JP5597663B2 - Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer - Google Patents
Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer Download PDFInfo
- Publication number
- JP5597663B2 JP5597663B2 JP2012053347A JP2012053347A JP5597663B2 JP 5597663 B2 JP5597663 B2 JP 5597663B2 JP 2012053347 A JP2012053347 A JP 2012053347A JP 2012053347 A JP2012053347 A JP 2012053347A JP 5597663 B2 JP5597663 B2 JP 5597663B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light emitting
- semiconductor
- semiconductor layer
- nitride semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 270
- 150000004767 nitrides Chemical class 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000000758 substrate Substances 0.000 claims description 43
- 230000004888 barrier function Effects 0.000 claims description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 37
- 239000010703 silicon Substances 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 20
- 229910002704 AlGaN Inorganic materials 0.000 claims description 19
- 239000010410 layer Substances 0.000 description 394
- 238000000034 method Methods 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 18
- 230000006378 damage Effects 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Devices (AREA)
Description
本発明の実施形態は、半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法に関する。 Embodiments described herein relate generally to a semiconductor light emitting device, a nitride semiconductor wafer, and a method for manufacturing a nitride semiconductor layer.
LD(Laser Diode)やLED(Light Emitting Diode)、HEMT(High electron mobility transistor)などの窒化物半導体を用いた半導体発光素子において、結晶成長から実装にわたる工程のなかでおこる窒化物半導体層の劣化、破壊の抑制が求められている。 In semiconductor light emitting devices using nitride semiconductors such as LDs (Laser Diodes), LEDs (Light Emitting Diodes), and HEMTs (High Electron Mobility Transistors), the degradation of the nitride semiconductor layer that occurs during the process from crystal growth to mounting, There is a demand for suppression of destruction.
例えば、窒化物半導体層をシリコン基板上に成長させる場合に、組成が連続的に傾斜する構造や組成の異なる2層を交互に積層した超格子構造など種々の構成が提案されている。しかしながら、従来の手法は、窒化物半導体層の劣化、破壊の抑制の点で不十分であり、改良の余地がある。 For example, when a nitride semiconductor layer is grown on a silicon substrate, various configurations such as a structure in which the composition is continuously inclined and a superlattice structure in which two layers having different compositions are alternately stacked have been proposed. However, the conventional method is insufficient in terms of suppressing deterioration and destruction of the nitride semiconductor layer, and there is room for improvement.
本発明の実施形態は、半導体層の劣化及び破壊を抑制した半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を提供する。 Embodiments of the present invention provide a semiconductor light emitting device, a nitride semiconductor wafer, and a method for manufacturing a nitride semiconductor layer in which deterioration and destruction of the semiconductor layer are suppressed.
本発明の実施形態によれば、下地層と、第1半導体層と、発光部と、第2半導体層と、を含む半導体発光素子が提供される。前記下地層は、シリコン基板の上に形成される。前記第1半導体層は、前記下地層の上に設けられ、窒化物半導体を含み第1導電形である。前記発光部は、前記第1半導体層の上に設けられる。前記発光部は、複数の障壁層と、前記複数の障壁層どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む。前記第2半導体層は、前記発光部の上に設けられ、窒化物半導体を含み前記第1導電形とは異なる第2導電形である。前記下地層は、前記シリコン基板の上に形成されたAlNバッファ層と、前記AlNバッファ層の上に形成されたAlGaNバッファ層と、前記AlGaNバッファ層の上に形成されたGaN層と、前記GaN層の上に形成され2ナノメートル以上100ナノメートル以下の厚さを有し、AlNを含むAl含有中間層と、を含む。前記前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有する。
本発明の別の実施形態によれば、シリコン基板と、前記シリコン基板の上に設けられた下地層と、前記下地層の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層と、前記第1半導体層の上に設けられた発光部であって、複数の障壁層と、前記複数の障壁層どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む発光部と、前記発光部の上に設けられ、窒化物半導体を含み前記第1導電形とは異なる第2導電形の第2半導体層と、を備え、前記下地層は、前記シリコン基板の上に形成されたAlNバッファ層と、前記AlNバッファ層の上に形成されたAlGaNバッファ層と、前記AlGaNバッファ層の上に形成されたGaN層と、前記GaN層の上に形成され2ナノメートル以上100ナノメートル以下の厚さを有し、AlN含むAl含有中間層と、を含み、前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有することを特徴とする窒化物半導体ウェーハが提供される。
本発明の別の実施形態によれば、シリコン基板の上に、AlNバッファ層と、前記AlNバッファ層の上に形成されたAlGaNバッファ層と、前記AlGaNバッファ層の上に形成されたGaN層と、前記GaN層の上に形成され2ナノメートル以上100ナノメートル以下の厚さを有し、AlNを含むAl含有中間層と、を含む下地層を形成する工程と、前記下地層の上に、窒化物半導体を含み第1導電形の第1半導体層を形成する工程と、前記第1半導体層の上に、複数の障壁層と、前記複数の障壁層どうしの間に配置されるGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む発光部を形成する工程と、前記発光部の上に、窒化物半導体を含み前記第1導電形とは異なる第2導電形の第2半導体層を形成する工程と、を備え、前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有することを特徴とする窒化物半導体層の製造方法が提供される。
According to an embodiment of the present invention, a semiconductor light emitting device including an underlayer, a first semiconductor layer, a light emitting unit, and a second semiconductor layer is provided. The foundation layer is formed on a silicon substrate. The first semiconductor layer is provided on the base layer and includes a nitride semiconductor and has a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The light emitting unit includes a plurality of barrier layers and a well layer provided between the plurality of barrier layers and containing Ga 1 -z1 In z1 N (0 <z1 ≦ 1). The second semiconductor layer is provided on the light emitting unit and has a second conductivity type that includes a nitride semiconductor and is different from the first conductivity type. The underlayer includes an AlN buffer layer formed on the silicon substrate, an AlGaN buffer layer formed on the AlN buffer layer, a GaN layer formed on the AlGaN buffer layer, and the GaN An Al-containing intermediate layer formed on the layer and having a thickness of 2 nm to 100 nm and including AlN. The said Al containing intermediate | middle layer has a dot-shaped uneven | corrugated | grooved part provided in the surface by the side of the said 1st semiconductor layer.
According to another embodiment of the present invention, a silicon substrate, a base layer provided on the silicon substrate, a first semiconductor of a first conductivity type provided on the base layer and including a nitride semiconductor. And a light emitting portion provided on the first semiconductor layer, the Ga 1 -z1 In z1 N (0 <z1 ≦ 1) provided between the plurality of barrier layers and the plurality of barrier layers. A well layer including a light emitting portion, and a second semiconductor layer that is provided on the light emitting portion and has a second conductivity type that includes a nitride semiconductor and is different from the first conductivity type, and The underlayer includes an AlN buffer layer formed on the silicon substrate, an AlGaN buffer layer formed on the AlN buffer layer, a GaN layer formed on the AlGaN buffer layer, and the GaN layer. 100 Na 2 nm or more is formed on the An Al-containing intermediate layer containing AlN , and the Al-containing intermediate layer has a dot-shaped uneven portion provided on the surface on the first semiconductor layer side. A nitride semiconductor wafer is provided.
According to another embodiment of the present invention, an AlN buffer layer on a silicon substrate, an AlGaN buffer layer formed on the AlN buffer layer, and a GaN layer formed on the AlGaN buffer layer; A step of forming an underlayer including an Al-containing intermediate layer formed on the GaN layer and having an Al-containing intermediate layer having a thickness of 2 to 100 nanometers , and on the underlayer, A step of forming a first semiconductor layer of a first conductivity type including a nitride semiconductor; a plurality of barrier layers on the first semiconductor layer; and Ga 1− disposed between the plurality of barrier layers. a step of forming a light emitting portion including a well layer including z1 In z1 N (0 <z1 ≦ 1), and a second conductivity different from the first conductivity type including a nitride semiconductor on the light emitting portion. Forming a second semiconductor layer having a shape; Wherein the Al-containing intermediate layer, the manufacturing method of the nitride semiconductor layer and having a dot-like uneven portion provided on a surface side of said first semiconductor layer is provided.
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Embodiments of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
(第1の実施形態)
本実施形態は、例えば、発光ダイオード(LED)及びレーザダイオード(LD)などの半導体発光素子に係る。
(First embodiment)
The present embodiment relates to a semiconductor light emitting device such as a light emitting diode (LED) and a laser diode (LD).
図1は、第1の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。 図1に表したように、本実施形態に係る半導体発光素子110は、第1半導体層10と、発光部30と、第2半導体層20と、In含有中間層60と、を備える。 FIG. 1 is a schematic cross-sectional view illustrating the configuration of the semiconductor light emitting element according to the first embodiment. As shown in FIG. 1, the semiconductor light emitting device 110 according to this embodiment includes a first semiconductor layer 10, a light emitting unit 30, a second semiconductor layer 20, and an In-containing intermediate layer 60.
第1半導体層10は、シリコン基板40の上に下地層50を介して形成される。第1半導体層10は、窒化物半導体を含み第1導電形である。 The first semiconductor layer 10 is formed on the silicon substrate 40 via the base layer 50. The first semiconductor layer 10 includes a nitride semiconductor and has a first conductivity type.
発光部30は、第1半導体層10の上に設けられる。発光部30は、例えば、第1半導体層10の[0001]方向の側に設けられる。発光部30の例については後述する。 The light emitting unit 30 is provided on the first semiconductor layer 10. The light emitting unit 30 is provided, for example, on the [0001] direction side of the first semiconductor layer 10. An example of the light emitting unit 30 will be described later.
第2半導体層20は、発光部30の上に設けられる。第2半導体層20は、窒化物半導体を含み、第2導電形である。第2導電形は、第1導電形とは異なる導電形である。 The second semiconductor layer 20 is provided on the light emitting unit 30. The second semiconductor layer 20 includes a nitride semiconductor and has a second conductivity type. The second conductivity type is a conductivity type different from the first conductivity type.
例えば、第1導電形はn形であり、第2導電形はp形である。または、第1導電形がp形で、第2導電形がn形でも良い。以下では、第1導電形がn形であり、第2導電形がp形である場合として説明する。 For example, the first conductivity type is n-type and the second conductivity type is p-type. Alternatively, the first conductivity type may be p-type and the second conductivity type may be n-type. In the following description, it is assumed that the first conductivity type is n-type and the second conductivity type is p-type.
In含有中間層60は、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間の少なくともいずれかに設けられる。この例では、In含有中間層60は、第1半導体層10と発光部30との間に設けられている。 The In-containing intermediate layer 60 is provided between at least one of the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer 20 and the light emitting unit 30. In this example, the In-containing intermediate layer 60 is provided between the first semiconductor layer 10 and the light emitting unit 30.
ここで、第1半導体層10から発光部30に向かう方向をZ軸方向とする。Z軸に対して垂直な1つの軸をX軸とする。Z軸とX軸とに対して垂直な方向をY軸とする。 Here, a direction from the first semiconductor layer 10 toward the light emitting unit 30 is a Z-axis direction. One axis perpendicular to the Z axis is taken as the X axis. A direction perpendicular to the Z axis and the X axis is taken as a Y axis.
半導体発光素子110の機能部10sに含まれる第1半導体層10、発光部30、第2半導体層20及びIn含有中間層60が、Z軸に沿って積層される。 The first semiconductor layer 10, the light emitting unit 30, the second semiconductor layer 20, and the In-containing intermediate layer 60 included in the functional unit 10s of the semiconductor light emitting device 110 are stacked along the Z axis.
本願明細書において、「積層」とは、互いに接して重ねられる場合の他に、間に他の層が挿入されて重ねられる場合も含む。また、「上に設けられる」とは、直接接して設けられる場合の他に、間に他の層が挿入されて設けられる場合も含む。 In the specification of the application, “stacking” includes not only the case of being stacked in contact with each other but also the case of being stacked with another layer inserted therebetween. Further, “provided on” includes not only the case of being provided in direct contact but also the case of being provided with another layer interposed therebetween.
シリコン基板40は、例えば、Si(111)基板である。ただし、実施形態において、シリコン基板40の面方位は、(111)面でなくても良い。シリコン基板40の主面(下地層50が形成される面)の面方位は、(111)、(110)及び(100)と、それらの面方位から傾斜した面など、種々の面方位とすることができる。 The silicon substrate 40 is, for example, a Si (111) substrate. However, in the embodiment, the plane orientation of the silicon substrate 40 may not be the (111) plane. The surface orientation of the main surface of the silicon substrate 40 (the surface on which the underlayer 50 is formed) has various surface orientations such as (111), (110), and (100) and surfaces inclined from these surface orientations. be able to.
シリコン基板40は、シリコン基板40上に機能部10sを形成した後に、任意の手法によって除去(剥離)されても良い。シリコン基板40を剥離する位置は、例えば、下地層50内、または、機能部10s内である。また、シリコン基板40の少なくとも一部が、残っても良い。 The silicon substrate 40 may be removed (peeled) by any method after the functional unit 10 s is formed on the silicon substrate 40. The position where the silicon substrate 40 is peeled is, for example, in the underlayer 50 or in the functional unit 10s. Further, at least a part of the silicon substrate 40 may remain.
図2は、第1の実施形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
図2に表したように、発光部30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられた井戸層32と、を含む。複数の井戸層32のそれぞれは、Ga1−z1Inz1N(0<z1≦1)を含む。障壁層31は、例えばGaNを含む。すなわち、井戸層32はInを含み、障壁層31はInを実質的に含まない。または、障壁層31は、井戸層32に含まれるIn組成比よりも低い組成比でInを含む。障壁層31におけるバンドギャップエネルギーは、井戸層32におけるバンドギャップエネルギーよりも大きい。
FIG. 2 is a schematic cross-sectional view illustrating the configuration of a part of the semiconductor light emitting element according to the first embodiment.
As shown in FIG. 2, the light emitting unit 30 includes a plurality of barrier layers 31 and a well layer 32 provided between the plurality of barrier layers 31. Each of the plurality of well layers 32 includes Ga 1-z1 In z1 N (0 <z1 ≦ 1). The barrier layer 31 includes, for example, GaN. That is, the well layer 32 contains In, and the barrier layer 31 does not substantially contain In. Alternatively, the barrier layer 31 contains In at a composition ratio lower than the In composition ratio contained in the well layer 32. The band gap energy in the barrier layer 31 is larger than the band gap energy in the well layer 32.
例えば、複数の障壁層31と、複数の井戸層32と、がZ軸に沿って交互に積層される。 For example, a plurality of barrier layers 31 and a plurality of well layers 32 are alternately stacked along the Z axis.
発光部30は、単一量子井戸(SQW:Single Quantum Well)構成を有することができる。このとき、発光部30は、2つの障壁層31と、その障壁層31の間に設けられた井戸層32と、を含む。または、発光部30は、多重量子井戸(MQW:Multi Quantum Well)構成を有することができる。このとき、発光部30は、3つ以上の障壁層31と、障壁層31どうしのそれぞれの間に設けられた井戸層32と、を含む。 The light emitting unit 30 may have a single quantum well (SQW) configuration. At this time, the light emitting unit 30 includes two barrier layers 31 and a well layer 32 provided between the barrier layers 31. Alternatively, the light emitting unit 30 may have a multi quantum well (MQW) configuration. At this time, the light emitting unit 30 includes three or more barrier layers 31 and a well layer 32 provided between the barrier layers 31.
すなわち、発光部30は、(n+1)個の障壁層31と、n個の井戸層32と、を含む(nは、2以上の整数)。第(i+1)障壁層BL(i+1)は、第i障壁層BLiと第2半導体層20との間に配置される(iは、1以上(n−1)以下の整数)。第(i+1)井戸層WL(i+1)は、第i井戸層WLiと第2半導体層20との間に配置される。第1障壁層BL1は、第1半導体層10と第1井戸層WL1との間に設けられる。第n井戸層WLnは、第n障壁層BLnと第(n+1)障壁層BL(n+1)との間に設けられる。第(n+1)障壁層BL(n+1)は、第n井戸層WLnと第2半導体層20との間に設けられる。 That is, the light emitting unit 30 includes (n + 1) barrier layers 31 and n well layers 32 (n is an integer of 2 or more). The (i + 1) th barrier layer BL (i + 1) is disposed between the i-th barrier layer BLi and the second semiconductor layer 20 (i is an integer of 1 or more and (n−1) or less). The (i + 1) th well layer WL (i + 1) is disposed between the i-th well layer WLi and the second semiconductor layer 20. The first barrier layer BL1 is provided between the first semiconductor layer 10 and the first well layer WL1. The nth well layer WLn is provided between the nth barrier layer BLn and the (n + 1) th barrier layer BL (n + 1). The (n + 1) th barrier layer BL (n + 1) is provided between the nth well layer WLn and the second semiconductor layer 20.
発光部30から放出される光のエネルギーは、例えば、0.4エレクトロンボルト(eV)以上6.5eV以下の範囲を含む。発光部30から放出される光(発光光)のピーク波長は、例えば380ナノメートル(nm)以上650nm以下である。ただし、実施形態において、ピーク波長は任意である。 The energy of light emitted from the light emitting unit 30 includes, for example, a range of 0.4 electron volts (eV) or more and 6.5 eV or less. The peak wavelength of light (emitted light) emitted from the light emitting unit 30 is, for example, not less than 380 nanometers (nm) and not more than 650 nm. However, in the embodiment, the peak wavelength is arbitrary.
In含有中間層60は、井戸層32に含まれるIn組成比z1とは異なる組成比でInを含む窒化物半導体を含む。In含有中間層60は、10nm以上1000nm以下の厚さを有する。 The In-containing intermediate layer 60 includes a nitride semiconductor containing In at a composition ratio different from the In composition ratio z <b> 1 included in the well layer 32. The In-containing intermediate layer 60 has a thickness of 10 nm to 1000 nm.
図3は、第1の実施形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
すなわち、同図は、In含有中間層60の構成を例示している。
図3に表したように、In含有中間層60は、交互に積層された複数の第1層61と、複数の第2層62と、を含む。第1層61は、例えば、Ga1−X2InX2N(0<x2≦1)を含む。第2層62は、Ga1−X3InX3N(0≦x3≦1、x3<x2)を含む。
FIG. 3 is a schematic cross-sectional view illustrating the configuration of a part of the semiconductor light emitting element according to the first embodiment.
That is, this figure illustrates the configuration of the In-containing intermediate layer 60.
As illustrated in FIG. 3, the In-containing intermediate layer 60 includes a plurality of first layers 61 and a plurality of second layers 62 that are alternately stacked. The first layer 61 includes, for example, Ga 1-X2 In X2 N (0 <x2 ≦ 1). The second layer 62 includes Ga 1-X3 In X3 N (0 ≦ x3 ≦ 1, x3 <x2).
例えば、第1層61及び第2層62の数(例えばペア数)は、例えば20である。例えば、第1層61には、厚さが1nmのIn0.08Ga0.92N層が用いられる。第2層62には、例えば、厚さが3nmのGaN層が用いられる。第2層62は、n形不純物を含むことができる。
なお、In含有中間層60は、上記のような複数の層が交互に積層された多層構造体でなくても良い。In含有中間層60は、後述するように、場合によっては単層でも良い。
For example, the number (for example, the number of pairs) of the first layer 61 and the second layer 62 is 20, for example. For example, an In 0.08 Ga 0.92 N layer having a thickness of 1 nm is used for the first layer 61. For the second layer 62, for example, a GaN layer having a thickness of 3 nm is used. The second layer 62 can include an n-type impurity.
The In-containing intermediate layer 60 may not be a multilayer structure in which a plurality of layers as described above are alternately stacked. The In-containing intermediate layer 60 may be a single layer depending on the case, as will be described later.
図4は、第1の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。 図4に表したように、本実施形態に係る具体例の半導体発光素子111においては、下地層50は、シリコン基板40の上に形成されたAlNバッファ層55と、AlNバッファ層55の上に形成されたAlGaNバッファ層54と、AlGaNバッファ層54の上に設けられた多層バッファ層53と、を含む。 FIG. 4 is a schematic cross-sectional view illustrating the configuration of the semiconductor light emitting element according to the first embodiment. As shown in FIG. 4, in the semiconductor light emitting device 111 of the specific example according to the present embodiment, the base layer 50 is formed on the AlN buffer layer 55 formed on the silicon substrate 40 and the AlN buffer layer 55. The formed AlGaN buffer layer 54 and a multilayer buffer layer 53 provided on the AlGaN buffer layer 54 are included.
多層バッファ層53は、Z軸に沿って交互に積層された複数のGaN層51と、複数のAlN層52と、を含む。
このような下地層50の上に、機能部10sが積層される。この例では、In含有層60は、図3に例示した、第1層61と第2層62との多層構造を有する。
The multilayer buffer layer 53 includes a plurality of GaN layers 51 and a plurality of AlN layers 52 that are alternately stacked along the Z-axis.
The functional unit 10 s is stacked on the base layer 50. In this example, the In-containing layer 60 has the multilayer structure of the first layer 61 and the second layer 62 illustrated in FIG.
このような構成を有する実施形態に係る半導体発光素子110及び111により、半導体層の劣化及び破壊を抑制した半導体発光素子が提供できる。 The semiconductor light emitting devices 110 and 111 according to the embodiment having such a configuration can provide a semiconductor light emitting device in which deterioration and destruction of the semiconductor layer are suppressed.
以下、半導体発光素子111を作製し、その特性について評価した結果を、参考例と共に説明する。半導体発光素子111は、以下のようにして作製された。 Hereinafter, the result of evaluating the characteristics of the semiconductor light emitting device 111 will be described together with a reference example. The semiconductor light emitting device 111 was manufactured as follows.
以下の半導体層の結晶成長には、MOVPE(有機金属気相成長)法を用いた。 The MOVPE (metal organic vapor phase epitaxy) method was used for crystal growth of the following semiconductor layers.
まず、Si(111)のシリコン基板40をH2O2とH2SO4との1:1の混合液で13分間洗浄した。次に、2%のHFを用いて10分間、シリコン基板40を洗浄した。洗浄後、シリコン基板40をMOVPE反応炉内に導入した。 First, the Si (111) silicon substrate 40 was washed with a 1: 1 mixture of H 2 O 2 and H 2 SO 4 for 13 minutes. Next, the silicon substrate 40 was cleaned using 2% HF for 10 minutes. After cleaning, the silicon substrate 40 was introduced into the MOVPE reactor.
サセプタを水素雰囲気下で720℃に昇温し、TMAを8秒間供給した。その後、NH3を更に供給することで、AlNバッファ層55となる、厚さが40nmのAlN層を形成した。 The susceptor was heated to 720 ° C. in a hydrogen atmosphere, and TMA was supplied for 8 seconds. Thereafter, by further supplying NH 3 , an AlN layer having a thickness of 40 nm, which becomes the AlN buffer layer 55, was formed.
続いて、サセプタを1030℃に昇温し、AlGaNバッファ層54となる、厚さが40nmのAl0.25Ga0.75N層を形成した。 Subsequently, the temperature of the susceptor was raised to 1030 ° C., and an Al 0.25 Ga 0.75 N layer having a thickness of 40 nm was formed to be the AlGaN buffer layer 54.
次に、サセプタを1080℃に昇温し、GaN層51となる、厚さが300nmのGaN層を形成した。 Next, the susceptor was heated to 1080 ° C. to form a GaN layer 51 having a thickness of 300 nm.
次に、サセプタを800℃に降温し、総流量に占めるNH3、H2、N2の割合をそれぞれ20%、80%、0%にて、AlN層52となる、厚さ12nmのAlN層を形成した。 Next, the temperature of the susceptor is lowered to 800 ° C., and the ratio of NH 3 , H 2 , and N 2 in the total flow rate is 20%, 80%, and 0%, respectively, and the AlN layer having a thickness of 12 nm becomes the AlN layer 52. Formed.
さらに、総流量に占めるNH3、H2、N2の割合をそれぞれ63%、19%、18%に変更した後、サセプタを1080℃に昇温し、GaN層51となる、厚さが300nmのGaN層の形成と、上記のAlN層52の形成と、を交互に3回繰り返した。 Furthermore, after changing the proportions of NH 3 , H 2 , and N 2 in the total flow rate to 63%, 19%, and 18%, respectively, the susceptor is heated to 1080 ° C. to become the GaN layer 51, with a thickness of 300 nm. The formation of the GaN layer and the formation of the AlN layer 52 were alternately repeated three times.
次に、サセプタを800℃に降温し、総流量に占めるNH3、H2、N2の割合をそれぞれ20%、80%、0%にて、AlN層52となる、12nmのAlN層を形成した。
これにより、複数のGaN層51と、複数のAlN層52と、が交互に積層された下地層50が形成される。
Next, the temperature of the susceptor is lowered to 800 ° C., and a 12 nm AlN layer is formed, which becomes the AlN layer 52 with NH 3 , H 2 , and N 2 occupying 20%, 80%, and 0% of the total flow rate, respectively. did.
Thereby, the foundation layer 50 in which the plurality of GaN layers 51 and the plurality of AlN layers 52 are alternately stacked is formed.
次に、サセプタを1120℃に昇温し、第1半導体層10となる、厚さが1.2μmのn形GaN層を形成した。 Next, the temperature of the susceptor was raised to 1120 ° C., and an n-type GaN layer having a thickness of 1.2 μm that was to be the first semiconductor layer 10 was formed.
次に、サセプタを810℃に降温し、第1層61となる、厚さが1nmのIn0.08Ga0.92N層の形成と、第2層62となる、厚さが3nmのn形GaN層の形成と、を交互に20回繰り返した。これにより、In含有中間層60が形成される。 Next, the temperature of the susceptor is lowered to 810 ° C., the formation of an In 0.08 Ga 0.92 N layer having a thickness of 1 nm to be the first layer 61, and the n layer having a thickness of 3 nm to be the second layer 62 The formation of the GaN layer was repeated 20 times alternately. Thereby, the In-containing intermediate layer 60 is formed.
次に、LEDの発光部30を形成した。さらに、第2半導体層20となるp形GaN層を形成した。これにより、半導体発光素子111が形成される。 Next, the light emitting part 30 of LED was formed. Further, a p-type GaN layer to be the second semiconductor layer 20 was formed. Thereby, the semiconductor light emitting element 111 is formed.
一方、第1比較例の半導体発光素子191(図示しない)においては、In含有中間層60が設けられない。すなわち、第1半導体層10に接して発光部30が形成される。これ以外は、半導体発光素子111と同様である。 On the other hand, the In-containing intermediate layer 60 is not provided in the semiconductor light emitting device 191 (not shown) of the first comparative example. That is, the light emitting unit 30 is formed in contact with the first semiconductor layer 10. Except this, it is the same as the semiconductor light emitting device 111.
このようにして作製された、実施形態に係る半導体発光素子111及び第1参考例の半導体発光素子191をノマルスキ顕微鏡で観察した。
図5(a)及び図5(b)は、半導体発光素子の特性を例示するノマルスキ顕微鏡像である。
図5(a)に示したように、実施形態に係る半導体発光素子111においては、クラックが観察されなかった。
図5(b)に示したように、第1参考例においては、多数のクラックCRが観察された。
The semiconductor light emitting device 111 according to the embodiment and the semiconductor light emitting device 191 of the first reference example manufactured as described above were observed with a Nomarski microscope.
FIG. 5A and FIG. 5B are Nomarski microscope images illustrating the characteristics of the semiconductor light emitting device.
As shown in FIG. 5A, no crack was observed in the semiconductor light emitting device 111 according to the embodiment.
As shown in FIG. 5B, a large number of cracks CR were observed in the first reference example.
このように、本実施形態においては、In含有中間層60を設けることで、クラックCRが実質的に発生せず、半導体層の劣化及び破壊を抑制される。 As described above, in the present embodiment, by providing the In-containing intermediate layer 60, the crack CR is not substantially generated, and deterioration and destruction of the semiconductor layer are suppressed.
例えば、基板の上に半導体層(GaN層など)を形成した際に、熱膨張係数の差異によって半導体層に引っ張り応力が働き、基板が下に凸状に反ることがある。このように、半導体層に応力がはたらくと、クラックCRが発生する。これに対して、応力を調整する層を設け、半導体層の成長の過程では基板が上に凸状にそり、室温に戻したときに、基板がフラットになるようにする構成がある。しかしながら、シリコン基板40上に、窒化物半導体層を形成する構成においては、このような応力を調整する層の導入だけでは、クラックCRの発生を十分に抑制することができないことが分かった。 For example, when a semiconductor layer (such as a GaN layer) is formed on a substrate, a tensile stress may act on the semiconductor layer due to a difference in thermal expansion coefficient, causing the substrate to warp downward. Thus, when stress is applied to the semiconductor layer, a crack CR is generated. On the other hand, there is a configuration in which a layer for adjusting stress is provided so that the substrate is warped upward in the process of growth of the semiconductor layer, and the substrate becomes flat when returned to room temperature. However, it has been found that in the configuration in which the nitride semiconductor layer is formed on the silicon substrate 40, the generation of the crack CR cannot be sufficiently suppressed only by introducing such a layer for adjusting the stress.
すなわち、応力を調整する層においては、格子緩和層などが用いられるが、このため、転位が発生し易くなる。 That is, in the layer for adjusting the stress, a lattice relaxation layer or the like is used. Therefore, dislocation is likely to occur.
これに対して、実施形態に係る構成によれば、クラックCRの発生を抑制しつつ、転位の発生も抑制できる。 On the other hand, according to the structure which concerns on embodiment, generation | occurrence | production of a dislocation | rearrangement can also be suppressed, suppressing generation | occurrence | production of crack CR.
図6は、第1の実施形態に係る半導体発光素子の特性を例示する電子顕微鏡写真像である。
同図は、半導体発光素子111の機能部10sの断面の透過型電子顕微鏡写真像である。図6から分かるように、第1半導体層10内の下面から第1半導体層10内の上面に向けて、転位が次第に少なくなっている。このように、本実施形態に係る構成により、クラックCRの発生を抑制しつつ、転位の発生も抑制できる。
FIG. 6 is an electron micrograph image illustrating the characteristics of the semiconductor light emitting device according to the first embodiment.
This figure is a transmission electron micrograph image of the cross section of the functional part 10 s of the semiconductor light emitting device 111. As can be seen from FIG. 6, dislocations gradually decrease from the lower surface in the first semiconductor layer 10 toward the upper surface in the first semiconductor layer 10. Thus, by the structure which concerns on this embodiment, generation | occurrence | production of a dislocation | rearrangement can also be suppressed, suppressing generation | occurrence | production of crack CR.
図7(a)及び図7(b)は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図7(a)に表したように、本実施形態に係る別の半導体発光素子121においては、In含有中間層60は、第2半導体層20と発光部30との間に設けられる。
FIG. 7A and FIG. 7B are schematic cross-sectional views illustrating the configuration of another semiconductor light emitting element according to the first embodiment.
As shown in FIG. 7A, in another semiconductor light emitting device 121 according to this embodiment, the In-containing intermediate layer 60 is provided between the second semiconductor layer 20 and the light emitting unit 30.
図7(b)に表したように、本実施形態に係る別の半導体発光素子122においては、In含有中間層60は、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間の両方に設けられる。 As illustrated in FIG. 7B, in another semiconductor light emitting device 122 according to the present embodiment, the In-containing intermediate layer 60 is provided between the first semiconductor layer 10 and the light emitting unit 30 and the second semiconductor. It is provided both between the layer 20 and the light emitting unit 30.
例えば、半導体発光素子110、121及び122において、In含有中間層60には、Ga1−x1Inx1N層(0<x1≦1)を用いることができる。すなわち、In含有中間層60は、単層でも良い。 For example, in the semiconductor light emitting devices 110, 121 and 122, a Ga 1-x1 In x1 N layer (0 <x1 ≦ 1) can be used for the In-containing intermediate layer 60. That is, the In-containing intermediate layer 60 may be a single layer.
また、図3に例示したように、In含有中間層60が、交互に積層された複数の第1層61と、複数の第2層62と、を含む場合において、In含有中間層60は、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間の少なくともいずれかに設けることができる。 Further, as illustrated in FIG. 3, when the In-containing intermediate layer 60 includes a plurality of first layers 61 and a plurality of second layers 62 that are alternately stacked, the In-containing intermediate layer 60 includes: It can be provided at least between the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer 20 and the light emitting unit 30.
図8(a)及び図8(b)は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図8(a)及び図8(b)に表したように、本実施形態に係る別の半導体発光素子131及び132においては、下地層50は、Al含有中間層56を含む。Al含有中間層56は、Alを含む窒化物半導体を含む。なお、Al含有中間層56は、B及びInの少なくともいずれかをさらに含んでも良い。Al含有中間層56は、例えば、Ga1−y1Aly1N(0<y1≦1)を含む。Al含有中間層56は、2nm以上100nm以下の厚さを有する。
FIG. 8A and FIG. 8B are schematic cross-sectional views illustrating the configuration of another semiconductor light emitting element according to the first embodiment.
As shown in FIGS. 8A and 8B, in another semiconductor light emitting device 131 and 132 according to the present embodiment, the underlayer 50 includes an Al-containing intermediate layer 56. The Al-containing intermediate layer 56 includes a nitride semiconductor containing Al. The Al-containing intermediate layer 56 may further include at least one of B and In. The Al-containing intermediate layer 56 includes, for example, Ga 1-y1 Al y1 N (0 <y1 ≦ 1). The Al-containing intermediate layer 56 has a thickness of 2 nm to 100 nm.
半導体発光素子131及び132のように、Al含有中間層56が設けられる場合において、In含有中間層60は、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間の少なくともいずれかに設けることができる。 In the case where the Al-containing intermediate layer 56 is provided as in the semiconductor light emitting devices 131 and 132, the In-containing intermediate layer 60 emits light between the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer 20 and the light emitting element. It can be provided in at least one of the portions 30.
また、In含有中間層60が、交互に積層された複数の第1層61と、複数の第2層62と、を含む場合において、Al含有中間層56を設けても良い。 Further, when the In-containing intermediate layer 60 includes a plurality of first layers 61 and a plurality of second layers 62 that are alternately stacked, the Al-containing intermediate layer 56 may be provided.
なお、半導体発光素子に含まれる各層の厚さは、断面の電子顕微鏡写真などから求めることができる。また、各層に含まれる例えばIn及びAlなどの元素の濃度は、例えば、TEM−EDX(透過電子顕微鏡−エネルギー分散型X線分光法)SIMS(2次イオン質量分析法)などによる分析結果から求めることができる。 The thickness of each layer included in the semiconductor light emitting element can be obtained from an electron micrograph of a cross section. The concentration of elements such as In and Al contained in each layer is obtained from the analysis result by TEM-EDX (transmission electron microscope-energy dispersive X-ray spectroscopy) SIMS (secondary ion mass spectrometry), for example. be able to.
(第2の実施形態)
図9は、第2の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。
図9に表したように、本実施形態に係る半導体発光素子140は、シリコン基板40の上に形成された下地層50と、下地層50の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層10と、第1半導体層10の上に設けられた発光部30と、発光部30の上に設けられ、窒化物半導体を含み第2導電形の第2半導体層20と、を備える。この場合も、発光部30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層32と、を含む。
(Second Embodiment)
FIG. 9 is a schematic cross-sectional view illustrating the configuration of the semiconductor light emitting element according to the second embodiment.
As shown in FIG. 9, the semiconductor light emitting device 140 according to the present embodiment is provided on the base layer 50 formed on the silicon substrate 40, and is provided on the base layer 50 and includes a nitride semiconductor and includes a first conductive material. First semiconductor layer 10, light emitting unit 30 provided on first semiconductor layer 10, second semiconductor layer 20 of second conductivity type provided on light emitting unit 30 and including a nitride semiconductor, . Also in this case, the light emitting unit 30 includes a plurality of barrier layers 31 and a well layer 32 provided between the plurality of barrier layers 31 and including Ga 1 -z1 In z1 N (0 <z1 ≦ 1). .
下地層50は、2nm以上100nm以下の厚さを有し、Alを含む窒化物半導体を含むAl含有中間層56を含む。Al含有中間層56は、第1半導体層10の側の面に設けられた凹凸部56dを有する。凹凸部56dの表面粗さRaは、1nm以上10nm以下である。例えば、表面粗さRaは、約3nmである。 The underlayer 50 includes an Al-containing intermediate layer 56 having a thickness of 2 nm to 100 nm and including a nitride semiconductor containing Al. The Al-containing intermediate layer 56 has a concavo-convex portion 56 d provided on the surface on the first semiconductor layer 10 side. The surface roughness Ra of the uneven portion 56d is 1 nm or more and 10 nm or less. For example, the surface roughness Ra is about 3 nm.
このような構成により、半導体層の劣化及び破壊を抑制した半導体発光素子が得られる。 With such a configuration, it is possible to obtain a semiconductor light emitting element in which deterioration and destruction of the semiconductor layer are suppressed.
図10は、第2の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図10に表したように、本実施形態に係る具体例の半導体発光素子141においては、図4に関して説明したAlNバッファ層55及びAlGaNバッファ層54が設けられ、その上に、多層バッファ層53が設けられる。そして、多層バッファ層53は、Z軸に沿って交互に積層された複数のGaN層51と、複数のAlN層52と、を含む。
FIG. 10 is a schematic cross-sectional view illustrating the configuration of another semiconductor light emitting element according to the second embodiment.
As shown in FIG. 10, in the semiconductor light emitting device 141 of the specific example according to the present embodiment, the AlN buffer layer 55 and the AlGaN buffer layer 54 described with reference to FIG. 4 are provided, and the multilayer buffer layer 53 is formed thereon. Provided. The multilayer buffer layer 53 includes a plurality of GaN layers 51 and a plurality of AlN layers 52 that are alternately stacked along the Z-axis.
この例では、AlN層52は、第1半導体層10の側の面に設けられた凹凸部56dを有する。すなわち、AlN層52が、凹凸部56dを有するAl含有中間層56に相当する。 In this example, the AlN layer 52 has a concavo-convex portion 56 d provided on the surface on the first semiconductor layer 10 side. That is, the AlN layer 52 corresponds to the Al-containing intermediate layer 56 having the uneven portion 56d.
また、半導体発光素子141においては、In含有中間層60が設けられていない。これ以外は、半導体発光素子111と同様なので説明を省略する。 In the semiconductor light emitting device 141, the In-containing intermediate layer 60 is not provided. Other than this, it is the same as the semiconductor light emitting device 111, and the description is omitted.
以下、半導体発光素子141を作製し、その特性について評価した結果を、参考例と共に説明する。半導体発光素子141は、以下のようにして作製された。 Hereinafter, the result of evaluating the characteristics of the semiconductor light emitting device 141 will be described together with a reference example. The semiconductor light emitting device 141 was manufactured as follows.
以下の半導体層の結晶成長には、MOVPE(有機金属気相成長)法を用いた。 The MOVPE (metal organic vapor phase epitaxy) method was used for crystal growth of the following semiconductor layers.
まず、Si(111)のシリコン基板40をH2O2とH2SO4との1:1の混合液で13分間洗浄した。次に、2%のHFを用いて10分間、シリコン基板40を洗浄した。洗浄後、シリコン基板40をMOVPE反応炉内に導入した。 First, the Si (111) silicon substrate 40 was washed with a 1: 1 mixture of H 2 O 2 and H 2 SO 4 for 13 minutes. Next, the silicon substrate 40 was cleaned using 2% HF for 10 minutes. After cleaning, the silicon substrate 40 was introduced into the MOVPE reactor.
サセプタを水素雰囲気下で720℃に昇温し、TMAを8秒間供給した。その後、NH3を更に供給することで、AlNバッファ層55となる、厚さが40nmのAlN層を形成した。 The susceptor was heated to 720 ° C. in a hydrogen atmosphere, and TMA was supplied for 8 seconds. Thereafter, by further supplying NH 3 , an AlN layer having a thickness of 40 nm, which becomes the AlN buffer layer 55, was formed.
続いて、サセプタを1030℃に昇温し、AlGaNバッファ層54となる、厚さが40nmのAl0.25Ga0.75N層を形成した。 Subsequently, the temperature of the susceptor was raised to 1030 ° C., and an Al 0.25 Ga 0.75 N layer having a thickness of 40 nm was formed to be the AlGaN buffer layer 54.
次に、サセプタを1080℃に昇温し、GaN層51となる、厚さが300nmのGaN層を形成した。 Next, the susceptor was heated to 1080 ° C. to form a GaN layer 51 having a thickness of 300 nm.
次に、サセプタを800℃に降温し、総流量に占めるNH3、H2、N2の割合をそれぞれ20%、80%、0%にて、AlN層52となる、厚さが2nmのAlN層を形成した。 Next, the temperature of the susceptor is lowered to 800 ° C., and the ratio of NH 3 , H 2 , and N 2 in the total flow rate is 20%, 80%, and 0%, respectively, and the AlN layer 52 is formed. A layer was formed.
さらに、総流量に占めるNH3、H2、N2の割合をそれぞれ32%、52%、16%に変更したのち、サセプタを1120℃に昇温し、GaN層51となる、厚さが300nmのGaN層を形成した。この、AlN層52の形成とGaN層51の形成とを交互に3回繰り返した。 Furthermore, after changing the ratio of NH 3 , H 2 , and N 2 in the total flow rate to 32%, 52%, and 16%, respectively, the susceptor is heated to 1120 ° C. to become the GaN layer 51, with a thickness of 300 nm. A GaN layer was formed. The formation of the AlN layer 52 and the formation of the GaN layer 51 were alternately repeated three times.
次に、サセプタを800℃に降温し、総流量に占めるNH3、H2、N2の割合をそれぞれ20%、80%、0%にて、AlN層52となる、厚さが12nmのAlN層を形成した。これにより、多層バッファ層53が形成される。 Next, the temperature of the susceptor is lowered to 800 ° C., and the ratio of NH 3 , H 2 , and N 2 in the total flow rate is 20%, 80%, and 0%, respectively, and the AlN layer 52 is formed. A layer was formed. Thereby, the multilayer buffer layer 53 is formed.
上記の条件により、AlN層52に凹凸部56dが形成される。すなわち、AlN層52は、ドット状に形成される。凹凸部56dの表面粗さRaは、約3nmであった。 Under the above conditions, the uneven portion 56d is formed in the AlN layer 52. That is, the AlN layer 52 is formed in a dot shape. The surface roughness Ra of the uneven portion 56d was about 3 nm.
この後、第1半導体層10を形成し、In含有中間層60を形成せずに発光部30を形成し、第2半導体層20を形成した。これにより、半導体発光素子141が形成された。 Thereafter, the first semiconductor layer 10 was formed, the light emitting unit 30 was formed without forming the In-containing intermediate layer 60, and the second semiconductor layer 20 was formed. Thereby, the semiconductor light emitting element 141 was formed.
一方、第2比較例の半導体発光素子192(図示しない)においては、多層バッファ層53の形成条件を半導体発光素子111と同様に設定した。この場合には、AlN層52には、凹凸部56dは形成されず、AlN層52の上面は実質的に平坦である。そして、In含有中間層60を形成しないで、第1半導体層10、発光部30及び第2半導体層20を形成した。 On the other hand, in the semiconductor light emitting device 192 (not shown) of the second comparative example, the formation conditions of the multilayer buffer layer 53 were set similarly to the semiconductor light emitting device 111. In this case, the uneven portion 56d is not formed in the AlN layer 52, and the upper surface of the AlN layer 52 is substantially flat. Then, the first semiconductor layer 10, the light emitting unit 30, and the second semiconductor layer 20 were formed without forming the In-containing intermediate layer 60.
このようにして作製された、実施形態に係る半導体発光素子141及び第2参考例の半導体発光素子192をノマルスキ顕微鏡で観察した。
図11(a)及び図11(b)は、半導体発光素子の特性を例示するノマルスキ顕微鏡像である。
図11(a)に示したように、実施形態に係る半導体発光素子141においては、クラックが観察されなかった。
図11(b)に示したように、第2参考例においては、多数のクラックCRが観察された。
The semiconductor light emitting device 141 according to the embodiment and the semiconductor light emitting device 192 of the second reference example manufactured as described above were observed with a Nomarski microscope.
FIG. 11A and FIG. 11B are Nomarski microscope images illustrating the characteristics of the semiconductor light emitting device.
As shown in FIG. 11A, no crack was observed in the semiconductor light emitting device 141 according to the embodiment.
As shown in FIG. 11B, a large number of cracks CR were observed in the second reference example.
このように、本実施形態においては、凹凸部56dを有するAl含有中間層56(AlN層52)を下地層50中に設けることで、クラックCRの発生が非常に効果的に抑制される。この例のように、凹凸部56dを有するAl含有中間層56を用いる場合には、第1の実施形態に関して説明したIn含有中間層60を設けなくても、クラックCRの発生が抑制できる。ただし、In含有中間層60を設けつつ、さらに、Al含有中間層56を設けても良い。これにより、さらに、クラックCRが発生し難くなる。 As described above, in the present embodiment, by providing the Al-containing intermediate layer 56 (AlN layer 52) having the concavo-convex portion 56d in the underlayer 50, the generation of the crack CR is very effectively suppressed. As in this example, when the Al-containing intermediate layer 56 having the concavo-convex portion 56d is used, the occurrence of crack CR can be suppressed without providing the In-containing intermediate layer 60 described in regard to the first embodiment. However, the Al-containing intermediate layer 56 may be further provided while the In-containing intermediate layer 60 is provided. As a result, crack CR is less likely to occur.
図12(a)及び図12(b)は、第2の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図12(a)に表したように、本実施形態に係る別の半導体発光素子151においては、In含有中間層60が、第1半導体層10と発光部30との間に設けられ、さらに、凹凸部56dを有するAl含有中間層56が設けられる。
FIG. 12A and FIG. 12B are schematic cross-sectional views illustrating the configuration of another semiconductor light emitting element according to the second embodiment.
As shown in FIG. 12A, in another semiconductor light emitting device 151 according to this embodiment, an In-containing intermediate layer 60 is provided between the first semiconductor layer 10 and the light emitting unit 30, and An Al-containing intermediate layer 56 having an uneven portion 56d is provided.
図12(b)に表したように、本実施形態に係る別の半導体発光素子152においては、In含有中間層60が、第2半導体層20と発光部30との間に設けられ、さらに、凹凸部56dを有するAl含有中間層56が設けられる。 As shown in FIG. 12B, in another semiconductor light emitting device 152 according to this embodiment, the In-containing intermediate layer 60 is provided between the second semiconductor layer 20 and the light emitting unit 30, An Al-containing intermediate layer 56 having an uneven portion 56d is provided.
さらに、凹凸部56dを有するAl含有中間層56を設けつつ、In含有中間層60を、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間の両方に設けても良い。 Furthermore, the In-containing intermediate layer 60 is provided between the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer 20 and the light emitting unit 30 while providing the Al-containing intermediate layer 56 having the uneven portion 56d. You may provide in both.
凹凸部56dを有するAl含有中間層56(この例では、多層バッファ層53内のAlN層52)の下側に、GaNを含む層(この例では、多層バッファ層53内のGaN層51)を設けることは、半導体層の劣化及び破壊の抑制に効果的である。 A layer containing GaN (in this example, the GaN layer 51 in the multilayer buffer layer 53) is provided below the Al-containing intermediate layer 56 having the uneven portion 56d (in this example, the AlN layer 52 in the multilayer buffer layer 53). The provision is effective in suppressing deterioration and destruction of the semiconductor layer.
凹凸部56dを有するAl含有中間層56は、下地層50内だけでなく、下地層50から上の任意の位置に設けても良い。また、半導体発光素子141においては、凹凸部56dを有するAl含有中間層56(AlN層52)と、GaNを含む層(GaN層51)と、が交互に積層されているが、凹凸部56dを有するAl含有中間層56が1層(例えば1ペア)でも良い。 The Al-containing intermediate layer 56 having the uneven portion 56d may be provided not only in the underlayer 50 but also at an arbitrary position above the underlayer 50. In the semiconductor light emitting device 141, the Al-containing intermediate layer 56 (AlN layer 52) having the uneven portion 56d and the layer containing GaN (GaN layer 51) are alternately stacked. The Al-containing intermediate layer 56 may be one layer (for example, one pair).
(第3の実施形態)
図13(a)及び図13(b)は、第3の実施形態に係る窒化物半導体ウェーハの構成を例示する模式的断面図である。
図13(a)及び図13(b)に表したように、本実施形態に係る窒化物半導体ウェーハ210及び211は、シリコン基板40と、シリコン基板40の上に設けられた下地層50と、下地層50の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層10と、第1半導体層10の上に設けられた発光部30と、発光部30の上に設けられ、窒化物半導体を含み第2導電形の第2半導体層20と、In含有中間層60と、を備える。
(Third embodiment)
FIG. 13A and FIG. 13B are schematic cross-sectional views illustrating the configuration of a nitride semiconductor wafer according to the third embodiment.
As illustrated in FIGS. 13A and 13B, the nitride semiconductor wafers 210 and 211 according to the present embodiment include a silicon substrate 40, a base layer 50 provided on the silicon substrate 40, A first semiconductor layer 10 including a nitride semiconductor and having a first conductivity type, a light emitting unit 30 provided on the first semiconductor layer 10, and a light emitting unit 30. The second semiconductor layer 20 including the nitride semiconductor and having the second conductivity type, and the In-containing intermediate layer 60 are provided.
発光部30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層32と、を含む。 The light emitting unit 30 includes a plurality of barrier layers 31 and a well layer 32 provided between the plurality of barrier layers 31 and including Ga 1 -z1 In z1 N (0 <z1 ≦ 1).
窒化物半導体ウェーハ210においては、In含有中間層60は、第1半導体層10と発光部30との間に設けられている。窒化物半導体ウェーハ211においては、In含有中間層60は、第2半導体層20と発光部30との間に設けられている。In含有中間層60は、第1半導体層10と発光部30との間、及び、第2半導体層20と発光部30との間に設けられても良い。 In the nitride semiconductor wafer 210, the In-containing intermediate layer 60 is provided between the first semiconductor layer 10 and the light emitting unit 30. In the nitride semiconductor wafer 211, the In-containing intermediate layer 60 is provided between the second semiconductor layer 20 and the light emitting unit 30. The In-containing intermediate layer 60 may be provided between the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer 20 and the light emitting unit 30.
In含有中間層60は、井戸層32に含まれるIn組成比z1とは異なる組成比でInを含む窒化物半導体を含む。In含有中間層60は、10nm以上1000nm以下の厚さを有する。 The In-containing intermediate layer 60 includes a nitride semiconductor containing In at a composition ratio different from the In composition ratio z <b> 1 included in the well layer 32. The In-containing intermediate layer 60 has a thickness of 10 nm to 1000 nm.
図14は、第3の実施形態に係る別の窒化物半導体ウェーハの構成を例示する模式的断面図である。
図14に表したように、本実施形態に係る別の窒化物半導体ウェーハ240は、シリコン基板40と、シリコン基板40の上に設けられた下地層50と、下地層50の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層10と、第1半導体層10の上に設けられた発光部30と、発光部30の上に設けられ、窒化物半導体を含み第2導電形の第2半導体層20と、を備える。発光部30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層32と、を含む。
FIG. 14 is a schematic cross-sectional view illustrating the configuration of another nitride semiconductor wafer according to the third embodiment.
As shown in FIG. 14, another nitride semiconductor wafer 240 according to the present embodiment is provided on the silicon substrate 40, the foundation layer 50 provided on the silicon substrate 40, the foundation layer 50, A first semiconductor layer 10 including a nitride semiconductor and having a first conductivity type, a light emitting unit 30 provided on the first semiconductor layer 10, and a second conductive layer provided on the light emitting unit 30 and including a nitride semiconductor. A second semiconductor layer 20 having a shape. The light emitting unit 30 includes a plurality of barrier layers 31 and a well layer 32 provided between the plurality of barrier layers 31 and including Ga 1 -z1 In z1 N (0 <z1 ≦ 1).
下地層50は、2nm以上100nm以下の厚さを有し、Alを含む窒化物半導体を含むAl含有中間層56を含む。Al含有中間層56は、第1半導体層10の側の面に設けられた凹凸部56dを有する。凹凸部56dの表面粗さRaは1nm以上10nm以下である。 The underlayer 50 includes an Al-containing intermediate layer 56 having a thickness of 2 nm to 100 nm and including a nitride semiconductor containing Al. The Al-containing intermediate layer 56 has a concavo-convex portion 56 d provided on the surface on the first semiconductor layer 10 side. The surface roughness Ra of the uneven portion 56d is 1 nm or more and 10 nm or less.
窒化物半導体ウェーハ210、211及び240によれば、半導体層の劣化及び破壊を抑制した半導体発光素子のための窒化物半導体ウェーハを提供できる。 According to the nitride semiconductor wafers 210, 211, and 240, it is possible to provide a nitride semiconductor wafer for a semiconductor light emitting device that suppresses deterioration and destruction of a semiconductor layer.
(第4の実施形態)
図15(a)及び図15(b)は、第4の実施形態に係る窒化物半導体層の製造方法を例示するフローチャート図である。
図15(a)及び図15(b)に表したように、本実施形態に係る窒化物半導体層の製造方法は、シリコン基板40の上に設けられた下地層50の上に、窒化物半導体を含み第1導電形の第1半導体層10を形成する工程(ステップS110)を含む。
(Fourth embodiment)
FIG. 15A and FIG. 15B are flowcharts illustrating the method for manufacturing the nitride semiconductor layer according to the fourth embodiment.
As shown in FIGS. 15A and 15B, the nitride semiconductor layer manufacturing method according to the present embodiment provides a nitride semiconductor layer on the base layer 50 provided on the silicon substrate 40. Forming a first semiconductor layer 10 of the first conductivity type (step S110).
さらに、本製造方法は、第1半導体層10の上に、複数の障壁層31と、複数の障壁層31どうしの間に配置されるGa1−z1Inz1N(0<z1≦1)を含む井戸層32と、を含む発光部30を形成する工程(ステップS120)を含む。 Furthermore, in this manufacturing method, a plurality of barrier layers 31 and Ga 1 -z1 In z1 N (0 <z1 ≦ 1) disposed between the plurality of barrier layers 31 are formed on the first semiconductor layer 10. And a step of forming the light emitting unit 30 including the well layer 32 (step S120).
さらに、本製造方法は、発光部30の上に、窒化物半導体を含み第1導電形とは異なる第2導電形の第2半導体層20を形成する工程(ステップS130)を含む。 Furthermore, the manufacturing method includes a step (step S130) of forming a second semiconductor layer 20 including a nitride semiconductor and having a second conductivity type different from the first conductivity type on the light emitting unit 30.
さらに、本製造方法は、第1半導体層10と発光部30との間、及び、第2半導体層と発光部30との間の少なくともいずれかにIn含有中間層60を形成する工程(ステップS140)を含む。In含有中間層60は、井戸層32に含まれるIn組成比z1とは異なる組成比でInを含む窒化物半導体を含む。In含有中間層60は、10nm以上1000nm以下の厚さを有する。 Further, the manufacturing method forms the In-containing intermediate layer 60 between at least one of the first semiconductor layer 10 and the light emitting unit 30 and between the second semiconductor layer and the light emitting unit 30 (step S140). )including. The In-containing intermediate layer 60 includes a nitride semiconductor containing In at a composition ratio different from the In composition ratio z <b> 1 included in the well layer 32. The In-containing intermediate layer 60 has a thickness of 10 nm to 1000 nm.
図16は、第4の実施形態に係る別の窒化物半導体層の製造方法を例示するフローチャート図である。
図16に表したように、本実施形態係る窒化物半導体層の製造方法は、シリコン基板40の上に、Al含有中間層56を含む下地層50を形成する工程(ステップS150)を含む。Al含有中間層56は、2nm以上100nm以下の厚さを有し、Alを含む窒化物半導体を含む。
FIG. 16 is a flowchart illustrating another method for manufacturing a nitride semiconductor layer according to the fourth embodiment.
As shown in FIG. 16, the method for manufacturing a nitride semiconductor layer according to the present embodiment includes a step (step S <b> 150) of forming the foundation layer 50 including the Al-containing intermediate layer 56 on the silicon substrate 40. The Al-containing intermediate layer 56 has a thickness of 2 nm to 100 nm and includes a nitride semiconductor containing Al.
さらに、本製造方法は、下地層50の上に、窒化物半導体を含み第1導電形の第1半導体層10を形成する工程(ステップS110)を含む。 Further, the manufacturing method includes a step (step S110) of forming the first semiconductor layer 10 including the nitride semiconductor and having the first conductivity type on the base layer 50.
さらに、本製造方法は、第1半導体層10の上に、複数の障壁層31と、複数の障壁層31どうしの間に配置されるGa1−z1Inz1N(0<z1≦1)を含む井戸層32と、を含む発光部30を形成する工程(ステップS120)を含む。 Furthermore, in this manufacturing method, a plurality of barrier layers 31 and Ga 1 -z1 In z1 N (0 <z1 ≦ 1) disposed between the plurality of barrier layers 31 are formed on the first semiconductor layer 10. And a step of forming the light emitting unit 30 including the well layer 32 (step S120).
さらに、本製造方法は、発光部30の上に、窒化物半導体を含み第1導電形とは異なる第2導電形の第2半導体層20を形成する工程(ステップS130)を含む。 Furthermore, the manufacturing method includes a step (step S130) of forming a second semiconductor layer 20 including a nitride semiconductor and having a second conductivity type different from the first conductivity type on the light emitting unit 30.
Al含有中間層56は、第1半導体層10の側の面(上面)に設けられた凹凸部56dを有し、凹凸部56dの表面粗さRaは1nm以上10nm以下である。 The Al-containing intermediate layer 56 has an uneven portion 56d provided on the surface (upper surface) of the first semiconductor layer 10, and the surface roughness Ra of the uneven portion 56d is 1 nm or more and 10 nm or less.
図15(a)、図15(b)及び図16に関して説明した製造方法により、半導体層の劣化及び破壊を抑制した窒化物半導体層が製造できる。 A nitride semiconductor layer in which deterioration and destruction of the semiconductor layer are suppressed can be manufactured by the manufacturing method described with reference to FIGS.
実施形態において、半導体層の成長には、例えば、有機金属気相堆積(Metal-Organic Chemical Vapor Deposition: MOCVD)法、有機金属気相成長(Metal-Organic Vapor Phase Epitaxy:MOVPE)法、分子線エピタキシー(Molecular Beam Epitaxy:MBE)法、及び、ハライド気相エピタキシー法(HVPE)法などを用いることができる。 In the embodiment, the semiconductor layer is grown by, for example, metal-organic chemical vapor deposition (MOCVD) method, metal-organic vapor phase epitaxy (MOVPE) method, molecular beam epitaxy. (Molecular Beam Epitaxy: MBE) method, halide vapor phase epitaxy method (HVPE) method and the like can be used.
例えば、MOCVD法またはMOVPE法を用いた場合では、各半導体層の形成の際の原料には、以下を用いることができる。Gaの原料として、例えばTMGa(トリメチルガリウム)及びTEGa(トリエチルガリウム)を用いることができる。Inの原料として、例えば、TMIn(トリメチルインジウム)及びTEIn(トリエチルインジウム)などを用いることができる。Alの原料として、例えば、TMAl(トリメチルアルミニウム)などを用いることができる。Nの原料として、例えば、NH3(アンモニア)、MMHy(モノメチルヒドラジン)及びDMHy(ジメチルヒドラジン)などを用いることができる。Siの原料としては、SiH4(モノシラン)、Si2H6(ジシラン)などを用いることができる。 For example, when the MOCVD method or the MOVPE method is used, the following can be used as raw materials for forming each semiconductor layer. For example, TMGa (trimethyl gallium) and TEGa (triethyl gallium) can be used as the Ga raw material. For example, TMIn (trimethylindium), TEIn (triethylindium), or the like can be used as the In material. As a raw material for Al, for example, TMAl (trimethylaluminum) can be used. As a raw material of N, for example, NH 3 (ammonia), MMHy (monomethylhydrazine), DMHy (dimethylhydrazine) and the like can be used. As a Si raw material, SiH 4 (monosilane), Si 2 H 6 (disilane), or the like can be used.
実施形態によれば、半導体層の劣化及び破壊を抑制した半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法が提供できる。 According to the embodiment, it is possible to provide a semiconductor light emitting device, a nitride semiconductor wafer, and a method for manufacturing a nitride semiconductor layer in which deterioration and destruction of the semiconductor layer are suppressed.
なお、本明細書において「窒化物半導体」とは、BxInyAlzGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電形などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。 In this specification, “nitride semiconductor” means B x In y Al z Ga 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) Semiconductors having all compositions in which the composition ratios x, y, and z are changed within the respective ranges are included. Furthermore, in the above chemical formula, those further containing a group V element other than N (nitrogen), those further containing various elements added for controlling various physical properties such as conductivity type, and unintentionally Those further including various elements included are also included in the “nitride semiconductor”.
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれは良い。 In the present specification, “vertical” and “parallel” include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. is good.
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子及び窒化物半導体ウェーハに含まれる基板、AlNバッファ層、AlGaNバッファ層、下地層、多層バッファ層、AlN層、GaN層、In含有中間層、Al含有中間層、半導体層、発光部、及び機能部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, substrates included in semiconductor light emitting devices and nitride semiconductor wafers, AlN buffer layers, AlGaN buffer layers, underlayers, multilayer buffer layers, AlN layers, GaN layers, In-containing intermediate layers, Al-containing intermediate layers, semiconductor layers, light emission The specific configuration of each element such as a unit and a functional unit is not limited as long as a person skilled in the art can appropriately implement the present invention by selecting appropriately from a known range and obtain the same effect. Included in the range.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.
その他、本発明の実施の形態として上述した半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all semiconductor light-emitting elements and nitrides that can be implemented by a person skilled in the art with appropriate design modifications based on the semiconductor light-emitting elements, nitride semiconductor wafers, and nitride semiconductor layer manufacturing methods described above as embodiments of the present invention The manufacturing method of the semiconductor wafer and the nitride semiconductor layer also belongs to the scope of the present invention as long as it includes the gist of the present invention.
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10…第1半導体層、 10s…機能部、 20…第2半導体層、 30…発光部、 31…障壁層、 32…井戸層、 40…シリコン基板、 50…下地層、 51…GaN層、 52…AlN層、 53…多層バッファ層、 54…AlGaNバッファ層、 55…AlNバッファ層、 56…Al含有中間層、 56d…凹凸部、 60…In含有中間層、 61…第1層、 62…第2層、 110、111、121、122、131、132、140、141、151、152、191、192…半導体発光素子、 210、211、240…窒化物半導体ウェーハ、 BL…障壁層、 WL…井戸層 DESCRIPTION OF SYMBOLS 10 ... 1st semiconductor layer, 10s ... Functional part, 20 ... 2nd semiconductor layer, 30 ... Light emission part, 31 ... Barrier layer, 32 ... Well layer, 40 ... Silicon substrate, 50 ... Underlayer, 51 ... GaN layer, 52 ... AlN layer, 53 ... Multi-layer buffer layer, 54 ... AlGaN buffer layer, 55 ... AlN buffer layer, 56 ... Al-containing intermediate layer, 56d ... Uneven portion, 60 ... In-containing intermediate layer, 61 ... First layer, 62 ... First 2 layers, 110, 111, 121, 122, 131, 132, 140, 141, 151, 152, 191, 192 ... semiconductor light emitting device, 210, 211, 240 ... nitride semiconductor wafer, BL ... barrier layer, WL ... well layer
Claims (9)
前記下地層の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層と、
前記第1半導体層の上に設けられた発光部であって、複数の障壁層と、前記複数の障壁層どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む発光部と、
前記発光部の上に設けられ、窒化物半導体を含み前記第1導電形とは異なる第2導電形の第2半導体層と、
を備え、
前記下地層は、前記シリコン基板の上に形成されたAlNバッファ層と、前記AlNバッファ層の上に形成されたAlGaNバッファ層と、前記AlGaNバッファ層の上に形成されたGaN層と、前記GaN層の上に形成され2ナノメートル以上100ナノメートル以下の厚さを有し、AlNを含むAl含有中間層と、を含み、
前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有することを特徴とする半導体発光素子。 An underlayer formed on a silicon substrate;
A first semiconductor layer of a first conductivity type including a nitride semiconductor provided on the underlayer;
A light emitting portion provided on the first semiconductor layer, the light emitting portion including a plurality of barrier layers and Ga 1 -z1 In z1 N (0 <z1 ≦ 1) provided between the plurality of barrier layers. A light emitting portion including a well layer;
A second semiconductor layer of a second conductivity type provided on the light emitting unit and including a nitride semiconductor and different from the first conductivity type;
With
The underlayer includes an AlN buffer layer formed on the silicon substrate, an AlGaN buffer layer formed on the AlN buffer layer, a GaN layer formed on the AlGaN buffer layer, and the GaN An Al-containing intermediate layer formed on the layer and having a thickness of 2 nanometers to 100 nanometers and comprising AlN;
The said Al containing intermediate | middle layer has a dot-shaped uneven | corrugated | grooved part provided in the surface at the side of the said 1st semiconductor layer, The semiconductor light-emitting device characterized by the above-mentioned.
前記シリコン基板の上に設けられた下地層と、
前記下地層の上に設けられ、窒化物半導体を含み第1導電形の第1半導体層と、
前記第1半導体層の上に設けられた発光部であって、複数の障壁層と、前記複数の障壁層どうしの間に設けられGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む発光部と、
前記発光部の上に設けられ、窒化物半導体を含み前記第1導電形とは異なる第2導電形の第2半導体層と、
を備え、
前記下地層は、前記シリコン基板の上に形成されたAlNバッファ層と、前記AlNバッファ層の上に形成されたAlGaNバッファ層と、前記AlGaNバッファ層の上に形成されたGaN層と、前記GaN層の上に形成され2ナノメートル以上100ナノメートル以下の厚さを有し、AlN含むAl含有中間層と、を含み、
前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有することを特徴とする窒化物半導体ウェーハ。 A silicon substrate;
An underlayer provided on the silicon substrate;
A first semiconductor layer of a first conductivity type including a nitride semiconductor provided on the underlayer;
A light emitting portion provided on the first semiconductor layer, the light emitting portion including a plurality of barrier layers and Ga 1 -z1 In z1 N (0 <z1 ≦ 1) provided between the plurality of barrier layers. A light emitting portion including a well layer;
A second semiconductor layer of a second conductivity type provided on the light emitting unit and including a nitride semiconductor and different from the first conductivity type;
With
The underlayer includes an AlN buffer layer formed on the silicon substrate, an AlGaN buffer layer formed on the AlN buffer layer, a GaN layer formed on the AlGaN buffer layer, and the GaN An Al-containing intermediate layer formed on the layer and having a thickness of 2 nanometers to 100 nanometers and comprising AlN,
The nitride-containing semiconductor wafer, wherein the Al-containing intermediate layer has dot-shaped uneven portions provided on a surface on the first semiconductor layer side.
前記下地層の上に、窒化物半導体を含み第1導電形の第1半導体層を形成する工程と、
前記第1半導体層の上に、複数の障壁層と、前記複数の障壁層どうしの間に配置されるGa1−z1Inz1N(0<z1≦1)を含む井戸層と、を含む発光部を形成する工程と、
前記発光部の上に、窒化物半導体を含み前記第1導電形とは異なる第2導電形の第2半導体層を形成する工程と、
を備え、
前記Al含有中間層は、前記第1半導体層の側の面に設けられたドット状の凹凸部を有することを特徴とする窒化物半導体層の製造方法。 On the silicon substrate, an AlN buffer layer, an AlGaN buffer layer formed on the AlN buffer layer, a GaN layer formed on the AlGaN buffer layer, and 2 nanometers formed on the GaN layer. has a 100 nm or less in thickness or more meters, forming a base layer comprising a Al-containing intermediate layer containing AlN,
Forming a first semiconductor layer of a first conductivity type including a nitride semiconductor on the underlayer;
Light emission including a plurality of barrier layers and a well layer containing Ga 1 -z1 In z1 N (0 <z1 ≦ 1) disposed between the plurality of barrier layers on the first semiconductor layer. Forming a part;
Forming a second semiconductor layer including a nitride semiconductor and having a second conductivity type different from the first conductivity type on the light emitting unit;
With
The method for producing a nitride semiconductor layer, wherein the Al-containing intermediate layer has dot-shaped uneven portions provided on a surface on the first semiconductor layer side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053347A JP5597663B2 (en) | 2012-03-09 | 2012-03-09 | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053347A JP5597663B2 (en) | 2012-03-09 | 2012-03-09 | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011109783A Division JP5123414B2 (en) | 2011-05-16 | 2011-05-16 | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012244161A JP2012244161A (en) | 2012-12-10 |
JP5597663B2 true JP5597663B2 (en) | 2014-10-01 |
Family
ID=47465472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012053347A Active JP5597663B2 (en) | 2012-03-09 | 2012-03-09 | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5597663B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3622562B2 (en) * | 1998-03-12 | 2005-02-23 | 日亜化学工業株式会社 | Nitride semiconductor light emitting diode |
JP2009064978A (en) * | 2007-09-06 | 2009-03-26 | Sharp Corp | GaN-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREFOR |
DE112010003214B4 (en) * | 2009-08-07 | 2016-06-16 | Ngk Insulators, Ltd. | EPITAXIAL SUBSTRATE FOR A SEMICONDUCTOR DEVICE, METHOD FOR PRODUCING AN EPITAXIS SUBSTRATE FOR A SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE |
EP2477236A4 (en) * | 2009-09-07 | 2015-07-22 | Panasonic Ip Man Co Ltd | Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element |
-
2012
- 2012-03-09 JP JP2012053347A patent/JP5597663B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012244161A (en) | 2012-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5023230B1 (en) | Nitride semiconductor element, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer | |
JP5319810B2 (en) | Method for manufacturing nitride semiconductor layer | |
JP6121806B2 (en) | Nitride semiconductor wafer, nitride semiconductor device, and method of manufacturing nitride semiconductor wafer | |
US8969891B2 (en) | Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer | |
JP4670055B2 (en) | Semiconductor substrate and semiconductor device | |
JP5911727B2 (en) | Nitride semiconductor element, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer | |
JP2015133443A (en) | Nitride semiconductor element and nitride semiconductor wafer | |
JP6430317B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP5123414B2 (en) | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer | |
JP2012204540A (en) | Semiconductor device and method of manufacturing the same | |
TW201310701A (en) | Method for producing a group III nitride semiconductor light-emitting device | |
JP6483566B2 (en) | Semiconductor light emitting device | |
JP5597663B2 (en) | Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer | |
JP5723341B2 (en) | Manufacturing method of semiconductor device | |
JP6649693B2 (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
JP2016082200A (en) | Crystal laminate structure and manufacturing method thereof, and semiconductor device | |
JP5337272B2 (en) | Nitride semiconductor element, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer | |
KR101850537B1 (en) | Semiconductor device | |
JP6437083B2 (en) | Semiconductor wafer and semiconductor device | |
JP6264628B2 (en) | Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer | |
JP2013187551A (en) | Method of manufacturing nitride semiconductor layer | |
JP2010016191A (en) | Method of producing group-iii nitride-based light-emitting element and method of producing epitaxial wafer | |
JP2004006916A (en) | Compound semiconductor light-emitting device and its manufacturing method | |
JP2008047940A (en) | Compound semiconductor light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140811 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5597663 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |