常に遅いハフニウムの抽出速度を向上させるために、触媒剤としてニッケルイオン又は銅イオンを添加すると共に、酢酸イソアミル(isoamyl acetate, C7H14O2)を有機相に添加することにより、ハフニウムの選択的な抽出速度を向上させ、ハフニウムが除去されたジルコニウムを迅速かつ効率的に得る方法に関する。 The present invention relates to D2EHPA (Di- (2-ethylhexyl) phosphoric acid), PC88A (2-Ethylhexyl phosphonic acid mono-2-ethylhexyl ester), M2EHPA (Mono- (2-ethylhexyl) phosphoric acid), Cyanex272 (Bis (2 , 4,4-trimethylpentyl) phosphinic acid) or P-229 (Di (2-ethylhexyl) phosphinic acid) and the like, the present invention relates to a method for separating zirconium and hafnium by a solvent extraction method. In addition, the present invention adds nickel ion or copper ion as a catalyst agent and isoamyl acetate (C 7 H 14 O 2 ) to the organic phase in order to improve the extraction rate of unusually slow hafnium. Thus, the present invention relates to a method for improving the selective extraction rate of hafnium and quickly and efficiently obtaining zirconium from which hafnium has been removed.

類似した物理化学的特性を有する金属であるジルコニウムとハフニウムは、中性子吸収断面積がそれぞれ0.18barnと104barnであり、特異に中性子吸収断面積の差がほぼ600倍に達することが知られている。
ジルコニウムは、高温耐食性及び高温強度に優れ、特に中性子吸収断面積が非常に小さい金属であるため、原子力発電の核燃料棒に必ず使用される素材である。それに対して、ハフニウムは、他の物性はジルコニウムと非常に類似しているが、中性子吸収断面積が非常に大きい特性を有する。従って、核燃料棒に使用される金属ジルコニウムは、ハフニウム含量が100ppm未満に制限されている。
Zirconium and hafnium, which are metals having similar physicochemical properties, have neutron absorption cross sections of 0.18 barn and 104 barn, respectively, and it is known that the difference in neutron absorption cross section reaches about 600 times. .
Zirconium is a material that must be used in nuclear fuel rods for nuclear power generation because it is a metal with excellent high-temperature corrosion resistance and high-temperature strength, and particularly a very small neutron absorption cross section. In contrast, hafnium is very similar to zirconium in other physical properties, but has a very large neutron absorption cross section. Thus, the metallic zirconium used in nuclear fuel rods is limited to a hafnium content of less than 100 ppm.

ジルコニウムとハフニウムの分離技術としては、従来より様々な方法が試みられているが、そのうち溶媒抽出法は従来の代表的な方法といえる。
水溶液中のジルコニウムとハフニウムの分離抽出に用いられる抽出剤としては、ジエチルエーテル(Diethyl Ether)、メチルイソブチルケトン(Methyl isobutyl Ketone, MIBK)、リン酸トリブチル(Tributyl Phosphate, TBP)、トリオクチルアミン(Trioctyl Amine, TOA)、塩化トリオクチルメチルアンモニウム(Trioctyl Methylammonium Chloride)など、様々な抽出剤が用いられてきた。
Various techniques have been tried to separate zirconium and hafnium from the past, and the solvent extraction method can be said to be a typical conventional method.
Extractants used for the separation and extraction of zirconium and hafnium in aqueous solutions include diethyl ether, methyl isobutyl ketone (MIBK), tributyl phosphate (Tributyl Phosphate, TBP), and trioctylamine (Trioctyl). Various extractants such as Amine, TOA and Trioctyl Methylammonium Chloride have been used.

ところが、前記抽出剤のうち実際に商品化されてジルコニウムとハフニウムの分離に適用された事例は一部に過ぎない。これは、抽出剤の価格などの経済的な問題に加え、ジルコニウムとハフニウムの分離効果の高い抽出剤が少ないからである。
従来のジルコニウムとハフニウムの溶媒抽出工程としては、MIBKを抽出剤として用いる工程と、TBPを抽出剤として用いる工程がある。
However, only a part of the extractant has been commercialized and applied to the separation of zirconium and hafnium. This is because there are few extractants with high separation effect of zirconium and hafnium in addition to economic problems such as the price of the extractant.
Conventional solvent extraction processes for zirconium and hafnium include a process using MIBK as an extractant and a process using TBP as an extractant.

しかし、ジルコニウムとハフニウムの溶媒抽出工程でMIBKを抽出剤として用いる場合、非常に安価なMIBKを用い、特に水溶液からジルコニウムよりは量がはるかに少ないハフニウムを選択的に抽出するため、抽出剤の使用量が少ないという利点はあるが、抽出する前にチオシアネート(SCN−1)イオンを水溶液に添加しなければならないため、シアン(CN)化合物による環境汚染問題を引き起こすという欠点があった。また、MIBKの水に対する溶解度が約1.8%と非常に高いため、抽出剤の損失が大きいという欠点もあった。 However, when MIBK is used as an extractant in the solvent extraction process of zirconium and hafnium, the use of an extractant is used to selectively extract hafnium, which is much less than zirconium, from an aqueous solution, especially at a very low price. Although there is an advantage that the amount is small, since thiocyanate (SCN −1 ) ions have to be added to the aqueous solution before extraction, there is a drawback in that it causes environmental pollution problems due to cyan (CN) compounds. Moreover, since the solubility of MIBK in water is as high as about 1.8%, there is a disadvantage that the loss of the extractant is large.

一方、ジルコニウムとハフニウムの溶媒抽出工程でTBPを抽出剤として用いる場合、MIBKを抽出剤として用いる場合とは異なり、シアン化合物を添加しないという利点はあるが、抽出剤の価格が高く、特に水溶液からハフニウムよりはジルコニウムを選択的に抽出するため、抽出剤の使用量が相対的に多くなるという問題があった。   On the other hand, when TBP is used as an extracting agent in the solvent extraction step of zirconium and hafnium, unlike the case where MIBK is used as an extracting agent, there is an advantage that a cyanide compound is not added, but the price of the extracting agent is high. Since zirconium was selectively extracted rather than hafnium, there was a problem that the amount of extractant used was relatively large.

そこで、本発明においては、迅速かつ効率的にハフニウムを選択的に抽出し、ハフニウムが除去されたジルコニウムを製造する方法を提示する。
本発明の目的は、D2EHPA、PC88A、M2EHPA、Cyanex272、P−229、又はこれらの組み合わせなどの抽出剤を用いて、溶媒抽出法で水溶液中のジルコニウムとハフニウムを分離する際に、異常に遅いハフニウムの抽出速度を向上させて分離工程を効果的に行う方法を提供することにある。
Therefore, in the present invention, a method for selectively extracting hafnium quickly and efficiently and producing zirconium from which hafnium has been removed is presented.
The object of the present invention is to use an extraction agent such as D2EHPA, PC88A, M2EHPA, Cyanex272, P-229, or a combination of these to extract unusually slow hafnium when separating zirconium and hafnium in an aqueous solution by a solvent extraction method. An object of the present invention is to provide a method of effectively performing a separation step by improving the extraction speed of the above.

本発明の他の目的は、触媒剤としてニッケルイオン又は銅イオンを水溶液中に添加すると共に、酢酸イソアミル(C14)を有機相に添加することにより、水溶液からのハフニウムの選択的な抽出速度を向上させ、ジルコニウムとハフニウムを効果的に分離する溶媒抽出方法を提供することにある。 Another object of the present invention is to selectively add hafnium from an aqueous solution by adding nickel ion or copper ion as a catalyst agent to the aqueous solution and adding isoamyl acetate (C 7 H 14 O 2 ) to the organic phase. An object of the present invention is to provide a solvent extraction method that improves the extraction speed and effectively separates zirconium and hafnium.

上記目的を達成するために、本発明の一実施形態によるジルコニウムとハフニウムの分離方法は、ジルコニウム、ハフニウム及び硫酸を含む水溶液と触媒とを含む抽出原液を準備する準備段階と、水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する抽出段階と、前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する分離段階とを含む。   In order to achieve the above object, a method for separating zirconium and hafnium according to an embodiment of the present invention includes a preparation step of preparing an extraction stock solution containing an aqueous solution containing zirconium, hafnium and sulfuric acid and a catalyst, and the extraction being an aqueous solution. An extraction step of stirring the stock solution and the organic phase solution containing the acidic extractant to selectively extract hafnium in the extraction stock solution into the organic phase solution, and an aqueous solution from which hafnium has been removed through the extraction step. And a separation step of separating the first agitation liquid and the second extraction liquid that is the organic phase solution that has undergone the extraction stage.

前記触媒は、ハフニウムの抽出速度を向上させる金属イオンであり、ニッケルイオン、銅イオン、及びこれらの組み合わせからなる群から選択されるいずれか1つである。   The catalyst is a metal ion that improves the extraction rate of hafnium, and is any one selected from the group consisting of nickel ions, copper ions, and combinations thereof.

前記有機相溶液は、酢酸イソアミルをさらに含んでもよい。   The organic phase solution may further include isoamyl acetate.

前記酸性抽出剤は、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC88A)、モノ(2−エチルヘキシル)リン酸(M2EHPA)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(Cyanex272)、ジ(2−エチルヘキシル)ホスフィン酸(P−229)、及びこれらの組み合わせからなる群から選択されるいずれか1つを含むものであってもよい。   The acidic extractant is di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A), mono (2-ethylhexyl) phosphoric acid (M2EHPA), bis (2,4 , 4-trimethylpentyl) phosphinic acid (Cyanex 272), di (2-ethylhexyl) phosphinic acid (P-229), and combinations thereof, may be included.

前記抽出原液中の前記硫酸の濃度は、2〜10mol/lであってもよい。   The concentration of the sulfuric acid in the extraction stock solution may be 2 to 10 mol / l.

前記抽出原液中の前記金属イオンの濃度は、0.1〜2.0g/lであってもよい。   The concentration of the metal ions in the extraction stock solution may be 0.1 to 2.0 g / l.

前記酢酸イソアミルは、0.01〜0.1vol%の範囲で前記有機相溶液に含まれてもよい。   The isoamyl acetate may be contained in the organic phase solution in a range of 0.01 to 0.1 vol%.

前記金属イオンは、ニッケル、硫酸ニッケル、硫酸ニッケル水和物、銅、硫酸銅、硫酸銅水和物、及びこれらの組み合わせからなる群から選択されるいずれか1つに由来するものであってもよい。   The metal ion may be derived from any one selected from the group consisting of nickel, nickel sulfate, nickel sulfate hydrate, copper, copper sulfate, copper sulfate hydrate, and combinations thereof. Good.

本発明の他の実施形態によるジルコニウムの製造方法は、ジルコニウム、ハフニウム及び硫酸を含む水溶液と触媒とを含む抽出原液を準備する準備段階と、水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する抽出段階と、前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する分離段階と、前記第1攪拌液からハフニウムが除去されたジルコニウムを回収する回収段階とを含む。   The method for producing zirconium according to another embodiment of the present invention includes a preparation step of preparing an extraction stock solution containing an aqueous solution containing zirconium, hafnium and sulfuric acid and a catalyst, and an organic phase containing the extraction stock solution and the acidic extractant which are aqueous solutions. The extraction step of stirring the solution and selectively extracting hafnium in the extraction stock solution into the organic phase solution, and the first stirring solution that is an aqueous solution from which hafnium has been removed through the extraction step and the extraction step A separation step of separating the second extract, which is an organic phase solution, and a recovery step of recovering zirconium from which hafnium has been removed from the first stirring solution are included.

前記触媒は、ハフニウムの抽出速度を向上させる金属イオンであり、ニッケルイオン、銅イオン、及びこれらの組み合わせからなる群から選択されるいずれか1つである。   The catalyst is a metal ion that improves the extraction rate of hafnium, and is any one selected from the group consisting of nickel ions, copper ions, and combinations thereof.

前記有機相溶液は、酢酸イソアミルをさらに含んでもよい。   The organic phase solution may further include isoamyl acetate.

前記酸性抽出剤は、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC88A)、モノ(2−エチルヘキシル)リン酸(M2EHPA)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(Cyanex272)、ジ(2−エチルヘキシル)ホスフィン酸(P−229)、及びこれらの組み合わせからなる群から選択されるいずれか1つを含むものであってもよい。   The acidic extractant is di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A), mono (2-ethylhexyl) phosphoric acid (M2EHPA), bis (2,4 , 4-trimethylpentyl) phosphinic acid (Cyanex 272), di (2-ethylhexyl) phosphinic acid (P-229), and combinations thereof, may be included.

以下、本発明をより詳細に説明する。
本発明の一実施形態によるジルコニウムとハフニウムの分離方法は、準備段階、抽出段階及び分離段階を含み、ジルコニウムと類似した物理化学的特性を有する金属であるハフニウムを迅速かつ効率的に分離する。
The present invention will be described in detail below.
A method for separating zirconium and hafnium according to an embodiment of the present invention includes a preparation stage, an extraction stage, and a separation stage, and quickly and efficiently separates hafnium, which is a metal having physicochemical properties similar to zirconium.

前記準備段階は、抽出原液を準備する段階であって、ハフニウムを含有するジルコニウムを硫酸水溶液に溶解し、それに触媒を加えて抽出原液を準備してもよく、所定量のハフニウムを含有するジルコニウム化合物を水に溶解させ、硫酸を徐々に混合し、それに触媒を加えて抽出原液を準備してもよい。   The preparation step is a step of preparing an extraction stock solution, wherein zirconium containing hafnium may be dissolved in a sulfuric acid aqueous solution, and a catalyst may be added thereto to prepare an extraction stock solution. A zirconium compound containing a predetermined amount of hafnium. May be dissolved in water, sulfuric acid may be gradually mixed, and a catalyst may be added thereto to prepare an extraction stock solution.

前記硫酸は、前記抽出原液中に2〜10mol/l含まれることが好ましい。前記抽出原液中の前記硫酸の濃度が2〜10mol/lの範囲から外れた場合は、ジルコニウムとハフニウムの分離効果が低下する。
前記水溶液中の酸成分は、実質的に硫酸を含むことが好ましい。前記水溶液中の酸成分として、塩酸又は硝酸を使用するよりも、硫酸を使用すると、ジルコニウムの選択的回収率を向上させることができる。
The sulfuric acid is preferably contained in the extraction stock solution at 2 to 10 mol / l. When the concentration of the sulfuric acid in the extraction stock solution is out of the range of 2 to 10 mol / l, the effect of separating zirconium and hafnium is lowered.
It is preferable that the acid component in the aqueous solution substantially contains sulfuric acid. When sulfuric acid is used as the acid component in the aqueous solution rather than hydrochloric acid or nitric acid, the selective recovery rate of zirconium can be improved.

前記触媒は、ニッケルイオン、銅イオン、及びこれらの組み合わせからなる群から選択されるいずれか1つの金属イオンを含む。さらに、前記触媒を前記抽出原液に加えて前記ジルコニウムとハフニウムの分離方法を行うと、酸性抽出剤を用いて前記抽出原液からジルコニウムを選択的に抽出する際に、その抽出速度が画期的に速くなる。   The catalyst includes any one metal ion selected from the group consisting of nickel ions, copper ions, and combinations thereof. Further, when the catalyst is added to the extraction stock solution and the zirconium and hafnium are separated, the extraction speed is dramatically reduced when zirconium is selectively extracted from the extraction stock solution using an acidic extractant. Get faster.

前記触媒は、前記金属イオンを前記抽出原液に供給できるものであればいずれも適用可能であり、前記抽出段階で硫酸水溶液を使用することを考慮すると、前記金属イオンとしては、ニッケル、硫酸ニッケル、硫酸ニッケル水和物、銅、硫酸銅、硫酸銅水和物、及びこれらの組み合わせからなる群から選択されるいずれか1つを適用することが好ましい。
前記抽出原液中の前記金属イオンの濃度は、0.1〜2.0g/lであることが好ましく、前記金属イオンの濃度が0.1g/l未満の場合は、抽出速度向上効果が低下し、2.0g/lを超える場合は、薬品消費量が不要に増加する。
Any catalyst can be used as long as it can supply the metal ions to the extraction stock solution. In consideration of using an aqueous sulfuric acid solution in the extraction step, the metal ions include nickel, nickel sulfate, It is preferable to apply any one selected from the group consisting of nickel sulfate hydrate, copper, copper sulfate, copper sulfate hydrate, and combinations thereof.
The concentration of the metal ions in the extraction stock solution is preferably 0.1 to 2.0 g / l. When the concentration of the metal ions is less than 0.1 g / l, the effect of improving the extraction rate is reduced. If it exceeds 2.0 g / l, the chemical consumption increases unnecessarily.

前記有機相溶液は、酢酸イソアミルをさらに含んでもよい。前記酢酸イソアミルは、前記有機相溶液に含まれ、水溶液と有機相が接触する界面での化学的特性を変化させることにより、ハフニウムの抽出速度をより促進させる。   The organic phase solution may further include isoamyl acetate. The isoamyl acetate is contained in the organic phase solution, and further accelerates the hafnium extraction rate by changing the chemical characteristics at the interface where the aqueous solution and the organic phase are in contact.

すなわち、界面特性(例えば、界面張力)の変化は、ハフニウムの抽出が結局は界面で発生することから、抽出速度に非常に重要な影響を及ぼす。つまり、前記有機相溶液は、酢酸イソアミルをさらに含む場合、前記水溶液中に含まれる金属イオンの触媒作用に加え、水溶液と有機相が接触する界面の特性を変化させ、究極的にはハフニウムの抽出速度を大きく促進させる。   That is, changes in interfacial properties (eg, interfacial tension) have a very important effect on the extraction rate because hafnium extraction eventually occurs at the interface. That is, when the organic phase solution further contains isoamyl acetate, in addition to the catalytic action of the metal ions contained in the aqueous solution, the characteristics of the interface between the aqueous solution and the organic phase are changed, and ultimately the extraction of hafnium is performed. Increase speed significantly.

前記酢酸イソアミルは、前記有機相溶液全体に対して0.01〜0.1vol%の範囲で添加することが好ましい。前記酢酸イソアミルの添加量が前記範囲より少なければ、ハフニウムの抽出速度向上効果が不十分となり、前記範囲より多ければ、薬品コストが非常に高くなる。   The isoamyl acetate is preferably added in the range of 0.01 to 0.1 vol% with respect to the entire organic phase solution. If the amount of isoamyl acetate added is less than the above range, the effect of improving the extraction rate of hafnium will be insufficient, and if it is more than the above range, the chemical cost will be very high.

前記抽出段階は、水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する段階である。
前記酸性抽出剤としては、例えば、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC88A)、モノ(2−エチルヘキシル)リン酸(M2EHPA)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(Cyanex272)、ジ(2−エチルヘキシル)ホスフィン酸(P−229)、及びこれらの組み合わせからなる群から選択されるいずれか1つを含む酸性抽出剤を使用してもよい。
The extraction step is a step of stirring the extraction stock solution that is an aqueous solution and an organic phase solution containing an acidic extractant to selectively extract hafnium in the extraction stock solution into the organic phase solution.
Examples of the acidic extractant include di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A), mono (2-ethylhexyl) phosphoric acid (M2EHPA), bis ( An acidic extractant comprising any one selected from the group consisting of 2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272), di (2-ethylhexyl) phosphinic acid (P-229), and combinations thereof. May be used.

前記有機相溶液は、前記酸性抽出剤に希釈剤をさらに含むものであってもよく、前記希釈剤は、有機溶媒であってもよい。前記希釈剤としては、灯油(ケロシン)などが使用されるが、これに限定されるものではなく、前記抽出反応を妨げず、前記酸性抽出剤とよく混合されて溶媒抽出段階で前記有機相溶液に含まれるものであればいずれも適用可能である。また、前記希釈剤と前記酸性抽出剤との混合比率は、前記抽出反応の効率を阻害しなければ、制限なく使用することができる。   The organic phase solution may further include a diluent in the acidic extractant, and the diluent may be an organic solvent. As the diluent, kerosene or the like is used, but is not limited to this, and does not interfere with the extraction reaction, and is well mixed with the acidic extractant and the organic phase solution in the solvent extraction step. Any of those included in the above can be applied. Moreover, the mixing ratio of the diluent and the acidic extractant can be used without limitation as long as it does not inhibit the efficiency of the extraction reaction.

前記抽出段階の攪拌により、前記抽出原液中のジルコニウムは、少量のみ前記有機相溶液に抽出され、残りはそのまま水溶液に残留し、前記抽出原液中のハフニウムは、ほぼ全量抽出される。従って、前述した方法により、ジルコニウムとハフニウムを非常に効果的に分離することができる。   By the stirring in the extraction step, only a small amount of zirconium in the extraction stock solution is extracted into the organic phase solution, the rest remains in the aqueous solution as it is, and almost all of the hafnium in the extraction stock solution is extracted. Therefore, zirconium and hafnium can be separated very effectively by the method described above.

前記抽出段階における抽出温度は、特に限定されないが、必要であれば、反応器の温度を昇温して抽出段階を行ってもよい。   The extraction temperature in the extraction stage is not particularly limited, but if necessary, the extraction stage may be performed by increasing the temperature of the reactor.

ジルコニウムとハフニウムの分離効果を向上させるために、抽出装置を用いてもよく、例えばミキサセトラ(多段槽型抽出器)などの抽出装置を用いて前記分離方法を多段に適用してもよく、抽出温度を昇温して適用してもよい。しかし、本発明においては、前述した抽出装置や抽出温度に限定されることなく、前述したジルコニウムとハフニウムの分離方法を適用することができる。   In order to improve the separation effect of zirconium and hafnium, an extraction device may be used. For example, the separation method may be applied in multiple stages using an extraction device such as a mixer setra (multi-stage tank type extractor), and an extraction temperature may be used. May be applied at an elevated temperature. However, in the present invention, the above-described separation method of zirconium and hafnium can be applied without being limited to the above-described extraction apparatus and extraction temperature.

図2は後述する比較例1によるハフニウムの抽出速度を示すグラフであり、図2を参照すると、比較例1によれば、ハフニウムの抽出量が平衡に達するまで、激しく攪拌し続けなければならない抽出時間が約90分以上かかることを確認することができる。
しかし、このように長い抽出時間を必要とする分離方法を適用して十分な抽出率(抽出効率)を得るためには、反応器内の滞留時間を長くしなければならず、抽出のための反応器(例えば、攪拌機)を大きく製作しなければならず、結局はコストが増加して経済性の低下につながる恐れがある。
FIG. 2 is a graph showing the extraction rate of hafnium according to Comparative Example 1, which will be described later. Referring to FIG. 2, according to Comparative Example 1, the extraction must be continued vigorously until the amount of hafnium extracted reaches equilibrium. It can be confirmed that it takes about 90 minutes or more.
However, in order to obtain a sufficient extraction rate (extraction efficiency) by applying a separation method that requires such a long extraction time, the residence time in the reactor must be increased. A large reactor (for example, a stirrer) must be manufactured, which may eventually increase the cost and reduce the economy.

一方、前述した本発明の分離方法によれば、触媒を用いない方法を適用した場合に処理できる時間当たりの処理量が僅かであるのとは異なり、ハフニウムの抽出速度が向上し、短時間で抽出の平衡値に達するため、このような問題を解決することができる。
つまり、触媒を用いる本発明の一実施形態によるジルコニウムとハフニウムの分離方法は、触媒を用いない方法と比較すると、同じ条件で実験を行った場合、抽出量の平衡値に達する時間が約10倍速いため、約10分の抽出時間を適用しても十分なハフニウムの抽出効果が得られ、これは触媒を用いない方式と明確に区別される特徴である。
On the other hand, according to the separation method of the present invention described above, the extraction rate of hafnium is improved in a short time, unlike the case where the amount of treatment per hour that can be treated is small when the method that does not use a catalyst is applied. Such a problem can be solved because the equilibrium value of the extraction is reached.
In other words, the method for separating zirconium and hafnium according to an embodiment of the present invention using a catalyst, when compared with a method not using a catalyst, takes about 10 times the time to reach the equilibrium value of the extraction amount when the experiment is performed under the same conditions. Therefore, even if an extraction time of about 10 minutes is applied, a sufficient hafnium extraction effect can be obtained, which is a feature that is clearly distinguished from a method using no catalyst.

前記分離段階は、前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する段階である。
前記水溶液である第1攪拌液と前記有機相溶液である第2抽出液とを分離する方法は、特に限定されるものではなく、通常の溶液抽出法で水溶液相と有機相とを分離する方法を適用すればよい。
The separation step is a step of separating a first stirring liquid that is an aqueous solution from which hafnium has been removed through the extraction stage and a second extraction liquid that is an organic phase solution that has undergone the extraction stage.
The method for separating the first stirring liquid, which is the aqueous solution, and the second extraction liquid, which is the organic phase solution, is not particularly limited, and a method for separating the aqueous phase and the organic phase by an ordinary solution extraction method. Should be applied.

一般に、地殻中に分布するジルコニウムの原鉱は約0.5〜2wt%のハフニウムを含有し、ジルコニウムとハフニウムとは物理化学的特性が非常に類似しており、これらを分離することが非常に難しい。しかし、前述したジルコニウムとハフニウムの分離方法を適用することにより、溶液抽出法という簡単な方式でジルコニウムに微量含有されているハフニウムを抽出することができ、抽出率と抽出速度に優れていてジルコニウムからハフニウムを迅速かつ効率的に除去することができる。   In general, zirconium ores distributed in the earth's crust contain about 0.5-2 wt% hafnium, and zirconium and hafnium are very similar in physicochemical properties, and it is very difficult to separate them. difficult. However, by applying the above-described method for separating zirconium and hafnium, it is possible to extract hafnium contained in a trace amount in zirconium by a simple method called solution extraction method, which is excellent in extraction rate and extraction rate and from zirconium. Hafnium can be removed quickly and efficiently.

本発明の他の実施形態によるジルコニウムの製造方法は、準備段階、抽出段階、分離段階及び回収段階を含み、ハフニウムが除去されたジルコニウムを迅速に製造することができる。
本発明の他の実施形態における準備段階、抽出段階及び分離段階については、本発明の一実施形態の説明と重複するので省略する。
A method for producing zirconium according to another embodiment of the present invention includes a preparation stage, an extraction stage, a separation stage, and a recovery stage, and can quickly produce zirconium from which hafnium has been removed.
Since the preparation stage, the extraction stage, and the separation stage in other embodiments of the present invention overlap with those of the embodiment of the present invention, they are omitted.

前記回収段階は、前記第1攪拌液からハフニウムが除去されたジルコニウムを回収する段階であって、ジルコニウムを含む水溶液(第1攪拌液)から意図する形態のジルコニウムが得られる方法であればいずれも適用可能である。また、必要であれば、触媒として使用した金属イオンを前記第1攪拌液から除去する段階をさらに行ってもよい。
このようにして、ハフニウムが十分に除去されたジルコニウムを比較的簡単な方式で、短時間で提供することができる。
The recovery step is a step of recovering zirconium from which hafnium has been removed from the first stirring liquid, and any method can be used as long as zirconium in the intended form can be obtained from an aqueous solution containing zirconium (first stirring liquid). Applicable. If necessary, a step of removing the metal ions used as the catalyst from the first stirring liquid may be further performed.
In this way, zirconium from which hafnium has been sufficiently removed can be provided in a short time in a relatively simple manner.

本発明によるジルコニウムとハフニウムの分離方法及びハフニウムが除去されたジルコニウムの製造方法においては、D2EHPA、PC88A、M2EHPA、Cyanex272、P−229などの酸性抽出剤を単独又は混合使用してハフニウムを選択的に抽出することにより、通常の他の金属の溶媒抽出速度に比べて異常に遅いハフニウムの抽出速度を画期的に向上させることができる。   In the method for separating zirconium from hafnium and the method for producing zirconium from which hafnium has been removed according to the present invention, hafnium is selectively used by using acidic extractants such as D2EHPA, PC88A, M2EHPA, Cyanex272, and P-229 alone or in combination. By extracting, the extraction rate of hafnium that is abnormally slow compared to the usual solvent extraction rate of other metals can be dramatically improved.

本発明の実施例1における、水溶液相にニッケルイオンを添加して有機相溶液に酢酸イソアミルを添加する方式でジルコニウムからハフニウムを抽出する場合の攪拌時間による抽出率(%)を示すグラフである。In Example 1 of this invention, it is a graph which shows the extraction rate (%) by the stirring time in the case of extracting hafnium from zirconium by the system which adds nickel ion to an aqueous phase and adds isoamyl acetate to an organic phase solution. 本発明の比較例1における、水溶液相にニッケルイオンや銅イオンを添加せず有機相溶液に酢酸イソアミルを添加しない方式でジルコニウムからハフニウムを抽出する場合の攪拌時間による抽出率(%)を示すグラフである。The graph which shows the extraction rate (%) by the stirring time in the case of extracting hafnium from zirconium by the system which does not add nickel ion or copper ion to the aqueous phase and does not add isoamyl acetate to the organic phase solution in Comparative Example 1 of the present invention. It is.

以下、本発明の属する技術の分野における通常の知識を有する者が本発明を容易に実施できるように、添付図面を参照して本発明の実施例を詳細に説明する。ただし、本発明は、ここに説明する実施例に限定されるものではなく、様々な形態で実現することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily implement the present invention. However, the present invention is not limited to the embodiments described here, and can be realized in various forms.

(実施例1)
ジルコニウム17,500mg/l及びハフニウム148.5mg/lを含む硫酸濃度2モルの水溶液1リットルに、硫酸ニッケル(NiSO)をニッケルイオン含量が0.1g/lとなるように添加し、抽出原液を製造した。
Example 1
Nickel sulfate (NiSO 4 ) was added to 1 liter of an aqueous solution of 2 mol of sulfuric acid containing zirconium 17,500 mg / l and hafnium 148.5 mg / l so that the nickel ion content would be 0.1 g / l, and the extraction stock solution Manufactured.

そして、D2EHPAを0.1リットル、灯油(希釈剤)を0.9リットル混合した有機相溶液(第1抽出液)1リットルに、酢酸イソアミルを0.1vol%となるように添加した。前記有機相溶液と水溶液である前記抽出原液1リットルを反応槽に入れ、常温で水溶液(抽出原液)と有機相溶液(第1抽出液)とを攪拌機で激しく攪拌した。
前記攪拌過程で前記水溶液(抽出原液)中のハフニウムが前記有機相溶液に選択的に抽出されるようにした。約10分間攪拌を続けた後に攪拌を止め、前記抽出原液から抽出されたハフニウムを含む有機相溶液(第2抽出液)と前記抽出原液からハフニウムが選択的に除去された水溶液(第1攪拌液)を製造し、それらを相分離させた。
Then, isoamyl acetate was added to 0.1 vol% to 1 liter of an organic phase solution (first extract) in which 0.1 liter of D2EHPA and 0.9 liter of kerosene (diluent) were mixed. The organic phase solution and 1 liter of the extraction stock solution as an aqueous solution were placed in a reaction vessel, and the aqueous solution (extraction stock solution) and the organic phase solution (first extraction solution) were vigorously stirred with a stirrer at room temperature.
In the stirring process, hafnium in the aqueous solution (extraction stock solution) was selectively extracted into the organic phase solution. After stirring for about 10 minutes, the stirring is stopped, and an organic phase solution containing hafnium extracted from the extraction stock solution (second extraction solution) and an aqueous solution from which hafnium has been selectively removed from the extraction stock solution (first stirring solution) ) And were phase separated.

このように相分離により得られた水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量をICP分光光度計(Perkin Elmer社製,Optima 5300 DV)により分析した。また、前記水溶液(抽出原液)と前記有機相溶液(第1抽出液)とを攪拌する抽出時間を変化させて前記水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量を測定し、前記抽出原液から除去されたハフニウムの比率(%)を図1に示す。   Thus, the content of zirconium and hafnium in the aqueous solution (first stirring liquid) obtained by phase separation was analyzed by an ICP spectrophotometer (manufactured by Perkin Elmer, Optima 5300 DV). Further, the extraction time for stirring the aqueous solution (extraction stock solution) and the organic phase solution (first extraction solution) is changed to measure the contents of zirconium and hafnium in the aqueous solution (first stirring solution), and the extraction The ratio (%) of hafnium removed from the stock solution is shown in FIG.

なお、前記10分間攪拌した実施例1の測定結果は、ジルコニウム16,300mg/l、ハフニウム0.9mg/lであった。
すなわち、前記抽出原液に含まれていたジルコニウムは93.1%(=16,300/17,500)がそのまま前記水溶液(第1攪拌液)に残留し、前記抽出原液に含まれていたハフニウムは99.4%(=(148.5−0.9)/148.5)が前記有機相溶液(第2抽出液)に抽出された。
つまり、抽出剤との攪拌及び相分離という簡単な方法と、約10分間の攪拌という非常に短い抽出時間にもかかわらず、前記ジルコニウムとハフニウムの分離方法を用いた場合、ジルコニウムとハフニウムとを非常に効果的に分離することができ、このようにしてジルコニウムに含有されていたハフニウムが選択的に除去されることにより、ハフニウムの含量が非常に少ないジルコニウムが製造できることを確認した。
The measurement results of Example 1 stirred for 10 minutes were zirconium 16,300 mg / l and hafnium 0.9 mg / l.
That is, 93.1% (= 16,300 / 17,500) of zirconium contained in the extraction stock solution remains in the aqueous solution (first stirring solution) as it is, and hafnium contained in the extraction stock solution is 99.4% (= (148.5-0.9) /148.5) was extracted into the organic phase solution (second extract).
In other words, despite the simple method of stirring and phase separation with the extractant and the very short extraction time of about 10 minutes of stirring, the zirconium and hafnium separation method is extremely It was confirmed that zirconium having a very low content of hafnium can be produced by selectively removing the hafnium contained in the zirconium in this manner.

(実施例2)
ジルコニウム17,500mg/l及びハフニウム148.5mg/lを含む硫酸濃度10モルの水溶液1リットルに、硫酸銅(CuSO)を銅イオン含量が2.0g/lとなるように添加し、抽出原液を製造した。
(Example 2)
Copper sulfate (CuSO 4 ) was added to 1 liter of an aqueous solution containing 10 mol of sulfuric acid containing zirconium (17,500 mg / l) and hafnium (148.5 mg / l) so that the copper ion content was 2.0 g / l. Manufactured.

そして、D2EHPAを0.02リットル、PC88Aを0.02リットル、M2EHPAを0.02リットル、Cyanex272を0.02リットル、P−229を0.02リットル、灯油を0.9リットル混合した有機相溶液(第1抽出液)1リットルに、酢酸イソアミルを0.01vol%となるように添加した。前記有機相溶液1リットルと水溶液である前記抽出原液1リットルを反応槽に入れ、常温で水溶液(抽出原液)と有機相溶液(第1抽出液)とを攪拌機で激しく攪拌した。
前記攪拌過程で前記水溶液(抽出原液)中のハフニウムが前記有機相溶液に選択的に抽出されるようにした。約10分間攪拌を続けた後に攪拌を止め、前記抽出原液から抽出されたハフニウムを含む有機相溶液(第2抽出液)と前記抽出原液からハフニウムが選択的に除去された水溶液(第1攪拌液)を製造し、それらを相分離させた。
An organic phase solution containing 0.02 liters of D2EHPA, 0.02 liters of PC88A, 0.02 liters of M2EHPA, 0.02 liters of Cyanex272, 0.02 liters of P-229, and 0.9 liters of kerosene (First extract) Isoamyl acetate was added to 1 liter so as to be 0.01 vol%. 1 liter of the organic phase solution and 1 liter of the extraction stock solution as an aqueous solution were placed in a reaction vessel, and the aqueous solution (extraction stock solution) and the organic phase solution (first extraction solution) were vigorously stirred with a stirrer at room temperature.
In the stirring process, hafnium in the aqueous solution (extraction stock solution) was selectively extracted into the organic phase solution. After stirring for about 10 minutes, the stirring is stopped, and an organic phase solution containing hafnium extracted from the extraction stock solution (second extraction solution) and an aqueous solution from which hafnium has been selectively removed from the extraction stock solution (first stirring solution) ) And were phase separated.

このように相分離により得られた水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量をICP分光光度計(Perkin Elmer社製,Optima 5300 DV)により分析した。その結果、前記水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量は、それぞれ16,900mg/l、1.2mg/lであった。
すなわち、前記抽出原液に含まれていたジルコニウムは96.6%(=16,900/17,500)がそのまま前記水溶液(第1攪拌液)に残留し、前記抽出原液に含まれていたハフニウムは99.2%(=(148.5−1.2)/148.5)が前記有機相溶液(第2抽出液)に抽出された。つまり、前記ジルコニウムとハフニウムの分離方法を用いた場合、ジルコニウムとハフニウムを非常に効果的に分離することができ、ハフニウムの含量が非常に少ないジルコニウムを製造することができた。
Thus, the content of zirconium and hafnium in the aqueous solution (first stirring liquid) obtained by phase separation was analyzed by an ICP spectrophotometer (manufactured by Perkin Elmer, Optima 5300 DV). As a result, the contents of zirconium and hafnium in the aqueous solution (first stirring liquid) were 16,900 mg / l and 1.2 mg / l, respectively.
That is, 96.6% (= 16,900 / 17,500) of zirconium contained in the extraction stock solution remains in the aqueous solution (first stirring solution) as it is, and hafnium contained in the extraction stock solution is 99.2% (= (148.5-1.2) /148.5) was extracted into the organic phase solution (second extract). That is, when the method for separating zirconium and hafnium was used, zirconium and hafnium could be separated very effectively, and zirconium having a very low hafnium content could be produced.

(比較例1)
ジルコニウム17,500mg/l及びハフニウム148.5mg/lを含む硫酸濃度2モルの水溶液1リットルを、ニッケルイオンや銅イオンを添加せずに製造した。
(Comparative Example 1)
One liter of an aqueous solution containing 2500 moles of sulfuric acid containing zirconium 17,500 mg / l and hafnium 148.5 mg / l was prepared without adding nickel ions or copper ions.

そして、D2EHPAを0.1リットル、灯油を0.9リットル混合した有機相溶液(第1抽出液)1リットルを製造した。前記製造されたジルコニウム水溶液(抽出原液)1リットルと前記有機相溶液(第1抽出液)1リットルを反応槽に入れ、実施例1と同様に、常温で水溶液(抽出原液)と有機相溶液(第1抽出液)とを攪拌機で激しく攪拌しながら10分間水溶液から有機相溶液にハフニウムを選択的に抽出した。
前記攪拌過程で前記水溶液(抽出原液)中のハフニウムが前記有機相溶液に選択的に抽出されるようにし、前記抽出過程が完了した水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量をICP分光光度計(Perkin Elmer社製,Optima 5300 DV)により分析した。また、前記水溶液(抽出原液)と前記有機相溶液(第1抽出液)とを攪拌する抽出時間を変化させて前記水溶液(第1攪拌液)中のジルコニウム及びハフニウムの含量を測定し、前記抽出原液から除去されたハフニウムの比率(%)を図2に示す。
Then, 1 liter of organic phase solution (first extract) was prepared by mixing 0.1 liter of D2EHPA and 0.9 liter of kerosene. 1 liter of the produced zirconium aqueous solution (extraction stock solution) and 1 liter of the organic phase solution (first extraction solution) were placed in a reaction vessel, and the aqueous solution (extraction stock solution) and the organic phase solution ( Hafnium was selectively extracted from the aqueous solution into the organic phase solution for 10 minutes while vigorously stirring the first extract).
In the stirring process, hafnium in the aqueous solution (extraction stock solution) is selectively extracted into the organic phase solution, and the contents of zirconium and hafnium in the aqueous solution (first stirring liquid) after the extraction process is completed are determined by ICP. Analysis was performed using a spectrophotometer (manufactured by Perkin Elmer, Optima 5300 DV). Further, the extraction time for stirring the aqueous solution (extraction stock solution) and the organic phase solution (first extraction solution) is changed to measure the contents of zirconium and hafnium in the aqueous solution (first stirring solution), and the extraction The ratio (%) of hafnium removed from the stock solution is shown in FIG.

なお、前記10分間攪拌した比較例1の測定結果は、ジルコニウム16,200mg/l、ハフニウム73.8mg/lであった。
すなわち、前記抽出原液に含まれていたジルコニウムは92.6%(=16,200/17,500)がそのまま前記水溶液(第1攪拌液)に残留し、実施例1とほぼ同じ結果を示すが、前記抽出原液に含まれていたハフニウムは50.3%(=(148.5−73.8)/148.5)のみ前記有機相溶液(第2抽出液)に抽出され、99.4%が前記有機相溶液(第2抽出液)に抽出された実施例1の結果と比較して大きな差があった。つまり、触媒をさらに使用するか否かによってジルコニウムとハフニウムの分離効果が大きく異なることが確認された。
The measurement results of Comparative Example 1 stirred for 10 minutes were zirconium 16,200 mg / l and hafnium 73.8 mg / l.
That is, 92.6% (= 16,200 / 17,500) of zirconium contained in the extraction stock solution remains in the aqueous solution (first stirring solution) as it is, and shows almost the same result as in Example 1. Only 50.3% (= (148.5-73.8) /148.5) of hafnium contained in the extraction stock solution was extracted into the organic phase solution (second extract), and 99.4% Compared with the result of Example 1 extracted into the organic phase solution (second extract), there was a large difference. That is, it was confirmed that the separation effect of zirconium and hafnium varies greatly depending on whether or not the catalyst is further used.

以上、本発明の好ましい実施例を詳細に説明したが、本発明の権利範囲はこれに限定されるものではなく、特許請求の範囲で定義される本発明の様々な変形や改良形態も本発明の権利範囲に含まれる。   The preferred embodiments of the present invention have been described in detail above, but the scope of the present invention is not limited thereto, and various modifications and improvements of the present invention defined in the claims are also included in the present invention. Is included in the scope of rights.

Claims (10)

ジルコニウム、ハフニウム及び硫酸を含む水溶液と触媒とを含む抽出原液を準備する準備段階と、
水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する抽出段階と、
前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する分離段階とを含み、
前記触媒は、ハフニウムの抽出速度を向上させる金属イオンであり、ニッケルイオン、銅イオン、及びこれらの組み合わせからなる群から選択されるいずれか1つである、ジルコニウムとハフニウムの分離方法。
A preparation stage of preparing an extraction stock solution containing an aqueous solution containing zirconium, hafnium and sulfuric acid and a catalyst;
An extraction step of stirring the extraction stock solution that is an aqueous solution and an organic phase solution containing an acidic extractant to selectively extract hafnium in the extraction stock solution into the organic phase solution;
A separation step of separating a first stirring liquid that is an aqueous solution from which hafnium has been removed through the extraction step and a second extraction liquid that is an organic phase solution that has undergone the extraction step;
The method for separating zirconium and hafnium, wherein the catalyst is a metal ion that improves the extraction rate of hafnium, and is any one selected from the group consisting of nickel ions, copper ions, and combinations thereof.
前記有機相溶液は、酢酸イソアミルをさらに含む、請求項1に記載のジルコニウムとハフニウムの分離方法。   The method for separating zirconium and hafnium according to claim 1, wherein the organic phase solution further comprises isoamyl acetate. 前記酸性抽出剤は、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC88A)、モノ(2−エチルヘキシル)リン酸(M2EHPA)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(Cyanex272)、ジ(2−エチルヘキシル)ホスフィン酸(P−229)、及びこれらの組み合わせからなる群から選択されるいずれか1つを含む、請求項1に記載のジルコニウムとハフニウムの分離方法。   The acidic extractant is di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A), mono (2-ethylhexyl) phosphoric acid (M2EHPA), bis (2,4 , 4-trimethylpentyl) phosphinic acid (Cyanex 272), di (2-ethylhexyl) phosphinic acid (P-229), and any one selected from the group consisting of these, Zirconium and hafnium separation method. 前記抽出原液中の前記硫酸の濃度は、2〜10mol/lである、請求項1に記載のジルコニウムとハフニウムの分離方法。   2. The method for separating zirconium and hafnium according to claim 1, wherein the concentration of the sulfuric acid in the extraction stock solution is 2 to 10 mol / l. 前記抽出原液中の前記金属イオンの濃度は、0.1〜2.0g/lである、請求項1に記載のジルコニウムとハフニウムの分離方法。   The method for separating zirconium and hafnium according to claim 1, wherein the concentration of the metal ions in the extraction stock solution is 0.1 to 2.0 g / l. 前記酢酸イソアミルは、0.01〜0.1vol%の範囲で前記有機相溶液に含まれる、請求項2に記載のジルコニウムとハフニウムの分離方法。   The method for separating zirconium and hafnium according to claim 2, wherein the isoamyl acetate is contained in the organic phase solution in a range of 0.01 to 0.1 vol%. 前記金属イオンは、ニッケル、硫酸ニッケル、硫酸ニッケル水和物、銅、硫酸銅、硫酸銅水和物、及びこれらの組み合わせからなる群から選択されるいずれか1つに由来するものである、請求項1に記載のジルコニウムとハフニウムの分離方法。   The metal ion is derived from any one selected from the group consisting of nickel, nickel sulfate, nickel sulfate hydrate, copper, copper sulfate, copper sulfate hydrate, and combinations thereof, Item 2. The method for separating zirconium and hafnium according to Item 1. ジルコニウム、ハフニウム及び硫酸を含む水溶液と触媒とを含む抽出原液を準備する準備段階と、
水溶液である前記抽出原液と酸性抽出剤を含む有機相溶液とを攪拌し、前記抽出原液中のハフニウムを前記有機相溶液に選択的に抽出する抽出段階と、
前記抽出段階を経てハフニウムが除去された水溶液である第1攪拌液と前記抽出段階を経た有機相溶液である第2抽出液とを分離する分離段階と、
前記第1攪拌液からハフニウムが除去されたジルコニウムを回収する回収段階とを含み、
前記触媒は、ハフニウムの抽出速度を向上させる金属イオンであり、ニッケルイオン、銅イオン、及びこれらの組み合わせからなる群から選択されるいずれか1つである、ジルコニウムの製造方法。
A preparation stage of preparing an extraction stock solution containing an aqueous solution containing zirconium, hafnium and sulfuric acid and a catalyst;
An extraction step of stirring the extraction stock solution that is an aqueous solution and an organic phase solution containing an acidic extractant to selectively extract hafnium in the extraction stock solution into the organic phase solution;
A separation step of separating a first stirring liquid that is an aqueous solution from which hafnium has been removed through the extraction step and a second extraction liquid that is an organic phase solution that has undergone the extraction step;
Recovering zirconium from which hafnium has been removed from the first stirring liquid,
The method for producing zirconium, wherein the catalyst is a metal ion that improves the extraction rate of hafnium, and is any one selected from the group consisting of nickel ions, copper ions, and combinations thereof.
前記有機相溶液は、酢酸イソアミルをさらに含む、請求項8に記載のジルコニウムの製造方法。   The method for producing zirconium according to claim 8, wherein the organic phase solution further contains isoamyl acetate. 前記酸性抽出剤は、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC88A)、モノ(2−エチルヘキシル)リン酸(M2EHPA)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(Cyanex272)、ジ(2−エチルヘキシル)ホスフィン酸(P−229)、及びこれらの組み合わせからなる群から選択されるいずれか1つを含む、請求項8に記載のジルコニウムの製造方法。   The acidic extractant is di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A), mono (2-ethylhexyl) phosphoric acid (M2EHPA), bis (2,4 , 4-trimethylpentyl) phosphinic acid (Cyanex 272), di (2-ethylhexyl) phosphinic acid (P-229), and any one selected from the group consisting of these, A method for producing zirconium.
JP2013176541A 2013-08-14 2013-08-28 Method for separating zirconium and hafnium and method for producing zirconium from which hafnium has been removed Expired - Fee Related JP5604571B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130096679A KR101513135B1 (en) 2013-08-14 2013-08-14 Separation method of zirconium and hafnium, and manufacturing method of zirconium in which hafnium is removed
KR10-2013-0096679 2013-08-14

Publications (2)

Publication Number Publication Date
JP5604571B1 true JP5604571B1 (en) 2014-10-08
JP2015036454A JP2015036454A (en) 2015-02-23

Family

ID=51840456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176541A Expired - Fee Related JP5604571B1 (en) 2013-08-14 2013-08-28 Method for separating zirconium and hafnium and method for producing zirconium from which hafnium has been removed

Country Status (2)

Country Link
JP (1) JP5604571B1 (en)
KR (1) KR101513135B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317959A (en) * 2021-12-31 2022-04-12 中核二七二铀业有限责任公司 Method for recovering zirconium and hafnium from zirconium and hafnium separation raffinate water precipitation filter residue

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136456B1 (en) * 2018-03-29 2020-07-21 목포대학교산학협력단 Recovering method of gold from a leach solution of anode slime
CN109266852B (en) * 2018-11-20 2020-06-26 济南大学 Zirconium-hafnium separation method for preferentially extracting hafnium by using organic acid
CN115094250B (en) * 2022-06-30 2023-03-14 深圳中铪科技有限公司 Method for recovering hafnium and other metals from hafnium-containing waste residues

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505639A (en) * 1989-05-12 1992-10-01 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Two-phase extraction method of metal ions from solid metal oxide-containing phases, extractants and their use
JPH10212532A (en) * 1996-09-26 1998-08-11 Fansteel Inc Method for recovering tantalum compound and/or niobium compound from composite containing various metallic compounds
JP2013524024A (en) * 2010-04-15 2013-06-17 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド How to recycle an aged printed circuit board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759230B (en) * 2008-12-24 2012-07-18 北京有色金属研究总院 Method for fractionating, extracting and separating zirconium and hafnium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505639A (en) * 1989-05-12 1992-10-01 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Two-phase extraction method of metal ions from solid metal oxide-containing phases, extractants and their use
JPH10212532A (en) * 1996-09-26 1998-08-11 Fansteel Inc Method for recovering tantalum compound and/or niobium compound from composite containing various metallic compounds
JP2013524024A (en) * 2010-04-15 2013-06-17 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド How to recycle an aged printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317959A (en) * 2021-12-31 2022-04-12 中核二七二铀业有限责任公司 Method for recovering zirconium and hafnium from zirconium and hafnium separation raffinate water precipitation filter residue
CN114317959B (en) * 2021-12-31 2024-01-12 中核二七二铀业有限责任公司 Method for recovering zirconium and hafnium from residue water precipitation filter residues of zirconium and hafnium separation

Also Published As

Publication number Publication date
JP2015036454A (en) 2015-02-23
KR101513135B1 (en) 2015-04-17
KR20150019610A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5604571B1 (en) Method for separating zirconium and hafnium and method for producing zirconium from which hafnium has been removed
Nusen et al. Recovery of germanium from synthetic leach solution of zinc refinery residues by synergistic solvent extraction using LIX 63 and Ionquest 801
JP5689467B2 (en) Method for selectively recovering americium from aqueous nitrate phase
JP6650443B2 (en) Method for the selective recovery of rare earth metals present in an acidic aqueous phase resulting from the treatment of used or discarded permanent magnets
US8557202B1 (en) Separation method of zirconium and hafnium with acidic extractants
JP6194867B2 (en) Extraction separation method
EA024320B1 (en) Improved metal solvent extraction reagents and use thereof
AU2015275231A1 (en) Solvent extraction of scandium from leach solutions
Alibrahim et al. Solvent extraction of Vanadium (IV) with di (2-ethylhexyl) phosphoric acid and tributyl phosphate
Keng et al. Selective separation of Cu (II), Zn (II), and Cd (II) by solvent extraction
RU2514947C2 (en) Method for re-extraction of plutonium from organic solution of tributyl phosphate
JP5881952B2 (en) Method for producing cobalt sulfate
AU2009203188B2 (en) Method for scrubbing an amine type extractant after stripping
CN114774689A (en) Extracting agent of nickel cobalt synergistic extraction system containing organic phosphine oxide extracting agent and nickel cobalt extraction method
KR101386704B1 (en) Separation method of zirconium and hafnium by solvent extraction process
CN114317961A (en) Co-extraction system for nickel-cobalt co-extraction and co-extraction method thereof
WO2012042525A1 (en) A tributyl phosphate-nitrate solvent extraction process for producing high purity nuclear grade rare earth metal oxides
CN107810283A (en) From the method for organic phase separation iron containing uranium and from the method containing the aqueous solution of uranium and the mineral acid of iron extraction uranium
Sihem et al. Extraction of copper (II) with di (2-ethylhexyl) phosphoric acid from perchlorate medium
CN101560601B (en) Method for improving zinc extraction yield in ammonia solution
JPH06264156A (en) Method for separating and recovering nickel and/or cobalt
RU2765790C1 (en) Method for separation of neptunium and plutonium in nitric acid solutions (variants)
Sadeghi et al. Solvent extraction of gold from chloride solution by tri-butyl phosphate (TBP)[C]
RU2666206C2 (en) Method of extraction of zinc (ii), copper (ii), cobalt (ii), nickel (ii) from water solutions
Wu et al. Separation of Hf (IV) from Zr (IV) in thiocyanate medium with ionic liquid Aliquat 336

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5604571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees