JP5601055B2 - Surface care method and apparatus for continuous cast slab - Google Patents

Surface care method and apparatus for continuous cast slab Download PDF

Info

Publication number
JP5601055B2
JP5601055B2 JP2010153779A JP2010153779A JP5601055B2 JP 5601055 B2 JP5601055 B2 JP 5601055B2 JP 2010153779 A JP2010153779 A JP 2010153779A JP 2010153779 A JP2010153779 A JP 2010153779A JP 5601055 B2 JP5601055 B2 JP 5601055B2
Authority
JP
Japan
Prior art keywords
preheating
slab
degrees
nozzle
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010153779A
Other languages
Japanese (ja)
Other versions
JP2012016709A (en
Inventor
慎也 山口
倫哉 駒城
敏樹 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010153779A priority Critical patent/JP5601055B2/en
Publication of JP2012016709A publication Critical patent/JP2012016709A/en
Application granted granted Critical
Publication of JP5601055B2 publication Critical patent/JP5601055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Metal Rolling (AREA)

Description

本発明は、鉄鋼製品の熱間圧延の前に連続鋳造スラブの表面の欠陥を除去するための連続鋳造スラブの表面手入れ方法および装置に関し、特に溶削開始部の後工程での欠陥発生を防止することが可能な連続鋳造スラブの表面手入れ方法および装置に関する。なお、スラブは鋼片ともいう。   The present invention relates to a method and apparatus for surface treatment of a continuous cast slab for removing defects on the surface of a continuous cast slab before hot rolling of a steel product, and in particular, prevents the occurrence of defects in the post-process of a welding start portion. The present invention relates to a surface care method and apparatus for a continuously cast slab that can be used. The slab is also called a steel piece.

連続鋳造によって製造されるスラブの表面には、表面割れ、オシレーションマークといった表面欠陥が生じることが少なくない。また、連続鋳造スラブの表層にはアルミナやモールドパウダーを主成分とする非金属介在物やガス気泡(Arガス、Nガスなど)が集まりやすく、連続鋳造スラブをそのまま圧延し鋼材を製造すると、スラブ表面欠陥を起因とするヘゲ疵や鋼片表層の介在物を起因とするスリーバー疵が発生する。 Surface defects such as surface cracks and oscillation marks often occur on the surface of slabs produced by continuous casting. In addition, non-metallic inclusions and gas bubbles (Ar gas, N 2 gas, etc.) mainly composed of alumina or mold powder are likely to gather on the surface layer of the continuous casting slab, and when the steel material is produced by rolling the continuous casting slab as it is, A slab surface caused by slab surface defects and a slab surface caused by inclusions on the steel slab surface layer are generated.

上記の問題に対し、現在一般的には熱間圧延前にスラブの表層(深さ2〜4mm)を酸素ガスによるガススカーファにて溶削する表面手入れが行われている。この表面手入れ(ガススカーフィング)では、あらかじめ予熱ガス(燃焼ガス)を噴射することにより被溶削開始部分を予熱した後、酸素ガスを吹き付けることによって生じる鉄と酸素の酸化燃焼反応を利用している。予熱は図3に示すようにスラブ水平方向に対し一定な傾斜角(約32度)を付けて予熱炎を噴射するため、スラブ厚み方向の温度制御が困難でありスラブ温度が高い(約700℃以上)場合は予熱部の深掘れが生じやすいという問題がある。深掘れの発生した予熱部の表面には鉄の酸化反応に起因する酸化物が多数生成し、圧延後の表面欠陥の原因となることが知られている。また、ガススカーファとしてはスラブ幅方向にユニット幅約210〜270mmのスカーフィングユニットを最大10個程度並べて構成したものを用いるが、ユニット継目でのガス流動の干渉により予熱炎の幅方向流動ムラが生じることが知られている。スラブ温度が高い(約700℃以上)場合には予熱炎ムラの影響を大きく受けるため、溶削後に幅方向の凹凸が生じるという問題がある。そのため、ガススカーファによる溶削後に予熱部をグラインダ(砥石研削装置)にて研削する必要があり、作業負荷の増大を招くのみならず、手入れ工程前にリードタイムを十分取りスラブ温度を下げる必要があり高温スラブを再加熱せずに直接圧延するHDRやスラブを高温のまま加熱炉に装入するDHCRの阻害につながり、熱間圧延の燃料原単位の悪化を招くという問題がある。このような問題に対して特許文献1では、溶削酸素スリットノズルの壁面形状を流線形とすることにより幅方向の溶削ムラを低減させる方法が提案されている。   In order to deal with the above problems, surface care is generally performed in which the surface layer (depth 2 to 4 mm) of the slab is scraped with a gas scarf of oxygen gas before hot rolling. In this surface care (gas scarfing), the pre-heated gas (combustion gas) is pre-injected to preheat the part to be cut and then the oxygen and oxygen oxidation combustion reaction generated by blowing oxygen gas is used. Yes. As shown in FIG. 3, since preheating flame is injected with a constant inclination angle (about 32 degrees) with respect to the slab horizontal direction as shown in FIG. 3, temperature control in the slab thickness direction is difficult and the slab temperature is high (about 700 ° C.). In the above case, there is a problem that the preheating portion is likely to be deeply digged. It is known that many oxides resulting from the oxidation reaction of iron are generated on the surface of the preheated portion where deep digging has occurred, which causes surface defects after rolling. In addition, as the gas scarf, a configuration in which about 10 scarfing units having a unit width of about 210 to 270 mm are arranged in the slab width direction is used. Is known to occur. When the slab temperature is high (about 700 ° C. or higher), the slab temperature is greatly affected by unevenness in the preheating flame. For this reason, it is necessary to grind the preheated part with a grinder (grinding wheel grinding device) after gas scarfing, which not only increases the work load, but also requires a sufficient lead time before the maintenance process to lower the slab temperature. There is a problem that HDR which directly rolls a high temperature slab without reheating and DHCR which inserts the slab into a heating furnace at a high temperature is hindered, and the fuel intensity of hot rolling is deteriorated. In order to solve such a problem, Patent Document 1 proposes a method for reducing unevenness in the widthwise cutting by making the wall shape of the cutting oxygen slit nozzle streamlined.

特開2005−52867号公報JP 2005-52867 A

しかし、特許文献1に記載の方法では、溶削中の酸素ガスの幅方向流動ムラは改善可能であるが、予熱時の幅方向温度ムラは改善できないという課題があることが、発明者らの調査により判明した。図3は、従来技術の概要を示すものである。スカーフィングユニット5Bは幅約210〜270mmであり、鋼片の幅方向に最大10個配置されている。図3に示す予熱炎6により鋼片端部を予熱し、予熱された部分に酸素ガスを吹き付けることによって鉄の酸化燃焼反応が生じる。予熱時間は例えば800℃のスラブに対して約1分である。酸化鉄は反応熱により溶融し、酸素ガスの勢いにより吹き飛ばされ除去される。一度反応が開始すると反応熱により近辺が加熱されるため、溶削開始後はほぼ酸素ガスのみの供給により溶削が続行する。この従来の方法では、溶削開始部の予熱をスラブ水平方向に対して一定な傾斜角(約32度)を付けた予熱炎の噴射によって行うためスラブ厚み方向の温度制御が困難でありスラブ温度が高い(約700℃以上)場合には所望の溶削深さを超える深掘れが生じやすい(図5)。また、スラブ温度が高い(約700℃以上)場合にはスカーフィングユニット5Bのユニット継目のガス流動ムラに起因する予熱ムラの影響を大きく受け幅方向の凹凸が生じやすい(図7)。予熱部の深掘れや幅方向凹凸は熱間圧延以降の表面欠陥の原因となるため、ガススカーファによる溶削後にグラインダによってスラブ表面を研削しなくてはならない。   However, in the method described in Patent Document 1, although the unevenness in the width direction flow of oxygen gas during cutting can be improved, there is a problem that the unevenness in the width direction temperature during preheating cannot be improved. Investigation revealed. FIG. 3 shows an overview of the prior art. The scarfing unit 5B has a width of about 210 to 270 mm and is arranged in a maximum of 10 pieces in the width direction of the steel piece. The steel piece end is preheated by the preheating flame 6 shown in FIG. 3, and oxygen gas is blown onto the preheated portion to cause an oxidation combustion reaction of iron. The preheating time is, for example, about 1 minute for an 800 ° C. slab. Iron oxide is melted by reaction heat and blown off by the momentum of oxygen gas to be removed. Once the reaction is started, the vicinity is heated by the reaction heat, so after the start of the cutting, the cutting is continued by supplying only oxygen gas. In this conventional method, since the preheating of the welding start portion is performed by spraying a preheating flame with a constant inclination angle (about 32 degrees) with respect to the slab horizontal direction, it is difficult to control the temperature in the slab thickness direction. When it is high (about 700 ° C. or higher), deep digging exceeding the desired depth of cutting is likely to occur (FIG. 5). In addition, when the slab temperature is high (about 700 ° C. or higher), unevenness in the width direction is easily generated due to the influence of preheating unevenness caused by the gas flow unevenness of the unit seam of the scarfing unit 5B (FIG. 7). Since deep digging and unevenness in the width direction of the preheated part cause surface defects after hot rolling, the slab surface must be ground by a grinder after welding with a gas scarf.

本発明は、上記課題を解決するために、予熱部の深掘れと幅方向凹凸を低減し、グラインダによる研削工程を省略可能である連続鋳造スラブの表面手入れ方法および装置を提供することを目的とするものである。   In order to solve the above-mentioned problems, the present invention aims to provide a surface care method and apparatus for a continuous cast slab that can reduce the depth of the preheated portion and the unevenness in the width direction and can omit the grinding step by a grinder. To do.

前述したごとく、通常、連続鋳造スラブの表面手入れではガススカーファによる表面手入れが行われているが、予熱部の深掘れや幅方向凹凸が圧延後の表面欠陥の原因となるため、ガススカーファによる溶削後にグラインダによって表面を研削しており、作業負荷の増大や、熱間圧延の燃料原単位の悪化を招いている。
本発明は、以上のような状況に鑑みなされたものであり、その要旨は以下のとおりである。
As described above, the surface care of the continuous cast slab is usually carried out with a gas scarfer. However, since the pre-heated part is deeply deep and unevenness in the width direction causes surface defects after rolling, the gas scarfer. The surface is ground with a grinder after the hot-cutting, which increases the work load and deteriorates the fuel intensity of hot rolling.
The present invention has been made in view of the above situation, and the gist thereof is as follows.

(1) 熱間圧延される前の連続鋳造スラブの表面をガス噴射にて予熱し、次いで溶削する連続鋳造スラブの手入れ方法であって、前記予熱時の予熱用ガス噴射ノズルからのガス噴射方向が水平方向に対してなす角度θ予熱前スラブの表面温度T(℃)に応じて下記式で算出し、該算出の結果が30度未満となる場合はθを30度とすることによって、前記角度θを30度以上35度未満の範囲で変更することを特徴とする連続鋳造スラブの表面手入れ方法。
θ=35−αT
α:予熱用ガスの熱容量、目標溶削深さ、鋼種に応じて0.004〜0.006の範囲内に予め設定される定数
(1) A method of cleaning a continuous cast slab in which the surface of a continuous cast slab before hot rolling is preheated by gas injection and then subjected to welding , and the gas injection from the preheating gas injection nozzle at the time of preheating The angle θ formed by the direction with respect to the horizontal direction is calculated by the following equation according to the surface temperature T (° C.) of the pre-heating slab , and when the calculation result is less than 30 degrees, θ is set to 30 degrees. The method of cleaning the surface of a continuously cast slab , wherein the angle θ is changed in a range of 30 degrees to less than 35 degrees .
θ = 35−αT
α: Constant set in advance in the range of 0.004 to 0.006 depending on the heat capacity of the preheating gas, the target cutting depth, and the steel type

) 熱間圧延される前の連続鋳造スラブの表面をガス噴射にて予熱し、次いで溶削する連続鋳造スラブの手入れ装置であって、予熱用ガス噴射ノズル及び溶削用ガス噴射ノズルに加え、前記予熱用ガス噴射ノズルを、与えられたノズル角度まで回転させうる予熱用ノズル回転手段を備えたスカーフィングユニットと、ガス噴射方向が水平方向に対してなす角度θを予熱前スラブ表面温度T(℃)の実測値又は予測計算値を用いて下記式で算出し、該算出の結果が30度未満となる場合はθを30度とすることによって、前記角度θを30度以上35度未満の範囲で導出して前記予熱用ノズル回転手段に与えるノズル角度制御手段とを有することを特徴とする連続鋳造スラブの表面手入れ装置。
θ=35−αT
α:予熱用ガスの熱容量、目標溶削深さ、鋼種に応じて0.004〜0.006の範囲内に予め設定される定数
( 2 ) A continuous casting slab care apparatus that preheats the surface of a continuous cast slab before hot rolling by gas injection and then performs welding, and includes a preheating gas injection nozzle and a gas cutting nozzle for cutting In addition, a scarfing unit having a preheating nozzle rotating means capable of rotating the preheating gas injection nozzle to a given nozzle angle, and an angle θ formed by the gas injection direction with respect to the horizontal direction is a slab surface temperature before preheating. Calculated by the following formula using an actual measurement value or a predicted calculation value of T (° C.) , and when the calculation result is less than 30 degrees, θ is set to 30 degrees, so that the angle θ is 30 degrees or more and 35 degrees A surface care device for a continuous cast slab, characterized in that it has a nozzle angle control means which is derived within a range of less than and given to the preheating nozzle rotating means.
θ = 35−αT
α: Constant set in advance in the range of 0.004 to 0.006 depending on the heat capacity of the preheating gas, the target cutting depth, and the steel type

本発明によれば、予熱部の深掘れと幅方向凹凸の生じない連続鋳造スラブの表面手入れが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the surface care of the continuous casting slab which does not produce the deep digging of a preheating part and the width direction unevenness | corrugation is attained.

本発明に用いるスカーフィングユニットを示す概要図Schematic diagram showing the scarfing unit used in the present invention 本発明の実施形態の1例を示す概要図Schematic diagram showing an example of an embodiment of the present invention 従来技術の1例を示す概要図Schematic diagram showing an example of the prior art 本発明による手入れ前後のスラブ表面性状の1例を示すスラブ長手方向断面図Slab longitudinal sectional view showing an example of slab surface properties before and after cleaning according to the present invention 従来技術による手入れ前後のスラブ表面性状の1例を示すスラブ長手方向断面図Slab longitudinal sectional view showing an example of slab surface properties before and after maintenance according to the prior art 本発明による手入れ前後のスラブ表面性状の1例を示すスラブ幅方向断面図Slab width direction sectional view showing an example of slab surface properties before and after cleaning according to the present invention 従来技術による手入れ前後のスラブ表面性状の1例を示すスラブ幅方向断面図Cross-sectional view in the slab width direction showing an example of slab surface properties before and after maintenance by the prior art 従来技術による手入れ鋼片と本発明による手入れ鋼片とのそれぞれから得た冷延コイルでの欠陥発生率を示すグラフGraph showing defect rates in cold-rolled coils obtained from both the steel billet according to the prior art and the steel billet according to the present invention

本発明は、上記のような問題が発生すること無く連続鋳造スラブの表面手入れを可能とするものである。図1乃至図2に本発明の連続鋳造スラブの表面手入れ装置及び方法の概要を示す。本発明の表面手入れ装置は、予熱用ガス噴射ノズル1A,2A及び溶削用ガス噴射ノズル3A,4Aに加え、前記予熱用ガス噴射ノズル1A,2Aを、与えられたノズル角度θまで回転させうる予熱用ノズル回転手段20を有するスカーフィングユニット5と、予熱前スラブ表面温度Tの実測値又は予測計算値から前記ノズル角度θを導出して前記予熱用ノズル回転手段20に与えるノズル角度制御手段30とを有する(図1)。尚、この例では予熱用ノズル回転手段20は、ノズル付け根に設けた従動ギヤを駆動ギヤで回転させる方式としているが、これに限らず、他の例えばラックピニオン方式やウォームギヤ方式などといった、いかなる方式であってもよい。   The present invention enables surface care of a continuously cast slab without causing the above problems. 1 and 2 show an outline of a surface care apparatus and method for a continuous cast slab according to the present invention. The surface care device of the present invention can rotate the preheating gas injection nozzles 1A and 2A to a given nozzle angle θ in addition to the preheating gas injection nozzles 1A and 2A and the cutting gas injection nozzles 3A and 4A. The scarfing unit 5 having the preheating nozzle rotating means 20 and the nozzle angle control means 30 for deriving the nozzle angle θ from the actual measurement value or the predicted calculation value of the pre-heating slab surface temperature T and giving it to the preheating nozzle rotating means 20 (FIG. 1). In this example, the preheating nozzle rotating means 20 is a system in which the driven gear provided at the nozzle base is rotated by the drive gear, but not limited to this, any system such as a rack and pinion system or a worm gear system is used. It may be.

スラブ温度が低い場合は予熱部の深掘れが起こりにくいためガス噴射角度(=前記ノズル角度θ)を大きく設定することで予熱時間の短縮を図ることが可能である。スラブ温度が高い場合にはガス噴射角度を小さく設定することで、予熱部の深掘れを低減し、幅方向の凹凸を最小限に抑えることが可能である。ここで、スラブ温度とは予熱部に相当する部分の表面温度の幅方向平均値を指す。ここではスカーフィングユニット入側にて放射温度計により測定された値を用いるが、前工程での測定結果からの予測計算値を用いてもよい。発明者らの知見によれば、ガス噴射角度θ[°](図1)の可変範囲(変更可能範囲)は30度以上35度未満とし、スラブ表面温度T[℃]に対し式(1)のように設定するのが良い。式(1)においてαは、予熱用ガスの熱容量、目標溶削深さ、鋼種別によって決まる定数であるが、0.004≦α≦0.006が好ましい。 When the slab temperature is low, the preheating portion is unlikely to be deeply dug. Therefore, it is possible to shorten the preheating time by setting the gas injection angle (= the nozzle angle θ) large. When the slab temperature is high, by setting the gas injection angle to be small, it is possible to reduce the depth of the preheating portion and to minimize the unevenness in the width direction. Here, the slab temperature refers to the average value in the width direction of the surface temperature of the portion corresponding to the preheated portion. Although the value measured with the radiation thermometer at the entrance side of the scarfing unit is used here, a predicted calculation value from the measurement result in the previous process may be used. According to the knowledge of the inventors, the variable range (changeable range) of the gas injection angle θ [°] (FIG. 1) is 30 degrees or more and less than 35 degrees, and the slab surface temperature T [° C.] is expressed by the formula (1). It is good to set like this. In the formula (1), α is a constant determined by the heat capacity of the preheating gas, the target depth of cutting, and the steel type, but 0.004 ≦ α ≦ 0.006 is preferable.

θ=35−αT、30≦θ35 ‥‥‥‥式(1)
θが30度未満では予熱部の加熱が不十分となり溶削可能な温度に達することができず、35度以上ではスラブ温度が低い場合であっても予熱部の深掘れが生じてしまう。また、図1に示すように予熱用ガス2(LPG、COガス)と予熱用酸素1の噴出角度は等しく設定するのが良い。予熱時に設定された噴射角度は溶削中維持するものとする。
θ = 35−αT, 30 ≦ θ < 35 Equation (1)
If θ is less than 30 degrees, the preheated part is not sufficiently heated and cannot reach the temperature capable of cutting, and if it is 35 degrees or more , the preheated part is deeply dug even when the slab temperature is low. Further, as shown in FIG. 1, it is preferable to set the ejection angles of the preheating gas 2 (LPG, CO gas) and the preheating oxygen 1 to be equal. The injection angle set during preheating shall be maintained during cutting.

スラブ温度に応じて予熱時のガス噴射角度を変更してガススカーフィングを施すことで、図4のように未溶削部と予熱部の深掘れが発生すること無く溶削することが可能である。また、幅方向凹凸に関しても図6のように抑制することが可能である。   By changing the gas injection angle at the time of preheating according to the slab temperature and applying gas scarfing, it is possible to perform cutting without causing deep digging of the unheated part and the preheated part as shown in FIG. is there. Further, the unevenness in the width direction can also be suppressed as shown in FIG.

(実施例1)
連続鋳造された自動車外板向け鋼種のスラブ(幅1500mm、長さ9000mm、厚み230mm、表面温度T=約200〜800℃)を対象に、目標溶削深さを4mmとし、図1に示した実施形態で予熱し、次いで溶削を行った。予熱ガスの噴射角度θは、予熱直前のスラブ1本ごとに表面温度Tの実測値から式(1)で算出し、該算出したθ値となるように予熱用ガス噴射ノズルのノズル角度を調整(変更)した。このとき、式(1)中のαは0.006と設定したので、θの調整(変更)範囲は30.2〜33.8度であった。その結果、予熱部の深掘れは生じず、予熱部(鋼片端部)と定常部ともにほぼ目標溶削深さ分だけ溶削されており、溶削後の鋼片表面には凹凸がなく美麗であった。
(実施例2)
連続鋳造された缶用鋼板、ぶりき向け鋼種のスラブ(幅1200mm、長さ8000mm、厚み225mm、表面温度T=約300〜800℃)を対象に、目標溶削深さを4mmとし、図1に示した実施形態で予熱し、次いで溶削を行った。予熱ガスの噴射角度θは、予熱直前のスラブ1本ごとに表面温度Tの実測値から式(1)で算出し、該算出したθ値となるように予熱用ガス噴射ノズルのノズル角度を調整(変更)した。このとき、式(1)中のαは0.005と設定したので、θの調整(変更)範囲は31〜33.5度であった。その結果、予熱部の深掘れは生じず、予熱部(鋼片端部)と定常部ともにほぼ目標溶削深さ分だけ溶削されており、溶削後の鋼片表面には凹凸がなく美麗であった。
(Example 1)
For a continuously cast steel grade slab for automobile outer plates (width 1500 mm, length 9000 mm, thickness 230 mm, surface temperature T = about 200 to 800 ° C.), the target depth of cutting was set to 4 mm, as shown in FIG. Preheating was performed in the embodiment, and then cutting was performed. The injection angle θ of the preheating gas is calculated from the measured value of the surface temperature T for each slab immediately before the preheating using the formula (1), and the nozzle angle of the preheating gas injection nozzle is adjusted so as to be the calculated θ value. (changed. At this time, α in the equation (1) was set to 0.006, and therefore the adjustment (change) range of θ was 30.2 to 33.8 degrees. As a result, there is no deep digging of the preheated part, and both the preheated part (steel end part) and the steady part have been cut by the target cutting depth, and the surface of the slab after the cutting has no irregularities and is beautiful. Met.
(Example 2)
For a continuously cast steel plate for cans and a slab for tinning (width 1200 mm, length 8000 mm, thickness 225 mm, surface temperature T = approximately 300 to 800 ° C.), the target cutting depth is 4 mm. In the embodiment shown in FIG. 1, preheating was performed , and then the cutting was performed. The injection angle θ of the preheating gas is calculated from the measured value of the surface temperature T for each slab immediately before the preheating using the formula (1), and the nozzle angle of the preheating gas injection nozzle is adjusted so as to be the calculated θ value. (changed. At this time, α in the equation (1) was set to 0.005, and therefore the adjustment (change) range of θ was 31 to 33.5 degrees. As a result, there is no deep digging of the preheated part, and both the preheated part (steel end part) and the steady part have been cut by the target cutting depth, and the surface of the slab after the cutting has no irregularities and is beautiful. Met.

また、従来のガススカーファによる鋼片表面手入れを施した後グラインダによって端部を研削した鋼片と、前記実施例1,2の要領で表面手入れ後グラインダ研削しなかった鋼片をそれぞれ圧延し、得られた冷延コイル(以下、単に、コイルともいう)での表面欠陥発生率(コイル単位)を比較すると、図8に示すとおり、従来の鋼片表面手入れ方法による場合はコイルでの表面欠陥発生率が1.2%であったのに対し、本発明の鋼片表面手入れ方法による場合はコイルでの表面欠陥発生率が0.1%であり、本発明の実施によって、次工程のグラインダ工程を省略可能であることが分かった。   Further, after rolling the steel slab surface with a conventional gas scarf, the steel slab whose edge was ground with a grinder and the steel slab not grinder-polished after surface cleaning in the same manner as in Examples 1 and 2 were respectively rolled. When the surface defect occurrence rate (coil unit) in the obtained cold-rolled coil (hereinafter, also simply referred to as a coil) is compared, as shown in FIG. Whereas the defect occurrence rate was 1.2%, the surface defect occurrence rate in the coil was 0.1% in the case of the steel slab surface care method of the present invention. It was found that the grinder process can be omitted.

以上の実施例から明らかなように、本発明によれば、予熱部の深掘れと幅方向凹凸の生じない連続鋳造スラブの表面手入れが可能となり、従来必須であったガススカーフィング後のグラインダ工程を省略できて、しかも、圧延工程以降の表面欠陥の発生しない鋼片を提供することができる。   As is clear from the above examples, according to the present invention, the surface of the continuously cast slab without deep digging of the preheated portion and unevenness in the width direction can be obtained, and the grinder process after gas scarfing, which has been conventionally required Further, it is possible to provide a steel slab in which surface defects after the rolling process do not occur.

1 予熱用ガス(酸素)
1A 予熱用ガス(酸素)噴射ノズル
2 予熱用ガス(酸素以外)
2A予熱用ガス(酸素以外)噴射ノズル
3 溶削用ガス(酸素)
3A溶削用ガス(酸素)噴射ノズル
4 溶削用ガス(酸素以外)
4A溶削用ガス(酸素以外)噴射ノズル
5 スカーフィングユニット(本発明に係るもの)
5B スカーフィングユニット(従来に係るもの)
6 予熱炎
7 連続鋳造スラブ
8 搬送ロール
9 溶削前スラブ
10 本発明による手入れ後のスラブ
11 従来技術による手入れ後のスラブ
20 予熱用ノズル回転手段
30 ノズル角度制御手段
1 Preheating gas (oxygen)
1A Preheating gas (oxygen) injection nozzle
2 Preheating gas (other than oxygen)
2A preheating gas (other than oxygen) injection nozzle
3 Gas for cutting (oxygen)
3A gas cutting nozzle (oxygen)
4 Gas for cutting (other than oxygen)
4A gas for cutting (other than oxygen) injection nozzle
5 Scarfing unit (according to the present invention)
5B Scarfing unit (conventional)
6 Preheating flame
7 Continuous casting slab
8 Transport roll
9 Slab before cutting
10 Slab after maintenance according to the invention
11 Conventional slab after maintenance
20 Nozzle rotation means for preheating
30 Nozzle angle control means

Claims (2)

熱間圧延される前の連続鋳造スラブの表面をガス噴射にて予熱し、次いで溶削する連続鋳造スラブの手入れ方法であって、前記予熱時の予熱用ガス噴射ノズルからのガス噴射方向が水平方向に対してなす角度θ予熱前スラブの表面温度T(℃)に応じて下記式で算出し、該算出の結果が30度未満となる場合はθを30度とすることによって、前記角度θを30度以上35度未満の範囲で変更することを特徴とする連続鋳造スラブの表面手入れ方法。
θ=35−αT
α:予熱用ガスの熱容量、目標溶削深さ、鋼種に応じて0.004〜0.006の範囲内に予め設定される定数
A method of cleaning a continuous cast slab in which the surface of a continuously cast slab before hot rolling is preheated by gas injection and then subjected to welding, wherein the gas injection direction from the preheating gas injection nozzle during the preheating is horizontal. The angle θ formed with respect to the direction is calculated by the following equation according to the surface temperature T (° C.) of the pre-heated slab , and when the calculation result is less than 30 degrees, θ is set to 30 degrees, A method for surface treatment of a continuously cast slab, characterized in that θ is changed within a range of 30 degrees to less than 35 degrees .
θ = 35−αT
α: Constant set in advance in the range of 0.004 to 0.006 depending on the heat capacity of the preheating gas, the target cutting depth, and the steel type
熱間圧延される前の連続鋳造スラブの表面をガス噴射にて予熱し、次いで溶削する連続鋳造スラブの手入れ装置であって、予熱用ガス噴射ノズル及び溶削用ガス噴射ノズルに加え、前記予熱用ガス噴射ノズルを、与えられたノズル角度まで回転させうる予熱用ノズル回転手段を備えたスカーフィングユニットと、ガス噴射方向が水平方向に対してなす角度θを予熱前スラブ表面温度T(℃)の実測値又は予測計算値を用いて下記式で算出し、該算出の結果が30度未満となる場合はθを30度とすることによって、前記角度θを30度以上35度未満の範囲で導出して前記予熱用ノズル回転手段に与えるノズル角度制御手段とを有することを特徴とする連続鋳造スラブの表面手入れ装置。
θ=35−αT
α:予熱用ガスの熱容量、目標溶削深さ、鋼種に応じて0.004〜0.006の範囲内に予め設定される定数
A continuous casting slab care device that preheats the surface of a continuous cast slab before hot rolling by gas injection and then performs welding, in addition to the preheating gas injection nozzle and the gas cutting nozzle for cutting, A scarfing unit equipped with a preheating nozzle rotating means capable of rotating the preheating gas injection nozzle to a given nozzle angle, and an angle θ formed by the gas injection direction with respect to the horizontal direction is a slab surface temperature T (° C.) before preheating. ) Using the actual measured value or the predicted calculated value, and when the result of the calculation is less than 30 degrees, θ is set to 30 degrees, so that the angle θ is in the range of 30 degrees to less than 35 degrees. And a nozzle angle control means derived from the above and applied to the preheating nozzle rotating means.
θ = 35−αT
α: Constant set in advance in the range of 0.004 to 0.006 depending on the heat capacity of the preheating gas, the target cutting depth, and the steel type
JP2010153779A 2010-07-06 2010-07-06 Surface care method and apparatus for continuous cast slab Expired - Fee Related JP5601055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153779A JP5601055B2 (en) 2010-07-06 2010-07-06 Surface care method and apparatus for continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153779A JP5601055B2 (en) 2010-07-06 2010-07-06 Surface care method and apparatus for continuous cast slab

Publications (2)

Publication Number Publication Date
JP2012016709A JP2012016709A (en) 2012-01-26
JP5601055B2 true JP5601055B2 (en) 2014-10-08

Family

ID=45602347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153779A Expired - Fee Related JP5601055B2 (en) 2010-07-06 2010-07-06 Surface care method and apparatus for continuous cast slab

Country Status (1)

Country Link
JP (1) JP5601055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448002A (en) * 2017-07-10 2017-12-08 傅海波 It is a kind of ground is polished, the construction technology of glaze paint reparation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144199B1 (en) * 2018-12-21 2020-08-12 현대제철 주식회사 Apparatus for eliminating scale on slab
JP7401731B2 (en) * 2019-07-17 2023-12-20 日本製鉄株式会社 Steel material fusing equipment and steel material fusing method
JP7256392B2 (en) * 2019-09-09 2023-04-12 日本製鉄株式会社 Steel cutting method
KR102430004B1 (en) * 2021-04-20 2022-08-05 유한환경산업 주식회사 Apparatus for scarfing slab
KR102430005B1 (en) * 2021-04-20 2022-08-05 유한환경산업 주식회사 Apparatus for scarfing slab

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991985A (en) * 1975-01-13 1976-11-16 Union Carbide Corporation Apparatus for making an instantaneous scarfing start
CA1079181A (en) * 1977-09-26 1980-06-10 Union Carbide Corporation Method and apparatus for producing a post-mixed, stabilized scarfing preheating flame
JPS601575U (en) * 1983-06-17 1985-01-08 日本スピング株式会社 Slag removal equipment
EP0204825A1 (en) * 1984-12-12 1986-12-17 Union Carbide Corporation Adjustable burner nozzle
JPH02274377A (en) * 1989-04-14 1990-11-08 Nippon Steel Corp Method for scarfing steel having rectangular cross section
JP2521559Y2 (en) * 1991-03-27 1996-12-25 日本スピング 株式会社 Crater for fusing
JPH10314908A (en) * 1997-03-18 1998-12-02 Kawasaki Steel Corp Method for cleaning surface of continuously cast slab and device therefor
US6174491B1 (en) * 1998-09-18 2001-01-16 The Esab Group, Inc. Lower pre-heat block for use in metal scarfing apparatus
JP4218461B2 (en) * 2003-08-05 2009-02-04 Jfeスチール株式会社 Welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448002A (en) * 2017-07-10 2017-12-08 傅海波 It is a kind of ground is polished, the construction technology of glaze paint reparation
CN107448002B (en) * 2017-07-10 2020-07-17 傅海波 Construction process for polishing and repairing glaze surface of ground

Also Published As

Publication number Publication date
JP2012016709A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5601055B2 (en) Surface care method and apparatus for continuous cast slab
RU2591788C2 (en) Method of producing hot-rolled silicon steel
CN104526251B (en) A kind of figuring of surface method of titanium plate or titanium alloy sheet
CN1148522A (en) Steel-band continuously hot final rolling method and apparatus thereof
CN106216392B (en) One kind eliminates cut deal piebald defects controlling method
JP5119505B2 (en) Titanium slab for hot rolling melted in an electron beam melting furnace and its melting method
JP3951889B2 (en) Manufacturing method and equipment for hot-rolled steel
CN107735187A (en) Continuously casting and rolling equipment and continuously casting and milling method
JP4627025B2 (en) Rolling equipment
US8572826B2 (en) Method and device for in-line surface treatment of slabs
CN102989785B (en) Process for controlling surface piebaldness of steel plates
JP2012016723A (en) Method and device for repairing surface of continuously cast slab
JPH10314908A (en) Method for cleaning surface of continuously cast slab and device therefor
JP5577654B2 (en) Manufacturing method of high-strength hot-rolled steel strip
KR100993986B1 (en) Mash seam welding apparatus with post heating device and method of welding using the same
JP2022510208A (en) Rolling material processing equipment and processing method
JP2013107130A (en) Method of producing titanium slab for hot rolling
KR101751280B1 (en) Slab processing appratus
JP5854177B1 (en) Hot rolling method for high carbon steel
WO2024204436A1 (en) Hot-rolling equipment and hot-rolling method
JP5768415B2 (en) Method for preventing warpage in hot rolling line of high Si steel
WO2024204437A1 (en) Hot rolling facility and hot rolling method
JP2007030007A (en) Welding post-treatment method for stainless steel plate, and welding appafatis
JPS629772A (en) Maintenance method for billet
JP4423823B2 (en) Billet scarfing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5601055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees